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Abstract

Code-switching is prevalent in multilingual
communities but lacks adequate high-quality
data for model development, especially for
African languages. To address this, we
present AfroCS-xs, a small human-validated
synthetic code-switched dataset for four
African languages (Afrikaans, Sesotho, Yoruba,
isiZulu) and English within a specific do-
main—agriculture. Using large language mod-
els (LLMs), we generate code-switched sen-
tences, including English translations, that are
rigorously validated and corrected by native
speakers. As a downstream evaluation task,
we use this dataset to fine-tune different post-
trained LLMs for code-switched translation and
compare their performance against machine
translation (MT) models. Our results demon-
strate that LLMs consistently improve in trans-
lation accuracy when fine-tuned on the high-
quality AfroCS-xs dataset, highlighting that
substantial gains can still be made with a low
volume of data. We also observe improvements
on natural code-switched and out-of-domain
(personal finance) test sets. Overall, regardless
of data size and prior exposure to a language,
LLMs benefit from higher quality training data
when translating code-switched texts in under-
represented languages.

1 Introduction

In today’s digital era, the importance of mul-
tilingual capabilities in global communication,
and more so in computational linguistics, is
paramount. The phenomenon of code-switching1—
where languages are alternated within a single dis-
course (Poplack, 1980)—presents a specific chal-
lenge in multilingual societies. It is highly present
in African languages (Amuzu and Singler, 2014),
which, despite their vast linguistic diversity, are

*These authors contributed equally to this work.
1In this paper, “code-mixing” and “code-switching” are

used interchangeably to refer to the same concept.

often overlooked in computational linguistic stud-
ies (Nekoto et al., 2020; Marivate et al., 2020;
Orife et al., 2020). Tailoring language technolo-
gies, such as MT systems, to accommodate these
languages can enhance community empowerment
and facilitate better communication, thereby ad-
vancing global digital inclusiveness.

This research aims to bridge this gap by propos-
ing a methodology to create few but high-quality
Afro-centric code-switched texts between English
and multiple African languages, including Yoruba
(yo), isiZulu (zu), Sesotho (st), and Afrikaans
(af), to support language technologies development.
These languages were selected to represent diverse
linguistic families, geographical distributions, so-
ciolinguistic contexts, and levels of exposure in
NLP research.2 To evaluate the effectiveness of
this methodology, we compare the adaptation capa-
bilities of LLMs with MT downstream tasks using a
small curated set of ∼120 synthetic code-switched
sentences for each African language, along with
their English translation. These code-switched ex-
amples are initially generated using the in-context
learning (ICL) capabilities of GPT-4 and subse-
quently refined through human validation. For a
detailed examination of the dataset created, refer to
Section 3. With the validated data, we benchmark
various adaptations of BLOOMZ (Muennighoff
et al., 2022), Llama-3 (Dubey et al., 2024), Aya-
23 (Aryabumi et al., 2024)—which are multilingual
instruction-tuned LLMs—and NLLB (Team et al.,
2022) along with MADLAD-400 (Kudugunta et al.,
2023)—which are massive translation-only models
for 202 and 419 languages respectively.

Our research also compares the downstream per-
formance of models trained on human-validated
synthetic code-switched data against that of mod-
els trained on a larger mix of both human-validated

2Additionally, at least one of the co-authors is a native or
proficient speaker of each language, enabling rigorous valida-
tion and ensuring the authenticity of the dataset.
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and non-validated synthetic data. Drawing on
Xu and Yvon (2021), which highlights the ben-
efits of machine-generated training data for French–
English and Spanish–English code-switching in
MT systems, we explore these findings for under-
represented African languages.

Our contributions are as follows: (i) we un-
derscore how our methodological approach and
focus on African languages contribute to and
diverge from existing literature; (ii) we intro-
duce a framework for generating synthetic code-
switched datasets, tailored specifically for African
languages; (iii) we release new human-validated
synthetic code-switched datasets in four African
languages, totaling 479 human-validated and 3160
non-validated synthetic instances; and (iv) we anal-
yse how LLMs benefit from small human-validated
and large non-validated synthetic code-switched
data for translation tasks.

For this study, we mainly focus on the agricul-
tural domain, which is relevant to the speaker com-
munities; however, our code-switched data gen-
eration approach is adaptable across topics. By
contributing agriculture-related data, we aim to im-
prove information access by converting agricultural
knowledge and market data into code-switched for-
mat, making key concepts clearer for farmers in
multilingual areas and aiding language learners to
transition between their native language and the tar-
get language (van Gompel et al., 2014). To gauge
the robustness to topic shift of models trained on
the agriculture-focused data of AfroCS-xs, we also
curate an out-of-domain, natural code-switched test
set tackling personal finance matters in Yoruba.

2 Related Work

Mitigating the scarcity of code-switched datasets
There is a general scarcity of code-switched data,
with most existing datasets involving non-African
languages. Consequently, most studies in machine
translation of code-switched texts have largely over-
looked African languages (Appicharla et al., 2021;
Gupta et al., 2021; Nagoudi et al., 2021), leaving a
significant gap that underscores the need for more
research focused on African languages.

To address this data scarcity, several researchers
have turned to synthetic data generation as a solu-
tion. For example, Song et al. (2019) and Xu and
Yvon (2021) generate artificial code-switched data
to enhance machine translation systems. This ap-
proach is particularly relevant to our study, which

also creates synthetic data to tackle the lack of
translated code-switched data in African languages.
In particular, our work builds on recent studies that
examine the potential and limitations of in-context
learning in code-switched data generation and mod-
elling (Lee et al., 2022; Rubin et al., 2022; Liu et al.,
2022; Raunak et al., 2023; Yong et al., 2023; Wan
et al., 2023; Terblanche et al., 2024). We employ
GPT-4 to generate code-switched data suitable for
fine-tuning and testing smaller LLMs for MT tasks.

Code-switching MT methodology and mod-
els used The methodologies employed in pre-
vious studies vary, with a common reliance on
sequence-to-sequence learning and models like
mT5, mBART, and gated convolutional models.
For example, Jawahar et al. (2021) and Gautam
et al. (2021) use mT5 and mBART for translating
English to Hinglish, indicating a trend toward lever-
aging advanced neural models for code-switched
translation tasks. Despite these advancements, the
application of ICL and parameter-efficient fine-
tuning remains less explored.

