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Abstract

Large language models (LLMs) have demon-
strated impressive translation capabilities even
without being explicitly trained on parallel
data. This remarkable property has led some
to believe that parallel data is no longer neces-
sary for building multilingual language models.
While some attribute this to the emergent abili-
ties of LLMs due to scale, recent work suggests
that it is actually caused by incidental bilingual
signals present in the training data. Various
methods have been proposed to maximize the
utility of parallel data to enhance the multilin-
gual capabilities of multilingual encoder-based
and encoder-decoder language models. How-
ever, some decoder-based LLMs opt to ignore
parallel data instead. In this work, we conduct
a systematic study on the impact of adding par-
allel data on LLMs’ multilingual capabilities,
focusing specifically on translation and mul-
tilingual common-sense reasoning. Through
controlled experiments, we demonstrate that
parallel data can significantly improve LLMs’
multilingual capabilities.1

1 Introduction

To democratize the benefits of large language mod-
els (LLMs) for the whole world, many initiatives
have been undertaken to build LLMs that possess
multilingual capabilities (Scao et al., 2022; Sen-
gupta et al., 2023). Multilingual capabilities en-
hance the accessibility and inclusivity of the model
and help reduce its inherent bias (Zhu et al., 2024a;
Navigli et al., 2023).

Even without being explicitly trained with par-
allel data, LLMs are reported to have impressive
translation capabilities (Radford et al., 2019; Lin
et al., 2022). Briakou et al. (2023) reported that
the translation capabilities of LLMs are highly cor-
related with the bilingual signals in their training

1Source code, checkpoints, and data are available at: http
s://github.com/nusnlp/just-go-parallel

data, particularly translation pairs. The presence
of bilingual signals is often incidental, meaning
they are not deliberately added to the training data.
When these bilingual signals are removed, LLMs
lose the capability to translate between English and
languages with non-Latin scripts.

While some multilingual LLMs are trained with
parallel data (Alves et al., 2024), some are not
(Scao et al., 2022), despite having parallel data
sources such as OPUS-100 (Zhang et al., 2020)
or EuroParl (Koehn, 2005) in their training data.
While parallel texts are not always available espe-
cially for extremely low-resource languages, the sit-
uation today has improved dramatically compared
to a decade ago. Due to efforts such as NLLB (No
Language Left Behind; Costa-jussà et al. 2022),
many more languages – even for languages that
were previously considered low-resource like In-
donesian – now have enough publicly available
parallel texts to make a difference in building mul-
tilingual large language models, as we demonstrate
in this paper.

Many encoder-based (Conneau and Lample,
2019; Ouyang et al., 2021) and encoder-decoder
(Liu et al., 2020; Chi et al., 2021a) language mod-
els aim to improve their multilingual capabilities
through parallel corpora. Much work has been pro-
posed to specifically enhance cross-lingual align-
ments (Cao et al., 2020; Luo et al., 2021), even
when parallel sentences are unavailable (Lu et al.,
2023). On the other hand, decoder language models
often deliberately ignore the parallel data available
in their training corpus, such as by not including
the English portion of the parallel data or randomly
mixing all the training data together. This situation
warrants a systematic investigation of the effect of
parallel data on large language models’ multilin-
gual capabilities.

In this research, we conduct a systematic study
to investigate whether adding parallel data helps in
enhancing a large language model’s multilingual
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capabilities and what the best strategy is for in-
corporating them into a language model’s training
data.

Our main contributions are as follows.

1. We report that adding parallel data to the train-
ing data is more effective than adding unre-
lated monolingual corpora of other languages
for enhancing the multilingual capabilities of
decoder-based large language models.

2. We find that training the model with parallel
data at the end of the training process is the
most effective approach for improving mul-
tilingual performance, while training at the
beginning of the process leads to serious catas-
trophic forgetting and wastes the parallel data.

3. We report that LLMs do not have the ability to
perform translation in the opposite direction
of what they were trained on.

4. We show that the amount of bilingual signal
in the training data affects LLMs’ translation
capability.

5. We release the code, checkpoints, and training
data of our models to facilitate further study.

2 Related Work

2.1 Multilingual Language Models
Benefiting from the complete open-sourcing of data
and code from many LLMs, such as BLOOM (Scao
et al., 2022), LLM360 (Liu et al., 2024), and Fal-
con (Almazrouei et al., 2023), many studies have
begun developing multilingual language models
based on these LLMs by incorporating multilingual
data for continual pre-training (Conneau and Lam-
ple, 2019; Xue et al., 2021; Lin et al., 2022). Al-
though recent instruction-following LLMs are pri-
marily pre-trained and fine-tuned on a limited num-
ber of resource-rich languages, they have demon-
strated substantial multilingual comprehension and
generation capabilities (Touvron et al., 2023; Wang
et al., 2024; Niklaus et al., 2023). However, due
to the limitation of imbalanced training data distri-
bution (Yang et al., 2023), these multilingual lan-
guage models still fall short in those languages with
scarce resources (Qin et al., 2024). To understand
how language models acquire multilingual capa-
bilities, Nezhad and Agrawal (2024) investigate
factors influencing the performance of multilingual
language models and reveal that script type and

