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Abstract

Verifiers are crucial components for enhancing
modern LLMs’ reasoning capability. Typical
verifiers require resource-intensive supervised
dataset construction, which is costly and faces
limitations in data diversity. In this paper, we
propose LOVER, an unsupervised verifier reg-
ularized by logical rules. LOVER treats the
verifier as a binary latent variable, utilizing
internal activations and enforcing three log-
ical constraints on multiple reasoning paths:
negation consistency, intra-group consistency,
and inter-group consistency (grouped by the
final answer). By incorporating logical rules
as priors, LOVER can leverage unlabeled ex-
amples and is directly compatible with any off-
the-shelf LLMs. Experiments on 10 datasets
demonstrate that LOVER significantly outper-
forms unsupervised baselines, achieving per-
formance comparable to the supervised verifier
(reaching its 95% level on average). The source
code is publicly available at https://github.com/
wangxinyufighting/llm-lover.

1 Introduction

Verifiers guide LLMs by providing feedback to
optimize their parameters (RL scaling) or outputs
(inference scaling), which greatly enhances mod-
els’ reasoning capabilities (Ouyang et al., 2022;
Snell et al., 2024). Verifiers are usually trained
with supervised learning (Cobbe et al., 2021; Yu
et al., 2024), where they learn to classify reason-
ing outputs as true or false based on labeled data.
It presents two challenges: 1) The verifier relies
heavily on labeled data for training, which can
be expensive to collect (particularly in specialized
or complex domains). For example, annotating a
single Olympiad-level problem typically takes a
significant amount of time, and adding fine-grained
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†Corresponding authors.

step-level process annotations (Lightman et al.,
2023) further increases the workload; 2) Relying
on expert annotations may result in a lack of di-
versity in the solutions (Basile et al., 2021; Xu
et al., 2024a), as annotators may favor familiar rea-
soning methods while overlooking equally valid
but less intuitive ones. For example, when anno-
tating geometric problems, annotators may prefer
the standard coordinate method and down-vote the
less obvious geometric observation. While one
can improve the supervision process in various as-
pects (Yang et al., 2019) (e.g., more experts with
diverse mathematical backgrounds and education
experiences), LLMs themselves already compact
large amounts of knowledge and abilities to sample
diverse generations (Minaee et al., 2024; Xu et al.,
2024b), a natural question is whether we could
build verifiers without the supervision process?

To address these challenges, recent research has
focused on unsupervised verifiers to uncover the
intrinsic reasoning capabilities of LLMs. Typical
works include: 1) CoT-Decoding (Wang and Zhou,
2024), which proposes a heuristic rule-based veri-
fier by observing the probabilities of the outputs of
LLMs. It selects the correct reasoning path based
on the probability difference between the top and
secondary tokens in the answer span. In experi-
ments, we observed that CoT-Decoding is sensi-
tive to the backbone LLM choice. For example,
when using llama-7b on the GSM8K dataset, CoT-
Decoding is 4.8% lower than the majority voting
strategy. 2) CCS (Burns et al., 2023) introduces an
unsupervised verifier, which is essentially a linear
probe optimized through logical consistency loss.
Unfortunately, CCS can only address Yes-No ques-
tions and struggles to scale to general reasoning
tasks. A practical verifier should have fewer limita-
tions on its target problems, enabling it to handle a
broader range of reasoning scenarios and provide
more flexibility in real-world applications

In this paper, we propose a principled framework
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Verifier Paradigm Prior Annotation Input Model Scenario

Wang and Zhou (2024) Unsup. Heuristics - Probabilities - General
Burns et al. (2023) Unsup. Logic rule - Hidden states Linear Yes-No
Cobbe et al. (2021) Sup. - Outcome-based Text Decoder-only General
Lightman et al. (2023) Sup. - Process-based Text Decoder-only General
LOVER Unsup. Logic rule - Hidden states MLP General

Table 1: Comparison between existing verifiers. Paradigm: The verifier is trained using a supervised (Sup.) or
unsupervised (Unsup.) learning paradigm. Prior: The prior knowledge used in the verifier. Annotation: The type
of annotation data.“Outcome-based” is solution-level annotation. “Process-based” is step-level annotation. Input:
The input data type of the verifier. Model: The model architecture. Scenario: Reasoning scenarios suitable for the
verifier. “General” typically refers to reasoning problems that have a correct answer. “Yes-No” indicates that the
answer to the question is either Yes or No.

LOVER, an unsupervised probabilistic verifier reg-
ularized by logical rules. For each reasoning path,
we search for the implicit, internal “beliefs” or
“knowledge” learned by the LLM to infer the truth
value of the reasoning. LOVER begins by gener-
ating contrastive assertions through incorporating
text templates. It then takes the internal activa-
tions of these assertions from the LLM as inputs
and produces a binary latent variable to indicate
the truth value. Furthermore, LOVER incorporates
three logical constraints including negation con-
sistency, intra-group consistency, and inter-group
consistency (with multiple reasoning paths grouped
by the final answer). To bridge the gap between
discrete logical rules and continuous neural net-
works, we propose corresponding soft probabilistic
objectives that support differentiable training. Our
contributions are summarized as follows:

• We propose LOVER, a scalable and principled
framework for verifying the truth value of reason-
ing paths, leveraging intrisic knowledge learned
by the LLM and regularized by logical rules. Ad-
ditionally, LOVER is fully compatible with any
off-the-shelf LLMs.