3 Synthesising AfroCS-xs

3.1 LLM-assisted data generation approach

Our data generation pipeline capitalises on the
ICL (Dong et al., 2022) capability of GPT-4, neces-
sitating the inclusion of five “shots” or examplars
in the prompts.

Generating examplars The process begins by
synthesising five initial examplars of code-switched
sentences per language. For this, we provide GPT-4
with a detailed description of our objectives, effec-
tively instructing the system on the specific types of
sentences we aim to produce (Prompt A, Table 4).
The resulting code-switched sentences are then re-
viewed by a native bilingual speaker for each of
the four language pairs to guarantee both linguistic
precision and authenticity.

Prompt design Our approach to generating code-
switched data with GPT-4 relies on ICL using the
five initial exemplars of code-switched sentences
per language. We designed the prompt to frame
GPT-4 as a game developer creating an educational
farming game for youth. The prompt begins with:
“You are a game developer who wants to build an
interactive and educational game about Agricul-
ture and farming for youth...” (See Prompt B, Ta-
ble 4, in Appendix A for full prompt). This framing
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Synthetic Yoruba–English (Agriculture)
yo–en (m): Lo. wo. lo.wo. , o nilo lati s.e focus lori bi a s.e le s.e improve awo.n o.na ogbin re. .

yo–en (hm): Lo.wo. lo. wo. , o need lati focus lori bi o s.e le improve farming methods re. .

translation: Currently, you need to focus on how to improve your farming methods.

Natural Yoruba–English (Personal Finance)
yo–en (ood): O wa important lati diversify loan re. lati minimize risk ti o wa ninu peer-to-peer lending.

translation: It’s important to diversify your loans to minimise risk in peer-to-peer lending.

Table 1: Examples of synthetically generated, human-validated, and natural Yoruba–English code-switched sentences
with English translations. yo–en (m) represents the machine-generated (synthetic) Yoruba-English sentence, while
yo–en (hm) represents the human-validated version, where words in red were removed or replaced, and words
in green indicate the replacements or insertions. yo–en (ood) refers to a natural Yoruba–English sentence in the
personal finance domain, which is out-of-domain (OOD) relative to the agriculture-focused training data.

reflects a forward-looking motivation: to encour-
age more relatable and engaging sentence gener-
ation, especially for a future application aimed at
agricultural education. Code-switching can make
technical content more accessible to older, less for-
mally educated farmers, while also resonating with
younger bilingual users who are often disengaged
from agriculture. While not central to our exper-
iments, this framing helped steer GPT-4 toward
more natural and context-aware outputs.

To enhance the utility of the generated code-
switched sentences for subsequent supervised learn-
ing, we generate English translations for each
synthetic code-switched sentence using GPT-4
(Prompt C, Table 4 in Appendix A) and validate
them with native speakers. By providing these
translations, the methodology effectively creates a
bilingual corpus, which can then be used for fine-
tuning other models in a low-resource setting to
better understand and generate code-switched lan-
guage content.

Human correction and validation We incorpo-
rate a human-in-the-loop approach to ensure the ac-
curacy and cultural alignment of the code-switched
sentences generated by GPT-4 and their English
translations. We engage native speakers for correc-
tion and validation. Annotators are presented with
both the code-switched sentences and their English
counterparts, and are tasked with aligning them ac-
curately using the guidelines in Appendix B. They
focus on adjusting the sentences to reflect authen-
tic code-mixing patterns and relevant cultural con-
texts. This process is crucial in refining the AfroCS-
xs dataset, ensuring that the translations not only
match linguistically but also resonate with the cul-
tural nuances inherent to the native languages. An

example of an LLM-generated Yoruba–English3

sentence before and after human validation can be
found in Table 1, block 1.

3.2 Natural and out-of-domain code-switch
test sets for Sesotho and Yoruba

We curate two additional code-switch datasets in
Sesotho–English and Yoruba–English for different
testing purposes. For Sesotho–English, we pro-
vided a native speaker annotator fluent in both lan-
guages with 250 synthetically-generated English
sentences covering agricultural topics. The annota-
tor was instructed to rewrite each sentence into nat-
ural Sesotho–English code-switching, prioritising
linguistically natural blends of both languages. The
Yoruba–English dataset follows the same creation
protocol for 334 instances but focuses on personal
finance topics to enable an out-of-domain evalua-
tion of the models. Both annotators were explicitly
directed to avoid atypical mixing and mimic real-
world code-switching usage. See Table 1, block 2
for an example of a natural, OOD Yoruba–English
sentence, and Appendix E for more details about
the dataset creation.

3.3 AfroCS-xs statistics
Overview Table 2 summarises code-switching
metrics for the language pairs in AfroCS-xs.4 The
M-index (Guzmán et al., 2017; Barnett et al., 2000)
quantifies the ratio of languages in the corpora;
values closer to 1 indicate an equal distribution of

3For simplicity, only the accent below the alphabets is used
in the Yoruba text, instead of the full set of diacritics.

4We also computed SyMCoM (Kodali et al., 2022) to as-
sess syntactic complexity, but its reliability is limited by noisy
POS tags for tokens, as produced by spaCy (Honnibal et al.,
2020). These outputs would require manual correction and val-
idation before they can be reliably used to compute SyMCoM
scores; we therefore leave this for future work.
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Figure 1: Distribution of English word ratios in code-switched sentences across AfroCS-xs (test sets) and real
code-switched and out-of-domain data. Y-axis shows probability density, where the area under each curve sums to 1.

M-Index I-Index Burstiness

af–en (m) 0.9999635 0.5021021 -0.1797550
af–en (hm) 0.9953195 0.4823695 -0.1591807
zu–en (m) 0.9045894 0.1534247 -0.2804299
zu–en (hm) 0.8979139 0.1542662 -0.2924524
yo–en (m) 0.5386369 0.3178893 -0.0470404
yo–en (hm) 0.6416407 0.3539823 -0.0532718
yo–en (ood) 0.9878679 0.4439600 -0.1563924
st–en (m) 0.9994678 0.2169982 -0.1321809
st–en (hm) 0.9982484 0.2203492 -0.1362026
st–en (real) 0.6246004 0.2497561 -0.0897291

Table 2: Code-switching metrics across language pairs
(m: machine-generated, hm: human-validated, real: nat-
urally occurring, ood: real and out-of-domain).

tokens across the languages. The I-index (Gam-
bäck, 2014; Guzman et al., 2016; Gambäck and
Das, 2016) measures the average number of switch
points in a language, or the probability any given to-
ken is a switch point. Burstiness (Goh and Barabási,
2008) measures whether code mixing occurs in
bursts or periodically. Negative burstiness values
indicate predictable switching patterns, while posi-
tive values indicate unpredictable switching.

