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Evaluating LLM Performance on African Languages
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(a) Language policies for education across Africa. (b) Official national language policies across Africa.

(c) Official regional language policies across Africa. None means no
additional policy is available on a regional level.

(d) We collect SAHARA to empirically evaluate LLM
performance on African languages, allowing us to
demonstrate with evidence how current language poli-
cies directly impact progress in the field.

Figure 1: Maps of Africa showing the languages covered in this work and the language policies across the continent.
The term Indigenous language is broadly defined here as one that is ‘native’ to the area (Walsh, 2005). The term
Both in maps (a), (b), and (c) refers to Indigenous and foreign languages combined. Knowledge of what is an
Indigenous language is based exclusively on Ethnologue (https://www.ethnologue.com).

Abstract
Africa’s rich linguistic heritage remains under-
represented in NLP, largely due to historical
policies that favor foreign languages and create
significant data inequities. In this paper, we
integrate theoretical insights on Africa’s lan-

guage landscape with an empirical evaluation
using SAHARA— a comprehensive benchmark
we curate from large-scale, publicly accessi-
ble datasets capturing the continent’s linguis-
tic diversity. By systematically assessing the
performance of leading large language mod-
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els (LLMs) on SAHARA, we demonstrate how
policy-induced data variations directly impact
model effectiveness across African languages.1

Our findings reveal that while models perform
reasonably well on few languages, many In-
digenous languages remain marginalized due
to sparse data. Leveraging these insights, we
offer actionable recommendations for policy re-
forms and inclusive data practices. Overall, our
work underscores the urgent need for a dual ap-
proach—combining theoretical understanding
with empirical evaluation—to foster linguistic
diversity in AI for African communities.

1 Introduction

The digital landscape of Africa is as diverse as its
cultures and languages, yet the continent’s rich lin-
guistic heritage remains largely underrepresented
in NLP research. Despite significant transforma-
tions over the past decade driven by advances
in large language models (LLMs) and a growing
interest in linguistic diversity, most efforts have
concentrated on a handful of widely spoken lan-
guages such as Swahili, Afrikaans, and Hausa,
while many Indigenous languages continue to be
sidelined due to the paucity of accessible, high-
quality datasets. This oversight, deeply rooted in
historical language policies that have neglected
robust data collection and accessibility, has far-
reaching implications for the development of lan-
guage technology across Africa (Eberhard et al.,
2021). Recent initiatives, including the work of
Masakhane (Dione et al., 2023b; Adelani et al.,
2021c, 2023, 2024b; Bandarkar et al., 2024a) and
the efforts of platforms like HuggingFace, have
begun to address these challenges by curating
language-specific datasets and adapting transfer
learning techniques for low-resource African lan-
guages. Models such as Cheetah (Adebara et al.,
2024a), Serengeti (Adebara et al., 2023), Toucan
(Elmadany et al., 2024), Afri-XLMR (Alabi et al.,
2022), AfriTeVa (Oladipo et al., 2023; Jude Ogun-
depo et al., 2022), mBERT (Devlin et al., 2018),
XLM-R (Conneau et al., 2020), and LLaMA (Tou-
vron et al., 2023) have leveraged multilingual data
to enhance performance on these languages, yet
progress remains uneven—highlighting that the ad-
vancements achieved are primarily concentrated on
a select few.

In this study, we undertake a comprehensive em-
pirical evaluation of leading LLMs on an extensive

1SAHARA is publicly available at https://github.com/UBC-
NLP/sahara.

benchmark that we collect using mostly existing
datasets to unravel how current African language
policies, by dictating data availability and accessi-
bility, directly shape model performance across
the continent’s diverse linguistic spectrum. By
systematically analyzing the distribution of exist-
ing datasets across languages and performance pat-
terns among various LLMs, we not only pinpoint
which languages benefit from ample data resources
but also illuminate the underlying factors that con-
tribute to their relative success. Our investigation
reveals that the disparities in NLP outcomes are
closely tied to policy-driven data inequities, offer-
ing concrete evidence of the need for more inclu-
sive, forward-thinking language policies. These
insights provide actionable recommendations for
enhancing dataset creation and model training, ul-
timately aiming to bridge the digital divide and
foster linguistic diversity in artificial intelligence
for African communities.

Overall, we make the following contributions:
(1) Benchmark with wide, diverse coverage. We
introduce Sahara, a comprehensive benchmark as-
sembled from large-scale, publicly accessible, and
inclusive datasets that capture the rich linguistic
diversity of Africa. This benchmark enables a sys-
tematic evaluation of data availability and model
performance across a broad range of African lan-
guages. (2) Dynamic leaderboard. We develop a
dynamic leaderboard built on best design practices,
providing a transparent and continually updated
platform to track progress and benchmark innova-
tions in African NLP. (3) Empirical evaluation.
We perform an extensive empirical assessment of
a wide spectrum of models thereby establishing
robust baselines and revealing performance dispar-
ities linked to data resource availability. (4) Policy-
driven and actionable insights. We uncover clear
links between current language policies, data avail-
ability, and model performance, demonstrating how
policy-induced data inequities shape the effective-
ness of language models across Africa. Our analy-
sis provides recommendations for future research
and development by informing policy reforms that
foster more inclusive language technologies tai-
lored to the needs of African communities. We
now discuss language polices in Africa.

2 Language Policies in Africa

Across Africa, the predominant response to the
continent’s multilingual landscape has been the
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adoption of a foreign language for official func-
tions. However, in some instances, select Indige-
nous African languages receive official recognition
at regional or national levels or within educational
contexts (Petzell, 2012; Foster, 2021; Ouane and
Glanz, 2010). 2 For instance in Nigeria, English is
the official language, with only three out of 512 In-
digenous languages recognized at the regional level.
Similarly, Ghana designates English as its official
language while also recognizing ten of its 73 In-
digenous languages for institutional use. In Tanza-
nia, Swahili is the sole Indigenous official language
among 118 languages, alongside English. Kenya
grants official status to 12 of its 61 languages, while
South Africa recognizes 12 out of 20 Indigenous
languages as institutional languages (Adebara and
Abdul-Mageed, 2022). Figures 1(a), 1(b), 1(c),
and 1(d) illustrate the distribution of language poli-
cies across the continent.

Even when Indigenous languages are granted of-
ficial status alongside foreign languages, they often
serve a symbolic rather than functional role. For
instance, although Kiswahili is recognized as an
official language by the African Union, its website
and official document releases remain in English
and French. A similar pattern emerges in educa-
tion systems: where Indigenous languages are used,
their role is typically confined to early childhood
education and is usually paired with a foreign lan-
guage rather than serving as the sole medium of
instruction (Petzell, 2012; Foster, 2021; Ouane and
Glanz, 2010). These language policies significantly
shape language use across various domains, includ-
ing newspapers, radio, television, and social media.
Due to the dominance of foreign languages in of-
ficial contexts, major newspapers and government
publications are predominantly produced in lan-
guages such as English, French, and Portuguese,
thereby limiting access for speakers of Indigenous
languages (ResCue and Agbozo, 2021). Although
some Indigenous languages are used on television
and radio, foreign languages tend to dominate na-
tional broadcasts, especially in political discourse

2An Indigenous language is defined here as one that is
native to a particular region, rather than introduced from else-
where, in contrast to a foreign language, which may nonethe-
less serve as the mother tongue for certain local populations
(Walsh, 2005). A national language refers to a language spo-
ken broadly across an entire country. A regional language is
spoken by a significant number of people within a specific area
but does not have widespread national usage. An educational
language is officially designated as a medium of instruction
within the educational system.

and formal news reporting (Cheo et al., 2023; My-
ers and Harford, 2020; National Communications
Authority, 2016).