language family are critical for unseen languages,
highlighting the importance of cross-lingual trans-
fer learning. Additionally, research by Tang et al.
(2024) aims to explain the underlying mechanisms
by which LLMs process multilingual texts. Their
research indicates that the proficiency of LLMs in
processing languages is predominantly due to a
small subset of neurons, primarily situated in the
models’ top and bottom layers.

2.2 Enhancing Multilingual Capabilities

To enhance the multilingual capabilities of LLMs,
one line of work is cross-lingual transfer, where
the capability of one language can be transferred to
other languages (Huang et al., 2023; Etxaniz et al.,
2024; Ranaldi et al., 2024). By designing cross-
lingual alignment prompting that instructs LLMs to
self-translate a question into another language (Qin
et al., 2023) or utilize an external machine transla-
tion system (Zhao et al., 2024), the capabilities of
language generation and instruction-following can
be transferred to a non-English language. Besides,
several efforts have been devoted to knowledge
distillation on synthetic data from high-resource
languages to low-resource ones (Chai et al., 2025;
Al-Maamari et al., 2024; Zhang et al., 2024b). An-
other line of work is cross-lingual alignment, which
involves constructing alignment data and loss func-
tions to align mid- and low-resource languages with
those that are resource-rich (Schuster et al., 2019;
Wen-Yi and Mimno, 2023; Zhu et al., 2024b). For
example, Chi et al. (2021b) introduce a denois-
ing word alignment pre-training task that predicts
masked tokens in another language. Mao and Yu
(2024) leverage the capabilities of LLMs to trans-
late previously unsupported languages for building
aligned data, overcoming the weak cross-lingual
signals caused by data scarcity.

3 Method

Large language models are often trained on
internet-sourced corpora predominantly in En-
glish (Biderman et al., 2023; Groeneveld et al.,
2024). We investigate whether incorporating paral-
lel data enhances multilingual capabilities by com-
paring it to training without parallel data or with
monolingual corpora from other languages. Our ob-
jective is to empirically examine how the inclusion
of parallel data in the training set affects multi-
lingual LLMs’ performance across multiple lan-
guages.
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To ensure a controlled comparison, we maintain
the order and quantity of training data across all
experiments. When parallel data are added to the
training set, an equivalent amount of non-parallel
data from the last portion is removed to preserve a
consistent training set size and order.

We also explore the optimal placement of paral-
lel data within the language model’s training pro-
cess. Specifically, we experiment with inserting
parallel data at the beginning of training, distribut-
ing it throughout the training data, and adding it at
the end. We define seven experimental settings: NO

PARALLEL, MULTILINGUAL, PARALLEL NON-
ADJACENT, PARALLEL FIRST, PARALLEL DIS-
TRIBUTED, PARALLEL LAST (ALL), and PARAL-
LEL LAST (UNI), as detailed below.

3.1 No Parallel

In this setting, no parallel data are added to the
training data. This approach mirrors the typi-
cal strategy used for constructing English-centric
LLMs, such as Pythia (Biderman et al., 2023) and
TinyLlama (Zhang et al., 2024a). Although no par-
allel data are intentionally included, the training
data may incidentally contain some parallel texts
sourced from the internet. However, according
to our language detection analysis (Table 8), the
amount of such data is minimal.

3.2 Multilingual

In this setting, monolingual data from other lan-
guages are distributed uniformly throughout the
non-parallel data. This approach resembles com-
mon strategies for building multilingual language
models by incorporating monolingual corpora from
multiple languages (Lu et al., 2023; Scao et al.,
2022). To control for the choice of text, the
monolingual data added are derived from the non-
English half of the parallel data. That is, in our
experiments, monolingual data in Indonesian and
Chinese are added in this setting, and the equiva-
lent amount of English data from the last portion
of the NO PARALLEL setting is removed. Note
that the English half of the parallel data are not in-
cluded in this setting. This setup evaluates whether
a language model can learn cross-lingual mappings
independently without explicitly aligning semanti-
cally equivalent sentences across languages.

3.3 Parallel Non-Adjacent

In this setting, parallel data for all language
pairs are uniformly distributed throughout the non-

parallel data. However, an English sentence and
its translation are not placed next to each other. In-
stead, the English sentences in the parallel data are
randomly shuffled, such that each non-English sen-
tence from the parallel data is followed by a random
English sentence. This setup evaluates whether the
presence of semantically equivalent sentences in
the training data, but without explicitly placing a
sentence next to its translation, helps in learning
cross-lingual mappings.

