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Abstract

Text-attributed graphs (TAGs) are prevalent
in various real-world applications, including
academic networks, e-commerce platforms,
and social networks. Effective learning on
TAGs requires leveraging both textual node fea-
tures and structural graph information. While
language models (LMs) excel at processing
text and graph neural networks (GNNs) ef-
fectively capture relational structures, their di-
rect integration is computationally prohibitive
due to the high cost of text and graph repre-
sentation learning. Existing approaches ad-
dress this challenge by adopting a two-step
pipeline where LMs generate fixed node em-
beddings, which are then used for GNN train-
ing. However, this method neglects the inter-
action between textual and structural informa-
tion, leading to suboptimal learning outcomes.
To overcome these limitations, we propose
SKETCH (Semantic Knowledge and Structure
Enrichment), a novel framework that decouples
node aggregation from graph convolution and
integrates it into the text representation learn-
ing process. SKETCH enhances TAG learning
by incorporating two key aggregation mecha-
nisms: (1) Semantic aggregation, which re-
trieves semantically relevant node texts for con-
textual enrichment, and (2) Structural aggre-
gation, which propagates textual features be-
yond immediate neighbors to capture broader
graph relationships. Extensive experiments
demonstrate that SKETCH outperforms state-
of-the-art TAG learning methods while requir-
ing fewer computational resources. By en-
abling a more efficient and effective fusion of
textual and structural information, SKETCH
provides new insights into TAG problems and
offers a practical solution for real applications.

1 Introduction

Text-attributed graphs (TAGs) are common in real-
world applications, such as academic networks,

*Shengyuan Chen is the corresponding author.

question answering (Zhang et al., 2024b), and so-
cial networks (He and McAuley, 2016; Jin et al.,
2023). Effective learning on TAGs requires lever-
aging both textual node features and the graph’s
structural information. Language models (LMs)
excel at processing text, while graph neural net-
works (GNNGs) effectively capture relational struc-
tures (Shengyuan et al., 2024; Chen et al., 2024b).

However, GNNs are often resource-demanding
due to their high cost and memory-intensive na-
ture (Liu et al., 2023b). The message-passing mech-
anism requires extensive computations, especially
for large-scale graphs. Additionally, storing and
processing large adjacency matrices or graph struc-
tures can consume significant memory, particularly
for dense graphs. These challenges make GNNs
less efficient for real-life applications, limiting their
ability to be directly integrated with LMs in an end-
to-end manner. Therefore, current TAG learning
methods adopt a two-step alternative approach (Wu
et al., 2019; Huang et al., 2022; Chen et al., 2024c;
Zhou et al., 2025a): first, LMs generate node text
embeddings, which are then used as fixed features
for GNN training. Such a cascaded approach ne-
glects the interaction between textual content and
graph structure (Zhou et al., 2025b; Zhang et al.,
2025), leading to suboptimal integration of these
modalities (Duan et al., 2023; Hong et al., 2025).

Besides, GNNs primarily depend on node-level
aggregation via graph convolutions, which involve
iteratively conducting node aggregation. Instead,
we explore the potential of purely leveraging lan-
guage models to enable token-level learning from
the graph, achieving a more granular understanding.
The emergence of long-context models provides a
unique opportunity to integrate multiple separate
corpora from various nodes into a unified long-text
learning process. By decoupling node aggregation
from graph convolution modules, we propose a
more efficient and effective TAG learning strategy,
moving beyond naive LM-GNN fusion.
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To implement this, we introduce Semantic
Knowledge and Structure Enrichment framework,
namely SKETCH, a framework that applies a
decoupled aggregation module before LM training.
This module consists of two components: (1)
Semantic aggregation: Retrieves semantically
relevant node texts for contextual enrichment.
(2) Structural aggregation: Propagates textual
features beyond immediate neighbors to capture
broader graph relationships. This two-stream
enriched input is then processed by a long-context
LM, improving predictive accuracy by providing a
more comprehensive contextual understanding.

Summary of Contributions:

* We propose a novel framework that separates
node aggregation from graph convolution, en-
abling more efficient and effective TAG learning.

* We introduce SKETCH, a learning framework
that integrates semantic and structural aggrega-
tion before LM training, improving contextual
representation and predictive accuracy.

» Extensive experiments show that SKETCH out-
performs all state-of-the-art TAG learning meth-
ods while requiring fewer computational re-
sources, making it a lightweight component.