Social media presents a more flexible environ-
ment where users can communicate in Indigenous
languages; however, platform support remains un-
even (Sunday et al., 2018; Molale and Mpofu,
2023; ResCue and Agbozo, 2021). Many African
languages are underrepresented in digital spaces,
lacking features such as text input options, spell
checkers, or automated translation services. Con-
sequently, users often resort to code-switching be-
tween Indigenous and dominant foreign languages,
reinforcing existing linguistic divides. These trends
underscore how official language policies shape
broader language use, ultimately contributing to the
marginalization of Indigenous languages in both
public and digital communication spheres.

The analysis of language policies in Africa re-
veals how historical choices have led to signif-
icant data imbalances for Indigenous languages.
Motivated by this, we built our benchmark, SA-
HARA to evaluate how these policies directly im-
pact data availability, coverage, and the perfor-
mance of LLMs on African languages. In the fol-
lowing section, we detail the construction of SA-
HARA and demonstrate its role in linking language
policy to empirical outcomes in NLP.

3 Related Work

The development of NLP for African languages
is hindered by data scarcity, policy-induced dis-
parities, and suboptimal model performance. Re-
cent initiatives have sought to mitigate these chal-
lenges by curating diverse datasets, rigorously eval-
uating multilingual models, and advocating for
more inclusive language policies. For example,
several initiatives have contributed to expanding
datasets for African (Yimam et al., 2020; Muham-
mad et al., 2022; Aliyu et al., 2022; Muhammad
et al., 2023b,a; Ilevbare et al., 2024; Elmadany
et al., 2024). Some notable ones like Adelani
et al. (2021c, 2022b) introduced MasakhaNER, a
named entity recognition dataset for 10 African
languages, highlighting the limitations in existing
resources. Similarly, IROKOBench (Adelani et al.,
2024b) evaluated LLMs on African languages, re-
vealing stark performance gaps between high- and
low-resource languages. Adebara et al. (2022) de-
veloped AfroLID, a neural language identification
model covering 517 African languages, showing
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that most languages lack NLP datasets beyond lan-
guage identification.

Language policies play a crucial role in deter-
mining resource availability. Adebara and Abdul-
Mageed (2022); Hershcovich et al. (2022) empha-
sized the sociolinguistic factors affecting NLP de-
velopment, noting that languages with official sta-
tus receive more institutional support, fostering
greater digital representation. Bird (2020) further
critiqued the Western-centric approach in speech
and language technologies, calling for AI mod-
els that align with Indigenous linguistic contexts.
Model performance in African languages remains
uneven, largely due to the dominance of high-
resource languages in multilingual training. Con-
neau et al. (2018) introduced XLM-R, demonstrat-
ing the limitations of cross-lingual transfer learn-
ing for underrepresented languages. Meta AI’s
No Language Left Behind (NLLB) project (Costa-
jussà et al., 2022) attempted to improve multilin-
gual models for low-resource languages, but perfor-
mance remained inconsistent, particularly in gener-
ation tasks. Despite these advances, African NLP
still requires increased investment in dataset cura-
tion, inclusive policy frameworks, and model de-
velopment tailored to the linguistic diversity of the
continent. We now introduce SAHARA.

4 Sahara Benchmark

Our objective is to create a comprehensive bench-
mark for African NLP that enables (i) analysis of
existing language resources and (ii) the assessment
of language models and tracking of the progress
of African NLP. To achieve this goal, we develop
SAHARA, adhering to several key design princi-
ples that we will now elucidate. SAHARA estab-
lishes a comprehensive and adaptable benchmark
for African NLP using publicly available datasets.
Figure shows coverage of SAHARA.

Wide and Diverse Coverage. SAHARA is the
most comprehensive benchmark for African NLP,
covering a vast range of languages. We achieve
this by collecting high-quality, publicly available
datasets from as many African languages as pos-
sible, ensuring easy accessibility for researchers
evaluating their models. As a result, SAHARA sup-
ports 517 languages across various tasks, making
it the most extensive and representative benchmark
for African NLP. It encompasses languages from
50 out of 54 African countries and includes data

written in five different scripts: Arabic, Coptic,
Ethiopic, Latin, and Vai, spanning five language
families across the continent.

Tasks and Task Clusters. SAHARA is designed
to support a broad spectrum of NLP tasks, which
we systematically organize into coherent task clus-
ters. The inclusion of well-defined, challenging
clusters enables a more meaningful assessment of a
model’s capabilities and allows researchers to eval-
uate performance on specific clusters. As shown in
Table 1, SAHARA comprises four clusters: text clas-
sification, text generation, multiple-choice, compre-
hensive and reasoning (MCCR), and token-level
classification. For further details on the datasets
used for each task, please refer to Appendix A.

Modular Public Leaderboard. We implement
a user-friendly leaderboard for model evaluation
on SAHARA, hosted on Hugging Face (HF) Spaces.
Evaluated models must be publicly available in HF
repositories to ensure seamless integration. When
submitting a model, users are required to provide
detailed metadata—including whether the model
is pretrained, further pretrained, or instructed—and
then submit an evaluation request. The submission
enters a processing queue, and once evaluation is
complete, the results are automatically displayed
on the leaderboard. Our team will actively main-
tain the leaderboard by continuously integrating
new publicly available tasks and datasets to keep it
up-to-date. SAHARA thus serves as a valuable tool
for assessing model performance in African NLP,
accelerating the development of high-performance
models, and contributing to the field’s growth. In
addition to evaluating models on the entire bench-
mark, users have the flexibility to assess perfor-
mance on specific task clusters, encouraging the
development of specialized models tailored to ad-
dress the unique challenges of African NLP.

5 Experiments and Results

5.1 Experimental Setup

To comprehensively assess the progress of African
NLP, we systematically evaluate a range of widely
used instruction-based LLMs in a few-shot set-
ting on the SAHARA benchmark. We include
both open and closed LLMs, such as Phi-3.5 and
Phi-4 (Abdin et al., 2024), Gemma family (Team
et al., 2024) models including Gemma-2 (2, 9, 27B)
and Gemma-3 (4, 12, 27B), Llama family mod-
els (Dubey et al., 2024) including Llama-3.1 (8,
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Cluster Task Identifier #AL #DS

C
la

ss
ifi

ca
tio

n Cross-Lingual Natural Language Inference (Adelani et al., 2024b) xnli 16 1
Language Identification (Adebara et al., 2022) langid 517 1
News Classification (Azime and Mohammed, 2021; Niyongabo et al., 2020; David, 2020a) news 4 3
Sentiment Analysis (Diallo et al., 2021; Oyewusi et al., 2020; Shode et al., 2022a) sentiment 3 3
Topic Classification (Hedderich et al., 2020) topic 2 1

G
en

er
at

io
n Machine Translation (Adelani et al., 2022a; Reid et al., 2021a; Ogueji and Ahia, 2019; Akera et al., 2022) mt 29 5

Paraphrase (Scherrer, 2020) paraphrase 4 1
Summarization (Hasan et al., 2021; Adebara et al., 2024b) summary 10 2
Title Generation (Hasan et al., 2021; Adebara et al., 2024b) title-gen 10 2

M
C

C
R

General Knowledge (Adelani et al., 2024b) mmlu 16 1
Mathematical Word Problems (Adelani et al., 2024b) mgsm 16 1
Reading Comprehension (Bandarkar et al., 2024a) reading-comp 25 1
Context-based Question Answering (Clark et al., 2020) squad-qa 1 1

To
ke

ns NER (Adelani et al., 2021a, 2022c; Eiselen, 2016; Alabi et al., 2020a; Pan et al., 2017) ner 27 5
Phrase Chunking (Eiselen, 2016) chunking 8 1
POS Tagging (Onyenwe et al., 2018a, 2019) pos 1 1

Total 16 517 30

Table 1: Descriptive statistics of languages and dataset diversity in SAHARA across different tasks and task-clusters.
#AL: African Languages, #DS: datasets, MCCR: multiple-choice, comprehensive and reasoning task-cluster.

