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Abstract

While it is commonly accepted that maintain-
ing common ground plays a role in conversa-
tional success, little prior research exists con-
necting conversational grounding to success in
task-oriented conversations. We study failures
of grounding in the Ubuntu IRC dataset, where
participants use text-only communication to
resolve technical issues. We find that disrup-
tions in conversational flow often stem from
a misalignment in common ground, driven by
a divergence in beliefs and assumptions held
by participants. These disruptions, which we
call conversational friction, significantly cor-
relate with task success. While LLMs can
identify overt cases of conversational friction,
they struggle with subtler and more context-
dependent instances that require pragmatic or
domain-specific reasoning.

1 Introduction

Effective communication between humans in con-
versation hinges on a set of facts and beliefs rel-
evant to the conversation, or the conversational
common ground (Stalnaker, 1978, 2002; Clark and
Brennan, 1991), that is shared between participants.
They must collaboratively maintain and update this
common ground for the conversation to progress
successfully. This dynamic, ongoing management
is essential: a misalignment or misunderstanding
can disrupt the communicative flow, potentially
leading to confusion or conflict.

Typically, much of this maintenance is implicit:
listeners acknowledge their understanding through
verbal and non-verbal cues, making research on
common ground and its role in conversational
success challenging. When participants success-
fully complete a goal-oriented conversation with-
out visible disruption or misunderstanding, it is
unclear what information constitutes their common
ground. Many studies sidestep this by constraining
the conversational setting to physically grounded

- The cd command helps 
us change directories
- the syntax of cd is cd 
<target_dir>
- A knows how to use cd 

Figure 1: An annotated instance of conversational fric-
tion. Though it is challenging to access propositions in a
speakers’ perception of common ground, certain propo-
sitions in B’s version of common ground are revealed
(green thought bubble) when there is a misalignment
between the two participants. B assumes A knows about
the cd command, which is proven false by A in Turn 9.

tasks, such as building objects in Minecraft-like
worlds (Narayan-Chen et al., 2019; Bara et al.,
2021), providing environments where researchers
can infer participants’ common ground through
their actions.

We address this challenge in a different way—by
focusing on miscommunications as a window into
the shared beliefs of conversational participants.
Consider the conversation in Figure 1. At the out-
set, the common ground includes beliefs such as

“A is an Ubuntu user” and “A is accessing a Linux
terminal”, etc. Following Turn 4, B believes that

“the syntax of cd is cd ⟨target_dir⟩” is now part
of the conversational common ground. Turn 9 re-
veals that this assumption was incorrect through an
observable interruption precluding A and B from
proceeding towards A’s main conversational goal.1

1Grosz and Sidner (1986) would distinguish this goal as
the discourse purpose.
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We use the term conversational friction to de-
scribe such an instance of disruption in communica-
tive flow, caused by a misalignment in speaker be-
liefs about what is present in the common ground.2

Frictions reveal the importance of maintaining com-
mon ground, as they require re-negotiation (Clark
and Wilkes-Gibbs, 1986) of content: instead of
making progress, participants need a “conversa-
tional detour” to align their interpretations of previ-
ously shared content.

This work explores two key questions. First,
(RQ1) to what extent is achieving a participant’s
goal—or success—associated with the presence or
absence of conversational friction? And (RQ2),
can large language models (LLMs) identify and
explain sources of friction in human conversations?
We seek to shed light on the relationship between
conversational friction, which serves as evidence of
a misalignment in common ground, and the success
of participants in achieving a shared goal.

To achieve this, we annotate real-world conver-
sations involving Ubuntu users attempting to fix
an issue or bug.3 We annotate 200 conversations
from the Ubuntu Dialog Corpus (Kummerfeld et al.,
2019), a corpus of conversations among users solv-
ing issues when using the Ubuntu operating sys-
tem.4 Each conversation is annotated for the pres-
ence of conversational friction (supporting RQ2)
and the degree of task success (supporting RQ1)
(§3.1) to analyze the importance of maintaining
common ground (§4). Then, we explore the abil-
ity of LLMs to identify friction and compare their
explanations with human explanations (§5).

Not only are LLMs increasingly relied upon as
conversational partners (Minaee et al., 2024), they
are also used as mediators (Tan et al., 2024) or
to generate conversational summaries (Ramprasad
et al., 2024). As such, it is important to know if
they track the common ground, an essential com-
ponent of smooth communication. Our analyses of
friction and repair reveal that friction often arises
from misalignment in common ground, particu-
larly when participants hold diverging assumptions
about the task or possess varying levels of domain
expertise. Furthermore, we find that while mod-
els are able to detect overt signals of friction, they

2Hereafter we use the terms “friction” and “conversational
friction” interchangeably.

3We will release code and data upon publication.
4Ubuntu (https://ubuntu.com/desktop) is one of the

most popular free and open-source Linux-based operating
systems in the world.

Kummerfeld
et al. (2019)

2-person
conversations Ubuntu-CG

Analysis
Subset

#Conversations 496469 282027 200 70
Average Length 7.16 5.84 39.75 51.78

Table 1: Overview of our dataset. We use 200 dyadic
conversations sampled from Kummerfeld et al. (2019)
totaling 7590 turns for friction detection, and a subset
of 70 for grounding act annotation (§3.3)

struggle to identify subtler and more context-
dependent instances of misalignment that require
deeper pragmatic or domain-specific reasoning5.