• To combine discrete logical rules with neural net-
works, we propose soft probabilistic objectives that
enable LOVER to be trained end-to-end, improving
its scalability and performance.

• Our extensive experiments across diverse datasets,
including mathematical reasoning, common sense
reasoning, and various backbones, demonstrate the
effectiveness of the proposed method.

2 Approach

In this section, we present the proposed LOVER,
an unsupervised verifier designed to reason over
the internal activations of LLMs.

Task Definition Given an LLM and an input
question q, we first generate N complete solutions

{si}Ni=1, with each si representing a CoT path (Sec.
2.1). We then select the best solution based on a
learned verifier. For each solution si, we define
xi = q ⊕ si, x

+
i = xi ⊕ T+, x−i = xi ⊕ T−, where

⊕ denotes the text concatenation, and T+, T− are
text templates. Given N reasoning paths, we group
them into M sets (M ≤ N ) based on the final
answer (extracted through rules from the answer
token). A represents the index set from 1 to N , and
Ak denotes the k-th group, with A = ∪M

k=1Ak.
The verifier models a probabilistic distribution
pθ(z|x), where x ∈ ∪N

i=1{x+i , x−i } and z ∈ {0, 1}
is a binary latent variable indicating whether the
natural language statement x is valid. In this paper,
bold letters indicate variables.

Inspired by CoT-Decoding (Wang and Zhou,
2024) and CCS (Burns et al., 2023), to find the cor-
rect answer, we first augment each reasoning path
to derive its correct and incorrect assertions, and
then treat the truth values of the assertions as binary
latent variables. On the one hand, we leverage the
internal activations of the LLM as input, enabling
better utilization of the model’s intrinsic knowl-
edge. On the other hand, the logical constraints
provide implicit supervision signals to update the
verifier, significantly reducing the need for human
supervision.

Next, we first introduce LLM decoding strategy
(Sec. 2.1) and how to obtain contrastive assertions
(Sec. 2.2). Then we detail the latent verifier model
(Sec. 2.3) and describe the logical constraints im-
posed on the latent variables (Sec. 2.4). Finally,
we present the training and inference procedure
(Sec. 2.5). Fig. 1 shows an overview of our method.

2.1 LLM Decoding Strategy

Given an input question q and a typical decode-
only LLM, there are various strategies to decode
N solutions, such as beam search, nucleus sam-
pling, and others. In this work, we follow the
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Figure 1: An illustration of our proposed LOVER. For any question q, we create xi by combining q with the
i-th solution from N solutions. We form x+

i and x−
i by adding "This is a true/false answer." to xi, respectively.

Choosing the correct solution involves determining which assertion, x+
i or x−

i , is correct. The hidden states of
LLMs are used to represent x+

i and x−
i , which are then input into LOVER to predict the correctness probability of

each assertion. We extract the final answer from each solution and group assertions with identical answers together.
These assertions follow three natural logical constraints that guide LOVER’s unsupervised training. Negation
Consistency ensures that only one of x+

i or x−
i is correct. Intra-group Consistency requires that assertions in

the same group have equal correctness probabilities. Inter-group Consistency ensures that only one group’s x+

assertion is correct across all groups.

CoT-Decoding (Wang and Zhou, 2024). Specif-
ically, we keep the top N tokens with the highest
probabilities at decoding step 0, and then continue
with greedy decoding for each token, ultimately
producing N solutions. Compared to other strate-
gies, this method is more likely to produce a natural
CoT reasoning path and does not rely on complex
prompt engineering (Wang and Zhou, 2024). In the
experiments, we also study the impact of different
decoding strategies(Table 4).

2.2 Contrastive Assertions

For each xi = q⊕si, we construct each contrastive
assertions by appending the text templates T+ and
T−. Formally, this is denoted as x+i = xi ⊕ T+

and x−i = xi ⊕ T−. In this paper, we adopt T+ =
“This is a true answer.” and T− =“This is a
false answer.”. Importantly, rather than directly
considering each reasoning path xi, we introduce
contrastive assertions x+i and x−i , which help elicit
the internal “beliefs” or “knowledge” learned by
the model (Burns et al., 2023).

2.3 Latent Verifier Model

For each natural language assertion x ∈
∪N
i=1{x+i , x−i }, we first compute the feature vec-

tor of x, denoted as ϕ(x), 1 then pass it through a

1The default is the hidden representation of the last token
in the middle layer, and we also explore other options. For
details, please refer to Table 5.

randomly initialized MLP, and finally map it to a
probability value using the sigmoid function. For-
mally, we define the probabilistic distribution of
verifier pθ(z|x) where z ∈ {0, 1} is a binary latent
variable indicating whether the natural language
statement x is valid. For simplicity, we use pθ(z)
to represent pθ(z = 1|x):

pθ(z) = pθ(z = 1|x) = Sigmoid(MLP(ϕ(x)).