We observe that af–en and st–en pairs have the
highest M-index, indicating a balanced use of both
languages, while yo–en has the lowest. The af–en
pairs also have the highest I-index, suggesting more
frequent code-switching, whereas zu–en has the
lowest, indicating less switching. All pairs show
negative burstiness values, reflecting predictable
switching patterns.

The natural Yoruba–English data (yo–en (ood))
has a higher M-index than its synthetic counter-
parts, indicating a more balanced mix of languages
in financial discourse. Its I-index is also slightly
higher, showing frequent switching, while its bursti-
ness remains closer to that of synthetic data. The
natural Sesotho–English data (st–en (real)) have
a lower M-index than its synthetic versions, sug-
gesting that one language is more dominant in real-

world use but with a comparable I-index.
The code-switch ratio distributions in Figure 1

represent the distribution of English word ratios in
code-switched sentences and further supports the
M-index patterns previously observed. The natural
Sesotho–English dataset skews left, reinforcing its
lower M-index and the dominance of one language
in real-world use. In contrast, the natural, out-of-
domain Yoruba–English dataset (yo–en (ood)) is
more evenly distributed, possibly due to greater
domain-specific borrowing of terminology.

Part-of-speech (POS) distribution Table 3
presents the POS ratios for the code-switched En-
glish segments in the AfroCS-xs and complemen-
tary test sets.5 As expected, nouns are the most
frequent POS across all languages. However, a no-
table feature is the higher proportion of adjectives
compared to verbs in the natural code-switched
test sets (Sesotho and Yoruba) compared to their
AfroCS-xs counterparts. This discrepancy may
be attributed to the GPT-4’s tendency to use code-
switched English for actions (verbs), which an-
notators retained, even though in natural code-
switching, speakers may prefer not to use English
for actions.

POS af zu st yo st-real yo-ood

Noun 56.5 38.8 37.8 62.1 52.6 51.0
Verb 19.2 16.3 21.2 20.7 6.9 14.6
Adjective 14.0 10.7 11.6 9.7 20.1 20.7
Preposition 4.8 20.2 14.6 4.1 8.6 4.5
Proper Noun 1.8 0.6 4.8 2.1 7.4 6.0
Adverb 3.7 2.2 4.5 1.4 2.4 2.5
Conjunction 0.0 8.4 0.0 0.0 1.5 0.3
Pronoun 0.0 2.8 5.5 0.0 0.5 0.3

Table 3: Part of Speech distribution (%) of code-
switched English segments across AfroCS-xs (test sets)
and natural code-switched test sets.

5We use the Greedy Averaged Perceptron tagger, as
implemented by Matthew Honnibal (https://explosion.
ai/blog/part-of-speech-pos-tagger-in-python) and
group its categories into the eight listed POS classes.
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Summary Overall, the AfroCS-xs synthetic data
aligns well with natural code-mixed corpora in key
areas, including POS distributions and language-
switching frequencies (I-index, burstiness). How-
ever, some discrepancies remain—such as imbal-
anced language ratios in Sesotho–English and
an overuse of English verbs—highlighting that,
while LLMs like GPT-4 can capture general code-
switching structures, they may misrepresent finer
linguistic patterns. These findings suggest room
for improving prompting strategies to enhance the
fidelity of synthetic code-mixed data, especially for
low-resource language pairs.

4 Experimental Setup

4.1 Datasets
Human-validated data We perform experiments
on the human-validated synthetic data that we
outlined in Section 3. A total of 119, 120, 120
and 120 samples of parallel English sentences and
Yoruba–English, isiZulu–English, Sesotho–English
and Afrikaans–English code-mixed sentences were
collected, respectively. From these, we split half
(60 each) for low-resource fine-tuning, and use the
rest for testing. We consider two main downstream
tasks for evaluation: (i) translating English text
to code-switched text (EN2CS) and (ii) translating
code-switched text to English text (CS2EN). For
CS2EN, the training set consists of pairs of code-
switched texts and their corresponding English
translations. For the model training process, struc-
tured input prompts are constructed, with each in-
put prompt being derived from a template (Table 6,
Appendix D) where the code-switched text and its
English translation are populated. For EN2CS, we
adjust the prompt template in Table 6 to reflect
translating English text to code-switched text.

Extra synthetic data for training We also gen-
erate extra synthetic data, following the described
methodology, but without subsequent human val-
idation. The purpose of this additional data is to
analyse whether LLMs and/or MT models can im-
prove their downstream performance with extra
data non-refined by human experts. The size of the
extra synthetic data is 790 sentences per language
pair.

4.2 LLM experiments with BLOOMZ,
Llama-3, and Aya-23

BLOOMZ (Muennighoff et al., 2022), Llama-
3 (Dubey et al., 2024), and Aya-23 (Aryabumi

et al., 2024) are multilingual LLMs. The exten-
sive post-training they have undergone enhances
their ability to generalise to new tasks in a zero-
shot setting, making them suitable for translating
code-switched sentences in under-represented lan-
guages. For the BLOOMZ models, we note that
only Sesotho, isiZulu and Yoruba were included in
the pre-training data. All four languages are absent
from the Aya-23 training data. As for Llama-3,
since few details about its training data have been
released, determining whether any of the four lan-
guages in scope were included is challenging.

Few-shot setup details We include few-shot (FS)
experiments with 5 and 10 examples randomly sam-
pled, averaging results over 3 seeds.