2 Background

The conversational common ground (CG) is a body
of statements treated as mutual knowledge among
participants (Stalnaker, 1978). It guides both how
speakers choose their utterances and how they want
them to be interpreted (Stalnaker, 2002)6. Subse-
quently, Clark and Brennan (1991) define common
ground as a collection of mutual knowledge, be-
liefs, and assumptions that humans maintain col-
laboratively through the process of grounding.7

In early computational work studying CG,
Traum and Allen (1992) proposes breaking down a
conversation into Discourse Units, where humans
collaboratively build common ground through
speech acts such as RequestRepair, a speech act
through which the speaker urges their conversa-
tional partner to ground an utterance.8

While it is acknowledged that maintaining CG
is of some importance to conversational suc-
cess (Traum, 1995), there has been little empiri-
cal work that explicitly ties participant effort in
maintaining it to the success of an end goal. In
this study, we look at the importance of grounding
in the success of naturally-occurring goal-oriented
conversations. Specifically, we focus on conver-
sational friction as evidence of the loss and re-
negotiation of common ground.

5Code and data can be found in https://github.com/
styx97/cg-misalignment

6Even before Stalnaker, Paul Grice mentioned proposi-
tions having common ground status in his William James lec-
tures (Stalnaker, 2002). For a thorough discussion of common
ground in linguistics, see Geurts (2024).

7We focus only on discourse-theoretic grounding and do
not delve into symbol grounding (Harnad, 1990), as exem-
plified in mapping a linguistic concept to a visual scene (see
Cohen et al. (2024) for a survey of methodologies for robotic
language grounding); however, we embrace the conceptual
relationship between both types of grounding, as described in
Chandu et al. (2021).

8See Table 1 of Traum and Allen (1992) for a full list.
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In Turn 32 A attempts to run the command B 
suggested in line 25, but slightly 
misunderstood B's suggestion to try the 
command: A mistakenly interprets the word 
"try" to literally be a part of the 
command, resulting in the "try command not 
found" error. In Turn 33, B retypes the 
command from turn 25 but without the word 
"try" to clarify the exact command they 
want A to execute

In Turn 32, A reports a 'command not 
found' error, indicating a 
misunderstanding or issue with 
executing the command provided by B. 
B repeats the command in Turn 33, 
suggesting a possible oversight or 
error in execution by A.

A (pen) does not understand why 
B (heymr) is recommending using 
the Synaptics driver.

User A (pen) expresses confusion 
about why User B (heymr) 
mentioned the Synaptics driver, 
as it was not relevant to their 
question about mouse buttons.

A seems to think that B's solution 
requires you to know the number of 
elements beforehand, which is not the 
case. This leads to conversational  
friction.

A seems confused by B’s explanation 
about accessing elements in a list 
(or array) in a shell script. A is 
not sure about the number of 
elements and how to determine it, 
leading to a misunderstanding that 
requires clarification.

2

3

Figure 2: Comparing GPT4o and human explanations for the cause of friction. GPT4o explanations align with
humans when friction is explicit (row 2). In a more implicit case of friction (row 1), GPT4o fails to capture the true
reason for friction—A misreading “try” as part of a terminal command (Turn 25), revealed in the error message “try
command not found” in Turn 32.

Typical conversations in our dataset (e.g., in
Table 3) involve two participants (an asker and
a helper) collaboratively attempting to solve a
Linux bug over a text channel. This consists of
several steps—the asker must describe their issue
(often with insufficient knowledge of Linux), and
the helper must understand their goal to propose
a solution. This makes the setting well-positioned
for studying friction and grounding.

Dataset: Ubuntu-CG. The Ubuntu Dialog Cor-
pus satisfies several criteria for our study; (1) con-
versations are naturally goal-oriented (e.g., resolv-
ing an error in Ubuntu), incentivizing participants
to communicate effectively; (2) participants have
to establish CG from scratch; (3) conversations
are text-only; and (4) are multi-turn, ranging from
three turns to over 100, giving users ample time to
build and utilize CG. §7 discusses other datasets
we considered.

The Ubuntu Dialog Corpus (Lowe et al., 2015)
contains conversations scraped from the #Ubuntu
IRC channel, where users primarily discuss fea-
tures, issues, and bugs related to the Ubuntu oper-
ating system. This requires disentangling conver-
sations from a single message stream. Kummer-
feld et al. (2019) found that the disentanglement
strategy originally used had a high error rate, and
released a cleaner version. We use a sample of
200 two-person conversations from this cleaner
corpus, upsampling longer conversations to study
diverse behavior (Table 1). We refer to this subset
as Ubuntu-CG (Common Ground).

Success
Mean Length

(Std.)
Friction

(%Present)
Mean #Friction
(when Present)

1 (No Progress) 31.90 (24.99) 57.60 (30/52) 2.43

2 (Some Progress) 43.86 (25.73) 55.05 (49/89) 2.06
3 (Success) 40.45 (28.84) 50.84 (30/59) 2.13

Table 2: An overview of Ubuntu-CG, annotated for fric-
tion and task success. Conversations where participants
make some progress towards their task contain lower
occurrences of friction (Column 4).

3 Conversational Friction

We now focus on detecting and understanding
causes of conversational friction in Ubuntu-CG.
Users with varying levels of expertise or familiarity
with Linux and English try to collaboratively fix an
issue with Ubuntu over text.9 This setting naturally
lends itself to frequent occurrence of conversational
friction. But how often is friction resolved in subse-
quent grounding, and does it have a demonstrable
effect on the success of a conversation? To answer
these questions, we collect a dataset of instances of
conversational friction.

Task. Given a conversation consisting of M
turns, the task is to identify a list of turn intervals
{I1 = mx1 ...my1 , I2 = mx2 ...my2 , ...} exhibiting
conversational friction, or instances of disruption
in communicative flow caused by a misalignment
in speaker beliefs about what is present in the CG,
along with an explanation of why each interval
exhibits friction. A strong indicator of conversa-

9Some of the users are (self-professed) non-native speakers
of English.
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tional friction is when a participant asks the other
participant to repair their conversation. However,
implicit cases of friction require identifying when
a user is struggling to keep up with the conversa-
tion. Note that not all followup questions indicate
friction. For example, clarification questions that
ask for information not assumed to be in the CG
are not cases of conversational friction.