Importantly, LOVER does not modify the weights
of the LLM and it does not use labels.

2.4 Logical Constraints

After introducing the binary latent variables
∪N
i=1{z+, z+}, we observe that certain natural log-

ical consistencies between them should be satisfied.
Let us look at three such logical consistency re-
quirements.

Negation Consistency Given the contrastive as-
sertions x+i and x−i , their corresponding binary
latent variables z+

i and z−
i should satisfy negation

consistency:

z+
i = 1− z−

i , i ∈ A.

To this end, we relax the logic with soft probability
(Chen et al., 2022a; Burns et al., 2023) for differ-
entiability in training and regularization of binary
latent variables. Inspired by CCS (Burns et al.,
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2023), we aim for the contrastive assertions x+i
and x−i to satisfy the following: 1).the sum of their
probabilities equals 1 (probability normalization);
2).their probabilities differ significantly (the law of
excluded middle).

Lsum =

N∑

i=1

[
pθ(z

+
i ) + pθ(z

−
i )− 1

]2
,

Ldiff =
N∑

i=1

min
{
pθ(z

+
i ), pθ(z

−
i )

}2
,

Lnega = Lsum + Ldiff .

Note that both losses are necessary; using either
one alone leads to a degenerate solution (Burns
et al., 2023).

Intra-group Consistency For each group Ak

of reasoning paths, they share the same answer,
though their reasoning processes may differ. Over-
all, we expect the corresponding binary latent vari-
ables to satisfy intra-group consistency, i.e.,

z+
i = z+

j , z
−
i = z−

j , i ∈ Ak, j ∈ Ak.

To achieve this goal, we use a simple squared loss:

L+
intra=

M∑

k=1

∑

i∈Ak,j∈Ak

[
pθ(z

+
i )− pθ(z

+
j )

]2
,

L−
intra=

M∑

k=1

∑

i∈Ak,j∈Ak

[
pθ(z

−
i )− pθ(z

−
j )

]2
,

Lintra= L+
intra + L−

intra.

Inter-group Consistency Among the N reason-
ing paths, there are M distinct answers. We assume
that the LLM’s capabilities are sufficiently strong
to ensure the presence of a correct answer. We
examine the GSM8k dataset and find that when
N = 10, the P@10 accuracy of qwen-2.5 can
reach 91.43%. This confirms the validity of the
above assumption. Specifically, for each group
Ak, we randomly select an ak and hope that its
corresponding binary latent variable satisfies:

M∑

k=1

z+
ak

= 1, ak ∈ Ak. (1)

To achieve this inter-group consistency, we propose
a soft probability solution.

Lsum
inter=

[
M∑

k=1

pθ(z
+
ak
)− 1

]2

.

However, in the experiments, we observe that if
only the loss Lsum

inter is used, the M probabilities
pθ(z

+
ak
) tend to become uniform. To address this

issue, we propose an entropy regularization. We
introduce a probability distribution p̂ which defines
over the M variables {z+

ak
}Mk=1.

Lh
inter= H [p̂(·)] , p̂(z+

ak
) =

pθ(z
+
ak
)

∑M
i=1 pθ(z

+
ai)

,

Linter= Lsum
inter + Lh

inter,

where H denote the entropy function. In addition,
we also explore a soft logic-based solution, which
is encapsulated in Appendix A.

2.5 Training and Inference

Training The final loss function is the sum of
three losses mentioned above, which is defined as:

L = Lnega + Lintra + Linter.

LOVER is structured as a MLP with 2 hidden lay-
ers, and we select ReLU as the activation function.
We use AdamW(Loshchilov and Hutter, 2019) as
optimizer (weight_decay = 0.01), and set learning
rate to 1× e−5.

Inference Given an input question q, we first
decode N candidate solutions (Sec. 2.1) to ob-
tain {xi}Ni=1. For each xi, we generate contrastive
assertions x+i and x−i of si (Sec. 2.2) and com-
pute corresponding probability pθ(z

+
i ) and pθ(z

−
i )

based on the latent verifier model (Sec. 2.3). Both
pθ(z

+
i ) and 1− pθ(z

−
i ) should represent the prob-

ability that the xi is correct. we consequently take
the average of these (Burns et al., 2023):

pθ(zi) =
1

2

[
pθ(z

+
i ) + (1− pθ(z

−
i ))

]
.

Then we group them into M sets based in the
final answer (extracted through rules from an-
swer token). For each group Ak, we compute
the group score gk using two strategies: max and
sum. The max strategy computes the group score
by selecting the maximum pθ within the group:
gk = maxi∈Ak

pθ(zi). The sum strategy computes
the group score by summing up all pθ within the
group: gk =

∑
i∈Ak

pθ(zi). Finally, we select the
answer with the highest group score gk among the
M groups. Appendix C provides PyTorch-style
pseudocode for the inference procedure.
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LLM Dataset →
Verifier ↓