Fine-tuning BLOOMZ, Llama-3, and Aya-23
with QLoRA We leverage parameter-efficient
fine-tuning through Low-Rank Adaptation (LoRA)
(Hu et al., 2021), which introduces trainable low-
rank matrices to specific modules. LoRA allows
targeted adjustments to pre-trained models with-
out retraining the entire model, significantly re-
ducing computational requirements. We fine-tune
quantized versions of BLOOMZ-3B, Llama-3-8B-
Instruct, and Aya-23-8B with LoRA for the code-
mix MT tasks.

Fine-tuning setup details We follow the pro-
cedure described in Section 4.1 and Table 6 (Ap-
pendix D) to transform the input sentence pairs into
single prompts that we then tokenise and use for
fine-tuning our models. We configure the learning
rate to 1e-3 and employ the Adam optimizer. A
batch size of 24 is used, and the evaluation is per-
formed every 1000 steps. We halve the training set
for validation in order to select a stopping point for
the fine-tuning. Once we identify the best stopping
point using the validation split, we re-train until
this point using the full data. For the LoRA config-
uration, the rank for the low-rank approximation
is set to 16, and the scaling factor for the low-rank
adaptation is set to 32. The trainable parameters
are limited to the self-attention layers of the model.
Additionally, a dropout rate of 0.05 is applied in the
LoRA layer. The model weights are quantized to 8-
bit precision for BLOOMZ-3B and 4-bit precision
for Llama-3-8B-Instruct and Aya-23-8B to reduce
memory requirements. Mixed-precision training is
enabled, using a combination of float16 and float32
data types to accelerate the training process. The
fine-tuning code is implemented using the Hugging
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Face Transformers library (Wolf et al., 2020) with
NVIDIA Titan RTX & A10 24GB GPUs, aligning
with the memory and computational requirements
of the large models.

4.3 MT baselines

NLLB is a suite of large multilingual translation
models for 202 languages (Team et al., 2022) and
MADLAD-400 a suite trained with data spanning
419 languages (Kudugunta et al., 2023). Their pre-
training data includes the four targeted languages in
this experiment, making both models robust base-
lines for the translation tasks. We use the NLLB-
200-3.3B and MADLAD400-3B-MT variants in
zero-shot.

Fine-tuning considerations for MT systems We
do not include fine-tuning results for NLLB-200-
3.3B and MADLAD-400-3B-MT, as the scores we
obtained in this setting were not statistically dif-
ferent from zero-shot ones (±1 point).6 A possi-
ble explanation is that MADLAD-400-3B-MT and
NLLB-200-3.3B were already trained on extensive
multilingual data that included the four African lan-
guages in the scope of this work. It might be that
subsequently fine-tuning them on a smaller-scale,
domain-specific sample like AfroCS-xs offers lim-
ited benefits given the broader understanding of
Yoruba, IsiZulu, Afrikaans, Sesotho, and English
these models may have acquired during their prior
training.

4.4 Evaluation metrics and copy baseline

As in previous code-switch translation work, we as-
sess performance using the chrF++ and BLEU7

metrics introduced in sacreBLEU (Post, 2018).
This is followed by additional quantitative and qual-
itative analyses of the results and outputs. Given
the context of code-switch experiments, we also
include a copy baseline score, where the input sen-
tence is used as the translation output. This helps
measure the extent to which models modify parts
of the text that they were not expected to alter.

It is worth noting that embedding-based met-
rics, such as COMET (Rei et al., 2020), corre-
late better with human judgment than chrF++ and
BLEU (Kocmi et al., 2021). However, COMET
models, and their more focused African variant

6This contrasts with the significant gains we observe when
fine-tuning LLMs with very small data in Section 5.

7We report chrF++ scores in the main paper, as they corre-
late more strongly with human judgment (Kocmi et al., 2021),
with BLEU results provided in Appendix F.

AfriCOMET (Wang et al., 2024), only support
Afrikaans and Yoruba—not Sesotho and isiZulu.
As a complementary perspective, we thus provide
partial COMET results in Figures 6 and 7 of Ap-
pendix F.

5 Results and Discussion

5.1 English to code-switched text (EN2CS)

Figure 2 illustrates the performance of translating
English into code-switched text. In the baseline
evaluation, MT models generally exhibit strong per-
formance, particularly excelling in most language
pairs. However, they are outperformed in three
out of four languages by fine-tuned LLMs, high-
lighting the potential of LLMs when enhanced with
high-quality data. Notably, the copy baseline is sur-
passed by LLMs in almost all cases, indicating that
these models can effectively generate meaningful
translations rather than copying the source text.

Moreover, the results seem to indicate fine-
tuning (FT) is more effective than few-shot (FS)
learning for improving LLM performance in code-
switched translation tasks. Fine-tuning with
human-validated data only (FT=H) consistently en-
hances the performance of LLMs, with BLOOMZ-
3B showing remarkable improvements, especially
in the Yoruba language. Aya-23-8B also demon-
strates significant gains, benefiting more from the
validated synthetic data than other LLMs, although
this advantage is less pronounced for Afrikaans.

When incorporating additional non-validated
synthetic data (FT=H+S), Aya-23-8B stands out as
the only LLM to consistently benefit, particularly in
Sesotho and Yoruba—suggesting its adaptability to
synthetic enhancements. In contrast, BLOOMZ-3B
and Llama-3-8B-Instruct do not exhibit the same
level of improvement, and in some cases suffer a
performance loss, underscoring the key role of data
quality.

Overall, these results emphasize the impor-
tance of high-quality, human-validated data in fine-
tuning LLMs for code-switched translation tasks.
While MT models provide a strong baseline, LLMs
demonstrate a robust capacity to learn and improve
with targeted fine-tuning, although the utility of
synthetic data varies across models and languages.

5.2 Code-switched text to English (CS2EN)

Figure 3 presents the results when translating from
code-switched text into English. Given that part of
the source sentence is already in English, and con-
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Figure 2: chrF++ scores for the English to code-switch
translation task (FS results averaged over 3 seeds).