70B), Llama-3.2 (1, 3B), and Llama-3.3 (70B),
Aya models (8, 23B) (Aryabumi et al., 2024), and
Command family models (Cohere et al., 2025) in-
cluding Command-R-Plus-R7B, Command-R-Plus
(104B) and Command-A (111B), as well as pro-
prietary models such as GPT-4.13 (Achiam et al.,
2023) and Claude-4-Sonnet4 (Anthropic, 2024).
We further analyze performance by categorizing
models according to size: small language models
(SLM, <8B parameters) and large language models
(LLM, ≥8B parameters), allowing investigation of
the relationship between scale and effectiveness.
For robust comparison, we aggregate evaluation
datasets according to task clusters described in Ap-
pendix A. From each task, we randomly sample
1, 000 data points for few-shot testing, employing
well-curated, concise prompts—examples of which
appear in Appendix C1.

5.2 Results and Discussion
We evaluate 24 LMs across four task clusters, main-
taining a consistent assessment approach while
varying evaluation metrics. Depending on the
task, we employ Exact Match, F1, Accuracy,
spBLEU1K (Elmadany et al., 2024), and RougeL
scores.

As shown in Table 2, in the classification
tasks, the closed models Claude-4-Sonnet and
GPT-4.1 consistently lead in performance, fol-
lowed by larger LLMs such as Gemma3 (27B) and
CommandR-Plus-104B. In the language identifica-
tion task, most models struggle to grasp the task
effectively, with only the larger LLMs demonstrat-

3GPT-41.1 version: gpt-4.1-2025-04-14.
4Claude-4-Sonnet version: claude-4-sonnet-20250514

ing some understanding, suggesting that model size
is crucial for achieving higher accuracy across vari-
ous multilingual tasks. In the generation task clus-
ter, larger models perform as expected, with GPT-
4.1 and Llama-3.1 (70B) achieving the best results.
There is a noticeable performance increase across
all models in the paraphrase task, while the summa-
rization task exhibits a more balanced performance
among all models. Considering their size, Phi-3.5
and Gemma3 (4B) perform well within this task
cluster. In the MCCR tasks, Command-A (111B)
performs competitively against the closed Claude-
4-Sonnet model. In the MGSM task, which in-
volves solving mathematical word problems, most
open-source models perform poorly, while Claude-
4-Sonnet excels, achieving an exact match score
of 22.34%. In token-level tasks, GPT-4.1 and
Command-A (111B) consistently deliver strong
performances, whereas the Aya model family strug-
gle to grasp the tasks.

Results demonstrate a nuanced landscape of per-
formance across multilingual and African LLMs,
with notable variations depending on parameter
size and task type. In few-shot settings, the
closed model Claude-4-Sonnet achieves the high-
est overall average score (40.82), outperforming
all open models across most task clusters. Among
open models, Command-A (111B) and Gemma-
3 (27B) also exhibit strong performance, particu-
larly in downstream tasks such as reasoning tasks,
where Gemma2 (27B) reaches top score of 82.49
on Squad-QA and Command-A achieves 61.91
on MMLU task. For smaller parameter regimes,
Gemma-2 (2B) and Phi-4 (3.8B) demonstrate the
best performance on their model size. Furthermore,
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SLM LLM Closed LLM
Cluster Identifier Metric Shots S1 S2 S3 S4 S5 S6 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 CL1 CL2

C
la

ss
ifi

ca
tio

n xlni Acc. 5 33.6 33.7 36.7 41.18 40.4 46.68 48.08 55.06 34.3 40.69 37.09 61.09 57.86 65.58 44.2 38.19 51.89 48.38 52.09 35.87 46.77 59.67 69 69.6
lid F1 10 0 0 0.87 0.26 0.85 0.77 2.82 3.6 0 1.49 2.27 1.95 4.61 4 1.81 3.34 3.26 3.07 3.3 3.05 3.32 4.57 3.73 4.48
news F1 3 0.86 0.35 0.15 17.54 0 6.64 21.94 0 2.06 24.06 0.12 25.83 7.83 35.56 28.03 0.61 35.26 33.31 34.81 3.45 30.46 28.66 40.09 32.19
sentiment F1 5 38.51 24.75 30.45 11.05 28.77 1.99 36.09 42.47 38.4 28.36 36.07 34.56 20.55 46.35 35.86 25.94 24.51 45.82 35.89 19.98 37.07 47.14 55.67 57.52
topic F1 3 8.73 31.62 20.3 19.79 12.46 17.15 48.11 39.35 34.95 28.55 42.12 44.3 31.8 70.73 36.47 43.74 64.89 56.48 48.73 52.09 50.96 53.16 67.93 76.57

Avg. 16.34 18.08 17.69 17.96 16.50 14.65 31.41 28.10 21.94 24.63 23.53 33.55 24.53 44.44 29.27 22.36 35.96 37.41 34.96 22.89 33.72 38.64 47.28 48.07

G
en

er
at

io
n

mt_eng2xx spBleu1K 5 1.79 3.63 3.45 3.25 2.12 3.4 7.07 7.61 1.72 4.37 2.79 6.24 6.91 4.56 3.73 3.29 8.84 8.7 9.36 1.4 6.06 8.22 12.18 12.36
mt_fra2xx spBleu1K 5 0.79 0.36 0.74 1.05 1.25 1.32 0.73 0.95 0.7 1.19 0.66 2.03 1.67 2.05 1.15 0.82 1.93 1.87 1.77 1.05 1.04 2.3 3.41 3.42
mt_xx2xx spBleu1K 5 0.4 0.45 0.42 0.42 0.36 0.18 0.43 0.63 0.72 0.55 0.46 0.71 0.9 1.39 0.55 0.17 1.28 1.05 1.37 0.67 0.38 0.85 5.15 4.44
paraphrase spBleu1K 5 23.2 28.88 31.15 19.12 25.93 17.85 28.73 25.83 31.68 31.33 23.66 17.26 21.34 15.37 32.13 30.68 26.86 19.64 27.79 19.23 36.06 26.06 23.2 20.35
summary rougeL 2 10.03 3.24 4.37 10.07 0.91 13.34 15.1 10.43 1.45 12.74 5.92 16.16 15.73 17.13 13.27 4.19 16.92 17.19 16.4 15.46 14.88 16.09 5.99 16.3
title spBleu1K 2 2.14 2.81 0.25 2.3 0.03 5.78 7.48 5.78 3 5.94 1.58 7.75 7.51 8.65 6.83 3.2 11.07 10.34 8.78 7.32 6.69 8.65 13.62 9.48

Avg. 6.39 6.56 6.73 6.04 5.10 6.98 9.92 8.54 6.55 9.35 5.85 8.36 9.01 8.19 9.61 7.06 11.15 9.80 10.91 7.52 10.85 10.36 10.59 11.06

M
C

C
R

mmlu Acc. 5 24.09 28.5 28.68 27.29 28.9 30.99 31.88 40.9 26.4 44.51 22.1 42.09 44.9 60.71 51.5 24 56.51 59.3 50.42 59.81 29.8 61.91 81.6 58.6
mgsm ExactM 5 2.6 3.21 0 1.2 3.39 0.7 2.9 2.8 3.3 2.7 1.5 2.3 5.3 0.6 4.4 3 10.1 7.51 7.6 4.5 4.39 11.1 45.9 29.5
belebele Acc. 5 27.71 14.71 25.2 29.31 31.31 24.69 22.7 26.93 25.09 28.24 26.33 25.63 31.04 32.34 33.64 26.61 30.4 35.92 33.72 30.83 20.99 29.12 36.6 39.7
squad_qa F1 5 57.45 70.89 67.32 43.13 71.31 74.97 78.04 80.91 52.66 59.48 63.41 73.78 82.49 79.16 69.25 64.64 77.65 76.35 66.25 53.92 74.64 80.05 78.02 76.11