3.4 Parallel First

In this setting, parallel data for all translation di-
rections are introduced at the beginning of training.
The parallel data are presented as adjacent sen-
tence pairs, where a sentence and its translation are
placed next to each other. The rationale behind this
setup is that early exposure to parallel data may
help the model establish cross-lingual mappings,
enabling it to better leverage incidental bilingual
signals present in the non-parallel training data.

3.5 Parallel Distributed

In this setting, parallel data for all translation di-
rections, presented as adjacent sentence pairs, are
distributed throughout the non-parallel data. Since
large language models are believed to acquire mul-
tilingual capabilities from bilingual signals (Bri-
akou et al., 2023), particularly translation pairs,
this setup aims to amplify such signals.

3.6 Parallel Last (all)

In this setting, parallel data for all translation di-
rections, presented as adjacent sentence pairs, are
added at the end of training. This approach can
also be interpreted as second-stage training, where
the model receives bilingual exposure after being
pre-trained primarily on English data.

3.7 Parallel Last (uni)

This setting is similar to PARALLEL LAST (ALL),
except that the model is trained on only one transla-
tion direction (e.g., English to Chinese). For each
translation direction, a separate model is trained, re-
sulting in specialized models rather than a general
multilingual LLM.

4 Experiments

We build our model based on TinyLlama, a 22-layer
transformer decoder LLM with 1.1B parameters.
We use a subset of SlimPajama (Soboleva et al.,
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Corpus # sents # tokens
Chinese English

ParaCrawl 14.2M 620.6M 357.9M
NewsComm 0.3M 19.8M 10.3M
Wiki Titles 0.9M 6.1M 10.9M
UN Parallel 15.9M 999.4M 579.9M
WikiMatrix 2.6M 150.0M 83.5M
Total 33.9M 1,795.9M 1,042.5M

Table 1: Statistics of Chinese-English training parallel
data.

Corpus # sents # tokens
Indonesian English

Total 54.1M 1,222.0M 883.5M

Table 2: Statistics of Indonesian-English training paral-
lel data.

2023) as our non-parallel training data. When re-
ferring to non-parallel data, we mean SlimPajama
data, which are predominantly in English and do
not deliberately include parallel data. The subset
of SlimPajama used consists of 82.35% English,
0.19% Indonesian, 0.12% Chinese, and 17.34%
other languages (See Table 8 in the Appendix).

We measure the language model’s multilin-
gual capabilities by evaluating its translation and
common-sense reasoning performance. In our ex-
periments, we focus on English (EN), Simplified
Chinese (ZH), and Indonesian (ID) as case studies.
We selected Chinese for its script diversity and In-
donesian for its mid-resource status. To incorporate
parallel data into our training set, we use widely
adopted parallel corpora for machine translation
tasks. Specifically, we use the training data from
the WMT-2022 general (news) machine transla-
tion task (Kocmi et al., 2022) for Chinese-English
translation pairs, excluding the CCMT corpus2 (Ta-
ble 1). For Indonesian-English translation pairs,
we use the training data from the WMT-2021 large-
scale multilingual machine translation task (Wen-
zek et al., 2021) (Table 2).

For each translation pair, we format the parallel
data as plain text using the template: “{source
language}: {source sentence}\n{target
language}: {target sentence}”. This ap-
proach is inspired by the format of incidental paral-
lel data found in PALM’s (Chowdhery et al., 2023)
training set, as reported by Briakou et al. (2023).

2The CCMT corpus requires registration, but we did not
receive a response after submitting our registration request.

By default, we alternate the translation direction
of the language pairs (e.g., EN → ID, ID → EN,
ZH → EN, EN → ZH). Text sequences are con-
catenated using the end-of-sentence pseudo-token
<\s> and split into chunks, each with a size equal
to eight times the context window. Leftover text
segments that are shorter than this are discarded.
After pre-processing, the parallel data amount to
4.5B tokens3.

We train the model on up to 167B tokens4 using
NVIDIA H100 GPUs. Due to the high computa-
tional cost, each experiment is conducted only once.
We save checkpoints every 5,000 steps (~5.2B to-
kens), but for the first 5,000 steps of the PARALLEL

FIRST setting and the last 5,000 steps of the PAR-
ALLEL LAST settings, we save checkpoints every
1,000 steps to analyze the effects of parallel data in
a more fine-grained manner.