Mathematics Open-Domain Knowl.
GSM8K iGSM HotpotQA MMLU-P

mistral-7b

Supervised 61.18 44.50 82.96 41.93

Greedy 16.15 19.00 70.74 37.65
Majority Voting 43.82 34.50 76.86 41.07
CoT-Decoding (max) 36.62 12.75 69.87 38.04
CoT-Decoding (sum) 47.76 36.75 76.86 41.43
LOVER (max) 50.41 28.75 74.24 40.36
LOVER (sum) 53.14 41.25 77.95 41.82

llama-8b

Supervised 83.24 43.75 82.96 55.86

Greedy 36.09 35.00 77.29 45.67
Majority Voting 75.96 39.00 81.00 50.58
CoT-Decoding (max) 38.51 23.25 77.95 45.92
CoT-Decoding (sum) 71.11 40.50 78.16 54.61
LOVER (max) 70.60 39.00 81.04 52.65
LOVER (sum) 79.97 42.50 83.80 55.61

qwen-7b

Supervised 92.11 54.25 83.62 61.13

Greedy 61.71 46.50 78.82 54.93
Majority Voting 89.46 51.00 83.41 57.00
CoT-Decoding (max) 63.84 31.50 81.66 54.22
CoT-Decoding (sum) 89.76 51.00 82.09 58.81
LOVER (max) 83.47 48.25 81.41 59.28
LOVER (sum) 91.43 52.00 82.75 61.24

Table 2: The overall experimental results of LOVER and other baselines on the four datasets. Accuracy is utilized
to measure the performance. The best results of each setting are in bold. MMLU-P stands for "MMLU-Pro" dataset.

3 Experiments

Datasets We conduct experiments on datasets of
both mathematical and open-domain knowledge
reasoning. For mathematical reasoning, we use
the Grade-school math problems, GSM8K (Cobbe
et al., 2021) and more challenging iGSM dataset
(Ye et al., 2024). For open-domain knowledge rea-
soning, we use HotpotQA(Yang et al., 2018) and
MMLU-Pro(Wang et al., 2024). Furthermore, to
evaluate the out-of-distribution (OOD) generaliza-
tion of LOVER, we employ Boolean Expressions,
Web of Lies, Object Counting, Navigate, Multi-
Step Arithmetic and Causal Judgement from BIG-
Bench Hard(Suzgun et al., 2022). The details of
datasets are provided in Appendix B.

Evaluation We evaluate accuracy by strictly
matching the final answer from the response with
the ground truth answer.

Baselines. We test three open-source LLMs:
llama-8b, mistral-7b and qwen with different

scales, ranging from 0.5B, 1.5B, 3B, 7B, and 32B.
2 We compare LOVER against following methods:

• “Greedy” decoding selects the most probable token
at each step.

• “Majority Voting” decodes multiple outputs and
select the optimal answer by voting (Lewkowycz
et al., 2022; Wang et al.). 3

• “CoT-Decoding” (Wang and Zhou, 2024) selects
correct reasoning paths based on answer confi-
dence (probability disparity between the top and
secondary tokens in answer spans).

• “Supervised” is the supervised LOVER. It is trained
using gold label data, with the training objective
being the standard binary cross-entropy loss. The-
oretically, this is the ceiling of LOVER.

3.1 Main Results
LOVER effectively enhances reasoning abilities

2Specific versions are llama-3.1-8b-instruct
(Grattafiori et al., 2024) , mistral-7b-instruct-v0.3
(Jiang et al., 2023) , qwen2.5-instruct (Qwen et al., 2025).

3The default decoding strategy is described in Sec. 2.1.
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across models and reasoning types. As shown in
Table 2, LOVER (sum) achieves the highest accu-
racy in all scenarios. LOVER (max) outperforms
CoT-Decoding in 40% of cases and matches the
average accuracy of Majority Voting.

LOVER (sum) achieves an average absolute ac-
curacy gain of 3.3% over Majority Voting. Un-
like Majority Voting, which relies solely on the
frequency of answers, LOVER not only consid-
ers answer counts but also leverages the inter-
nal knowledge of LLMs. Driven by logical con-
straints, LOVER can more effectively utilize the
LLMs’ internal knowledge to score the correctness
of assertions. Thus, LOVER represents an opti-
mized and weighted voting method. Compared
to CoT-Decoding, LOVER shows an average ab-
solute accuracy gain of 2.9%. LOVER focuses on
the correctness of the solution itself, rather than
emphasizing the format of the solution as in CoT-
Decoding. CoT-Decoding aims to elicit reasoning
paths with CoT processes, leading to significant
accuracy gains on weaker models (those unable to
autonomously generate CoT solutions without CoT
prompting) but limited improvements on stronger
models. As a result, compared to CoT-Decoding,
LOVER is less affected by the underlying capa-
bilities of the LLM. LOVER (sum) consistently
outperforms LOVER (max), demonstrating the ef-
fectiveness of the sum strategy and highlighting
the importance of the frequency of answers. CoT-
Decoding (max) achieves an average accuracy sim-
ilar to Greedy, indicating that relying solely on the
probability with answer tokens is insufficient.

3.2 Ablation Studies

3.2.1 The effect of different logic constraints

Incorporating logical constraints can significantly
enhance LOVER’s performance. Table 3 reveals
that the exclusion of the Linter led to the most sig-
nificant drop in reasoning accuracy, indicating its
crucial role in enhancing model performance. With-
out Linter, LOVER tends to optimize towards as-
signing a score of 1 to all x+i and 0 to all x−i .