Avg. 27.96 29.33 30.30 25.23 33.73 32.84 33.88 37.89 26.86 33.73 28.34 35.95 40.93 43.20 39.70 29.56 43.67 44.77 39.50 37.27 32.46 45.55 60.53 50.98

To
ke

ns

ner F1 5 0 0.78 1.76 2.99 0.13 3.65 2.26 7.49 2.35 3.96 0.2 6.03 13.14 11.4 8.51 1.52 6.86 10.54 8.64 6.04 4.3 16.88 35.06 27.04
phrase F1 5 14.79 28.5 29.44 11.52 24.91 27.73 15.95 29.35 29.42 16.55 30.87 13.59 30.01 23.97 26.34 23.09 25.55 23.13 16.78 25.13 29.44 31.05 36.69 36.45
pos F1 5 8.83 6.73 10.56 8.04 10.3 10.46 9.13 13.2 9.81 11.68 12.52 13.86 19 13.99 18.36 11.4 14.13 15.04 11.52 20.76 13.71 27.54 62.84 38.67

Avg. 7.87 12.00 13.92 7.52 11.78 13.95 9.11 16.68 13.86 10.73 14.53 11.16 20.72 16.45 17.74 12.00 15.51 16.24 12.31 17.31 15.82 25.16 44.86 34.05

Overall 14.64 16.49 17.16 14.19 16.78 17.10 21.08 22.80 17.30 19.61 18.06 22.25 23.80 28.07 24.08 17.75 26.57 27.05 24.42 21.25 23.21 29.93 40.82 36.04

Table 2: Few-shot evaluation across different task clusters/tasks. The highest score for each individual task is
in bold green , while the best average score across each task cluster (and overall score, calculated as average

of task cluster averages) is in bold orange . Underline: refers to the best score across the open source/weights

LLMs. Shots: number of shots. SLMs: S1 Llama3.2 (1B), S2 Llama3.2 (3B), S3 Gemma2 (2B), S4 Phi-3.5

(3.8B), S5 Phi-4 (3.8B), and S6 Gemma3 (4B). LLMs: L1 Llama3.1 (8B), L2 Gemma2 (9B), L3 Aya

(8B), L4 Babel (9B), L5 Command-R-Plus-R7B (8B), L6 Gemma3 (12B), L7 Gemma2 (27B), L8 Gemma3

(27B), L9 DeepSeek-R1-Distill-Qwen (32B), L10 Aya (35B), L11 Llama3.1 (70B), L12 Llama3.3 (70B),

L13 DeepSeek-R1-Distill-Qwen (70B), L14 Babel (83B), L15 Command-R-Plus (104B), L16 Command-A

(111B). CLosed LLMs: CL1 Claude-4-Sonnet, CL2 GPT-4.1. Table E4 is a full-page version of this table.

Gemma2 (9B, 12B) show consistent mid-to-high
performance across various clusters, but do not sur-
pass the larger models in aggregate. Importantly,
translating into English is consistently easier for
the models than translating from French, likely re-
flecting disparities in training data distribution and
language representation on the target side. These
findings highlight not only the dominance of closed
LLMs and very large open models in multilingual
tasks, but also the critical influence of resource
availability and model scale on task-specific out-
comes.

Which LM should I use for reasoning tasks?
In a limited resource setting, for mathematical QA
tasks that fall in the MCCR cluster, Phi-4 ranks top
among SLMs for 16 African Languages. In the
LLMs category, Command-A (111B) has better
performance on a higher number of African lan-
guages. For reading comprehension tasks (bele-
bele), Phi-4 is most suitable in constrained com-
pute resource settings while in scenarios without
limits in compute resources, Llama 3.3-70B gives
better performance.

Which African language(s) do LMs perform
best on? The models achieve their highest per-
formance on a small set of well-resourced African

languages—chiefly Hausa, Swahili, Yorùbá, and
Afrikaans—across diverse NLP tasks. Both open-
source models like Command-A (111B) and Aya-
35B and proprietary models such as Claude-4-
Sonnet consistently excel on these languages, re-
flecting their ample labeled and parallel data. This
trend spans simple classification and NER tasks
to complex reasoning benchmarks (e.g., MMLU,
XLNI) and machine translation, underscoring that
data availability, rather than linguistic typology, is
the primary driver of model effectiveness.

Models explicitly designed with African linguis-
tic diversity, such as Aya-35B, also achieve strong
results on Southern Sotho and Lingala—languages
that have benefited from recent, community-led
data initiatives. Swahili, in particular, ranks among
the top languages for Llama3 models, likely due
to its standardized orthography, regular morphol-
ogy, and extensive bilingual corpora. Afrikaans and
Swahili similarly perform well within Gemma2 and
Command-R-Plus (104B), supported by their inclu-
sion in massive multilingual datasets (e.g., mC4,
OSCAR, WMT) and, in Afrikaans’s case, estab-
lished government-supported digital media.

Overall, our findings reveal that LM perfor-
mance correlates strongly with the volume and di-
versity of available data. Underperformance on
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low-resource African languages is not a function
of inherent complexity but of underrepresentation
in training data. Bridging this gap will require
concerted efforts to collect, annotate, and standard-
ize datasets that capture the dialectal, sociolinguis-
tic, and orthographic richness of all African lan-
guages—an essential step toward improved model
equity and real-world utility across the continent’s
full linguistic spectrum.

6 Data-Performance-Policy Analysis

To understand the relationship between policy, data
availability, and performance, we carry out a num-
ber of analyses inspired by SAHARA data and
empirical results on it.

Data Availability and Diversity. As shown in
Figure E3, among the 517 languages in our bench-
mark, only 45 have more than one dataset, while
the majority are represented solely by language
identification data. Amharic leads with 11 unique
datasets across all clusters, followed by Yorùbá
with ten and Hausa with nine. A total of six lan-
guages have only one dataset beyond language iden-
tification, while the remaining 36 have between two
and eight datasets each. It is important to note that
the disparity in dataset availability is closely linked
to language policy. The 45 languages with multiple
datasets generally hold official status or are spoken
by a significant majority in their respective coun-
tries. Government policies that designate certain
languages as official often yield greater institutional
support, driving increased documentation, educa-
tion, and media presence. For example, Amharic’s
official status in Ethiopia contributes to its rela-
tively rich dataset availability, while Yorùbá and
Hausa, both widely used in Nigeria for regional
governance and media, similarly benefit from en-
hanced linguistic resources. Conversely, languages
lacking official recognition or widespread institu-
tional support receive minimal investment in digital
and linguistic infrastructure. The dominance of a
few languages within policy frameworks perpet-
uates data scarcity for many Indigenous African
languages, thereby limiting their inclusion in NLP
advancements and reinforcing digital inequalities.

It is noteworthy that availability of NLP data
is not necessarily determined by the number of
speakers and that other variables including lan-
guage prestige, literacy rates, and economic in-
centives can be involved. This becomes evident
when comparing speaker populations with actual

data availability. For example, Hausa (73 mil-
lion speakers), Swahili (80 million), and Zulu (28
million) are categorized as hopefuls—languages
with some available labeled datasets. In contrast,
Naija (Nigerian Pidgin)—despite having approxi-
mately 153 million speakers—is classified as a left-
behind language (Joshi et al., 2020), largely due to
decades of stigmatization and negative public atti-
tudes (Oyebola and Ugwuanyi, 2023), which have
significantly contributed to the scarcity of acces-
sible and annotated linguistic resources. Notably,
several non-African languages with significantly
smaller speaker populations—such as Catalan (5
million), Finnish (10 million), and Swedish (10.5
million)—are regarded as high-resource, primarily
as a result of sustained efforts in documentation,
digitization, and technological integration. This
discrepancy underscores a broader systemic issue
in language representation: it is not just linguistic
demographics that shape digital inclusion, but also
factors such as historical language prestige, policy
decisions, digital infrastructure, and the extent of
prior documentation.