After training, we select the checkpoint with the
highest average BLEU score (Papineni et al., 2002)
across all translation directions on the development
set. We use the WMT-2022 test set for Chinese-
to-English and English-to-Chinese translation and
the Flores-200 dev set (Costa-jussà et al., 2022) for
Indonesian-to-English and English-to-Indonesian
translation as the development set.

4.1 Evaluation

We assess the model’s translation performance us-
ing the BLEU score metric from SacreBLEU (Post,
2018). Machine translation performance is eval-
uated on the Chinese-to-English and English-to-
Chinese test sets of WMT-20235 (Semenov et al.,
2023) and on the devtest set of Flores-200 for
Indonesian-to-English and English-to-Indonesian.
Since Flores-200 does not provide test sets for both
directions, we reverse the translation directions dur-
ing evaluation. We have verified that none of the
evaluation data are included in the training data,
ruling out the possibility of data leakage.

3Throughout this paper, the number of tokens is consis-
tently measured using the TinyLlama tokenizer, which shares
the same vocabulary as the Llama 2 models.

4All experimental settings are trained on 167B tokens,
except the PARALLEL LAST (ALL) (166B tokens) and PAR-
ALLEL LAST (UNI) (164B tokens) settings. The PARALLEL
LAST (ALL) setting uses 162B tokens of non-parallel data and
4B tokens of parallel data (due to saving the checkpoints every
1B tokens, not all parallel data are consumed), while the PAR-
ALLEL LAST (UNI) setting uses 162B tokens of non-parallel
data and 2B tokens of parallel data (EN↔ZH or EN↔ID
parallel data only, instead of all available parallel data).

5https://www.statmt.org/wmt23/translation-tas
k.html
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Model Param EN → ID ID → EN EN → ZH ZH → EN
Zero-Shot

No Parallel 1.1B 2.49 1.52 0.80 1.30
Multilingual 1.1B 2.38 5.92 0.81 3.72
Parallel Non-Adjacent 1.1B 1.98 14.69 1.01 4.50
Parallel First 1.1B 7.42 5.57 9.64 2.71
Parallel Distributed 1.1B 21.95 27.48 12.08 7.40
Parallel Last (all) 1.1B 35.91 35.36 9.62 10.73
Parallel Last (uni) 1.1B 44.19 41.91 28.51 16.10
BLOOM 1.1B 2.19 18.39 2.27 4.58
NLLB 1.3B 44.64 43.06 27.58 19.25

Few-Shot (5 examples)
No Parallel 1.1B 2.60 0.97 0.79 0.83
Multilingual 1.1B 2.49 9.75 1.73 4.25
Parallel Non-Adjacent 1.1B 3.31 13.90 3.76 2.69
Parallel First 1.1B 25.41 21.02 18.61 7.09
Parallel Distributed 1.1B 31.80 33.66 23.21 12.51
Parallel Last (all) 1.1B 41.51 39.08 32.61 15.20
Parallel Last (uni) 1.1B 44.32 41.60 33.31 16.87
BLOOM 1.1B 21.92 27.29 18.10 10.72

Table 3: Translation performance (BLEU scores) of each experimental setting, along with the number of parameters
in the model (PARAM). NLLB is specialized for machine translation, so we do not evaluate its few-shot performance.

We perform zero-shot and few-shot evaluations
using 5 examples. The evaluation follows the code
and prompt style of ALMA (Xu et al., 2024) (Ta-
ble 11 in the Appendix). Statistical significance is
measured using the paired approximate randomiza-
tion method with 10,000 trials and a significance
threshold (p-value) of 0.05.

We also evaluate the model’s common-sense
reasoning performance in English, Chinese, and
Indonesian using a zero-shot approach across
several benchmarks. For English, we test on
ARC (Easy and Challenge) (Clark et al., 2018),
HellaSwag (Zellers et al., 2019), BoolQ (Clark
et al., 2019), OpenBookQA (Mihaylov et al.,
2018), PIQA (Bisk et al., 2020), SciQ (Welbl
et al., 2017), and WinoGrande (Sakaguchi et al.,
2020). For Chinese, we use the Chinese subsets of
XWinograd (Tikhonov and Ryabinin, 2021), XSto-
ryCloze (Lin et al., 2022), XNLI (Conneau et al.,
2018), and XCOPA (Ponti et al., 2020). Since
XWinograd and XNLI do not have Indonesian sub-
sets, Indonesian common-sense reasoning is evalu-
ated using the Indonesian subsets of XStoryCloze
and XCOPA. We utilize the Language Model Evalu-
ation Harness (LM-Eval) framework6 for common-

6https://github.com/EleutherAI/lm-evaluatio

sense reasoning evaluation.

Figure 1: Macro-average of the common-sense reason-
ing benchmarks.