In this scenario, LOVER loses the ability to dis-
cern the correctness of assertions. Removing Lnega

also results in a noticeable decrease in accuracy.
Without Lnega, the premise that each assertion has
only one correctness label cannot be satisfied. As a
result, LOVER tends to optimize towards assigning
identical scores to both x+i and x−i . The removal
of Lintra has a minimal impact on reasoning ac-

Loss
GSM8K MMLU-Pro

sum max sum max
LOVER 53.14 50.41 41.82 40.36
w/o Lnega 51.78 34.79 40.07 37.37
w/o Lintra 52.76 44.20 41.75 40.00
w/o Linter 49.96 38.13 38.15 35.44

Table 3: Accuracy of LOVER on GSM8K and MMLU-
Pro using different setting of logic constraints over
mistral-7b.

curacy. Lintra enforces consistency in correctness
probabilities for solutions with the same final an-
swer. However, solution correctness depends not
only on the final answer but also on the problem-
solving process, which may contain errors even if
the answer is correct. Enforcing the consistency of
correctness probabilities solely based on the same
final answer may have limitations.

Logical constraints have a more substantial im-
pact on LOVER (max) than on LOVER (sum). In-
sufficient constraints hinder LOVER (max)’s abil-
ity to accurately assess assertion validity, while
LOVER (sum) mitigates this by incorporating an-
swer frequency, reducing sensitivity to constraint
variations.

3.2.2 The effect of decoding strategies
LOVER achieves hightest reasoning accuracy com-
bined with different decoding strategies. Table 4
shows that all methods achieve their highest ac-
curacy under the natural CoT-Decoding, outper-
forming temperature sampling and beam search
sampling by an average of 19.5% and 22.3%.

Decoding Strategies Nat Temp Beam

Majority Voting 43.82 27.07 24.79
CoT-Decoding 47.76 28.05 24.94
LOVER 53.14 31.31 28.20

Table 4: Accuracy of LOVER on GSM8K test set us-
ing different decoding strategies over mistral-7b. Nat
stands for natural CoT decoding, which is the default
decoding strategy in this paper. Temp stands for Tem-
perature sampling (temperature = 0.7). Beam stands
for Beam Search sampling.

LOVER consistently achieves the best perfor-
mance across all decoding strategies, delivering an
average absolute accuracy improvement of 5.7%
compared to Majority Voting. In contrast, CoT-
Decoding only achieves only a 1.69% improve-
ment over Majority Voting. The performance of
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CoT-Decoding tends to rely more heavily on the
format of LLMs’ output rather than its correctness.
If the decoding strategy fails to elicit outputs in a
specific format (e.g., those containing a CoT pro-
cess), the effectiveness of CoT-Decoding is com-
promised. In contrast, LOVER analyzes the cor-
rectness of LLMs’ outputs and is therefore less af-
fected by changes in sampling strategies compared
to CoT-Decoding.

3.2.3 The effect of hidden states from
different layers

Hidden States of middle layer optimize LOVER ’s
Performance. Previous research shows that hid-
den state from the middle to deeper layers contain
richer knowledge compared to those in the shal-
lower layers. Table 5 shows that LOVER achieves

Layer GSM8K MMLU-Pro
sum max sum max

5 51.82 36.26 41.32 38.78
15 51.91 37.28 41.34 39.46
20 53.14 50.41 41.82 40.36
25 52.41 32.16 41.25 38.07
32 52.22 38.80 41.37 38.10

Table 5: Accuracy of LOVER on GSM8K test set
and MMLU-Pro using hidden states from different
mistral-7b layers.

optimal performance when utilizing hidden states
from the 15th or 20th layers, which aligns with
the conclusions of prior research. The selection of
hidden states’ layer has a significantly greater im-
pact on LOVER (max) compared to LOVER (sum).
For instance, on GSM8K, the standard deviation of
accuracy for LOVER (max) across different layers
is 7.1, whereas it is only 0.6 for LOVER (sum).
This is because the knowledge contained in the
hidden states directly influences LOVER (max)’s
judgment on the correctness of assertions. LOVER

(sum) incorporates the frequency of answers, which
mitigates the influence of layer selection.

3.2.4 The effect of problem difficulty
We investigate the impact of problem complexity
using iGSM dataset with varying levels of difficulty.
More detailed information about iGSM dataset is
provided in Appendex B.4. LOVER Effectively
enhances reasoning accuracy across various lev-
els of problem difficulty. Table 6 demonstrates
LOVER consistently achieves accuracy gains over

max_op Majority Voting LOVER

2 55.0 67.0 (+21.8%)
4 40.0 47.0 (+17.5%)
8 25.0 30.0 (+20.0%)
16 18.0 21.0 (+16.7%)

Table 6: Accuracy of LOVER on iGSM with different
difficulty over mistral-7b. A higher max_op indicates
greater difficulty. The values in parentheses indicate the
percentage accuracy gain over the baseline.

the baseline across varying levels of problem dif-
ficulty, with no significant decline in performance
gains as the difficulty increases. This is attributed
to LOVER’s effective utilization of logical rules to
harness the internal knowledge of LLMs, suggests
that LOVER exhibits greater robustness in handling
complex reasoning problems.