2 Preliminaries

Notations. Text-attributed graphs consider both
text attributes and graph structure, unlike tradi-
tional text prediction and graph prediction tasks.
A text-attributed graph is defined as G = (V, £, S),
where S represents text attributes for each node.
V denotes the set of nodes, £ denotes edges be-
tween text nodes and A% (v) denotes the k-hop
neighbors of node v. Ground truth labels for a
given text-attributed graph are denoted as Y =
{y1,- -+ , Y5/}, where |S] is the size of the nodes.

A text-attributed graph is a graph where each
node is associated with textual attributes, and edges
capture relationships between nodes. One of the
key tasks in TAG learning is node classification,
where the goal is to predict the category of a node
based on both its textual features and structural con-
nections. A common example is citation graphs,
where academic papers are represented as nodes, ci-
tation links form edges, and paper abstracts provide
textual attributes. The main focus in TAG learning
lies in effectively integrating textual and structural
information to improve classification accuracy.

3 Approach: SKETCH

Our primary objective is to examine each anchor
node within the graph to effectively identify the
content that is most relevant and beneficial in en-
hancing the understanding of the associated text.
As mentioned in the introduction, the complex-
ity and richness of information at both the node
and relationship levels require a nuanced analytical
approach. Textual attributes offer valuable seman-
tic insights into the meaning and context of the
nodes, while structural relationships demonstrate
how these nodes interact within the graph’s topol-
ogy. Therefore, our method leverages the inherent
structure of the graph, treating all contained texts
as valuable resources. In the following sections,
we will detail our methodology for retrieving both
semantically and structurally related corpora, en-
hancing our understanding of each anchor node
and its context within the entire network. Here, we
present a detailed illustration of the overall frame-
work and its various components in Figure 3.

3.1 Semantic related retrieval

The structure of text-attributed graphs encompasses
textual information from various nodes. Given the
importance of contextual data, we propose inte-
grating additional corpus during the training pro-
cess. These supplementary texts can significantly
enhance the model’s ability to make accurate pre-
dictions by providing essential context and knowl-
edge. While some nodes are directly connected
through edges, there are also nodes that, despite
not being connected, may contain relevant informa-
tion about the target node, referred to as the anchor
node. Consider a research paper titled "Transfer
Learning for Small Datasets in Medical Imaging."
This paper addresses a specialized topic and is pub-
lished in a niche journal, resulting in a limited
number of direct citations. In this case, the text
attributes of the paper, including its abstract, key-
words, and methodology, contain critical insights
about "transfer learning" and "medical imaging."
For instance, the methodologies proposed in other
non-connected papers may introduce existing al-
gorithms or frameworks that could enhance the
explanation of the proposed technique.
Accordingly, we employ a global embedding
similarity technique to retrieve useful nodes. This
approach allows us to identify and extract informa-
tion from both directly linked and indirectly related
nodes, enhancing the overall relevance and compre-
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Figure 1: Overview of the semantic retrieval process. This
figure illustrates in detail how we conduct a global search for
similar nodes based on their embeddings, leveraging FAISS
(Facebook Al Similarity Search) to efficiently identify and
select the most similar items from the entire network.

hensiveness of the information associated with the
anchor node. In our retrieval process, we begin by
using a sentence-transformer to embed each piece
of textual information into vector representations,
as shown in Figure 1. To identify the most rele-
vant content, we leverage the FAISS engine, which
enables high-speed searching based on cosine sim-
ilarity. Notably, even with a dataset containing
hundreds of thousands of points, we can obtain
results in just a few minutes. This efficiency en-
sures that we can quickly retrieve the most closely
matching texts, achieving the integration of rele-
vant information into our system.

3.2 Structural related retrieval

3.2.1 Defining structural relatedness

This section focuses on retrieving structurally re-
lated nodes. However, each anchor node has nu-
merous k-hop neighbors, making it impractical to
include all in our analysis. Thus, we need to rank
the importance of neighbors and select the most
relevant ones. Previous research suggests that in
graph learning, nodes with many common neigh-
bors are often more closely related for several rea-
sons. Structural Similarity: Nodes with many
shared neighbors tend to be structurally similar,
indicating similar roles or functions, particularly
in social or biological networks. Transitive Re-
lationships: Transitivity implies that if node A is
connected to B and B is connected to C, A and C
may also be related. Common neighbors signify
potential transitive relationships, suggesting that
nodes are indeed related. Shared Context: Com-
mon neighbors indicate that nodes share similar
contexts or environments. For instance, in a social
network, two individuals with many mutual friends
may tend to have shared interests or activities.
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Figure 2: Process of transforming neighborhood IDs into hash
values for enhanced structural retrieval. The figure illustrates
that the number of common neighbors is a crucial indicator
for determining node relatedness among the graph and can be
efficiently computed using matrix operations.