Base FS=5 FS=10 FT=H FT=H+S
0

20
40
60
80

100

ch
rF

++ C=44.8

3.1

80.791.294.594.9

16.7

91.6
90.1

16.7

91.5
88.6

63.8
92.692.0

67.1

90.790.5
af-en en

Base FS=5 FS=10 FT=H FT=H+S
0

20
40
60
80

100

ch
rF

++

C=30.3

2.8
11.9

31.2

73.171.9

17.1

40.334.3
17.1

40.0
32.6 35.936.638.8 41.7

52.254.6

zu-en en

Base FS=5 FS=10 FT=H FT=H+S
0

20
40
60
80

100

ch
rF

++

C=63.6

3.3

42.9

66.5
79.1

88.1

16.6

68.563.7

16.6

71.364.6
79.5

72.571.3
78.984.982.3

st-en en

Base FS=5 FS=10 FT=H FT=H+S
0

20
40
60
80

100

ch
rF

++

C=27.6

3.4

26.532.7

76.079.2

15.5

44.439.4

15.9

48.0
39.7

62.259.1
49.4

64.2
71.467.3

yo-en en

Figure 3: chrF++ scores for the code-switch to English
translation task (FS results averaged over 3 seeds).

sidering the strengths of MT models in translation
to English, this task generally produces relatively
high chrF++ scores.

MT-only models NLLB-200-3.3B and
MADLAD-400-3B-MT consistently outper-
form LLMs across all settings and languages,
demonstrating their efficiency in processing
code-switched inputs and leveraging their prior
multilingual training. Despite this, LLMs manage
to surpass the copy baseline in almost all cases,
indicating their ability to generate useful transla-
tions without modifying the code-switched English
segments in the source text.

In their base configurations, LLMs tend to strug-
gle, particularly with handling the English seg-
ments. However, few-shot prompting and fine-
tuning with human-validated data (FT=H) signifi-
cantly enhance their performance. The relatively
high scores for Sesotho–English translations across
all models may be attributed to the sparse distribu-
tion of code-switching ratios, making the task more
straightforward compared to other languages.

These findings demonstrate that while LLMs
benefit considerably from few-shot prompting and

fine-tuning, large MT-only models maintain a clear
advantage in translating code-switched text into
English, particularly in tasks where maintaining the
integrity of pre-existing English content is crucial.8

5.3 Further quantitative analysis
Translating natural code-switched Sesotho–
English To evaluate the capabilities of LLMs
fine-tuned using the AfroCS-xs dataset, we employ
a natural code-switched test set of 250 Sesotho-
English sentences also on agriculture, manually cu-
rated by a native Sesotho speaker (see Section 3.2).
The best-performing settings from previous exper-
iments were used for translation. Results are de-
picted in Figure 4. As anticipated, the scores for
both translation directions are generally lower than
those from earlier test sets, reflecting the more com-
plex and naturally occurring code-switching pat-
terns not fully captured by the synthetic data in
AfroCS-xs. Differences in code-switch ratio and
POS distribution, such as a higher presence of ad-

8BLEU scores, detailed in Figures 8 and 9 in the Appendix,
show similar patterns to chrF++ scores. The main difference is
the larger gap between models and the copy baseline in most
cases, attributed to BLEU’s sensitivity to exact word matches.
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Figure 4: chrF++ scores for the translation task using
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the score in the AfroCS-xs test set. FT=best is the best
fine-tune setting per model (FT=H for BLOOMZ-3B &
Llama-3-8B-Instruct; FT=H+S for Aya-23-8B).
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Figure 5: chrF++ scores for the translation task using the
out-of-domain, real code-switched Yoruba set. Dashed
area shows the score in the AfroCS-xs test set. FT=best is
the best fine-tune setting per model (FT=H for BLOOMZ-
3B, Llama-3-8B-Instruct & Aya-23-8B).

jectives, may contribute to this challenge.9 Despite
these complexities, LLMs fine-tuned on AfroCS-xs
exhibit notable robustness, with Aya-23-8B show-
ing particularly strong performance in the en→st–
en direction. This underscores the adaptability of
models fine-tuned on high-quality synthetic data to
handle real-world code-switched inputs.

Translating out-of-domain natural code-
switched Yoruba-English In a similar vein, we
explore the performance of LLMs on the out-of-
domain natural code-switched Yoruba–English test
set of 334 sentences on personal finance described
in Section 3.2. The results, shown in Figure 5,
indicate that LLMs consistently surpass the MT
baselines in the EN2CS translation direction,
demonstrating their ability to generate meaningful
code-mixing in underrepresented languages despite
low prior exposure. Differences in code-switch
ratio and POS distribution, with more adjectives
present, along with out-of-distribution terminology,
pose additional challenges for generalisation.

9As discussed in Section 3.3, the AfroCS-xs data misses a
few idiosyncratic patterns observed in natural code-switched
data (e.g., different M-index values, slightly different bursti-
ness), thus creating a small shift that impacts the performance
of fine-tuned models tested on natural data.

Summary The last two experiments further em-
phasise the importance of diverse and high-quality
training data in enhancing model performance
across domains and linguistic contexts. Despite
the challenges with respect to the copy baseline in
both language pairs, our results still underscore that
creating a small yet high-quality human-validated
code-switch dataset can be sufficient to leverage
LLMs beyond other baselines, especially in the
EN2CS translation direction task. We also argue
that LLMs provide more flexibility than MT mod-
els for fine-tuning on very small amounts of curated
data, which is typically done to bridge the gap for
languages (or domains) MT systems and LLMs are
underexposed to.

5.4 Qualitative analysis

Table 8 in Appendix F presents some sample predic-
tions on the Yoruba–English translations from and
to English, and briefly highlights certain failure and
success modes of the best settings for BLOOMZ-
3B10 and NLLB-200-3.3B.

yo–en→en NLLB-200-3.3B consistently pro-
duces English translations that align well with the

10We analyse BLOOMZ’s outputs as it is the model with
the largest improvement from its base version.
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target translation. For example, in the first para-
graph of Table 8, the target translation and the trans-
lation produced by NLLB-200-3.3B both contain
the words check, suitable whereas BLOOMZ-3B
instead uses the words monitor, healthy, which are
semantically relevant to the corresponding words
S. aye. wo and okay in the source sentence but are
not the exact words found in the target translation.
BLOOMZ-3B sometimes produces concise trans-
lations (see third paragraph in Table 8), and while
such translations receive lower chrF++ and BLEU
scores compared to NLLB-200-3.3B, they capture
the main idea of the source sentences.

en→yo–en The last two paragraphs of Table 8
present some examples from the en→yo–en task.
Notably, the fine-tuned BLOOMZ-3B model ap-
pears to have learned to incorporate the tone mark
style that aligns closely with the style adopted in its
fine-tuning set (AfroCS-xs), where only the accent
below the alphabets is added for simplicity. In com-
parison, NLLB-200-3.3B consistently ignores the
tone patterns and defaults to the full diacritic mark-
ings found in its pre-training data. Additionally,
NLLB-200-3.3B frequently translated sentences
fully into Yoruba rather than maintaining the code-
switched format. These behaviors were also noted
in the attempted fine-tunings of NLLB-200-3.3B
and MADLAD-400-3B-MT models with AfroCS-
xs, with an overall performance not significantly
different from that of the base models (see Section
4.3). Overall, the fine-tuned BLOOMZ-3B model
produces better quality translations of English into
Yoruba–English code-switched sentences than the
MT-only models.