3.2.5 The effect of numbers of solutions per
question

Figure 2: An accuracy comparison of LOVER and base-
lines across different numbers of solutions on GSM8K
over mistral-7b.

LOVER maintains high reasoning accuracy re-
gardless of N . The reasoning accuracy of all meth-
ods increases as the number of solutions grows
shown in Table 2. Across different numbers of
solutions, LOVER consistently outperform Major-
ity Voting, achieving an average absolute accuracy
gain of 6.4%. As the number of solutions increases
(> 5), LOVER surpasses CoT-Decoding, delivering
an average absolute accuracy gain of 3.9%. Com-
pared to CoT-Decoding, LOVER extracts richer
information from hidden states, enabling more ef-
fective utilization of the diverse solutions sampled
during the decoding process.

3.2.6 The effect of model scales
LOVER enhances reasoning accuracy across
model scales. Figure 3 shows that LOVER en-
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Figure 3: LOVER reliably improves reasoning perfor-
mance across model scales (Qwen-2.5 family).

hances reasoning accuracy across different model
scales over the Qwen-2.5 family. LOVER enables
a 7B-parameter LLM to achieve reasoning accu-
racy comparable to that of a 32B-parameter LLM.
LOVER achieves an average accuracy gains of
1.7% across five models with varying parameter
sizes and consistently outperforms the baselines.
In contrast, CoT-Decoding and Majority Voting
exhibit comparable performance.

3.3 OOD Generalization

Datasets Voting CoT-D LOVER

Boolean Exp 61.6 72.4 72.4
Web of Lies 25.6 39.6 44.8
Object Cnt 46.0 48.0 48.4
Navigate 49.6 57.2 57.6
Arithmetic 12.0 11.6 12.4
Causal Jud 45.9 60.4 60.4

Table 7: Reasoning accuracy of LOVER on six OOD
datasets over mistral-7b. Voting stands for "Majority
Voting"; CoT-D stands for "CoT-Decoding". Boolean
Exp stands for "Boolean Expression" dataset; Object
Cnt stands for "Object Counting" dataset; Arithmetic
stands for "Multi-Step Arithmetic Two" dataset; Causal
Jud stands for "Causal Judgment" dataset.

The improvements brought by LOVER can be
transferred to OOD problems. We select six
distinct datasets from BIG-Bench Hard as OOD
datasets. As shown in table 7, LOVER achieves
higher or equal accuracy than CoT-Decoding across
six all datasets, and outperforms Majority Voting
on all datasets, with an average accuracy improve-
ment of 2.5%. This demonstrates the strong OOD
generalization capability of LOVER. By leverag-
ing the latent knowledge and logical constraints,
LOVER learns patterns for evaluating assertion cor-

rectness, independent of the domain-specific con-
text of the assertions.

4 Related Work

LLM Reasoning Existing research on LLM rea-
soning can be roughly divided into two categories:
extrinsic reasoning and intrinsic reasoning. Ex-
trinsic reasoning mainly involves complex prompt
engineering (Wei et al., 2022; Yao et al., 2024),
verifier based on outcome or processes (Cobbe
et al., 2021; Lightman et al., 2023), and customized
search algorithms (e.g., A*, MCTS) (Zhuang et al.;
Wan et al., 2024). Research in this domain focuses
on various reasoning tasks such as mathematical
reasoning (Cobbe et al., 2021; Hendrycks et al.),
logical reasoning (Liu et al., 2020), common-sense
reasoning (Yang et al., 2018), and more (Liu et al.,
2024; Yuan et al., 2024; Chen et al., 2022b). Intrin-
sic reasoning seeks to explore the model’s internal
knowledge, primarily through the observation and
manipulation of its hidden layers or output prob-
abilities. The probe method involves using auxil-
iary classifiers or probes to analyze and interpret
the internal representations learned by the model,
offering insights into its understanding and rea-
soning processes (Belinkov, 2022; Alain and Ben-
gio, 2016). Unlike supervised probes, CCS (Burns
et al., 2023) learns a linear classifier to uncover
latent knowledge in an unsupervised manner, while
CoT-Decoding (Wang and Zhou, 2024) assesses
the truth value of candidate solutions based on an-
swer confidence. However, the main drawbacks are
that CoT-Decoding is essentially an expert-curated
heuristic rule, and CCS is limited to Yes-No ques-
tions, lacking scalability. LOVER belongs to the
second category and is applicable to general rea-
soning tasks that do not require supervised data.
It can be seen as an unsupervised probe (verifier)
guided by logic rule.

Neural Logical Reasoning Neural logic inte-
grates neural networks with logical reasoning to en-
hance model’s interpretability, consistency, and rea-
soning capabilities. One paradigm involves learn-
ing logical operators such as AND, OR, and NOT
as differentiable neural modules, guided by self-
supervised logic regularization (Shi et al., 2020).
Prior studies have demonstrated its effectiveness in
proof generation (Sun et al., 2021), fact checking
(Chen et al., 2022a), NLI (Li et al., 2019) and rec-
ommender systems (Chen et al., 2021). Another
standard method is based on the variational EM
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framework (Ru et al., 2021; Qu and Tang, 2019;
Zhou et al., 2020). LOVER draws inspiration from
both lines of work. We represent the output of
the verifier as binary latent variables, which are
regularized with soft logic.

