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Abstract

Large language models (LLMs) have exhibited
the ability to effectively utilize external tools
to address user queries. However, their per-
formance may be limited in complex, multi-
turn interactions involving users and multiple
tools. To address this, we propose MAGNET,
a principled framework for synthesizing high-
quality training trajectories to enhance the
function calling capability of large language
model agents in multi-turn conversations with
humans. The framework is based on automatic
and iterative translations from a function sig-
nature path to a sequence of queries and exe-
cutable function calls. We model the compli-
cated function interactions in multi-turn cases
with graph and design novel node operations
to build reliable signature paths. Motivated by
context distillation, when guiding the genera-
tion of positive and negative trajectories using
a teacher model, we provide reference function
call sequences as positive hints in context and
contrastive, incorrect function calls as negative
hints. Experiments show that training with
the positive trajectories with supervised fine-
tuning and preference optimization against
negative trajectories, our 14B model, MAG-
NET-14B-mDPO, obtains 68.01 on BFCL-v3
and 73.30 on ToolQuery, surpassing the perfor-
mance of the teacher model Gemini-1.5-pro-
002 by a large margin in function calling.

1 Introduction

Autonomous agents based on large language mod-
els (LLMs) have made remarkable progress on
fulfilling complex agentic tasks (Yin et al., 2024;
Ma et al., 2024; Zhang et al., 2024), benefiting
from the high capacity of reasoning and planning
of LLMs (Achiam et al., 2023; Team et al., 2024;
Hui et al., 2024). Among the skillset for agents,

*This work was done while Fan Yin was a Stu-
dent Researcher at Google. Corresponding authors:
fanyin3639@gmail.com, hamidpalangi@google.com. ♣ rep-
resents joint last authors

the ability to leverage external tools or applica-
tion programming interfaces (APIs) 1 and inter-
act with humans to perform actions in environ-
ments is in the central of successful completion
of many agentic tasks. Towards this end, recent
LLMs have been tailored for function calling (FC)
abilities (Schick et al., 2023; Patil et al., 2023;
Dubey et al., 2024; Yang et al., 2024), achieving
improved performance on benchmarks that simu-
late real-world APIs (Yan et al., 2024; Yao et al.,
2024; Guo et al., 2024; Ma et al., 2024).

However, by qualitatively scrutinizing the behav-
iors of models, we find that despite the advance-
ments in composing independent FCs, it is still
challenging for current LLM agents to perform
multi-step and multi-turn interactions with users 2

where LLM agents reason, compose FCs and ana-
lyze outputs from FCs to respond (Yao et al., 2024;
Yan et al., 2024). We summarize three main chal-
lenges and common mistakes in multi-turn FC, as
illustrated in Figure 1: 1) Nested FCs: some turns
require multiple or even nested FCs which might
not be explicitly requested in the query; 2) Long
dependency: some turns require information from
the conversation history to compose FCs; 3) Irrel-
evance: some turns might contain missing func-
tionality or parameter values, for which additional
clarification questions are required. Performance-
wise, in the Berkeley Function Calling Leaderboard
(BFCL-v3) (Yan et al., 2024), the best proprietary
model achieves 47.62% success rate on multi-turn
cases, while some public models have only around
10% success rate.

Synthesizing or distilling data from stronger
LLMs has been proven a powerful way to improve

1The terms, function calling and tool-use, function and
API, are used interchangeably in this paper.

2Multi-step interactions require the LLMs to execute mul-
tiple internal FCs to address a single user request, while multi-
turn interactions involve an extended exchange between the
user and the agents, resulting in multiple conversational turns.
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Turn 2
With my flight now secured, I need to purchase an insurance 

for this trip.  

Nested and Implicit FC Example
Turn 1

I'm planning a journey from Los Angeles to New York on the 
morning of April 15th 2024, preferring to fly business class. 
Arrange this flight using my pre-linked credit card with id 
'card_123456789' and access token 'abc123xyz' 

Error 1:  ( Not calling necessary functions and hallucinating 
arguments)
book_flight(access_token='abc123xyz', card_id='card_123456789', 
…, travel_class='business', travel_cost=1000.0)

Error 2: (Asking for information which is actually obtainable)
I need the cost of the flight to help book the flight. Please 
provide the cost of your flight from Los Angeles to New York. Long Dependency Example   

Turn 4
I’ve reached the decision to cancel my New York trip due 

to unforeseen personal circumstances. Could you 
proceed with the cancellation process as soon as 

possible?