5 Results

We find that training the model with parallel data
at the end yields the best translation performance,
especially when the model is trained in only one
language direction (Table 3). Adding parallel data
at the beginning provides only a minor improve-
ment over the NO PARALLEL strategy in zero-shot
evaluation, but the difference becomes much more
pronounced in few-shot evaluation. Few-shot infer-
ence also greatly improves the scores of PARALLEL

n-harness/
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Model ARCC ARCE BoolQ HS OBQA PIQA SciQ WG Avg
No Parallel 25.51 45.08 60.12 46.30 32.00 68.66 72.50 53.35 50.44
Multilingual 27.30 46.93 57.31 48.25 32.40 69.15 74.00 53.91 51.16
Parallel Non-Adjacent 25.43 46.21 60.15 47.67 30.20 68.23 73.20 54.06 50.64
Parallel First 21.84 30.56 41.07 25.73 25.00 52.88 44.60 50.28 36.50
Parallel Distributed 26.45 47.05 60.61 46.49 31.60 68.88 76.30 53.28 51.33
Parallel Last (all) 24.40 41.79 60.21 42.21 30.20 66.10 73.80 53.91 49.08
BLOOM 25.60 45.41 59.11 42.97 29.40 67.25 74.60 55.01 49.92

Table 4: English common-sense reasoning performance in each experimental setting, measured based on the
model’s accuracy on ARC Challenge, ARC Easy, BoolQ, HellaSwag, OpenBookQA, PIQA, SciQ, and WinoGrande.

DISTRIBUTED and PARALLEL LAST (ALL), nar-
rowing the gap between PARALLEL LAST (ALL)
and PARALLEL LAST (UNI). Notably, the PAR-
ALLEL DISTRIBUTED setting significantly out-
performs MULTILINGUAL and PARALLEL NON-
ADJACENT. The PARALLEL DISTRIBUTED and
PARALLEL NON-ADJACENT settings are trained
on the same data for the same duration, differing
only in how the parallel data are placed in the train-
ing data. The PARALLEL DISTRIBUTED setting
even outperforms BLOOM, despite BLOOM be-
ing trained with more Indonesian and Chinese data
– 20 GB of Indonesian and 261 GB of Chinese
texts, compared to less than 5 GB of texts in each
language in our setup. This highlights the effective-
ness of parallel data in enhancing LLMs’ transla-
tion capabilities.

Beyond translation, the PARALLEL DIS-
TRIBUTED setting also outperforms the MULTI-
LINGUAL and PARALLEL NON-ADJACENT set-
tings on English and Indonesian common-sense
reasoning benchmarks while maintaining compara-
ble performance on Chinese common-sense reason-
ing benchmarks (Figure 1). The PARALLEL LAST

(ALL) setting significantly outperforms the other
experimental settings in Chinese and Indonesian,
although it shows a slight decline in English per-
formance, as shown in Table 4. Detailed scores for
Chinese and Indonesian common-sense reasoning
are provided in Table 12 and Table 13, respectively,
in the Appendix. These findings indicate that paral-
lel data not only improves translation performance
but also enhances LLMs’ common-sense reasoning
abilities in non-English languages.

6 Discussions

6.1 All Directions vs. Unidirectional
Translation

As shown in Table 3, training with unidirectional
data leads to higher translation performance com-
pared to training with data in all translation direc-
tions, although the unidirectional approach creates
specialized models instead of a single multilingual
model. These models cannot translate languages
they are not trained on, and surprisingly, they also
fail to translate in the opposite direction of the lan-
guage pair they are trained on (Table 5). Their
performance is very poor, even worse than mod-
els trained without parallel data. We found that
they often produce nonsensical outputs due to this
limitation. This phenomenon may be related to
the issue of autoregressive LLMs struggling with
inverse relationships, dubbed the reversal curse
(Berglund et al., 2024).

Adding few-shot examples does not help unidi-
rectional models to translate other languages or the
opposite direction of the same language pair. Even
in the same translation direction as their training
data, the performance gain is modest. In contrast,
the few-shot performance of the PARALLEL LAST

(ALL) model is quite close to the best performance
of each unidirectional model while retaining the
ability to translate between all language pairs.

On the common-sense reasoning task, models
trained with unidirectional parallel data directed
into the evaluated language perform slightly worse
than the model trained with parallel data in all di-
rections (PARALLEL LAST (ALL)). For English,
models trained only on ID → EN or ZH → EN par-
allel data achieve lower scores than the PARALLEL

LAST (ALL) model (Table 6). A similar trend holds
for Chinese and Indonesian: training on only EN
→ ZH and EN → ID parallel data results in worse
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performance on Chinese and Indonesian reasoning
tasks, respectively.