5 Conclusion

We propose LOVER, an unsupervised verifier regu-
larized by logical rules for enhancing LLMs’ rea-
soning capability. We design three logical rules to
guide LOVER in effectively leveraging unlabeled
data, achieving performance comparable to super-
vised methods. LOVER is compatible with any
white-box LLMs and adaptable to diverse reason-
ing tasks. Experiments show LOVER significantly
enhances the reasoning accuracy of LLMs while
demonstrating strong OOD generalization capabili-
ties.

Limitations

LOVER relies on the hidden states of LLMs, which
inherently restricts its applicability to white-box
LLMs. This dependency prevents LOVER from
being directly utilized in black-box LLMs scenar-
ios. Although LOVER does not rely on extracting
final answers from responses and can be applied
to scenarios where responses lack explicit conclu-
sions, we do not conduct experiments to explore
this aspect in this paper.
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A Logic-based inter-group Consistency

The basic idea is to transform Eq. 1 into a logical
expression and then apply product t-norms to relax
the logic (Chen et al., 2022a; Li et al., 2019).

r = (z+
1 ∧ ¬z+

2 ∧ · · · ∧ ¬z+
M )

∨ (¬z+
1 ∧ z+

2 ∧ · · · ∧ ¬z+
M )

...

∨ (¬z+
1 · · · ∧ z+

M ),

Llogic
inter=t-norms(r).

The accuracy comparison of LOVER using using
different kinds of Linter are provided in Table 8.
LOVER using default Linter is better.

GSM8K
sum max

default Linter 53.14 50.41
logic-based Linter 52.99 46.39

Table 8: Reasoning accuracy of LOVER on GSM8K
test set over mistral-7b using different kinds of Linter.

B Datasets

B.1 HotpotQA
HotpotQA is a Wikipedia-based question-
answering dataset. In the full wiki setting,
HotpotQA consists of 90,447 training samples,
7,405 validation samples, and 7,405 test samples.
A key feature of HotpotQA is that these questions
require finding and reasoning over multiple
supporting documents to answer.

Since the test set does not provide standard an-
swers, we use the validation set as the test set. To
make the extraction of final answers from response
easier and more accurate, we only selected ques-
tions with "yes" or "no" as answers for our experi-
ments. This resulted in 5,481 training samples and
458 test samples. Table 9 provides examples of
questions with "yes" and "no" answer. We used the
entire test set and a randomly selected subset of
3,000 training samples for the experiments.

In our experiments, we only utilized the ques-
tions and did not incorporate the related supporting
texts.

B.2 MMLU pro
MMLU-Pro is an advanced benchmark for assess-
ing language models on more extensive and chal-
lenging tasks. It consists of over 12,000 questions,

HotpotQA

Question: Were Scott Derrickson and Ed Wood
of the same nationality?
Answer: yes

Question: Were Pavel Urysohn and Leonid
Levin known for the same type of work?
Answer: no

Table 9: Examples of HotpotQA dataset with "yes" and
"no" answer.

each furnished with ten possible answers, spanning
14 distinct domains. These domains include Biol-
ogy, Business, Chemistry, Computer Science, Eco-
nomics, Engineering, Health, History, Law, Math,
Philosophy, Physics, Psychology, and Others.

MMLU-Pro provides over 12,000 test samples
and 70 validation samples, with no training set
included. Therefore, we randomly selected one-
third (4 out of 14) of the domains to serve as the
test set, while the remaining domains were used
for training and validation. With the random seed
set to 0, we obtained data from the following four
domains as the test set: Computer Science, Physics,
History, and Biology. The statistics of test set is
shown in Tabel 10.

Datasets #Data
Computer Science 410
Physics 1299
History 381
Biology 717
All 2807

Table 10: The statistics of the four test datasets from
MMLU-Pro.

B.3 BIG-Bench Hard

We randomly selected six datasets from BIG-Bench
Hard as out-of-distribution (OOD) datasets, with
the specific dataset names and corresponding statis-
tics summarized in Table 11.

B.4 iGSM

We construct a more challenging mathematics
dataset called iGSM. Following iGSM(Ye et al.,
2024), we control problems difficulty by setting
different numbers of operations (max_op) in the
solutions. We utilized the iGSM synthetic data
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Datasets #Data
Boolean Expression 250
Web of Lies 250
Object Counting 250
Navigate 250
Multi-Step Arithmetic Two 250
Causal Judgment 187
All 1437

Table 11: The statistics of the six OOD datasets from
BIG-Bench Hard.

generator4 to construct the dataset by setting
random_seed to 42, max_edge to 12, perm_level
to 5, detail_level to 0, and max_op to 2, 4, 8,
and 16, respectively. The detailed data statistics are
presented in Table 12.

max_op #Data
test training

2 100 -
4 100 -
8 100 1500
16 100 -
All 400 1500

Table 12: The statistics of the iGSM test set in our
experiments.