To better illustrate this pattern, we include a real-
life example from our citation network dataset in
Figure 2. The anchor node is labeled ’database’,
focusing on Kalman Filters, which may lead to
its misclassification as a "Machine Learning’ algo-
rithm. Here, additional context from cited papers
is crucial. The neighboring node content, such
as "applying adaptive filters for query processing
in a distributed stream" and "techniques to query
large data repositories efficiently"”, suggests that
Kalman Filters are used to handle data streams and
applied in the database field. In contrast, another
connected node describing "Sensor networks have
recently found many popular applications" serves
a less relevant role. Analyzing their topological
differences reveals that nodes with more common
neighbors typically offer more relevant explana-
tions. This aligns with the intuition that birds of
a feather flock together and supports our previous
experience that while many papers may be cited,
some provide essential insights while others serve
merely as supplementary information.

In light of this finding, we propose defining relat-
edness through intersection features using the Jac-
card similarity coefficient, expressed as J(A, B) =
% In this formula, J(A, B) represents
the Jaccard similarity between nodes A and B,
where N (A) denotes the set of neighbors of node
A and N (B) the set of neighbors of node B. The
numerator, | N (A) N N (B)|, indicates the number
of common neighbors shared by the two nodes,
while the denominator, [N (A)U N (B)|, represents
the total number of unique neighbors across both
nodes. By employing the Jaccard similarity, we
can effectively capture the connectivity patterns
that reflect structural relationships between nodes.
This measure provides valuable insights critical for
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downstream graph-related tasks within our retrieval
processes, helping facilitate a more profound un-
derstanding of the underlying graph structure.

3.2.2 Hash-based Jaccard Similarity Estimate

As discussed in previous sections, the importance
ranking of k-hop neighbors is determined by the
proportion of common neighbors; more common
neighbors indicate a closer relationship. This part
formally presents our method for estimating k-hop
Jaccard similarities for each pair of nodes. The
typical approach involves recording each node’s
neighbors and incrementally counting the Jaccard.
However, this method is time-consuming due to the
varying number of neighbors per node and the large
overall number of nodes, resulting in extensive iter-
ations. Calculating multi-hop Jaccard, e.g. the Jac-
card between the one-hop neighbors of an anchor
node and the two-hop neighbors of other nodes,
will further complicate the computation. Monte
Carlo simulation offers a solution but remains inef-
ficient as it requires large samples for an estimate.
Similarity Estimation Using Minhash Functions.
To properly address the inefficiency associated
with direct similarity computation, we plan to map
neighborhood IDs into dense sketches and estimate
the Jaccard extent in a lower-dimensional space.
We choose Minhash (Charikar, 2002) functions as
the mapping functions based on their properties.
In this technique, we formulate the k-hop neigh-
bors of a node v, € V as a set N'(v,). Next, we
randomly hash every v € N (vg) in the set to an
integer h(v) € [B]. Here h is a universal hashing
function (Carter and Wegman, 1977). Next, we
take the minimum value of h(v) for all v € N (vg)
as the hash signature of the k-hop neighbors N (vg).
Here, the Minhash function is shown to serve as
an unbiased estimator of the Jaccard similarity be-
tween the k-hop neighborhoods of two nodes.

Definition 3.1 (Minhash for k-hop Neighbors Jac-
card Estimation). Let V denote the nodes in a
graph G = (V,&,S). Let N*(v) denote a set of the
k-hop neighbors of node v € V. Let h : V — [B]
denote a universal hashing function that maps a
node v € V to an integer in range | B], which effec-
tively captures a compact signature of the neigh-
borhood set by selecting the minimal hash value
among all k-hop neighbors. We define a Minhash
function Minhash on N*(v) as follows:

Minhash(A*(v)) = min h(NV*(v)).