Missing function and parameters
Turn 5

Lastly, will you fetch the invoice for that recent booking 
using my access token? I need a summary for my records

（The context does not provide the retrieve invoice 
function and the actual access token）

🤖get_flight_cost(travel_from='LAX',travel_to='JFK', 
…')

🛠 {"travel_cost_list": [2400.0]}

🤖book_flight(access_token='abc123xyz',, …, 
,travel_cost=2400.0)

{"booking_id": "3426812", "transaction_id": 
"45451592", "booking_status": true}🛠

🤖

Common Mistakes

MAGNET  Trajectory

Common Mistakes
Error 1:  ( Failed to recall the booking id info from Turn 1)

I need the booking ID to cancel the trip.

🤖cancel_booking(booking_id=3426812)

🛠 {"message": “Booking 3426812 
cancelled.”}

🤖Your flight booking has been 
successfully cancelled

MAGNET  Trajectory

Common Mistakes
Error 1:  ( Call the wrong function)

get_booking_history(booking_id=...)

🤖I’m not provided with the function to retrieve the 
invoice.

I have updated the function …. Can you 
try again? 

🤖

MAGNET  Trajectory

Error 2:  (Hallucinate a value for the access token)

retrieve_invoice (access_token=’ABCDEF’, …)

👤
It seems there's no access token. Could you 
please double-check the access token value?

The specific access token is 
abc123xyz456👤

🤖retrieve_invoice(access_token='abc123xyz
456', booking_id='34268132’')

🛠 {"booking details": ….}

Turn 3
Please message my friend Joey about this recent trip. Use 
the text: Going to visit NYC on 2024-05-14. Come grab a 

coffee!’ 

🤖 send_message(message=’....’, to=’Joey’)

🛠 {"message": “Message sent!”}

MAGNET  Trajectory

(Skipped for Clarity)

Your flight from LAX to JFK on April 15, 2024 has 
been booked. Your booking ID is 3426812 and the 
transaction ID is 45451592

Figure 1: Illustration of challenges and common mistakes in multi-turn FC. An agent needs to understand function
outputs and finish follow-up queries from users. This brings several challenges to the agent such as nested FCs
(turn 1), long output dependencies (turn 4), irrelevant functions (turn 5).

the reasoning abilities (Guo et al., 2025) of weaker
LLMs. Yet the limited performance of existing
models on multi-turn cases aggravates the diffi-
culty in gathering high-quality training trajectories
to improve the multi-turn ability of public mod-
els. To bridge the gap between single FC and
multi-turn interactions and build reliable trajecto-
ries, we propose a principled pipeline, called Multi-
turn function-cAlling data synthesis with Graph
Translation, or MAGNET, to collect trajectories,
i.e., a sequence of user queries, model responses,
and tool outputs, to train public models with both
supervised fine-tuning (SFT) and preference opti-
mization.

Our method is based on iterative back-and-forth
translation (Section 3.3). Given a sequence of func-
tion signatures, i.e., function names and documenta-
tions, we prompt LLMs to iteratively translate them
into queries, mimicking user requests, and then
compose executable FCs as references. However,
forming the function signature path (FSP) is not
straightforward. Previous works (Qin et al.) focus
on single-turn FCs and randomly sample functions
from the same domains. We propose a graph-based
approach to constructing multi-turn FSPs.

Motivated by the fact that two functions from
the same domain are likely to be relevant in terms
of their inputs and outputs, we organize functions
as nodes in a graph structure and set a directed

edge between two nodes when the source node’s
outputs relate the target node’s inputs. We call
them local dependency graph as the edges reflect
the dependencies among functions. Based on the
local dependency graph, we random walk to sample
related function signatures and form a FSP.

From the graph perspective, we find that those
challenges mentioned in Figure 1 can be abstracted
as node operations. For example, nested FCs can
be abstracted as Insert, which adds extra nodes
before another node. Therefore, we further design
three node operations: Insert, Merge, Split to
enhance the initial FSPs and tailor them to cover
the challenges. We show through qualitative (Fig-
ure 1) and ablation study (Section 4) that including
those operations largely improve the reasoning pro-
cess and reduce common mistakes in multi-turn
challenges.