3.1 Annotating Conversational Friction

Three computer science undergraduates familiar
with Linux annotate conversations by (1) identi-
fying turn intervals which exhibit friction along
with explanations and (2) judging the success of
overall conversation on a three-point scale with re-
spect to the conversational goal. Annotators were
paid $18/hr to annotate 200 conversations totaling
7950 turns, taking over 80 hours to complete. Since
conversations date back to over a decade ago, they
often contain antiquated terms or references that an-
notators were unfamiliar with. To mitigate this, we
provide explanations generated by gpt-4o (Ope-
nAI, 2024) of technical terms in dialog turns. For
example, the model-generated elaboration in Table
9 (Row 1) in Appendix explains that “dapper” and

“feisty” refer to Ubuntu versions 6.06 and 7.04. We
make these elaborations available to various mod-
els in our computational experiments as well.

Conversational Success. In addition to friction,
annotators assess how successful participants were
in solving the issue by scoring the conversation
on a three-point scale. A score of 1 denotes that
the conversation was not helpful to the asker at
all, and no progress was made; a score of 2 de-
notes some progress towards solving or diagnosing
the issue, and a score of 3 indicates that the issue
was solved. In cases where experienced helpers
propose alternate solutions, success is measured
by progress towards this new goal. Table 2 shows
the overall statistics, and instructions for friction
and success annotation can be found in the Ap-
pendix A.6. We obtain an agreement of α = 0.58
on success annotation as measured by Krippen-
dorff’s Alpha (Castro, 2017).

3.2 Measuring Friction Agreement

Measuring inter-rater agreement on friction de-
tection is not straightforward, since we must ac-
count for agreement both in identifying an instance
of friction and the turn interval in which it oc-
curs. To simplify this measurement, we compute

Turn Speaker Utterance Grounding Act

0 A (asker) i have recently installed nvidia driver (working), but
upon restart i get an error message: "failed to initial-
ize nvidia kernel module" - anyone have any tips? :)

1 B (helper) manf. drivers?
2 A (asker) sorry im not familiar with manf. drivers. i installed

NVIDIA-Linux-x86-195.36.24-pkg1.run :)
RequestRepair

3 B (helper) yes i meant from nvidia site :) Repair

Table 3: A typical conversation in our dataset, contain-
ing instances of RequestRepair and Repair acts.

overlap metrics for each pair of annotators, as in
Markowska et al. (2023). Agreement between an
annotator pair is reported as the average of a modi-
fied version F1 score to measure interval overlap.
Specifically, for two annotators A1 and A2, we
average two F1 scores—one treating annotations
from A1 as ground truth and those from A2 as pre-
dictions and vice versa.10 We compute agreement
in two different settings:

Friction Found. In this relaxed setting, an in-
terval is “found” if any turn within that friction
window is part of any predicted interval. This set-
ting does not require one-to-one mapping between
predicted and gold friction instances. Here, predict-
ing one dialog turn within a gold friction interval
is equivalent to predicting all turns correctly.

Friction Overlap. We consider a second setting
that rewards the degree of overlap with the gold in-
terval. We first match each instance of friction with
the predicted instance with the highest overlap, en-
suring a one-to-one mapping between a predicted
and gold friction interval. For each matched in-
terval, we compute the Jaccard similarity between
the two intervals, resulting in higher scores for
predictions that better align with human-annotated
instances of friction and penalizing predicting mul-
tiple short or overtly long instances.11 A perfect
score indicates an exact overlap between predicted
and gold intervals. We use these same two set-
tings to compute model performance (Table 6). Ta-
ble 4 shows agreement between pairs of annotators.
Given their high agreement, A1 and A2 annotated
80% of the final dataset, while A3 annotated 20%.

3.3 Annotating for Grounding Acts

Our annotations reveal that successful conversa-
tions contain less friction (Table 2). However,

10Our operationalization of F1 makes it asymmetric,
hence F1(A1, A2) is not guaranteed to be equivalent to
F1(A2, A1).

11This is similar in spirit to methods discussed in Ortmann
(2022), adapted for our task.
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A1 A2 A3

A1 – 65.91 / 25.86 48.0 / 18.21
A2 – – 43.88 / 13.58
A3 – – –

Table 4: Inter-rater agreement of detecting conversa-
tional frictions in Ubuntu-CG. Each cell contains the
average of F1 scores between two annotators in two set-
tings described in § 3.2 (Friction Found/Span Overlap).

when friction is present, can participants collab-
oratively rebuild CG to complete tasks success-
fully? To better understand and model loss and
repair of CG, we identify particular speech acts
associated with repair in friction intervals, as in
Levelt (1983); Heeman and Allen (1994); Bohus
and Rudnicky (2008); Bonial et al. (2022). For
each friction interval I in a conversation, we iden-
tify specific turns within I expressing two ground-
ing acts: RequestRepair and Repair (Traum and
Allen, 1992). RequestRepair indicates whether
a participant, spotting friction, explicitly requests
conversational repair from their partner. Repair in-
dicates whether friction was addressed by either
participant with a clarification (Table 3).

Identifying these acts not only helps us deter-
mine whether participants recovered from friction,
but also helps us to study in greater detail whether
models can detect friction. For example, this frame-
work allows us to measure whether models detect
friction only when in the presence of explicit re-
quests or if they can identify implicit cases of com-
mon ground misalignment. This is important, as
using LLMs as conversational partners or as medi-
ators in human-human conversations depends on
their ability to detect implicit cases of friction.