While unidirectional training may not be suit-
able for building multilingual large language mod-
els with general capabilities, it is highly effective
for developing machine translation models. By
fine-tuning a large language model (pretrained pri-
marily on English data) with just one epoch of
parallel data, we can achieve very high translation
performance—exceeding a BLEU score of 41—es-
pecially for languages that use the same script as
English, such as Indonesian.

Translation Evaluation

Parallel Data
EN →
ID

ID →
EN

EN →
ZH

ZH →
EN

Zero-Shot
All directions 35.91 35.36 9.62 10.73
EN → ID 44.19 0.07 0.77 0.21
ID → EN 0.02 41.91 0.25 0.03
EN → ZH 0.09 0.59 28.51 0.01
ZH → EN 0.00 2.73 0.13 16.10
None 2.49 1.52 0.80 1.30

Few-Shot (5 examples)
All directions 41.51 39.08 32.61 15.20
EN → ID 44.32 0.14 0.72 0.11
ID → EN 0.04 41.60 0.43 0.01
EN → ZH 0.04 2.51 33.31 0.00
ZH → EN 2.58 2.71 0.06 16.87
None 2.60 0.97 0.79 0.83

Table 5: Translation performance (BLEU scores) of
adding parallel data at the end of training. Training
with parallel data of all directions is synonymous with
the PARALLEL LAST (ALL) training setup, while using
no parallel data (NONE) is synonymous with the NO
PARALLEL training setup. BLEU scores on the diago-
nal correspond to the PARALLEL LAST (UNI) training
setup.

6.2 Quality of Translation Pairs

Next, we investigate the effect of translation pair
quality on LLMs’ translation capability. Parallel
data are sometimes collected automatically, lead-
ing to varying degrees of quality. In traditional ma-
chine translation systems, noisy translation pairs
are often filtered out from the training data (Low-
phansirikul et al., 2020). However, LLMs are typi-
cally trained on massive datasets that are inherently
noisy. In this analysis, we examine whether fil-
tering the parallel data could further enhance the
multilingual performance of LLMs.

Common-Sense Reasoning
Parallel Data English Indonesian Chinese
All directions 49.08 56.06 50.55
EN → ID 48.77 55.34 45.87
ID → EN 48.73 55.87 45.47
EN → ZH 49.80 49.96 50.49
ZH → EN 48.49 50.02 50.45

Table 6: Macro-average scores on common-sense rea-
soning benchmarks for different translation directions
of parallel training data. Training with parallel data of
all directions is synonymous with the PARALLEL LAST
(ALL) training setup.

Translation Evaluation

Parallel Data
EN →
ID

ID →
EN

EN →
ZH

ZH →
EN

Zero-Shot
PARALLEL

LAST (ALL)
35.91 35.36 9.62 10.73

with filtering 36.20 35.17 24.20 10.60
Few-Shot (5 examples)

PARALLEL

LAST (ALL)
41.51 39.08 32.61 15.20

with filtering 40.50 37.71 32.28 14.83

Table 7: Translation performance (BLEU scores) of
LLMs in relation to the quality of the parallel data.

We assess the quality of the parallel data using
CometKiwi-2022 (Rei et al., 2022), a state-of-the-
art quality estimation model for machine transla-
tion. CometKiwi-2022 produces a score between
0 and 1, indicating the quality of each translation
pair. Based on manual observation, we set a thresh-
old of 0.42 for Chinese-English pairs and 0.58 for
Indonesian-English pairs. Applying this filter re-
duces the number of parallel sentences from 33.9M
to 25M for Chinese and from 54.1M to 15.6M for
Indonesian. In this setting, we keep the amount of
non-parallel data constant, resulting in the filtered
model being trained on slightly less total data.

We conduct this experiment using the PARAL-
LEL LAST (ALL) strategy. In zero-shot evaluation,
we observe a significant improvement in English-
Chinese translation performance and a slight im-
provement in English-Indonesian translation per-
formance, but not in the other language pairs (Ta-
ble 7). In few-shot evaluation, the performance of
the filtered model is slightly worse than that of the
unfiltered model. This suggests that at this scale,
LLMs are quite resilient to noisy data.
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6.3 Catastrophic Forgetting

Adding parallel data at the beginning (PARALLEL

FIRST) improves LLMs’ translation capability, but
few-shot examples are needed to achieve consid-
erable performance (Table 3). However, this per-
formance is measured using the best checkpoint
on the development set. When examining the per-
formance at later checkpoints, we observe that the
translation capability completely disappears once
the parallel data are exhausted (Figure 2). The only
difference between the PARALLEL FIRST, PARAL-
LEL DISTRIBUTED, and PARALLEL LAST strate-
gies is the position of the parallel data within the
training set, yet placing it in the wrong position
can completely negate its benefits. We attribute
this to catastrophic forgetting (McCloskey and Co-
hen, 1989). Similar patterns are observed in other
translation directions.