These intersecting factors ultimately determine
whether a language is integrated into AI systems or
remains marginalized. Addressing this imbalance
requires a shift in policy and practice to prioritize
equitable digital representation. This includes tar-
geted investments in multilingual data collection,
increased funding for research on historically ex-
cluded and low-resource languages, and the inten-
tional integration of these languages into education
systems, media platforms, and digital technologies.
Such efforts must also consider the sociopolitical
and infrastructural barriers that shape language in-
clusion in AI, ensuring that underrepresented lan-
guages are not only documented but actively sup-
ported within the broader digital ecosystem.

Data Quality. Most of the downstream task
datasets are limited to simple tasks that require
merely an atomic class label at the word, sen-
tence, or document level (e.g., sentiment analy-
sis, named entity recognition, topic classification).
Furthermore, many of these datasets are transla-
tions of existing resources or content from high-
resource languages like English and French, and
they do not always reflect authentic language usage
within the respective communities. For instance,
AfriXLNI, AfriMMLU, and AfriMGSM (Adelani
et al., 2024b) were created by translating XLNI,
MMLU, and MGSM into African languages. In
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these datasets, the frequent use of borrowed words
and phonologized variants of foreign terms (Ade-
bara and Abdul-Mageed, 2022) highlights the chal-
lenges posed by cross-lingual concept gaps. When
translations are applied to classification tasks, mis-
alignments in the attached labels can occur because
labels are not always equivalent across languages.
Some labels may not exist in the target language
or may have restricted usage. For example, while
English possesses a productive set of adjectives,
languages like Yorùbá have a more limited adjec-
tive inventory that is context-dependent, meaning
that an English adjective may be translated as a
noun or verb in Yorùbá rather than as an adjective.

Model Performance Here, we analyze perfor-
mance of our best model, Claude-4-Sonnet. As
shown in Figure 2, the model faces varying degrees
of difficulty when handling African languages. Fig-
ure 2(a) demonstrates that for generation tasks,
even the strongest models struggle to produce high-
quality text in African languages, with most scores
falling below 15 BLEU/ROUGE. In contrast, Fig-
ure 2(b) shows that while many languages achieve
relatively strong classification performance (over
80% accuracy), a substantial portion still falls into
the 60%–80% range, underscoring a clear perfor-
mance gap. Finally, Figures 2(c) and 2(d) reveal
that translation into English is notably easier than
translation out of English or French into African
languages, where BLEU scores drop from an av-
erage of around 19 down to nine or 11, respec-
tively. This finding suggests that even the best
model struggles more with producing fluent, faith-
ful output in African languages than with under-
standing them—underscoring the urgent need for
better data and model development tailored to these
languages.

Apart from our empirical analyses, the limited
availability and diversity of datasets for African
languages in NLP benchmarks has significant im-
plications for developing robust language technolo-
gies. Limited Model Performance and General-
ization – Models trained on a single dataset per
language risk overfitting to specific domains or
styles, reducing their ability to generalize across
different contexts, which is especially problematic
for African languages with high dialectal variation.
Bias Toward Well-Resourced Languages – Lan-
guages with more datasets naturally perform better
in multilingual models, reinforcing disparities and
leading to poor performance for underrepresented

African languages. Restricted Downstream Appli-
cations – Many NLP applications, such as machine
translation and question answering, require diverse
datasets; if a language is represented only by lan-
guage identification data, it cannot support the de-
velopment of more complex language technolo-
gies. Challenges in Transfer Learning – Transfer
learning techniques, like multilingual fine-tuning,
rely on cross-lingual similarities and sufficient data;
when African languages suffer from sparse training
data, they are unable to effectively leverage knowl-
edge transfer from resource-rich languages. We
also analyze the performance of Command-A in
Figure E2.

7 Recommendations

Policy determines how languages are used across
various domains, influencing their visibility and
viability in digital spaces. Currently, the limited
online presence of many Indigenous African lan-
guages restricts the availability of training data,
which is crucial for building effective NLP models.
We provide the following recommendations:
Policy matters. Governments and policymakers
should enact national language policies that man-
date the inclusion of Indigenous and underrepre-
sented languages across digital infrastructure, ed-
ucation, and media. Countries with multilingual
populations should adopt policies that support the
systematic documentation, transcription, and digi-
tization of African languages to enhance their pres-
ence in AI applications. Such efforts will enrich the
diversity of available data, paving the way for the
development of more robust and inclusive models.
Expand data collection and annotation. Given
that only 45 of the 517 languages in the benchmark
have more than one dataset based on our collec-
tion, it is essential to increase the availability of
high-quality data for underrepresented African lan-
guages across a broad range of downstream tasks.
Moreover, prioritizing community-driven data an-
notation efforts will be crucial in ensuring both
linguistic diversity and accuracy, especially for lan-
guages that lack institutional support.
Develop contextually relevant and culturally
accurate datasets. Many existing African lan-
guage datasets are derived from translations of
high-resource languages, which can introduce mis-
alignments and fail to capture authentic linguis-
tic expressions. To improve NLP performance,
datasets should be created using native speakers
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(a) Generation tasks. (b) Classification tasks.

(c) MCCR tasks. (d) MT tasks grouped.

Figure 2: Distribution of best model performance (Claude-4-Sonnet) on different task clusters across African
languages in downstream data.

and sourced from real-world interactions, litera-
ture, and media in African languages. This will
help preserve linguistic authenticity and avoid the
overreliance on loanwords or structures that do not
naturally occur in the language. Specialized cor-
pora should also be developed to capture dialectal
variations and culturally specific language use.

8 Conclusion

In this work, we set out to unravel how current
African language policies, by dictating data avail-
ability and accessibility, directly influence model
performance across the continent’s diverse linguis-
tic spectrum. To achieve this, we conducted a com-
prehensive empirical evaluation of leading large
language models (LLMs) on SAHARA, an exten-
sive benchmark assembled primarily from existing

datasets. SAHARA consists of 30 publicly accessi-
ble datasets, covering 16 classification, generation,
MCCR, and token level tasks. We also introduced
the first publicly available leaderboard for African
languages. Our evaluations revealed critical gaps
in task performance and language coverage, un-
derscoring pronounced disparities rooted in policy-
induced data inequities. Moreover, our findings
highlight the importance of integrating theoretical
insights on language policies with empirical evalu-
ations to inform forward-thinking policy reforms
and promote inclusive data practices. We believe
that SAHARA will serve as essential benchmarking
standards, catalyzing future research and develop-
ment efforts aimed at bridging the digital divide
and fostering linguistic diversity in artificial intelli-
gence for African communities.
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9 Limitations

We identify the following limitations for our work:

1. Data and Data Availability Bias. Our bench-
mark relies on publicly available datasets,
which inherently reflect existing biases in lan-
guage documentation and institutional sup-
port. Many Indigenous African languages re-
main severely underrepresented due to histori-
cal policies that prioritize dominant languages.
As a result, our findings may not fully capture
the linguistic diversity of the continent.

2. Task Scope. The evaluation primarily fo-
cuses on tasks where data is available, such as
language identification and text classification.
However, the scarcity of datasets for complex
NLP tasks (e.g., machine translation, question
answering) limits our ability to assess model
performance in broader applications. Future
efforts should address this gap by developing
more comprehensive datasets across a wider
range of tasks.

3. Model Performance Constraints. While we
analyze the impact of data scarcity on model
effectiveness, our study does not explore ar-
chitectural modifications or fine-tuning strate-
gies that could improve performance for
low-resource languages. Further research is
needed to examine whether adaptive tech-
niques, such as multilingual pretraining with
targeted data augmentation, could mitigate
these challenges.