We sample 70 conversations containing 152 in-
stances of friction to study the effects of ground-
ing on task success. 21 conversations received
a success score of 1 (No Progress), 26 received a
score of 2 (Some Progress), and 23 received a score
of 3 (Success). Since conversations with friction
tend to be longer, this sample has a higher aver-
age length than our dataset overall. Two authors
annotated each friction instance in this subset for
the presence or absence of RequestRepair and
Repairacts, obtaining inter-rater scores of 0.69 on
RequestRepair , and 0.63 on Repair , measured
using Cohen’s Kappa (Cohen, 1960).

Degree of
Progress #Convs

Instances
(Repair/ReqRepair)

Unaddressed
ReqRepair (%)

2 or 3 49 102 (83/75) 22.67

No Progress (1) 21 50 (38/36) 30.56

Table 5: Summary of success and grounding acts in our
analysis subset of 70 conversations. In conversations
with no progress, more requests for repairs go anad-
dressed.

4 Analysis of Grounding in Ubuntu-CG

We study the relationship between the presence
of conversational friction in goal-driven conversa-
tion and its success in Ubuntu-CG, and present our
principal findings from the data below.

Successful conversations contain less friction.
In Ubuntu-CG, 61% percent of conversations con-
tained friction. In contrast, of conversations where
the helper succeeded in solving the asker’s is-
sue (receiving a score of 3), only 54.5% contained
friction (Table 2). Conversations where partici-
pants make some progress or succeed contain less
friction on average as compared to conversations
where they did not make any progress, as the for-
mer exhibits some amount of grounding effort by
the participants (Table 2, Column 4). This is further
supported by the proportion of unaddressed repair
efforts (Table 5, Column 4).

Friction is more likely in longer conversations.
While conversation length shows no clear pattern
with task success (Table 2), the mean length of a
conversation containing friction is 49 (median 55),
as compared to an average of 29 (median 22) of
those without friction. Compared to the overall
mean length of the dataset 40.56 (median 33), it
is plausible that conversational friction and repair
through the process of grounding contribute to the
increased number of turns it takes to complete the
conversation.

4.1 Role of Grounding Acts in Task Success

Conversations where participants could not make
any progress towards diagnosing a particular issue
(success score of 1) are characteristically differ-
ent from conversations receiving a score of 2 or 3.
In a retrospective study, we analyze the presence
of grounding acts (RequestRepair and Repair)
in conversations that received a score of 1 (No
Progress) as compared to conversations receiving a
score of 2 or 3 (Some Progress or Success).
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We focus on the proportion of
RequestRepair acts that were not addressed.
This captures instances of friction where, despite
one participant spotting a potential mismatch in
common ground, their efforts are not recipro-
cated by their conversational partner. Notably,
conversations with no progress exhibited a
higher proportion of these unacknowledged
RequestRepair acts (Column 4 in Table 5). This
further shows that achieving a communicative goal
requires both participants to engage in grounding.

5 Can LLMs Identify Conversational
Friction?

Identifying friction in ongoing conversations is a
first step towards analyzing the content of the CG.
After establishing simple finetuned baselines on
the task of conversational friction detection, we go
on to explore whether larger LLMs can identify
and explain instances of conversational friction in
Ubuntu-CG.

5.1 Experimental Setup
Encoder-Only Baseline. Before moving on to
prompting, we first explore a baseline setting in
which we finetune a small encoder-based model
distilroberta-base (Sanh et al., 2019) on five
randomly-split folds of Ubuntu-CG (Appendix
A.2). Given an excerpt of a conversation consisting
of a target turn t and a context window of k turns
before and after t, the model is trained to predict
whether t is part of an annotated instance of fric-
tion. We report results on context windows of three
and five, and notice no significant improvement
in using a higher k. Finetuning a lighter-weight
model allows us to understand the extent to which
friction is identifiable from surface features.

Decoder-Only Models. Given a full conversa-
tion, we prompt several larger decoder-only LLMs
to output a list of turn intervals exhibiting friction
(Prompt A.1 in Appendix).12 For each predicted
turn interval, the model must provide a brief expla-
nation for the cause of friction. We also include
a setting where we provide models with the elab-
orations of technical terminology as outlined in
§3.1 (“w Elab”). Note that in this setting, an LLM

12We experimented with several prompting strategies such
as adding random exemplars, self-consistency, and chain-of-
thought reasoning, but found that they did not beat the F1
scores obtained simply by asking the model to detect fric-
tion windows along with brief explanations of why a dialog
window represents friction.

predicts possible friction intervals in a single pass,
in contrast to the encoder baseline, where models
make predictions on every single turn separately,
taking neighboring turns as context.

Evaluation Metrics. We evaluate models in
the Friction Found and Friction Overlap set-
tings 3.2. While Friction Found allows mod-
els like Llama-3.1-8b-Instruct (Touvron et al.,
2023) to obtain high recall scores by over-
predicting friction intervals, Friction Overlap pe-
nalizes this behavior. For all experimental settings,
we set temperature to 0.01.

5.2 Results

The F1 scores of our baseline encoder-only models
(Table 6) in two settings (context window k = 3
and k = 5) give us an estimate of the degree to
which friction is identifiable from shallower, lo-
cal features as opposed to more complex, con-
textual, and implicit cases of friction like subtle
clarification questions or other pragmatic phenom-
ena. Error analysis reveals that instances predicted
correctly by our baselines often contained explicit
markers of friction, such as a user expressing frus-
tration or dissatisfaction. While these baselines
were competitive with several prompting-based
methods, it is difficult to interpret the results be-
yond error analysis since we do not have access to
explanations. However, it does indicate that our
dataset also contains surface features such as ex-
plicit expressions of frustration or anger that are
learnable by a small encoder-only model.

Under both evaluation settings, gpt-4o with-
out any further technical elaborations obtained the
highest F1 score. We use this setting for all fur-
ther error analysis and ablations. All models over-
predict friction intervals (see column #Predictions
in Table 6).