Figure 2: Progression of the BLEU score on English-
Chinese translation between NO PARALLEL and PAR-
ALLEL FIRST experimental settings.

6.4 Impact of Incidental Bilingual Signals

In this section, we investigate how incidental bilin-
gual signals in the training data affect the LLMs’
translation performance. Briakou et al. (2023) re-
ported that incidental bilingual signals, especially
parallel text, in predominantly English training data
contribute to LLMs’ translation abilities. However,
they did not examine the relationship between the
frequency of these bilingual signals and translation
performance. In our analysis, we aim to extend
their findings by exploring how the frequency of
bilingual signals in our subset of SlimPajama influ-
ences the translation performance of models trained
without parallel data.

We detect bilingual signals by first building a
word translation dictionary by aligning words in the
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Figure 3: Chinese-to-English translation performance
across word frequency in the 167B training data.
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Figure 4: Indonesian-to-English translation perfor-
mance across word frequency in the 167B training data.

source and target sentences of the WMT-2022 test
set (for Chinese-English) and the Flores-200 dev
set (for Indonesian-English) using SimAlign (Sa-
bet et al., 2020). Before processing with SimAlign,
we perform word segmentation using jieba7 for
Chinese and NLTK (Bird and Loper, 2004) for In-
donesian and English. For each word in these test
sets, we examine its context and frequency in the
training data using Elasticsearch. We then catego-
rize the words into two groups: words with bilin-
gual signals and words without bilingual signals.
A word is considered to have bilingual signals if
it appears together with its translation in the same
2048-token context.

Next, we measure the translation accuracy of
each word by checking whether its translation ap-
pears in the model’s predictions. We then analyze
the relationship between the frequency of Chinese
or Indonesian words and their correct translation

7https://github.com/fxsjy/jieba
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ratio, as shown in Figure 3 and Figure 4. In these
figures, the x-axis represents the word frequency
in the 167B tokens of training data. We group the
words into 21 frequency intervals and calculate the
average correct translation ratio for each interval.

The results indicate that words with bilingual
signals achieve a higher correct translation ratio
compared to words without bilingual signals. This
demonstrates that the amount of bilingual signals
in the training data significantly impacts the LLM’s
translation performance, which motivates our main
experiment.

6.5 Recommendations
In this section, we briefly discuss our key findings
for the future development of LLMs.

1. Leverage parallel data
When building multilingual large language
models, parallel data should be fully uti-
lized. We believe that reducing parallel data
to merely monolingual data in other lan-
guages by scattering it throughout the training
data—as done by BLOOM—is wasteful. The
information contained in parallel data should
be maximally leveraged by preserving its par-
allel format.

2. Second-stage training
In addition to maintaining the format of par-
allel data, the timing of its introduction to
the model also plays a significant role. Gu-
rurangan et al. (2020) reported that second-
phase pre-training on task-specific domains
can improve a model’s performance on those
tasks. From our systematic study, we found
that training a model with parallel data after
non-parallel data not only improves transla-
tion performance but also enhances multilin-
gual common-sense reasoning.

This strategy has been adopted by recent mul-
tilingual LLMs such as Tower (Alves et al.,
2024) and Pangea (Yue et al., 2025), to some
extent, in the form of instruction tuning with
parallel data from machine translation tasks or
by augmenting multimodal instruction tuning
data with their translations. We expect to see
broader utilization of parallel data in future
multilingual LLMs.

3. Specialized translation systems
Fine-tuning a large language model using par-
allel data, even though it is pre-trained primar-

ily on English data, offers a quick and effec-
tive method for developing high-quality ma-
chine translation systems. This approach has
gained popularity recently (Xu et al., 2025;
Zeng et al., 2024). Furthermore, we found
that the model can achieve even higher perfor-
mance by formatting the parallel data solely
in the desired translation direction.

7 Conclusion

In this work, we report a systematic study of the
effect of including parallel data in the training data
on large language models’ multilingual capabili-
ties, specifically focusing on translation and multi-
lingual common-sense reasoning. Using English,
Chinese, and Indonesian as case studies, we con-
duct controlled experiments to compare training
large language models with mainly English data,
with monolingual corpora of other languages, and
with parallel data. We found that training LLMs
with parallel data significantly enhances LLMs’
multilingual capabilities.

Furthermore, we investigate how the location of
parallel data affects the multilingual capabilities.
We found that training the model with parallel data
at the beginning of the training process is the least
effective and leads to serious catastrophic forget-
ting. Conversely, training the model with parallel
data at the end of the training process is the most ef-
fective in enhancing the model’s multilingual capa-
bilities. It significantly improves translation scores
and also enhances the model’s common-sense rea-
soning in other languages. Therefore, it is more ef-
fective to incorporate parallel data in second-stage
training rather than randomly mixing them with
non-parallel data.