6 Conclusions and Future Work

This study introduced AfroCS-xs, a high-quality,
human-validated synthetic code-switched dataset
for four African languages (Afrikaans, Sesotho,
Yoruba, isiZulu) and English for the agricultural
domain. By leveraging LLMs, we generated and
rigorously validated code-switched sentences and
their English translations, providing a valuable re-
source for under-represented languages. Using
this dataset, we fine-tuned various LLMs for code-
switch translation tasks and compared their perfor-
mance against specialist MT-only models.

The results demonstrated that all LLMs im-
proved their translation accuracy with minimal fine-
tuning, particularly when using human-validated
data. However, the pre-trained MT-first models

consistently outperformed the LLMs in translat-
ing into English—despite the AfroCS-xs data help-
ing LLMs overcome their deficit when translat-
ing into code-switched text. Moreover, the im-
pact of synthetic data varied across models and lan-
guages, highlighting the importance of data quality
in achieving optimal results. The observed vari-
ability in translation performance across different
languages, especially with LLMs, underscores the
inherent challenges in code-switched translation.

Future work should expand these methodologies
to other under-represented languages and explore
additional domains to further validate and refine
these models. Continued efforts to optimise syn-
thetic data generation and incorporate human vali-
dation will be key in overcoming the complexities
of code-switch translation.

7 Limitations

The scope of code-switching in this work is limited
to Yoruba–English, Afrikaans–English, Sesotho–
English, and isiZulu–English. It would be benefi-
cial to include more languages to demonstrate the
generality of our conclusions. We also use English
as the pivot language to translate from or to. There
needs to be more research using low resource lan-
guages as the pivot as well.

Furthermore, human validation of synthetic
data for machine translation, particularly in code-
switched contexts involving African languages, of-
fers potential performance improvements but is not
without risks. Subjectivity in validation, valida-
tor expertise and bias, error propagation, and the
potential for overfitting to specific linguistic pref-
erences can introduce human error into the dataset.
These factors can lead to inconsistencies, biases,
and errors that may misguide the training of mod-
els and affect their translation accuracy. We try to
mitigate these risks as much as possible with de-
tailed guidelines described in Appendices B, C, E,
but eliminating them entirely would necessitate em-
ploying a more diverse group of validators, using
more validators per data point, and implementing
systematic quality checks to ensure the validated
dataset’s diversity, representativeness, and objectiv-
ity.

Finally, we acknowledge limitations in explain-
ing the varying degrees of improvement observed
across the LLMs benchmarked on AfroCS-xs.
While all LLMs showed benefits from fine-tuning
on AfroCS-xs, the extent of these benefits varied,
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and this variation is hard to unequivocally inter-
pret due to several confounding factors. One key
factor could be the prior exposure of the models
to one or more of the low-resource African lan-
guages included in AfroCS-xs through their pre
and post-training data (see Section 4.2). However,
differences in model size, architecture, and spe-
cific methodologies employed during pre and post-
training could also contribute to the observed vari-
ations. Ideally, assessing the impact of prior lan-
guage exposure on code-switch translation would
require comparing a model trained with a language
against the same model with that language fully
ablated from its prior training data. However, this
is nearly impossible for most researchers due to the
prohibitive cost of retraining models from scratch
and the difficulty of isolating underrepresented lan-
guages in data. These limitations highlight the need
for more transparent and standardized practices in
the development and documentation of LLMs, to
facilitate more interpretable evaluations.

8 Ethics Statement

Data Generation Our approach specifically in-
corporates Agricultural terms and concepts in the
prompts to GPT-4, aiming to generate a diverse
array of sentences that are contextually rich.

Human Evaluation To ensure the generated
sentences are not only linguistically accurate but
also culturally sensitive and appropriate, we have
involved native speakers of Afrikaans, Yoruba,
Sesotho and isiZulu to review our data. This valida-
tion process is crucial for ensuring that our research
outputs respect cultural and social norms. The an-
notators and evaluators are co-authors of our paper.
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A Prompt Templates for Generating AfroCS-xs via GPT-4

Prompt A
You are a game developer who wants to build an interactive and educational Farming game.
Part of the game involves communicating with players in their local language for example, if a
player is a rural farmer who code-switches, the instructions should be provided to the player in
{code-switch language} with {matrix language} as the the matrix language and
English as the embedded language. The purpose of the game is to entertain and teach the player
how to run or start a crop farm from scratch. Let’s start by providing 5 code-switched sentences
relevant to get a player started on the game platform.

Prompt B
You are a game developer who wants to build an interactive and educational game about
Agriculture and farming for youths who don’t necessarily have an interest in Agriculture and
farming. You want the game to be culturally compliant. So if you are building the game for Nigerian
Youths, you want the game to communicate and interact with the player in Nigeria’s local
languages. For example, if a player is a rural farmer who code-switches, every in-game text should
be provided to the player in {code-switch language} with {matrix language} as the matrix
language and English as the embedded language. Here are some examples:

Vocabularies: {agriculture-related keywords}

{5-shot code-switched sentences}

So now I will give words in English and then you generate {code-switch language} sentences
relevant to different pieces of the game from teaching the player about crop farming, explaining
concepts, providing instructions etc. Your knowledge should include everything you know about
running a poultry business from scratch.