Given the queries and FC references pairs as ad-
ditional signals, we further control the trajectory
generation process with Gemini-1.5-pro-002 as the
teacher LLM using context distillation (Snell et al.,
2022). Specifically, we add FC references as hints
while synthesizing trajectories to ensure the quality
of positive trajectories. To enable preference-based
optimization, we also construct negative trajecto-
ries by selecting actions that are making mistakes
and deliberately add wrong hints with those mis-
takes into the trajectories. This makes clear con-
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trary between positive and negative trajectories.
Experiments on two common benchmarks,

BFCL-v3 and ToolQuery, demonstrate the advan-
tage of our pipeline. By SFT Qwen2.5-Coder mod-
els on 34K trajectories and on 4,556 trajectory
pairs with multi-turn direct preference optimization
(mDPO) (Xiong et al., 2024), our model MAGNET-
14B-mDPO achieves rank 4th on the BFCL-v3
benchmark, surpassing the teacher model Gemini-
1.5-pro-002 and adding to the base model by 32.5
points on multi-turn cases. Ablation study shows
that all the components in the pipeline is helpful
to improving its capability, and the performance
improvement can generalize to different base mod-
els. Lastly, we show that the trajectory synthesis
process can be generalized to other teacher models
and self-improve with the base model itself as the
teacher model.

Our contributions can be summarized as follows:

• A graph-based perspective for constructing high-
quality multi-turn queries and FC references, cov-
ering the challenges in multi-turn FC.

• A novel technique to distill the information pro-
vided in FC references to construct training tra-
jectories for both SFT and mDPO.

• We demonstrate superior performance on BFCL-
v3 and ToolQuery benchmarks with public mod-
els trained with our data. Detailed ablation study
shows the effectiveness of each component.

2 Related Work

FC agents evaluation The ability to use external
tools to solve a complex task when the agent lacks
some knowledge intrinsically is crucial in agen-
tic behaviors. A variety of benchmarks have been
constructed to evaluate such ability. We roughly
categorize them as follows based on the amount
of functions needed for each test instance and the
interactions among functions: (1) single-step; (2)
multi-steps, which can be further decomposed into
parallel, multiple (chained but not nested), nested;
(3) multi-turns. Among those, BFCL-v3 (Yan
et al., 2024) is a comprehensive benchmark eval-
uating single-step, multi-steps, multi-turns scenar-
ios. NexanRaven 3, Toolbench (Qin et al.), Stable-
Toolbench (Guo et al., 2024) mainly test for multi-
steps tool-use. Basu et al. (2024) target nested API
calls. Yao et al. (2024); Ma et al. (2024); Lu et al.
(2024) feature multi-turns and multi-steps FCs.

3https://nexusflow.ai/blogs/ravenv2

However, most of the above mentioned datasets
are human curated (with the assistant of LLMs). In
contrast, our framework requires minimal human
efforts.
Training FC agents Due to the lack of train-
ing trajectories, fine-tuning a tool-use agent typ-
ically starts with collecting training data. Tool-
former (Schick et al., 2023) replaces segments in
texts with API calls to train LLMs. (Qin et al.;
Chen et al., 2024b) synthesize queries from random
sampled APIs without clear structure. The xLAM
and APIGen series (Liu et al., 2024b; Zhang et al.,
2024) unify the format of tool-use data with other
agentic tasks and automatically generate queries
from verified APIs. Lin et al. (2024) improves the
APIGen (Liu et al., 2024b) dataset and propose
to add function masking and more irrelevant func-
tions to improve the robustness of agents. Abde-
laziz et al. (2024) introduce fine-tuning with multi-
task (function calling, instruction tuning) on 110k
data. Liu et al. (2024a) synthesize new APIs au-
tomatically and directly prompts LLMs to role-
play users, agents, and tools. Chen et al. (2024a)
adapt composition to improve the quality of single-
turn function calling. Among those works, Qin
et al.; Chen et al. (2024b); Liu et al. (2024b) back-
translate queries from APIs. While our query gen-
eration technique adopt similar ideas, to adapt to
multi-turn cases, we propose to organize function
signatures in graphs and apply node operations to
improve graph complexity. Our trajectory synthe-
sis methods also diverge from previous methods by
incorporating more controls.

3 Methodology: MAGNET

In this section, we first discuss the whole train-
ing pipeline to provide more context (Section 3.1).
Then, we dive into our main contribution of synthe-
sizing high-quality FC trajectories (Section 3.2).