The effect of gpt-4o Elaborations. Explaining
technical terms with gpt-4o helped our human an-
notators better understand the flow of information
in a conversation. However, in the relaxed evalua-
tion setting of (Friction Found), adding elabora-
tions does not improve prediction scores of models.
For Llama-3.1-8b-Instruct and gpt-4o-mini,
adding elaborations improves recall and hence the
overall F1 score. This may be due to elaborations
“sharpening” the predicted intervals.

Ablations. Human annotators do not always
agree on the location of friction and repair-related
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Friction Found Friction Overlap #Predictions
Model Precision Recall F1 Precision Recall F1

gpt-4o 31.50 43.69 34.01 13.50 18.74 14.61 495
gpt-4o w/ Elab. 31.63 37.46 32.22 13.54 16.59 14.00 435
gpt-4o-mini 32.75 27.86 28.01 13.67 12.32 12.10 316
gpt-4o-mini w/ Elab. 28.54 28.67 26.51 13.63 14.11 12.81 392
Llama-3.1-8b-Instruct 16.72 47.28 22.53 6.87 18.72 9.14 1282
Llama-3.1-8b-Instruct w/ Elab. 15.98 46.33 21.73 7.11 20.02 9.58 1253
Llama-3.1-70b-Instruct 21.70 48.09 27.97 8.93 20.26 11.59 857
Llama-3.1-70b-Instruct w/ Elab. 16.72 39.83 22.06 7.35 16.76 9.52 959
distilroberta-base (k = 3, finetuned) 19.89 48.07 27.99 7.70 18.36 10.80 -
distilroberta-base (k = 5, finetuned) 18.32 46.43 26.16 8.42 20.97 11.97 -

Table 6: Precision, Recall, and F1 scores of different models on detecting friction. #Predictions refer to the total
number of instances of conversational friction found by each model. For reference, annotators identified 238
instances in total. gpt-4o without Elaboration of technical terms (Sec 3.1) performed best across all models.

Model
Success Prediction

(Spearman’s ρ)
Binary Friction

Presence (Cohen’s κ)

gpt-4o 0.776 0.380
gpt-4o w/ Elab. 0.743 0.310
gpt-4o-mini 0.699 0.205
gpt-4o-mini w/ Elab. 0.634 0.205
Llama-3.1-8b-Instruct 0.261 0.193
Llama-3.1-8b-Instruct w/ Elab. 0.235 -0.249
Llama-3.1-70b-Instruct 0.702 0.290
Llama-3.1-70b-Instruct w/ Elab. 0.630 0.223

Table 7: Spearman’s ρ and Cohen’s κ for the related
tasks of predicting success friction presence. Models
align more with humans on the success of a conversa-
tion.

grounding acts. To understand whether models
can make binary judgments as to whether or not
friction is present without identifying their loca-
tion, we prompt models to predict the presence of
friction without pinpointing specific dialog turns.
This allows us to assess the model’s ability to pre-
dict friction as a broader phenomenon. We also
evaluate the capability of models to predict the suc-
cess of the task undertaken in the conversation on
a three-point scale, as in §3.1.

We evaluate the binary prediction task with Co-
hen’s κ, framing it as inter-rater agreement between
models and humans. Models’ over-prediction of
friction intervals persists in the conversation level
as well (Table 7). Predictions on task success, on
the other hand, is highly correlated with annotator
ratings of success.

6 Error Analysis

We now investigate the successes and failures of
gpt-4o, the strongest performing model at this
task.

Undetected frictions are deeper in conversations.
As a conversation proceeds, detecting friction re-

quires a deeper understanding of preceding turns.
To explore whether the position of friction impacts
model accuracy, we stratify our results by conver-
sational depth and calculate the relative depth of
each instance of friction as the ratio of the first turn
of the friction interval to the conversation length
multiplied by 100. The mean relative depth of a
detected instance of friction (35.19) is significantly
smaller than the mean relative depth of a detected
instance (49.62), according to an independent t-
test (p < 0.01). This indicates that models struggle
with taking a longer context into account while
determining whether participants’ versions of com-
mon ground are misaligned.

Implicit cases of friction are harder to detect.
Models, particularly gpt-4o, are more likely to
correctly identify friction when an explicit request
for conversational repair is present. Specifically,
77.22% of detected frictions involved an explicit
RequestRepair, compared to 64.81% of frictions
that went undetected (p < 0.05). This highlights
the tendency of models to rely on overt cues that
signal a common ground misalignment.

Consider the conversation in Table 8. A’s ut-
terance “how about nmap” (Turn 22) is not in-
troducing nmap as an option, but following up on
B’s earlier suggestion in Turn 21 by asking how
nmap can be used to solve the issue. B reveals that
they did not understand this interpretation through
their response in Turn 23 (“yeah, i said nmap,”),
prompting A to issue a Repair act. We hypoth-
esize that this unconventional way of issuing a
Repair (through a question) without an explicit
RequestRepair results in an undetected conversa-
tional friction.
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Turn Speaker Utterance

16 B (helper) btw, you do need to restart the ssh server for it to
work on the new ip(s)

17 A (asker) sudo service ssh restart?
18 B (helper) yeah
19 A (asker) is the service ssh or anything else?
20 B (helper) yep thats the service
21 B (helper) and you can check if its listening with nmap
22 A (asker) how about nmap?
23 B (helper) yeah, i said nmap
24 A (asker) I mean how do I use nmap to find that out?

Table 8: A conversation showing an undetected case
of friction, where a Repair act is expressed through a
question (Turn 24). B misinterprets A’s question in Turn
22 as a suggestion, while, as revealed in Turn 24, A was
simply following up on B’s early suggestion of using
nmap from Turn 21.