Vocabularies: {new agriculture-related keywords}

Give 30 Examples of code-switch sentences ({matrix language} as the matrix language and English
as the embedded language). Each sentence should have a minimum of 10-15 words. Don’t put the
words in front, don’t give the English translations, remove any sentence that does not contain
code-switching, and ensure the sentences are culturally appropriate.

Prompt C
Give the English translations

Table 4: Prompt templates for generating 5-shot examples (Prompt A), generating the code-switched sentences
(Prompt B), and generating English translations (Prompt C)

Synthesising code-switched sentences in one language using examplars from another In our study,
we also explore the cross-linguistic generation of code-switched sentences, a process wherein few-shot
examples of code-switching in one language pair are employed to guide GPT-4 in generating code-switched
sentences in another target language pair. For instance, we synthesise Sesotho–English code-switched
sentences using Yoruba–English code-switched examples as the model’s directive. This approach tests the
capacity of language models to transfer code-switching patterns from one language pair (Yoruba–English)
to another (Sesotho–English), despite the lack of direct few-shot examples in Sesotho–English. The
specifics of the prompt used for this task can be found in Prompt D, detailed in Table 5. This methodology
not only assesses the adaptability of language models to navigate between diverse linguistic structures but
also their potential to facilitate multilingual communication in novel, resource-scarce settings.
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Prompt D
You are a game developer who wants to build an interactive and educational game about
Agriculture and farming for youths who don’t necessarily have an interest in Agriculture and
farming. You want the game to be culturally compliant. So if you are building the game for Nigerian
Youths, you want the game to communicate and interact with the player in Nigeria’s local
languages. For example, if a player is a rural farmer who code-switches, every in-game text should
be provided to the player in {code-switch language1} with {matrix language1} as the matrix
language and English as the embedded language. Here are some examples:

Vocabularies: {agriculture-related keywords in matrix language1}

{5-shot code-switched sentences in language pair1}

So now I will give words in English and then you generate {code-switch language2} sentences
relevant to different pieces of the game from teaching the player about crop farming, explaining
concepts, providing instructions etc. Your knowledge should include everything you know about
running a poultry business from scratch.

Vocabularies: {new agriculture-related keywords in matrix language2}

Give 30 Examples of code-switch sentences ({matrix language2} as the matrix language and English
as the embedded language). Each sentence should have a minimum of 10-15 words. Don’t put
the words in front, don’t give the English translations, remove any sentence that does not contain
code-switching, and ensure the sentences are culturally appropriate.

Table 5: The prompt template for generating code-switched sentences without direct few-shot examples from the
same matrix language.

B Annotation Guidelines for Code-Switched Sentences

The annotation process comprises three phases:

1. Correction of code-mixed sentences

2. POS-tagging of corrected sentences

3. Word-level language identification of corrected sentences

Note: This version of the guidelines focuses on Phase 1.

Phase 1: correction of code-switched sentences
Objective:

• Refine code-mixed sentences to ensure they represent a natural, culturally relevant blend of the
language pair.

Instructions:

• Authenticity: Adjust sentences to mirror natural code-mixing patterns observed among native
speakers.

• Cultural Relevance: Ensure that the corrected sentences resonate with the cultural context of the
language pair.

• Structural Flexibility: You may restructure sentences to better reflect typical code-switching dynam-
ics.
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• Tonal Languages: For tonal languages, diacritics are optional in this phase. However, maintain any
under-dots present.

• Preservation of Quality: If the original sentence is already well-formed, do not alter it.

Additional Guidelines:

• Commenting on Corrections: Use the comment column in the Google Sheet to note observations or
comments about sentences that require minor or major corrections.

• No Changes Made: If no changes are made to a sentence, leave the comment column blank.

C Guidelines for Human Qualitative Analysis of Models’ Translation Performance

You will be given access to a Google Drive folder. In the folder, you will find a list of Google Sheets. You
will find in each Google Sheet the models’ translations of

• Code-switched sentences to English sentences. You will find translations produced by models
fine-tuned on synthetic data and those produced by models fine-tuned on human-validated synthetic
data.

• English sentences to code-switched sentences.

I will try to highlight (in green) the sentences which you will qualitatively evaluate/interpret—you
don’t have to analyse all rows in each Google Sheet. The goal is to provide a concise yet comprehensive
qualitative analysis of the translations in a single paragraph. In the paragraph, you can comment on the
following:

• Start by assessing the overall accuracy of the translation. Mention how well the translation captures
the original text’s meaning, including nuances and idiomatic expressions.

• Evaluate the fluency and naturalness of the translation. Consider whether it reads as if originally
written in the target language, and note any awkward or unnatural phrases.

• Discuss the translation’s contextual understanding. Does it effectively convey the original text’s tone,
style, and emotional undercurrents?

• Comment on cultural appropriateness. Observe if the translation respects cultural nuances and
sensitivities.

• Mention the type of mistakes the models make while translating.

• Note the consistency in terminology, and style throughout the translation.

• Conclude with your overall impression of the translation’s effectiveness in communicating the
intended message to the target audience.

D Model Sensitivity to Prompt Variations

Table 7 shows that there is minimal difference in the performance of the BLOOMZ-3B model when
fine-tuned using a more descriptive template (Prompt I) versus a simpler one (Prompt II) (See Table 6 for
the definition of Prompts I and II). The BLEU score for various translation tasks, under conditions where
the fine-tuning is done with either 15 or 60 examples (code-switched sentences and their corresponding
English translations), indicates only slight variations. For instance, the zu–en → en translation shows only
modest increases, with BLEU scores increasing from 12% to 20% for Prompt I and from 13% to 21% for
Prompt II.
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Prompt I - CS2EN
I want you to act as a translator. Below is a code-mixed sentence in {language pair}. Please write the English translation.

{language pair}: {code switched sentence}

English: {english translation}

Prompt II - CS2EN
{language pair}: {code switched sentence}

English: {english translation}

Table 6: The prompt templates for transforming parallel English and code-switched texts into a prompt.

af–en → en zu–en → en st–en → en yo–en → en

15 60 15 60 15 60 15 60

1 Prompt I 42.0 47.0 12.0 20.0 61.0 69.0 23.0 46.0
2 Prompt II 43.0 51.0 13.0 21.0 60.0 71.0 29.0 42.0

Table 7: Comparison of BLEU scores for code-switched translation tasks under different prompting templates and
fine-tuning conditions (15 and 60 examples).