3.1 Training setup and formulation

We leverage SFT and RLHF training. In the
first stage, suppose we have a base model and
a set of training trajectories

{
τ i
}

, i = 1 . . . n.
Each trajectory involves a sequence (H-turns) of
user queries, model actions, and tool responses:
τ iw =

(
qi1, a

i
1, t

i
1 · · · qiH , aiH , tiH

)
. The SFT

training uses maximum likelihood estimation
(MLE) to fit the model actions ai1 · · · aiH , i.e., the
blue parts in Figure 1, given the rest as context.
Then, in the second stage, given the SFT model
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① Function Collection

~5K functions

}

Function Signature 
(Node) 

Name: get_distance 

Tool:      geo 

Category: travel 

Parameters: … 

Out nodes: convert_unit, 
set_navigation 
In nodes: cities_by_range 

④ Enhanced Function Signature Path

Insert

Merge

Split

② Local Dependency Graph

③ Function Signature Path

cities_by_range

get_distance

set_navigation

convert_unit

cities_by_range get_distance set_navigation

Positive Trajectories Negative Trajectories

Back-and-Forth Translation ⚒ ⚒ ⚒ ….

Detailed instructions

Query

FC

+
[Query] / [FC as hints]

Teacher Model
General instructions

[Query] / [Wrong FCs]

+
Student 
Model

Figure 2: The pipeline for constructing trajectories of function calling. We divide the pipeline into four parts
and depicts each part respectively. (1) Construction of the function pool and function execution graph; (2) Node
operations defined on the function execution graph; (3) Back-and-forth translation to iteratively create multi-turn
queries and fill in function parameters; (4) Construction of positive and negative trajectories by context distillation
of good and bad hints and instructions.

and trajectory pairs
{
τ iw, τ

i
l

}
, i = 1 . . . m,

we adopt the mDPO loss (Xiong et al., 2024)
plus a MLE loss to further tune the SFT model:

L (x; τw, τl) = LSFT (x; τw) + λLmDPO (x; τw, τl) ,

LmDPO (x; τw, τl) = -logσ

(
η

(∑

τl

πθ
(
al|sl

)

πref (al|sl)
−
∑

τw

πθ (a
w|sw)

πref (aw|sw)

))
,

where τl and τw represents the negative and posi-
tive trajectories. λ is a weight hyperparameter for
balancing the two losses, πref is the SFT reference
policy, and πθ is the mDPO policy. Next, we dive
into MAGNET, our method that synthesizes

{
τ i
}

,
i = 1 . . . n and

{
τ iw, τ

i
l

}
, i = 1 . . . m.

3.2 Trajectory Construction Overview

Overall, MAGNET first generates pairs of queries
and FC references, and then, transform them into
trajectories using a teacher LLM. In the first part,
the backbone is a back-and-forth translation pro-
cess inspired by Nguyen et al. (2024); Li et al.
(2024) that converts FSPs into query-reference
pairs, which will be introduced in section 3.3. The
key innovation, however, lies in how we construct
high-quality multi-turn FSPs from a graph perspec-
tive and node operations (Section 3.4). In the sec-
ond part, we collect both positive and negative tra-
jectories with our newly designed context distilla-
tion technique. An illustration of the pipeline is

in Figure 2. For the whole process, we prompt an
LLM to help us on tasks like rewriting, back-and-
forth translation etc. Without extra statement, we
will use Gemini-1.5-pro-002 as the assistant LLM.
All the prompts mentioned in this section are in
Appendix A.

3.3 Backbone: back-and-forth translation

We start with the back-and-forth translation pro-
cess, which takes a FSP as input and outputs a
sequence of user queries and executable FC refer-
ences. The same translation process repeats to each
function signature. Formally, suppose the whole
interaction has H turns, we have the following con-
cepts and notations:
Function signature path (FSP): the function
names and attributes (documents, parameters, etc.)
for H turns. We denote the FSP as φ =
(f1, f2, · · · fH), where each fh, h ∈ [H] de-
notes function signatures used at turn h, which
might consists of one of more consecutive func-
tions fh = (fh1, fh2, · · · fhk).
Queries: the sequence of user queries for H turns.
We denote them as Q = (q1, q2, · · · qH).
Executable functions: the sequence of exe-
cutable function call references with actual argu-
ment values. We express them in the format of
FUNC_NAME(ARG1=VAL1, ...) and denote them
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as FC = (fc1, fc2, · · · fcH). Like function
signatures, each turn h contains one or more func-
tion calls: fch = (fch1, fch2, · · · fchk). Note that
each fchi maps to a fhi. After executing each func-
tion call, we will also obtain the corresponding
function outputs for each step i at each turn h. We
denote it as th = (th1, th2, · · · thk).

With the notation above, the back-and-forth
translation can be represented as two conjunct func-
tions. Back-translationMb uses the assistant LLM
to transform each fh into a synthetic query qh:

Mb (fh) = qh.

For the forth-translationMf , it uses the assis-
tant LLM to transform the qh into fch, given fh
and outputs of last round th−1 as additional infor-
mation, supposing t0 is empty:

Mf (qh, fh, th−1) = fch.