4. Policy Implementation Challenges. Our rec-
ommendations for policy reforms and inclu-
sive data practices require significant insti-
tutional commitment and resources. While
we outline actionable steps, their adoption de-
pends on the willingness of governments, re-
search institutions, and technology develop-
ers to prioritize African language inclusion in
NLP.

Despite these limitations, our work underscores
the urgency of addressing data inequities and ad-
vocating for policies that foster greater linguistic
diversity in AI development.

10 Ethical Considerations

We make the following ethics-related statements
about our work:

1. Our research aims to investigate the progress
of NLP for African languages, addressing his-
torical language policies that have contributed
to data inequities. By improving representa-
tion in NLP, we align with broader efforts to
foster linguistic diversity in AI, ensuring that
African languages are not sidelined in techno-
logical advancements.

2. The datasets used in our benchmark are de-
rived from publicly available sources, yet their
existence is shaped by historical and con-
temporary policies that prioritize certain lan-
guages over others. We acknowledge that the
digital presence of African languages is not
merely a technical issue but a policy-driven re-
ality that influences which languages receive
institutional support and investment.

3. Although we do not develop models in this
work, our findings highlight the impact of
policy-induced data disparities on model per-
formance. Addressing these challenges re-
quires policy interventions that support multi-
lingual data collection, equitable resource al-
location, and ethical considerations in dataset
creation.

4. Proper attribution to dataset authors is not
just an academic necessity but a policy im-
perative for transparency and recognition. To
mitigate concerns about data ownership and
ethical usage, we provide a publicly accessi-
ble reference file citing all datasets included
in our benchmark. We strongly encourage re-
searchers and policymakers to acknowledge
these sources, reinforcing the importance of
ethical and inclusive data practices.
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Dustin Herbison, Elisa Bandy, Emma Wang, Eric
Noland, Erica Moreira, Evan Senter, Evgenii Elty-
shev, Francesco Visin, Gabriel Rasskin, Gary Wei,
Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna
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Appendices
A Sahara Task Clusters

A.1 Text Classification
Cross-Lingual Natural Language Inference.
This task involves the classification of 2 given sen-
tences—a premise and a hypothesis into entailment,
neutral, or contradiction semantic relation (Adelani
et al., 2024b). Adelani et al. (2024b) introduced
AfriXNLI, a benchmark for evaluating 15 African
Languages on Natural Language Inference (NLI).
The languages were translated from the English
portion of XNLI (Conneau et al., 2018).

Language Identification. We include language
identification datasets across 518 African lan-
guages (Adebara et al., 2022). The dataset includes
data from multiple domains including education,
government, health care, news, and religion. Addi-
tional statistics of the data is available in Table D3.
We include language identification tasks to inves-
tigate (1.) the capabilities of language models
in correctly generating the appropriate language
names of an input text and (2.) Correctly generate
an additional sentence in a specific language. We
include these two approaches because many lan-
guages have multiple names (Chen et al., 2024) and
a LM’s inability to appropriately name a language
does not implicate a lack of information about the
language.

News Classification. This task involves automat-
ically categorizing news articles into predefined cat-
egories or topics based on their content. The goal is
to leverage machine learning and NLP techniques
to understand and organize large volumes of news
data, making it easier for users to access relevant in-
formation. News classification plays a crucial role
in information retrieval, content recommendation,
and other applications that involve organizing and
categorizing textual data. The news classification
cluster consists of data from four languages includ-
ing Amharic (Azime and Mohammed, 2021), Kin-
yarwanda (Niyongabo et al., 2020), Kirundi (Niy-
ongabo et al., 2020), and Swahili (David, 2020a,b).
Table D3 provides additional details of the data in
this cluster.

Sentiment Analysis. Sentiment analysis is cru-
cial in gaining insights into public opinion, cus-
tomer feedback, and user sentiments across various
platforms. The sentiment analysis cluster consists

of the Bambara Sentiment dataset (Diallo et al.,
2021), YOSM–a Sentiment Corpus for Movie Re-
views in Yorùbá (Shode et al., 2022b), and the
Nigerian Pidgin sentiment dataset (Oyewusi et al.,
2020), respectively. Further details about the sta-
tistical composition of this data is available in Ta-
ble D3.

Topic Classification. The primary goal for this
task is to automatically categorize the content of
the text based on its theme. Topic classification is
widely used in various applications, such as docu-
ment organization, content recommendation, and
information retrieval. We include topic classifi-
cation datasets for Yorùbá and Hausa (Hedderich
et al., 2020).

A.2 Text Generation

Machine Translation. A robust benchmark for
MT tasks is essential. SAHARA, in its quest to
effectively assess machine translation for African
languages, selectively incorporates datasets con-
taining diverse African languages into its bench-
mark. Specifically, SAHARA includes datasets such
as Pidgin-UNMT7 (Ogueji and Ahia, 2019), Afro-
MT8 (Reid et al., 2021a), Lafand-MT (Adelani
et al., 2022a), SALT9 (Akera et al., 2022), and
HornMT, thus encompassing a total of 45 language
pairs.

Paraphrase. Paraphrasing is a core task in NLG
that revolves around the comprehension and gener-
ation of text that conveys the same meaning while
possibly exhibiting differences in structure, phras-
ing, or style (Chen et al., 2023). SAHARA incorpo-
rates the TaPaCo dataset (Scherrer, 2020), which
is publicly accessible and covers a total of 73 lan-
guages, including four of African origin. These
African languages consist of Kirundi, Amazigh, a
macro-language Berber, and Afrikaans.

Summarization. Summarization is the task of
creating a condensed version of a text that retains
its core ideas and essential information (Nallap-
ati et al., 2016). In the context of SAHARA, our
focus primarily centers on a subset of the abstrac-
tive summarization dataset, XL-SUM (Hasan et al.,
2021), which includes several African languages:
Amharic, Hausa, Igbo, Kirundi, Oromo, Pidgin,

7PidginUNMT GitHub Link
8AfroMT GitHub Link
9SALT GitHub Link
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Somali, Swahili, Tigrinya, and Yoruba. Addition-
ally, we have extended our dataset collection ef-
forts by scraping non-overlapping summarization
datasets from BBC and Voice of Africa (VoE) web-
sites, specifically targeting three African languages:
Hausa, Ndebele, and Swahili.

Title Generation. The task of title generation in
NLG involves generating a concise and meaningful
title or headline for a given article. This task
shares its dataset source with summarization,
drawing from XL-SUM, and also includes dataset
extensions from BBC and VoE with focus on
enabling zero-shot title generation.

A.3 Multiple-Choice, Comprehensive and
Reasoning

This task cluster majorly addresses Question An-
swering type questions. The QA tasks in this clus-
ter are more mathematical-reasoning and reading-
comprehension-oriented.

Mathematical Word Problems. (Adelani et al.,
2024b) introduced AfriMGSM, a QA dataset that
contains human-written grade school mathematical
word problems. Their dataset covers 15 African
Languages, and the translation of each question to
English for each language for in-language evalua-
tion of LLMs. In this task, given a word problem,
the LLM is expected to return a numerical value as
output.

General Knowledge QA. (Adelani et al., 2024b)
introduced AfriMMLU, a multi-choice QA dataset
covering 5 areas of knowledge in 15 African Lan-
guages. The knowledge areas are high-school ge-
ography, high-school microeconomics, elementary
mathematics, international law), and global facts.
In this task given a question in any of the aforemen-
tioned areas, and 4 options, the LLM is expected
to choose the right option.