Comparing Model and Human Explanations.
Collecting model explanations along with friction
interval predictions allows us to evaluate whether
they accurately capture the cause of friction. In
most cases, this amounts to correctly pointing out
the cause of misalignment in participants’ respec-
tive versions of the CG. To study this, we ask two
non-author Linux experts to annotate the similar-
ity between gold friction explanations and model-
generated explanations for 64 instances of friction
on a three-point scale, marking them as either (1)
dissimilar, (2) somewhat similar, or (3) equivalent.
Agreement between the two annotators using Spear-
man correlation is ρ = 0.61, with p < 0.01.

Most model explanations accurately captured
the cause of friction, with 57.81% instances anno-
tated as equivalent and 34.37% as somewhat simi-
lar. Only 7.8% explanations did not point out the
cause of friction at all. Echoing our earlier findings,
models struggle to pinpoint the cause of friction
even when they identified the window correctly.
For example, in Figure 2, Row 1, A mistakenly
assumes that B’s suggestion for a command (Turn
25) includes the keyword “try”, leading to the error
“try command not found” (Turn 32) after which B
repeats the dmesg command removing “try” at the
beginning. LLMs must be able to pinpoint causes
of friction to issue repairs that address the friction
directly, a crucial ability in settings where LLMs
are used for dispute resolution (Tan et al., 2024).

7 Related Work

The speech-act based approach in Traum and
Allen (1992) has been used to study coopera-
tive grounding acts in the Meetup (Ilinykh et al.,
2019) and Spot the Difference (Lopes et al., 2018)

datasets (Mohapatra et al., 2024). While conver-
sations in such scenarios also require grounding,
both datasets involve conversational participants
interacting in a physical setting. Because of the
additional modality, the mutually shared basis of
their CG (e.g. an object both or one participant
can see) is not available to the reader, making it
difficult to capture what causes friction from text
alone.

Markowska et al. (2023) track speaker versions
of the CG through speaker “beliefs” expressed in
conversations in the LDC Callhome (Canavan et al.,
1997) corpus. However, participants are not as in-
centivized to build and maintain a rich CG since
the conversations are not goal-driven, and are be-
tween close friends or family. Khebour et al. (2024)
annotate a task-oriented corpus for multi-modal fea-
tures and dialogue moves to model shared beliefs
and questions under discussion. The authors train
LSTM-based classifiers of dialogue moves relevant
to tracking CG, finding that utterances may or may
not be aligned with other modalities such as gesture.
This highlights the challenge of tracking common
ground in physically situated dialogue; our dataset
simplifies the focus to text alone.

Shaikh et al. (2024) use grounding acts to com-
pare the degree of grounding by LLMs in human-
LLM conversations, finding that LLMs perform
less computational grounding. Our work com-
plements these directions by focusing on whether
LLMs can detect when and how participants in a
conversation might lose track of CG. In more re-
cent work, Shaikh et al. (2025) focuses on this
divergence across several grounding acts, and in-
troduces an annotated dataset of LLMs failing to
ground in human-LLM conversations.

Also related to our work is the concept of posi-
tive friction as explored in İnan et al. (2025). Here,
the authors view “friction” not as a misalignment
in common ground that detracts from the goal of
the conversation, but as a series of communicative
“movements” such as pausing, revealing speaker
assumptions, etc., that facilitate long-term success
over short-term progress in a conversation.

8 Conclusion and Future Work

In this case study, we have conducted what is to
our knowledge the first investigation of friction and
repair of CG for task-oriented dialogue in a real-
world, text-only setting. Our qualitative and quan-
titative results reveal that friction in goal-oriented
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dialog is inevitable, and it takes effort from both
participants to repair the CG to make progress to-
wards a task. Keeping track of CG over text is
no easy feat—it requires participants to be vigi-
lant about implicit cues in text that might signal a
potential misalignment. While some helpers in
our dataset anticipated and prevented potential fric-
tion or issued Repair acts once friction did happen,
LLMs such as gpt-4o struggled with detecting and
explaining cases of friction in the absence of ex-
plicit evidence.

As LLMs are deployed in settings such as edu-
cation (Wang et al., 2024), future work might ex-
plore improving their ability to understand implicit
ruptures in CG—an LLM tasked with analyzing
conversations between a student and teacher should
be able to detect the loss of common ground for
better learning outcomes. Another future direction
involves explicitly modeling the CG, consisting of
propositions that are part of participants’ underly-
ing mental state. Recent work has demonstrated
that LLMs draw plausible inferences about such
propositions in non-conversational settings (Hoyle
et al., 2023). Conceptually, thought bubbles such
as those illustrated in Figure 1 could be populated
automatically, operationalizing the detection of CG
misalignments by similarity-based comparison and
contrast of participants’ individual belief spaces.

Limitations

Our study takes an important step towards quanti-
fying the role of grounding in goal-oriented dialog
and studying LLM capabilities of detecting friction.
Unlike studies that simulate conversations between
participants in artificial settings to gain access to
their mental states and the common ground, we
do not have access to conversational participants’
common ground or mental states beyond what is ex-
pressed in the text conversation. In addition, we do
not have access to the degree of self-effort that goes
into solving an issue alongside a conversation—the
asker might simultaneously have been searching
the internet for answers while engaged in conversa-
tion.

Another limitation of our work stems from the
fact that we limit our analyses of LLMs to their role
as an observer of human-human conversation, and
not as a participant. Given that LLMs perform dif-
ferently in linguistic tasks (such as responding to a
query) as opposed to metalinguistic tasks (spotting
a mismatch in common ground), it is possible that

a model response addresses a mismatch in com-
mon ground indirectly as a conversational partner
while failing to identify the cause of friction as
an observer (Hu and Frank, 2024). However, we
believe that understanding LLM behavior of track-
ing common ground is an essential prerequisite to
many other downstream research questions, such
as cases where an LLM is used as a conversational
facilitator (Argyle et al., 2023).