Training the model in one translation direction
can improve translation performance more than
training in all translation directions simultaneously.
However, this comes with a caveat: the model be-
comes totally unable to perform translation in other
directions, including the opposite of what it was
trained on.

Our source code, models, and data are publicly
available to support further research into the multi-
lingual capabilities of large language models. We
hope that parallel data will be effectively leveraged
in developing future open multilingual LLMs.
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Limitations

Due to resource constraints, we experiment with
a language model containing 1.1B parameters,
trained on 167B tokens, focusing on multilingual
capabilities in English, Chinese, and Indonesian.
Exploring additional languages and larger-scale
models is left for future work.

Our experiments only use publicly available data.
We believe it does not pose any direct societal risks.
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A Appendix

A.1 Language Detection

To measure the proportion of different languages
in the training data, we use fastText8 (Joulin et al.,
2016, 2017) to detect each word’s language. For
each word, fastText outputs a probability distribu-
tion over languages, and we assign its language
based on the highest predicted probability. If a
word is tokenized into multiple subwords by the
tokenizer (e.g., BPE), we attribute the number of
subwords to the original word’s detected language
when computing language proportions. Table 8
presents the proportions of thirty languages in the
167B training data (each denoted by its ISO lan-
guage code) with a proportion higher than 0.1%.

8https://fasttext.cc/docs/en/language-identif
ication.html
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Language Percentage Language Percentage Language Percentage
EN 82.35 PL 0.52 CS 0.18
FR 2.46 CA 0.51 TR 0.18
DE 2.13 CEB 0.34 DA 0.18
ES 1.74 FI 0.29 JA 0.18
IT 1.54 HU 0.23 FA 0.16
SV 0.92 AR 0.22 ALS 0.15
PT 0.86 ID 0.19 ZH 0.12
RU 0.74 EO 0.19 SR 0.12
NL 0.66 NO 0.18 HR 0.11
UK 0.60 KN 0.18 LA 0.11

Table 8: Percentage (%) of different languages (larger than 0.1%) in our non-parallel training corpus.

A.2 Hyper-Parameters Setting
Our experiments use the TinyLlama 1.1B model,
with architectural details provided in Table 9. The
hyper-parameters used for training are reported in
Table 10.

Hyper-parameter Value
Number of Layers 22

Embedding Dimension 2048
Intermediate Dimension 5632

Attention Heads 32
Query Groups 4

Context Window 2048
Vocabulary Size 32000

Table 9: Architecture of our model.

Hyper-parameter Value
Number of GPUs 8
Global Batch Size 512
Micro Batch Size 16

Learning Rate 4e-4
Warmup Steps 2000
Weight Decay 1e-1

Optimizer AdamW
(β1, β2) (0.9, 0.95)

Gradient Clip 1.0
Minimal Learning Rate 4e-5

Table 10: Hyper-parameters of our experiments.

A.3 Common-Sense Reasoning Performance
We provide the details of the models’ performance
on Chinese and Indonesian common-sense reason-
ing tasks in Table 12 and Table 13 respectively.

Translate this from English to Indonesian
English: The pilot was identified as Squadron
Leader Dilokrit Pattavee.
Indonesian:

Table 11: An example input prompt for English to In-
donesian zero-shot translation evaluation.

Model XCOPA XNLI XStoryCloze XWG Avg
No Parallel 52.20 33.33 48.64 53.37 46.88
Multilingual 53.40 34.10 49.04 59.13 48.92
Parallel Non-Adjacent 51.00 33.57 49.37 59.13 48.27
Parallel First 48.40 34.74 48.38 51.19 45.68
Parallel Distributed 52.00 34.90 49.17 57.54 48.40
Parallel Last (all) 54.40 33.73 52.15 61.90 50.55
BLOOM 59.40 36.67 58.04 69.05 55.79

Table 12: Chinese common-sense reasoning perfor-
mance (accuracy) in each experimental setting, mea-
sured based on the model’s accuracy on XCOPA, XNLI,
XStoryCloze, and XWinograd.

Model XCOPA XStoryCloze Avg
No Parallel 50.40 49.44 49.92
Multilingual 52.60 50.36 51.48
Parallel Non-Adjacent 52.40 50.43 51.41
Parallel First 52.20 49.90 51.05
Parallel Distributed 55.20 52.88 54.04
Parallel Last (all) 57.40 54.73 56.06
BLOOM 64.60 57.78 61.19

Table 13: Indonesian common-sense reasoning perfor-
mance (accuracy) in each experimental setting, mea-
sured based on the model’s accuracy on XCOPA and
XStoryCloze.
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