Reading Comprehension QA. In this task, the
LLMs are evaluated based on their ability to un-
derstand information in a given article. (Bandarkar
et al., 2024b) introduced a parallel reading com-
prehension dataset covering 122 languages, 23 of
which are native to Africa. The dataset comprises
of short paragraphs accompanied by multi-choice
Questions, whose answers can be inferred from
accompanying paragraphs.

Context-based Question-Answering. QA rep-
resents another vital facet of NLG, focusing on a
model’s capability to provide answers based on in-
tegrated knowledge. SAHARA relies on the gold
passage dataset from the multilingual TYDIA10 QA
resource (Clark et al., 2020). This dataset offers
concise questions with precisely one correspond-
ing answer, enabling rigorous evaluation of QA
performance.

A.4 Tokens-level Classification

Named Entity Recognition. We incorporate
NER datasets across 30 languages. We use Dis-
tance Supervision NER (DS NER) Data (Hed-
derich et al., 2020), MasakhaNER (Adelani et al.,
2022b), WikiAnn (Rahimi et al., 2019), Yoruba-
Twi NER (Alabi et al., 2020b), and multiple NER
data from SADiLaR. Additional details about the
datasets are available in Table D3.

Phrase Chunking. This task involves identify-
ing and grouping together consecutive words or
tokens into meaningful syntactic units, known as
phrases. These phrases can include noun phrases,
verb phrases, prepositional phrases, and other gram-
matical structures. The goal of phrase chunking is
to analyze the grammatical structure of a sentence
and extract higher-level syntactic units for better
understanding. The phrase chunking cluster con-
sists of data for ten Indigenous languages of South
Africa (see Table D3). The data has annotations
for noun, verb, adjective, adverbial, and preposi-
tional phrase chunks. Words not belonging to these
phrase types are labelled with the tag O.

Part of Speech Tagging. This classification task
involves assigning grammatical categories or labels
(such as noun, verb, adjective) to each word in a
sentence. The primary goal of POS tagging is to
analyze the syntactic structure of a sentence and
understand the role of each word within it. POS
tagging is crucial for various NLP applications, as it
provides a foundation for more advanced linguistic
analysis. We include datasets for Igbo taken from
IgboNLP (Onyenwe et al., 2019).

B Benchmark

Table B1 shows the comparison between SA-
HARA with other benchmarks.

10TyDiQA GitHub Link
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Category Benchmark Reference Lang/Total Tasks

M
ul

til
in

gu
al

FLoRES200 (Costa-jussà et al., 2022) 52/200 1
GEMv1 (Gehrmann et al., 2021) 10/52 5
GEMv2 (Gehrmann et al., 2021) 10/52 9
NLLB M.D. (Costa-jussà et al., 2022) 2/8 1
NLLB S.D. (Costa-jussà et al., 2022) 2/8 1
SIB-200 (Adelani et al., 2024a) 46/200 1
Toxicity200 (Costa-jussà et al., 2022) 50/200 1
XGLUE (Liang et al., 2020) 1/19 3
XTremE (Hu et al., 2020) 2/40 4

L
an

gu
ag

e-
sp

ec
ifi

c

BanglaNLPv1 (Bhattacharjee et al., 2023) 1 6
CLUE (Xu et al., 2020) 1 6
CUGE (Yao et al., 2021) 1 8
Dolphin (Nagoudi et al., 2023) 1 13
FLUE (Le et al., 2020) 1 5
IndoNLU (Wilie et al., 2020) 1 5
IndoNLG (Guntara et al., 2020) 1 6
JGLUE (Kurihara et al., 2022) 1 3
KorNLU (Ham et al., 2020) 1 2
LOT (Guan et al., 2022) 1 4
ORCA (Elmadany et al., 2023) 1 7
PhoMT (Doan et al., 2021) 1 1

A
fr

ic
an

AfriSenti (Muhammad et al., 2023a) 14 1
AfroMT (Reid et al., 2021b) 8/8 1
AfroNLG (Adebara et al., 2024b) 517/517 6
AfroNLU (Adebara et al., 2023) 28/28 7
Horn-MT − 3/3 1
Iroko-Bench (Adelani et al., 2024b) 16/16 3
Mafand-MT (Adelani et al., 2022a) 17/17 1
Menyo-20k (Adelani et al., 2021b) 1/1 1
Naija-senti (Muhammad et al., 2022) 4/4 1

SAHARA ours 517/517 16

Table B1: A Comparison of SAHARA with other Benchmarks. M.D: Multilingual domain, S.D: Seed Data.

C Few-shot prompt example

Figure C1 shows an example for MT task.

D Dataset Description

Table D2 describes all datasets included in SA-
HARA.

E Data-Performance-Policy Analysis
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Figure C1: Few-shot prompting example for the machine translation task. The prompt provides five examples of the
specific task for context and alignment.
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Dataset Brief Description African Language(s)

MasakhaNER (Adelani et al., 2021a),
(Adelani et al., 2022c)

Curated for Named Entity Recognition
for several African Languages

amh, bam, bbj, ewe, fon, hau, ibo, kin,
lug, luo, mos, nya, pcm, sna, swa, tsn,
twi, wol, xho, yor, zul

MasakhaPOS (Dione et al., 2023a) Curated from News sources and pub-
licly available datasets for Part-Of-
Speech Tagging

bam, bbj, ewe, fon, hau, ibo, kin, lug,
luo, mos, nya, pcm, sna, swa, tsn, twi,
wol, xho, yor, zul

MAFAND-MT (Adelani et al., 2022a) African news corpus for Machine Trans-
lation

bam, bbj, ewe, fon, hau, ibo, lug, luo,
mos, swa, tsn, twi, wol, xho, yor, zul

XL-Sum Hasan et al. (2021) Curated for Summarization and Title
Generation

amh, ibo, orm, run, swa, yor, hau, pcm,
som, tir

YorubaSenti (Orimaye et al., 2012) Curated from comments on movies on
YouTube

yor

TaPaCo (Scherrer, 2020) Developed to provide example sen-
tences and translations for particular lin-
guistic constructions and words

afr, ber, run , zgh

TyDi QA (Clark et al., 2020) Curated for Information-Seeking QA
tasks

swa

HornMT Parallel MT dataset curated for lan-
guages in Horn of Africa

aaf, amh, orm, som, tir

yoruba-twi-ner (Alabi et al., 2020a) Curated for evaluating embeddings for
low-resource languages

yor, twi

KINNEWS and KIRNEWS (Niy-
ongabo et al., 2020)

Curated for multi-class classification of
news articles

kin, run

AmharicNews (Azime and Mohammed,
2021)

Curated for text classification from
news articles

amh

SwahiliNews v0.2 (David, 2020a) Curated for text classification from
news articles

swa

Bambara (Diallo et al., 2021) Curated for Sentiment Analysis through
web crawling

bam

IgboNLP(Onyenwe et al., 2018b) Contains text corpus, POS tagset and
POS-tagged subcorpus

ibo

yosm (Shode et al., 2022a) Curated from movie reviews for Senti-
ment Analysis

yor

pidgin-tweet (Oyewusi et al., 2020) Curated for SA from tweets pcm

WikiAnn (Pan et al., 2017), (Rahimi
et al., 2019)

afr, amh, ibo, mlg, kin, som, swa, yor

HausaTopic,YorubaTobic (Hedderich
et al., 2020)

Curated for Topic Classification hau, yor

SaDiLAR (Eiselen, 2016) Curated for NER of 10 South African
Languages

afr, nbl, nso, sot, ssw, tsn, tso, ven, xho,
zul

AfriSenti (Muhammad et al., 2023a) Curated for African tweet sentiment
analysis

amh, ALG-ara, hau, kin, ibo, MOR-
ara, MOZ-por, pcm,form, swa, tir,
twi,tso,yor

Afro-MT (Reid et al., 2021a) Benchmark for MT of 8 African Lan-
guages

afr, bem, lin, run, sot, swa, xho, zul

PidginUNMT (Ogueji et al., 2021) pcm

SALT (Akera et al., 2022) Curated for Parallel MT of 5 Ugandan
Languages

ach, lgg, lug, nyn, teo

Cheetah (Adebara et al., 2024b) Summarization test set hau, nde, swa

Cheetah (Adebara et al., 2024b) Title generation test set amh, gag (zero-shot), hau, ibo, pcm,
som, swa, tir, yor, kin (zero-shot), afr,
mlg (zero-shot), orm, nde (zero-shot),
sna(zero-shot)