E Creating the Natural Code-Switched Sentences for Further Evaluation of Model
Performance

E.1 Natural Sesotho–English code-switched sentences
We provided a native Sesotho speaker (the annotator) with 250 synthetically generated English sentences
covering different topics in agriculture. The annotator is fluent in both the English and the Sesotho
language and can code-switch using the two languages. The following instructions were provided to the
annotator to complete the code-switched data creation task:
Rewrite each English sentence in Sesotho-English code-switched form. Ensure the resulting sentences
adheres to the natural code-switching patterns observed among native speakers. The resulting sentences
should be a good blend of Sesotho and English. You are welcome to rewrite as many sentences as your
schedule allows.

Feedback from the Annotator regarding the task. The sentences were initially written in English
to facilitate code-switching into Southern Sesotho. To achieve this, each sentence was read three times
to ensure comprehension. However, due to challenging scientific vocabulary, we consulted the Oxford
English Dictionary and online resources for definitions. After understanding these terms, we reread the
sentences twice more to confirm their meanings. Next, we translated the entire sentences into Southern
Sesotho, selectively replacing certain words while retaining others in English. For scientific terms without
direct Southern Sesotho equivalents, we applied prefixes and suffixes, as indigenous African languages
often incorporate these in their word structures. This process involved multiple readings to ensure the
sentences retained their intended meaning, taking up to 24 hours or a full day to complete. Although the
task was tedious, it was also enjoyable. The primary challenge was the lack of Southern Sesotho or other
indigenous African language equivalents for many scientific terms, necessitating the use of prefixes and
suffixes. Interestingly, applying these linguistic elements to scientific words made the text easier to read
and understand. The resulting sentences, combining Southern Sesotho and English, create a unique form
of urban language. This code-switching is surprisingly comprehensible for speakers of various Sesotho
languages, such as Sesotho, Setswana, and Sepedi, which share a similar orthographic structure.

E.2 Natural and out-of-domain Yoruba–English code-switched sentences
We provided a native Yoruba speaker (the annotator) with 300 synthetically generated English sentences
covering various topics in personal finance. The annotator, fluent in both English and Yoruba, was
instructed to code-switch these sentences using the two languages. The task guidelines were as follows:
Rewrite each English sentence in Yoruba-English code-switched form, ensuring that the resulting sentences
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adhere to natural code-switching patterns observed among native speakers. The sentences should
effectively blend Yoruba and English, maintaining the integrity of the original content while incorporating
Yoruba expressions.

Feedback from the Annotator regarding the task. We spent a total of 18 hours completing the task,
during which we often referred to a dictionary to accurately translate some of the more complex terms into
Yoruba. Initially, we encountered considerable difficulty, especially with understanding and translating
specific financial terminology. However, as the project progressed, we found the task increasingly
enjoyable and engaging. Part of our process involved saying each sentence out loud to see how well it
mimicked a pattern similar to real-life usage. This oral review helped ensure that the Yoruba-English
code-switched sentences sounded natural and authentic, closely resembling the conversational dynamics
observed among native speakers. Additionally, we took care to correct any typographical errors and
removed any redundant sentences to avoid duplicative work. This reflective and iterative approach not
only ensured the quality and accuracy of the final output but also enhanced our overall satisfaction and
educational experience.

F Complementary Results
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Figure 6: COMET scores for the English to code-switch
translation task. The scoring models are wmt22-comet-
da (Rei et al., 2020) and AfriCOMET-MTL (Wang et al.,
2024) for Afrikaans and Yoruba, respectively. Sesotho
and isiZulu are not supported.
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Figure 9: BLEU scores for the code-switch to English
translation task (FS results averaged over 3 seeds).
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Task: yo–en → en
Source: S. aye. wo pH soil ki o to gbin millet, lati rii daju pe o wa okay.
Target: Check the pH of the soil before planting millet, to ensure it’s suitable.
BLOOMZ-3B (h): Monitor the soil’s pH before planting millet, to ensure that it is healthy.
NLLB-200-3.3B (base): Check the pH of the soil before planting millet, to ensure it is suitable.

Source: Yan awo. n irugbin rice ti o le koju aisan ati local climate agbegbe re. .
Target: Choose rice seeds that can resist diseases and suit your local climate.
BLOOMZ-3B (h): Avoid planting crops that are susceptible to pests and diseases of the area.
NLLB-200-3.3B (base): Choose rice crops that are resistant to disease and local climate in your area.

Source: Mimo. nipa pest control je. pataki lati daabo bo wheat re. lo. wo. awo. n kokoro.
Target: Knowing about pest control is crucial to protect your wheat from insects.
BLOOMZ-3B (h): A knowledge of pest control is important to prevent diseases in wheat.
NLLB-200-3.3B (base): Knowledge of pest control is essential to protect your wheat from germs.

Task: en → yo–en
Source: Currently, you need to learn how to deal with mistakes.
Target: Lo. wo. lo. wo. , o nilo lati ko. e. ko. bi a s. e le deal pe. lu awo. n as. is. e.
BLOOMZ-3B (h): E. gbo. do. ko. bi a s. e le deal with mistakes.
NLLB-200-3.3B (base): Ní bàyìí, o gbó. dò. kó. bó s. e lé borí àwo. n às. ìs. e re. .

Source: Rice can grow well in water-rich areas, so check your irrigation system.
Target: Rice le grow daadaa ni agbegbe ti o ni omi to, nitorina s. aye. wo eto irrigation re. .
BLOOMZ-3B (h): Rice le grow well ni agbado ti o ni omi pupo. , nitorina s. aye. wo eto irrigation re. .

Source: To grow millet well, you must use effective irrigation techniques.
Target: Lati grow millet daradara, o gbo. do. lo awo. n ilana irrigation ti o munadoko.
BLOOMZ-3B (h): Lati grow millet well, o gbo. do. lo effective irrigation techniques.

Table 8: Translations to and from English produced by BLOOMZ-3B and NLLB-200-3.3B models. ‘h’ indicates
models fine-tuned with human-validated data, ‘h + s’ indicates models fine-tuned with human-validated and
unvalidated data. ‘base’ indicates using the model without fine-tuning.
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