Moreover, given the propriety of Minhash func-
tion (Charikar, 2002), we see that for vi,ve € V

Pr[Minhash(A*(v;)) = Minhash(NV*(v3))]
_ (o) NV ()]

_ k k(2
T INE () UNFE(vg)| = J(N"(v1),N"(v2)).

As shown in the definition, Minhash is a
locality-sensitive hashing function (Indyk and
Motwani, 1998; Datar et al., 2004; Andoni
et al., 2014; Andoni and Razenshteyn, 2015;
Andoni et al., 2017). The collision probability
of Minhash is equal to the Jaccard similarity
of two k-hop neighbor sets. As a result, we
use the collision of two Minhash signatures as
an unbiased estimator to the Jaccard similarity
between two k-hop neighbor sets N* (v1), N*(v3).

Algorithm 1 Hash-based Similarity Ranking

Input: K-hop neighboring ID sequences, each
containing V' nodes, processed by R indepen-
dent MinHash functions {h1, ho, ..., hgr}, each
with a range of B.
Output: ranked score of node IDs.
for node v € V do
for hop =1 — k do
N*%(v) = GetNeighbors(v,k)
end for
end for
Initialize: [, < MY *(R-K?)
Initialize: C, «+ MY <K %)
for s € N*(v) do
for hop=1—k,c, <[] do
forr=1— Rdo
Append h,(s) K times to H,
Append h,(s) to ¢,
end for
Append ¢, K times to C,,
end for
end for
for s € N'*(v) do
Score, = Sumy[hy == C]
Rank Score, in descending order
end for
return Score

Multi-hop Similarity Estimation. Since we are
required to estimate Jaccard across k£ hops instead
of just one-hop neighbors, we extend the aforemen-
tioned method into k£ dimensions. Our algorithm
(see Algorithm 1) begins by extracting A% (v), the
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Figure 3: The SKETCH method for text-attributed graphs comprises two components: the Semantic Retrieval Module, which
uses embedding similarity, and the Structural Retrieval Module, which employs Jaccard similarity. Both modules identify content
relevant to the anchor node from each perspective. A weighted-rank aggregation mechanism combines their outputs, ranking the
text of nodes, which are then fed into a language model for training and predictions.

sets of k-hop neighbors of the anchor node v. Next,
we apply R independent MinHash functions to gen-
erate R hash values for every s, € N'*(v), repeat-
ing this process [ times. This effectively transforms
the neighbor ID sequences into a hash sequence of
length [, which we denote as H. To simplify, we
compute 2-hop intersections by examining the one-
hop and two-hop neighbors of each node, resulting
in four combinations: one-hop with one-hop, one-
hop with two-hop, two-hop with one-hop, and two-
hop with two-hop neighbors. This approach can
easily be extended to higher-hop manipulations.

For each node, we repeat the hash sequences
corresponding to each hop. For example, let
hi,1, hi2 represent the one-hop and two-hop
neighbors of the first node, respectively. The
concatenated vector for node 1 would be
[h11,h1,1,h1 2, h12]. We then arrange the hash
vectors of all nodes according to the pattern
[[h1,1, h12, 11, R 2], oo [P as P2, P 15 B 2]]-
By calculating the number of equal hash values
present in each row, we effectively capture the
cross-combinations that occur during multi-hop
intersections. This process can be executed rapidly
by leveraging the broadcasting capabilities of
PyTorch in matrix operations. In contrast, common
methods often require one-by-one iteration due to
the irregularity in the number of neighbors, which
significantly slows down the speed of computation.
For simplicity, we previously set the hash sequence
length for each vector to [, indicating equal
importance among all four possible intersections.
To control some weights over specific intersections,
particularly the crucial one-hop intersections, we
can shorten some other vectors to a length m,

where m < [. This adjustment decreases the
frequency of "collision" for the corresponding k-th
hop intersection. Lastly, we rank the importance of
neighbors for each anchor node by its row-wise
sum; a higher value indicates a greater likelihood
of sharing more neighbors.