Although the conversations take place purely
through text, participants sometimes shared links
to blog posts and tutorials, many of which now no
longer work. In rare cases, it might be possible that
the cause (or resolution) of a friction instance is
rooted in such a link. We also do not have access to
their screens or other metadata about the user that
might have been instrumental in resolving friction.
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A Appendix

A.1 Further Annotation Details

In our dataset of 200 conversations, we divide anno-
tations into 10 batches, each containing 20 conver-
sations. Three of those batches (60 conversations)
were annotated by all annotators, going towards
computing the inter-rater agreement scores seen in
Table 4. The rest of the conversations were anno-
tated by a single annotator. For the conversations
annotated by all three annotators, we picked an-
notations from either A1 or A2, since they had
stronger inter-rater agreement. Overall, out of the
10 batches, 4 batches were annotated by A1, 4 were
annotated by A2, and 2 were annotated by A3.

The model scores and the inter-rater agree-
ment values are calculated using the same metrics,
friction-found and friction-overlap 3.2. They are
comparable with the caveat that results in Table 6
are unidirectional (models against gold data), and
those in Table 4 are made two-sided (by averaging
Ai against Aj and Aj against Ai). We note that
while annotator agreement numbers are modest, the
best inter-rater agreement between our annotators
(A1 and A2) is significantly higher than any of our
considered models. These two particular annota-
tors (A1 and A2) annotated 80% of our dataset.

A.2 Model Finetuning Details

For our finetuning experiments, we create five ran-
dom train-test splits of our dataset, with 30% of
conversations in Ubuntu-CG in each split going
towards the “test” set. For each of our context
windows (k = 3 or k = 5 turns), we train a
distilroberta-base model with 82M parame-
ters for 15 epochs with a learning rate of 4e − 5.
As evaluation data, we pick a single fold and iso-
late a part of its training set as our development
data. Since this is a class-imbalanced dataset (turns
not containing friction greatly outnumber turns
containing friction 10 to 1), we artificially reduce
the number of negative samples in our training
data, however resampling was not done on the test
data. We also experimented with larger encoder-
only models, but they all performed much poorer
than distilroberta under both full-parameter
and classification head-only training.

Relationship with NLI. The setup we choose
for our finetuned baselines may resemble that of
classical textual entailment, where, given a premise
sentence, a model must determine whether a hy-

pothesis sentence is entailed, contradicted, or neu-
tral in relation to the premise. Friction detection in
this baseline setting could be recast as an NLI-style
task (White et al., 2017). We do not experiment
with existing finetuned NLI models since, as is,
our task in the baseline setting does not cleanly or
directly map to the task of textual entailment in its
current form, and hence, would produce unreliable
labels.

A.3 Computational Details

The Llama-3.1-70b-Instruct models were used
with 4bit quantization to fit on two A6000 GPUs.

A.4 Prompts

We outline all prompts used in the paper below. In
the interest of presentation, they are broken into
modules. For example, Prompt A.1 and Prompt A.2
would combine to form a single prompt for friction
detection, and Prompt A.3 is plugged in the middle
to make use of gpt-4o-generated explanations.
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Prompt A.1: Friction Detection Prompt

Prompt: ### TASK DESCRIPTION: Detecting

"Conversational Friction" in Online
Conversations.

Given a conversation between two participants
in an online chat forum, label one or more turns
in the conversation where there is evidence of
friction between the two participants, that is,
where they don’t seem to fully understand each
other or seem to not be on the same page. This
friction could be due to a mismatch between
their goals, due to a false assumption one
participant made about the other leading to a
misunderstanding, and so on. These may result
from a mismatch in the common ground between
the two participants.

A strong indicator of conversational friction
could be a participant asking the other
participant to revisit or clarify previously
shared content in the conversation, in a process
known as conversational repair. However, in
many cases there may not be an explicit Repair
Request issued by a participant but from
context it can be reasoned that a participant
is struggling to keep up with the conversation.
In some cases, it becomes apparent that a
participant was requesting conversational
repair in a turn only after reading through
subsequent turns. In that case, go back and
annotate that turn as friction.

Note that possible friction can occur in
a single turn (in which case, mark that
specific turn), or through a series of turns
(in which case, mark the window of turns that
all together add up to a repair request). In
each of these cases, you should mark the turn(s)
where the friction is most apparent. Also write
a brief explanation of why you think that turn
is an instance of conversational friction as
defined above.

Prompt A.2: Input/Output Format

Prompt: ### INPUT:

Conversation: {convo_text}

Now, follow the output format below to
annotate the conversation.

### OUTPUT FORMAT:

First output the turns showing conversational
friction in a dictionary. If there is more
than one instance of friction, list them in
the order they appear in the conversation. If
there’s no friction in the conversation, set
"friction_present" to false and don’t provide
any other fields.
Follow the output format below to annotate the
conversation.

{{
"friction_present": [Choose true or false], #
if false, stop here
"friction1": [X, Y], # the start and end turns
of the first instance of friction
"explanation1": "Brief explanation for
friction1",
"friction2": [X, Y], # If there is more than
one instance of friction
"explanation2": "Brief explanation for
friction2"
....
}}

Prompt A.3: Adding Explanations

Prompt: ### EXPLANATIONS

To clarify the many technical terms used
in the conversations, you are also provided
an explanation of terms used in a particular
turn at the end of the turn. This explanation
is provided in the format: Turn X Explanation:
<Explanation of the terms used in Turn X>. In
general, the format of the conversation is as
follows:

**[Turn 0] User A:** <Message about current
current issue with linux>
Turn 0 Explanation: <Contextual explanation of
the technical terms used in the conversation>
**[Turn 1] User B:** <Response to Turn 0>
Turn 1 Explanation: <Contextual explanation of
the technical terms used in the conversation>
...
...