Table 14 provides two examples of iGSM where
max_op is 2 and 16 respectively.

iGSM: max_op=2

Question: The number of each Goldfish’s Proxi-
mal Phalanx equals 8. The number of each Sword-
fish’s Metacarpal I equals the sum of each Gold-
fish’s Bone, each Goldfish’s Proximal Phalanx and
each Eel’s Bone. The number of each Mahi Mahi’s
Radial Carpal equals 3. The number of each Gold-
fish’s Metacarpal IV equals 12. How many Radial
Carpal does Mahi Mahi have?
Solution: Define Mahi Mahi’s Radial Carpal as n;
so n = 3.
Answer: 3

Table 13: Examples of iGSM dataset with different
max_op.

4https://github.com/facebookresearch/iGSM

iGSM: max_op=16

Question: The number of each Spinal Cord’s Tran-
sitional Epithelial Cells equals the difference of
each Cerebellum’s Hepatocytes and each Alba-
tross’s Spinal Cord. The number of each Cere-
bellum’s Hepatocytes equals each Parrot’s Organs.
The number of each Albatross’s Spinal Cord equals
each Cerebellum’s Hepatocytes. The number of
each Spinal Cord’s Hepatocytes equals the sum of
each Cerebellum’s Hepatocytes, each Albatross’s
Spinal Cord and each Parrot’s Cerebellum. The
number of each Parrot’s Cerebellum equals 6. How
many Cells does Albatross have?
Solution: Define Parrot’s Cerebellum as c; so c
= 6. Define Parrot’s Organs as i; so i = c = 6.
Define Cerebellum’s Hepatocytes as X; so X = i =
6. Define Albatross’s Spinal Cord as u; so u = X =
6. Define Spinal Cord’s Hepatocytes as S; b = X +
u = 6 + 6 = 12; so S = b + c = 12 + 6 = 18. Define
Spinal Cord’s Transitional Epithelial Cells as F;
so F = X - u = 6 - 6 = 0. Define Spinal Cord’s
Cells as W; so W = S + F = 18 + 0 = 18. Define
Albatross’s Cells as o; so o = u * W = 6 * 18 = 16.,
Answer: 16

Table 14: Examples of iGSM dataset with different
max_op.

B.5 GSM8K
GSM8K consists of 8,792 high quality grade school
math problems, with 7,473 in the training set and
1,319 in the test set. GSM8K is designed to evalu-
ate the mathematical reasoning capabilities of mod-
els. In our experiments, we select 7,000 samples
randomly from the training set for training, 473
samples from the training set as the validation set,
and the entire test set for testing.
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C Pseudocode (PyTorch-like)

"""Step 1: Sample n responses from LLM"""
def sample_responses(llm, prompt, n):

responses = []

for _ in range(n):
response = model.sample(prompt)
responses.append(response)

return responses

"""Step 2: Create contrastive assertions"""
def create_assertions(question, responses):

pos_assertions = []
neg_assertions = []

for response in responses:
qa_pair = f"Q:{question} A:{response}"

pos_assertion= qa_pair+"this is a true answer."
neg_assertion= qa_pair+"this is a false answer."

pos_assertions.append(positive_assertion)
neg_assertions.append(negative_assertion)

return pos_assertions, neg_assertions

"""Step 3: Get hidden states of assertions"""
def get_hidden_states(llm, assertions, layer_idx):

representations = []

for assertion in assertions:
outputs = llm(assertion, output_hidden_states)
hidden_state = outputs.hidden_states[layer_idx]
hidden_state = hidden_state[:, −1, :]
representations.append(hidden_state)

return representations

"""Step 4: Compute scores using verifier"""
def compute_scores(verifier, pos_reps, neg_reps):

pos_scores = verifier(pos_reps)
neg_scores = verifier(neg_reps)

final_scores = 0.5 * (pos_scores+(1−neg_scores))

return final_scores

"""Step 5a: Select final answer by Max strategy"""
def select_by_max(responses, scores):

max_idx = argmax(scores)
best_response = responses[max_idx]

return extract_final_answer(best_response)

"""Step 5b: Select final answer by Sum strategy"""
def select_by_sum(responses, scores)

answer_scores = {}

for response, score in zip(responses, scores):
final_answer = extract_final_answer(response)
answer_scores[final_answer] += score

best_answer = find_key_by_max_value(answer_scores)
return best_answer

if __name__ == "__main__":
# Step 1: Generate responses
prompt = construct_prompt(q)
responses = sample_responses(llm, prompt, n)

# Step 2: Create contrastive assertions
pos_asserts, neg_asserts=create_assertions(q, responses)

# Step 3: Get hidden representations
layer = 20
pos_reps = get_hidden_states(llm, pos_asserts, layer)
neg_reps = get_hidden_states(llm, neg_asserts, layer)

# Step 4: Compute verification scores
scores = compute_scores(verifier, pos_reps, neg_reps)

# Step 5: Select final answer based on strategy
final_answer_max=select_by_max(responses, scores)
final_answer_sum=select_by_sum(responses, scores)
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