3.3 Aggregated learning of retrieved content

The combination of the two aforementioned mod-
ules aims to acquire relevant information from dif-
ferent dimensions, thereby enhancing the training
effectiveness of the long-context model. Seman-
tic retrieval focuses on identifying content that is
semantically similar to the anchor node text, en-
suring that we capture deep connections between
texts. In contrast, structure retrieval emphasizes
the links between texts, paying attention to the
flow of information. After obtaining the relevant
texts, we rank and filter them to select the most
significant ones, which are then connected to the
anchor node text to create a rich context for the
long-context model. Specifically, we propose a
weighted method to combine two different sim-
ilarity metrics: semantic similarity ranking and
structural similarity rankings. To create a unified
scoring system, we introduce a hyperparameter w,
which allows for the adjustment of weights of the
overall score. The composite score is calculated
using the formula G = Rgem + w - Rgyruct, Where
Rgem 1s the semantic rank and Ry 1S the struc-
tural similarity ranking. This approach allows for
greater flexibility and enhances the capability of
our evaluation method. It is similar to the Retrieval-
Augmented Generation pipeline, as our goal is to
supplement information to improve model training.
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Table 1: Performance comparison among state-of-the-art baselines on three benchmark datasets.

NLP Models  GNNs ACM Wikipedia Amazon
Val-Acc.  Test-Acc.  Val-Acc.  Test-Acc.  Val-Acc.  Test-Acc.
Fine-tuned LMs +/- GNNs
- 74.4 73.2 69.5 68.8 86.2 87.0
BERT GCN 77.6 77.1 69.4 68.4 92.3 92.8
GAT 77.9 78.0 70.5 69.8 92.5 92.4
GraphSAGE 77.3 76.8 73.1 72.7 92.0 92.3
- 78.1 76.6 67.8 68.1 84.9 85.9
GCN 80.1 79.4 68.5 68.0 92.3 92.5
RoBERTa GAT 79.7 78.9 70.1 71.0 925 924
GraphSAGE 78.5 78.3 72.7 72.1 92.2 92.1
Fine-tuned Large Language Models +/- GNNs
Llama3_8b - 80.7 80.6 71.9 71.2 92.0 91.6
Llama3_8b GraphSAGE 82.0 81.3 72.8 73.0 93.1 92.8
Large Language Models
Llama2_7b - 20.8 - 41.3 - 53.4
Llama2_13b - 58.9 - 489 - 57.6
GPT-3.5 - 54.3 - 61.8 - 49.1
GPT-4 - 67.5 - 60.9 - 40.3
Tailored Frameworks For TAG
MPAD 80.1 78.9 68.8 68.0 93.1 92.8
GLEM 81.4 79.8 72.6 71.2 92.5 93.3
LLAGA 77.2 71.5 71.7 72.0 90.1 90.8
GraphFormers 75.3 75.1 66.8 67.5 85.6 86.4
InstructGLM 76.7 75.6 72.2 71.2 94.2 94.0
Ours (Nomic) 81.4 81.1 74.1 73.6 93.3 93.5
Ours (Llama3_8b) 82.7 82.3 73.3 73.4 94.4 94.7

Our retrieval strategy draws inspiration from the
fundamental principles of graph neural networks,
where the core concept revolves around propagat-
ing information across edges to aggregate insights
from spatially close and far elements. By retrieving
content from these two perspectives, we enable the
language model to effectively mimic the process of
capturing both neighboring and broader contexts
when processing aggregated information. This dual
approach ensures a richer understanding of the data,
enhancing the model’s ability to generate more ac-
curate and contextually relevant outcomes.

4 Experiments

We conduct extensive experiments on three real-
life datasets. Our study aims to address the fol-
lowing research questions: Q1: Can SKETCH
achieve superior prediction performance than cur-
rent state-of-the-art frameworks without utilizing
graph neural networks? Q2: How effective are
semantic retrieval and structure retrieval modules
in selecting augmented textual information from
other nodes, and how do they perform under differ-

ent scenarios? Q3: What is SKETCH'’s sensitivity
to its hyperparameters, and how is the efficiency of
hash simulation compared to the standard method?
Implementation Details. We use a server with
six 24 GB NVidia RTX 3090 GPUs. Our method
utilizes the Adam optimizer with a learning rate
of 0.001 and incorporates early stopping based on
validation set accuracy. Main experiments are eval-
uated by the prediction accuracy of the testing set,
with performance results on the validation dataset
also included. Hyperparameters for length [ and &
hops are fine-tuned using a grid search to select the
optimal values for each dataset. All baseline experi-
ments follow the design outlined in their respective
articles to ensure fairness. For detailed descrip-
tions of the datasets and further explanations of the
baselines, please refer to the appendix A.