**NOTE:** In addition to the conversation,
optionally use the explanations provided to
better understand what’s going on in the
conversation. Discard the explanations if you
feel they are not necessary.
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Prompt A.4: Success Prediction

Prompt: ### TASK DESCRIPTION

You will be given a conversation between two
participants A (usually the **user** seeking
help) and B (usually the **helper**) who are
trying to solve an issue in Ubuntu together
on the #Ubuntu IRC channel. Your task is to
determine how successful the conversation was
towards resolving the issue of the user.

Mark how helpful the conversation was to
whoever was asking for help on a scale of
1-3, where each number on the scale has the
following meaning:

- 1 (NO PROGRESS): This indicates that
the conversation was not helpful to A at all in
resolving their issue, and they did not make
any progress towards solving the problem.
- 2 (SOME PROGRESS): This indicates that the
participants made some progress towards solving
the problem. They might not have resolved
the issue entirely, but they made progress in
diagnosing the problem or solved a part of the
problem.
- 3 (SUCCESS): This indicates that the
participants solved the problem they initially
set out to solve, or the problem that evolved
in the course of the conversation.

The scores hold true even if they themselves
realize the issue in the course of the
conversation and proceed to solve it. It
also holds true even if the conversation went
off-topic, as long as the participants were
able to solve the problem at hand.

NOTE: The problem that A starts the conversation
with might not be the right problem to solve at
all, and the helper (usually B) might suggest
what the right issue to solve is. In that case,
solving the re-defined problem will decide
conversational success on this scale.

### INPUT

Conversation:

{convo_text}

### OUTPUT

First, provide the success score for the
conversation on a scale of 1-3. Then, provide a
brief explanation explaining the score in the
format below:
{{
"success_score": [1/2/3] # 1 for NO PROGRESS, 2
for SOME PROGRESS, 3 for SUCCESS. Output score
only
"explanation": "Brief explanation for the
success score"
}}

Prompt A.5: Binary Friction Detection

Prompt: ### TASK DESCRIPTION: Detecting

"Conversational Friction" in Online
Conversations

Given a conversation between two participants
in an online chat forum, output whether there
is evidence of conversational friction between
the two participants. Conversational friction
occurs when participants in a conversation
don’t seem to fully understand each other or
seem to not be on the same page. This friction
could be due to a mismatch between their goals,
due to a false assumption one participant made
about the other, leading to a misunderstanding,
and so on. These may result from a mismatch in
the common ground between the two participants.

A strong indicator of conversational friction
could be a participant asking the other
participant to revisit or clarify previously
shared content in the conversation, in a process
known as conversational repair. However, in
many cases, there may not be an explicit Repair
Request issued by a participant, but from the
context, it can be reasoned that a participant
is struggling to keep up with the conversation.

NOTE: Friction is often signaled by the
helpee asking a follow-up question. However,
not all follow-up questions indicate that
the speakers are not on the same page. For
example, clarification questions that ask
for information not assumed by either user
to be in the common ground are not cases
of conversational friction. Clarification
questions that move the conversation forward
without questioning the common ground are not
cases of conversational friction. If there
is **no conversational friction** make sure
to indicate that in the output by setting
"friction_present" to false.

### TASK:

Given a conversation, list whether
conversational friction occurs or not.

A.5 Elaborations
Examples of elaborations can be found in Table 9.

A.6 Annotator Instructions
Before any annotation task, annotators had to fill
out a consent form (Figure 3). To ensure we’re
measuring equivalent constructs, the annotator in-
structions was kept identical to Prompt A.1. A
more detailed instruction document can be found
in the supplementary material. The similarity scor-
ing prompt is shown in Figure 4.

A.7 Breakdown of Table 5
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Utterance GPT Elaboration Year
hi, i have ubuntu dapper and want to do a clean
install of feisty using the live cd (I want to put
feisty in my current ext3 partition and format ext3).
When the installation process comes to the part
about partitioning, (Erase hard disk, automatic, or
manual), should I choose manual and if so, will
there be a way to format ext3 and will it allow me
to put feisty in my current ext3 partition without
making a new

Ubuntu Dapper and Feisty are code names for
older versions of the Ubuntu operating system,
specifically 6.06 (Dapper Drake) and 7.04
(Feisty Fawn), respectively. A ’live CD’ allows
you to run Ubuntu directly from the CD without
installing it on your hard drive. ’ext3’ is a
type of file system used in Linux for organizing
and storing files on a partition.

2005

does passwords and encryption keys support hkps? "HKPS" stands for HTTP Keyserver Protocol
Secure. It is a secure version of the HTTP
Keyserver Protocol (HKP) used to retrieve
encryption keys from a keyserver over a secure,
encrypted connection. In the context of
Ubuntu or other operating systems, this might
refer to the secure retrieval or management
of encryption keys, potentially in relation
to applications or services that require
encryption.

2010

Table 9: Explanation of technical terms present in dialog turns explained by GPT4. These help our annotators
understand terms such as “khps”, “dapper”, or “feisty”.

Figure 3: The consent form shown to annotators before
each task.

Degree of
Progress #Convs

Instances
(Repair/ReqRepair)

Unaddressed
ReqRepair (%)

3 23 45 (35/33) 27.27
2 26 57 (48/42) 19.05

No Progress (1) 21 50 (38/36) 30.56

Table 10: Full breakdown of summary of success and
grounding acts in our analysis subset of 70 conversa-
tions. In conversations with no progress, more requests
for repairs go unaddressed.
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Figure 4: Instructions provided to the annotators for judging the similarity of gpt-4oand human-generated explana-
tions for frictions. The annotators did not know the source of an explanation.
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