NCHLT-NER (Eiselen, 2016) Named Entity Recognition afr, nbl, nso, sot, ssw, tsn, tso, ven, xho,
zul

BeleBele (Bandarkar et al., 2024b) Reading Comprehension MCQA afr amh, bam, fuv, gaz, hau, ibo,kea,kin,
lin, lug, luo,nso, nya, sna ,som, sot, ssw,
swh, tir, tsn, tso, wol, xho, yor,zul

IrokoBench (Adelani et al., 2024b) MGSM,MMLU,XNLI amh, ewe, hau, ibo,kin, lin, lug, orm,
sna ,sot, swa, tir, wol, xho, yor,zul

Table D2: A description of all datasets included in Sahara. ALG: Algerian, MOR: Moroccan, MOZ: Mozambican.
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Task Source Language Train/ Dev/ Test

MT

(Adelani et al., 2022a)

eng-hau 5.9K/ 1.3K/ 1.5K
eng-ibo 6.9K/ 1.5K/ 1.4K
eng-lug 4.1K/ 1.5K/ 1.5K
eng-pcm 4.8K/ 1.5K/ 1.6K
eng-swa 30.8K/ 1.8K/ 1.8K
eng-tsn 2.1K/ 1.3K/ 1.5K
eng-twi 3.3K/ 1.3K/ 1.5K
eng-yor 6.6K/ 1.5K/ 1.6K
eng-zul 3.5K/ 1.5K/ 1.0K
fra-bam 3.0K/ 1.5K/ 1.5K
fra-bbj 2.2K/ 1.1K/ 1.4K
fra-ewe 2.0K/ 1.4K/ 1.6K
fra-fon 2.6K/ 1.2K/ 1.6K
fra-mos 2.5K/ 1.5K/ 1.6K
fra-wol 3.4K/ 1.5K/ 1.5K

(Reid et al., 2021a)

eng-afr 25.8K/ 3.2K/ 3.2K
eng-bem 12.0K/ 1.5K/ 1.5K
eng-lin 17.7K/ 2.2K/ 2.2K
eng-run 12.5K/ 1.6K/ 1.6K
eng-sot 28.8K/ 3.6K/ 3.6K
eng-swa 28.1K/ 3.5K/ 3.5K
eng-xho 26.1K/ 3.3K/ 3.3K
eng-zul 29.1K/ 3.6K/ 3.6K

(Ogueji and Ahia, 2019) eng-pcm 1.7K/ 0.2K/ 0.2K

(Akera et al., 2022) All-pairs1 20.0K/ 2.5K/ 2.5K

HornMT All-pairs2 1.7K/ 0.2K/ 0.2K

NER

(Adelani et al., 2021a) See Table D2 41.2K/ 5.1K/ 5.1K

(Adelani et al., 2022c) See Table D2 41.2K/ 5.1K/ 5.1K

(Eiselen, 2016) See Table D2 1.7M/ 219.7K/ 215.6K

(Alabi et al., 2020a) See Table D2 20.2K/ 2.8K/ 5.5K

(Pan et al., 2017) See Table D2 9.2K/ 9.2K/ 9.4K

News

(Azime and Mohammed, 2021) amh 41.2K/ 5.1K/ 5.1K

(Niyongabo et al., 2020)
kin 15.3K/ 1.7K/ 4.3K
run 3.3K/ 0.4K/ 0.9K

(David, 2020a) swa 4.4K/ 0.6K/ 0.6K

Paraphrase
(Scherrer, 2020) amh, ber, kab, run 22.4K/ 2.8K/ 2.8K

ber 17.6K/ 2.2K/ 2.2K
kab 4.4K/ 0.6K/ 0.6K

Phrase Chunking (Eiselen, 2016) See Table D2 107.5K/ 13.0K/ 13.4K

POS Tagging (Onyenwe et al., 2018a, 2019) ibo 756.8K/ 94.7K/ 95.0K

Question Answering (Clark et al., 2020) swa 49.9K/ 0.5K/ n/a

Sentiment Analysis
(Diallo et al., 2021) bam 2.4K/ 0.3K/0.3K

(Oyewusi et al., 2020) pcm 11.2K/ 1.4K/ 1.4K

(Shode et al., 2022a) yor 0.8K/ 0.2K/ 0.5K

Summarization
(Hasan et al., 2021)

amh 5.8K/ 0.7K/ 0.7K
ibo 4.2K/ 0.5K/ 0.5K
orm 6.1K/ 0.8K/ 0.8K
Rundi 5.7K/ 0.7K/ 0.7K
swa 7.9K/ 1.0K/ 1.0K
yor 6.4K/ 0.8K/ 0.8K
hau 6.4K/ 0.8K/ 0.8K
pcm 9.2K/ 1.2K/ 1.2K
som 6.0K/ 0.7K/ 0.7K
Tigrinya 5.5K/ 0.7K/ 0.7K

(Adebara et al., 2024b) ⋆† -/ -/ 0.4K

Title Generation
(Hasan et al., 2021)

amh 5.8K/ 0.7K/ 0.7K
ibo 4.2K/ 0.5K/ 0.5K
orm 6.1K/ 0.8K/ 0.8K
run 5.7K/ 0.7K/ 0.7K
swa 7.9K/ 1.0K/ 1.0K
yor 6.4K/ 0.8K/ 0.8K
hau 6.4K/ 0.8K/ 0.8K
pcm 9.2K/ 1.2K/ 1.2K
som 6.0K/ 0.7K/ 0.7K
Tigrinya 5.5K/ 0.7K/ 0.7K

(Adebara et al., 2024b) ⋆ -/ -/ 5.9K

Topic Classification (Hedderich et al., 2020)
hau 2.0K/ 0.3K/0.6K
yor 1.3K/ 0.2K/ 0.4K

Table D3: Statistics of the data in our benchmark. All − pairs1 each have the same size of data. They include
ach-eng, ach-lgg, ach-lug, ach-nyn, ach-teo, ach-teo, eng-lgg, eng-lug, eng-nyn, eng-teo, lgg-teo, lug-lgg, lug-teo,
nyn-lgg, nyn-lug, and nyn-teo. All − pairs2 are all possible language combinations of aaf, amh, orm, som, tir, eng.
⋆† is a summarization test set including ‘hau’, ‘nde’ (zero-shot), and ‘swa’. ⋆ is a title generation test set across
15 languages: ‘amh’, ‘gag’ (zero-shot), ‘hau’, ‘ibo’, ‘pcm’, ‘som’, ‘swa’, ‘tir’, ‘yor’, ‘kin’ (zero-shot), ‘afr’, ‘mlg’
(zero-shot), ‘orm’, ‘nde’ (zero-shot), ‘sna’(zero-shot).
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(a) Generation tasks. (b) Classification tasks.

(c) MCCR tasks. (d) MT tasks grouped.

Figure E2: Distribution of best open weight model performance (Command-A) on different task clusters across
African languages in downstream data.

Figure E3: Distribution of languages across different clusters. Each bar represents the number of datasets a language
appears in, categorized into the clusters, with some languages appearing in all four clusters while others are only
present in one or two.
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(a) Command-A performers.

(b) Claude-4-Sonnet performance.

Figure E4: Performance of Command-A and Claude-4-Sonnet on token-level task cluster across African
languages in downstream data.
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