4.1 Main Results

The comparison of prediction performance across
three datasets between SKETCH and other baseline
methods is presented in Table 1. The best result
for each baseline group has been highlighted by
underlying. We have categorized all benchmarks
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Table 2: Comparisons across various settings. k-hop indicates the range of hops used to retrieve neighbors, while
Selection refers to either random sampling or similarity ranking as the criterion.

Retrieval Strategy

Variant

Original Shuffled Semantic One-hop Multi-hops Combined Ours
Semantic X X v X X v v
Structural X X X v v v v
K-hop - - - 1 3 3 3
Selection - Random Rank Random Random Random Rank
Accuracy 78.0 75.6 78.4 80.6 79.7 80.3 81.4

into four groups: (1) traditional fine-tuned BERT-
based models with GNN, (2) recent efficient pa-
rameter fine-tuning methods for LLMs, (3) lever-
aging powerful chat models like GPT-4 through
in-context learning, and (4) existing tailored ap-
proaches using various techniques. Specifically, the
traditional BERT-based method yields reasonable
results thanks to the flexibility of fine-tuned em-
beddings. In today’s landscape of large language
models, larger sizes indeed bring about improved
quality. An interesting finding is that using prompts
to guide LLMs in classification is unsatisfactory.
Specifically, the Llama2 models struggle to follow
instructions and often generate irrelevant content.
It’s quite sensitive to the phrasing of prompts, and
minor changes in words can lead to significantly
different outputs. GPT-4 models perform better
but remain inferior to specialized trained models.
SKETCH surpasses all baselines in overall accu-
racy, reaching an average improvement of 1.2%.
This achievement is attributed to the use of informa-
tive retrieved text and a long-context model, with
the combined corpus enhancing performance from
both semantic and structural perspectives. We have
chosen two distinct language models as the back-
bone of our framework: Nomic, which has 137
million parameters, and Llama-3, with 8 billion pa-
rameters. The larger Llama-3 model demonstrates
higher performance but demands significantly more
time and memory. Training Nomic takes less than
one hour per epoch, while Llama-3 requires over
9 hours on the ACM dataset. This trade-off re-
veals the importance of both factors, allowing re-
searchers to choose based on actual circumstances.

4.2 Effectiveness of Retrieval Modules

To evaluate the effectiveness of the retrieved con-
tent in improving performance, we analyze accu-
racy under various conditions. The baseline bench-
mark uses only the text from the anchor node.
We then conduct the following experiments: (1)

randomly incorporating text from other nodes in
the graph, (2) retrieving only semantically similar
content, (3) retrieving structurally similar content
with three variants, and (4) testing our proposed
SKETCH model. The analysis results are presented
in the table 2. Our findings reveal several key in-
sights into the impact of content addition on model
performance. First, we demonstrate that randomly
incorporating unrelated material into the original
text not only fails to improve performance but also
leads to a noticeable degradation in results. This un-
derlines the critical importance of retrieving infor-
mation that is contextually relevant to the context.
While we observed that texts with global similari-
ties can provide some levels of positive influence,
their impact is significantly weaker compared to
one-hop neighboring texts. This suggests that local
connectivity, as represented by connected edges
in the graph, serves as a far more valuable refer-
ence for anchor nodes. Furthermore, our analysis
highlights that the quality of added content plays
a pivotal role in performance gains, emphasizing
the need for careful selection and integration of
supplementary information. These insights collec-
tively demonstrate that strategic content addition,
guided by both semantic relevance and structural
proximity, is essential for optimizing model perfor-
mance. Lastly, our experiments demonstrate that
arbitrarily extending the range of neighbors does
not provide additional benefits, which confirms the
effectiveness of our similarity ranking scheme.

4.3 Hyperparameter & Efficiency Analysis

Hyperparameter Sensitivity. Our framework’s
complexity mainly depends on three factors: the
length of the tokenized sequence L for each con-
catenated paragraph and the weights of the seman-
tic and structural retrieval modules. The ablation
study evaluates classification accuracy across vari-
ous configurations of these factors. Figure 5 indi-
cates that while longer contexts can be beneficial,
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excessively lengthy sequences may diminish over-
all understanding and introduce noise that confuses
the model. Additionally, for single-machine users,
longer texts lead to smaller batch sizes, which can
further decrease performance. Another finding is
that increasing the weights of structure ranking
generally enhances performance, emphasizing the
importance and effectiveness of our intersection-
based retrieval strategy. Our model shows no sig-
nificant drop in performance, indicating it is not
excessively sensitive to hyperparameters.

Accuracy

Figure 4: Effects of hyperparameters on the performance,
showing the impact of sequence length and structural weights.

Time Consumption. We also compare the time
taken by our hash-based simulation with the stan-
dard computing method. Our experiments indicate
that adding extra hops does not lead to a linear
increase in time, as illustrated in figure 5. In con-
trast, the standard method requires exponentially
more time due to the complex cross-combination
of multiple hops. This distinction highlights the
efficiency of our approach, which maintains time
consumption even while considering extra ranges.

104
[ w/ Hash-based estimation
[ w/o Hash-based estimation

12,326

1073 4
4,754

Time (/sec)

1072 895 255

427

1071

1 2 3
Number of neighbor hops

Figure 5: The comparison of computational efficiency be-
tween our hash-based similarity estimation and the traditional
one. The time metrics have been logarithmically processed.

5 Related Work

LLMs for graph learning are widely applied
in real-world scenarios. Large language mod-
els(LLMs) have shown increasingly powerful
performance in text understanding, especially in
large-scale texts. Therefore many recent researches
apply LLMs to downstream tasks of TAGs (Li
et al.,, 2024b; Zhang et al., 2024a), such as
classification (Li et al., 2024c; Zhou et al., 2024),
link prediction (Tan et al.), reasoning (Luo et al.,
2024; Dong et al., 2024), graph generation (Yao
et al., 2024; Zhou et al., 2023; Zhang et al., 2024c)
etc. It is common to use prompts that combine
graph descriptions. For instance, SimCSE (Li et al.,
2024a) concatenates relevant generated informa-
tion or similar neighbors to enhance representation
learning. Additionally, (Pan et al., 2024) aligns
the student model and interpreter model from
semantics, structures, and prediction probabilities.
(Guo et al., 2024) and (Tang et al., 2024) apply
instruction-tuning, one by refining the graph struc-
ture, and the other with text-structure alignment.
Many other models utilize the generation ability
of LLMs under particular settings, including
label-free tasks (Chen et al., 2024d,e), few-shot
and zero-shot learning situations (Liu et al., 2023a).

Integrating LL.Ms with Graph Neural Networks
is also gaining popularity. Cascaded LL.Ms with
GNNss have emerged for classification tasks, cate-
gorized into LLM-as-enhancer, LLM-as-predictor,
and LLM-GNN alignment (Li et al., 2024b).
TAPE (He et al., 2024) exemplifies the first type
by generating supplementary contexts. RoSE (Seo
et al., 2024) decomposes relations by generator
and discriminator by LLMs to provide structure
information for multi-relational GNNSs. In contrast,
Dr.E (Liu et al., 2024) transfers GNNs output to
the language decoder to decompose into features,
edges, and labels. These two types have challenges
of losing information or misunderstanding during
transformation. ENGINE (Zhu et al., 2024) em-
beds a side structure of LLMs by simple neural net-
work layers as ladders, and LinguGKD (Hu et al.,
2024) aligns both using a contrastive distillation
loss. This synergy combines neighborhood aggre-
gation and semantic learning, but they find it diffi-
cult to address co-training problems. Furthermore,
itis challenging to integrate new knowledge to LMs
without harming existing knowledge (Fang et al.,
2025a,b; Jiang et al., 2025; Feng et al., 2025).
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6 Conclusion

Inspired by the potential of language models
to manage text-attributed graphs, we introduce
SKETCH, a new approach that simulates graph
propagation through weighted token learning from
selected node subsets. Our framework enhances the
selection of informative data by retrieving nodes
that are both semantically and structurally simi-
lar, thus enriching the textual information. To re-
duce the computational complexity of node inter-
section calculations, we implement a novel hash-
based estimation technique. Extensive experiments
demonstrate that our model outperforms all base-
line methods while requiring less time and memory,
eliminating the need for GNNs. Additionally, we
conduct a thorough analysis of various settings to
identify key components that positively impact text-
attributed graph learning. Our proposed framework
demonstrates significant potential and offers valu-
able insights into the integration of large language
models within graph-related applications.

Limitations

Since our framework aggregates relevant content
and concatenates paragraphs together, the number
of retrieved nodes is constrained to the LLM’s
token limit. We set the maximum token length
to 8k, aligning with the word counts of current
datasets. We are expanding our study to include
long-sequence models like T5 for text-rich graphs.
We aim to integrate state-of-the-art long-sequence
models and maximize the potential of our method.
Also, we have found that model complexity leads
to increased inference time. In the future, we will
explore quantization and other efficient fine-tuning
methods to enable larger models to be utilized with-
out requiring extra computational resources.

Ethics Statement

We all comply with the ACL Ethics Policy! during
our study. All datasets used contain anonymized
consumer data, ensuring strict privacy protections.
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A Appendix

A.1 Dataset

We assess the performance of SKTECH using three
datasets: ACM, Wikipedia, and Amazon. All of
these datasets are manually constructed using the
raw corpus and corresponding descriptions. For
each dataset, we divide the labels into training,
validation, and testing sets. Statistics of these three
datasets are shown in Table 3. The ratios are 8:1:1
for training, validation, and testing.

Wikipedia. The raw data consists of text from
Wikipedia articles. We extract the main content
of each article as document d,, which includes
hyperlinked words. A directed graph is constructed
using the hyperlink relationships between articles.
The categories mentioned in the list of reference
tables are assigned as labels to the nodes.

ACM. This dataset uses 48,579 papers from the
Association for Computing Machinery (ACM) as
instances (Tang et al., 2008). The paper abstracts
serve as the document d,, for the nodes, and a di-
rected graph is constructed using the citation links.
The instances are collected from nine distinct do-
mains, such as Artificial Intelligence and Data Min-
ing, which are employed as labels.

Amazon. The dataset comprises product reviews
and metadata from Amazon (He and McAuley,
2016). We construct the graph based on the brows-
ing history, with each node v representing the tex-
tual description of the products denoted as s,,.

Table 3: Statistics of datasets in our experiment.

Datasets #nodes  #edges  #classes
ACM 48,579 193,034 9
Wiki 36,501 1,190,369 10

Amazon 50,000 632,802 7

A.2 Baselines

As our study focuses on integrating the corpus pro-
ceeding with the graph network, we adopt a variety
of popular approaches in these two domains, i.e.,
text-embedding modules and GNN encoders. We
made a cross combination of frontier methods in
each field. Here are the detailed introductions:

* GCN (Kipf and Welling, 2017) aggregates infor-
mation from neighboring nodes by summing over
neighbors’ representations.

* GraphSAGE (Hamilton et al., 2017) samples and
aggregates features from the neighborhood for
inductive graph learning.

* GAT (Brody et al., 2022) introduces a dynamic
graph attention mechanism, leveraging attention
layers to learn the weights of neighbors.

* Bag of Words (BoW) (Zhang et al., 2010) de-
scribes the occurrence of words within a docu-
ment and its size can be flexibly decided by the
frequencies of different words.

* MPAD (Nikolentzos et al., 2020) represents cor-
pus as networks based on word co-occurrence
and applies a message-passing framework to
draw the information from the graph.

* Fine-tuning a language model (LM-tune) allows
for training on target texts to make the model
more adept at performing the specific task.

* GLEM framework (Zhao et al., 2023) iteratively
updates the language model and graph neural
network (GNN).

* GraphFormers (Yang et al., 2021) integrate GNN
components with transformer modules for joint
training rather than a cascaded approach.

* LLAGA (Chen et al., 2024a) effectively inte-
grates LLM capabilities to manage the complexi-
ties of graph-structured data.

* Llama (Touvron et al., 2023) is a family of large-
scale language models that are designed to un-
derstand and generate text across various tasks.

¢ GPT (Floridi and Chiriatti, 2020) is a set of state-
of-the-art language processing Al models.

¢ InstructGLM (Ye et al., 2023) employs natural
language to characterize the multi-scale geomet-
ric structure of graphs and fine-tunes a large lan-
guage model (LLM) for graph tasks.

A.3 Efficiency

The training was conducted over 2 epochs. For
smaller nomic models, the batch size ranged from
8 to 12, depending on the sequence length, while
for the Llama model, the batch size was set to
2. This difference in batch size also results in a
significant increase in running time. The Nomic
model requires around 40 minutes per epoch, while
the Llama model necessitates over 12 hours, so
when the performance gap is not obvious, Nomic
is a more desirable recommendation.
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