This process is conducted iteratively for each
function signature in the FSP to make sure that
the outputs from the previous rounds are ready
before passing to the later rounds, as illustrated
in (3) in Figure 2. From the next section, we
explain the missing parts from the beginning
to the final trajectory, i.e., 1) how we obtain
the FSP, φ = (f1, f2, · · · fH), and 2) how
we obtain τ = (q1, a1, t1 · · · qH , aH , tH) start-
ing from the queries and executable functions
(q1, fc1, t1, · · · qH , fcH , tH).

3.4 Obtain FSP

Function collection and initial FSPs Suppose
we have a pool of N functions and their corre-
sponding attributes. We treat functions in the pool
as nodes {v1, v2, . . . , vN} and aim to build a local
dependency graph Gi =

(
N
(
vi
)
, Ei
)

for each
target node vi, whereN

(
vi
)
= {c1, c2, . . . , c|V i|}

denotes candidate relevant functions or neighbors
for vi.

(
vi, ck

)
∈ Ei denotes edges between vi and

a relevant function ck, k ∈ |V i| which represents
they are indeed relevant.

Specifically, our function collection inherits
from previous works (Liu et al., 2024b). We col-
lect the underlined function source codes from the
StableToolBench (Guo et al., 2024) and BFCL-
v3 multi-turn function implementation (Yan et al.,
2024). For functions in BFCL-v3, we rewrite the
function name and descriptions using our assis-
tant LLM, i.e., only the real implementation that

is not exposed to models are kept. For StableTool-
Bench, following APIGen, we select those that
contain parameters and are executable verified by
simulated calls. In total, we collect 5,011 APIs.
For function attributes, besides the function de-
scription, arguments information, and response in-
formation, we prompt the assistant LLM to label
their category and class. For example, a function
like get_current_weather will have category
Weather and the tool class Weather condition
tool. Our categories are cleaned based on Stable-
ToolBench, which include 49 categories.

Then for each vi, i ∈ [N ], we set |N
(
vi
)
| =

30, i.e., we randomly sample 30 candidate nodes
from the same category and class as neighbors.
Then, we prompt the assistant LLM to judge
whether there are dependencies between vi and
ck based on their inputs and outputs information.

To sample initial FSPs, we conduct a random
walk with the local dependency graph Gi for each
vi. The random walk starts from vi and proceed
for S = 7 steps. At each step, we uniformly
sample from the out edges of this node and use the
target node as the next step, i.e., f̃ i1 = vi, f̃ ih ∼
{ck|ck ∈ N

(
f ih−1

)
and

(
f ih−1, c

k
)
∈ Ef ih−1}

. We denote the initial FSP as φ̃ =(
f̃1, f̃2, · · · f̃H

)
.

Node operations for enhanced FSPs To better
cover the challenges for multi-turn interactions,
we propose to enhance the initial FSPs obtained
above with graph-level operations which abstracts
the three challenges: nested FCs, long dependency,
and missing information.
Node OP #1: Insert is designed for handling the
nested and implicit function call and long depen-
dency scenario. Consider the query:

Please check how many kilometers to go from San

Francisco to San Mateo,
which should invoke two functions:

get_distance(from_loc,to_loc),

convert_unit(in_value=<milage obtained from

SF to SM>, out_value).
The first function will return a distance in

mileage and we need the second function to con-
vert them into kilometers. However, the second
function is not mentioned explicitly in the query to
be called. Models might not recognize to call the
second function. To cover this, our Insert opera-
tion will insert an implicit function signature into
the current FSP if they are nested. Insert will also
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be useful for creating examples covering the long
dependency challenge. For example, we could add
another cities_by_range in a few rounds later
which reuses the outputs from get_distance.

Formally, we iterate through the FSP φ̃ =(
f̃1, f̃2, · · · f̃H

)
. For each turn in FSP f̃h =

(
f̃h1, . . . , f̃hk

)
which consists of one or multiple

function signatures, we select the last function sig-
nature f̃hk and use our assistant LLM to check
if any of its neighbors N

(
f̃ ihk

)
satisfies the re-

quirements for a nested function signature (see the
prompts to judge nested functions in Appendix A).
If so, we collect that function signature, denote as
chk, and append it to the current turn. Finally, we
obtain fh =

(
f̃h1, . . . , f̃hk, chk

)
. We may also in-

sert chk as an individual turn after a random later
turn to reflect long dependency.
Node OP #2: Merge is for creating a single-turn
query that would involve multiple function calls
and cover short dependency. Notice that the key
difference with Insert and nested API calls is that
we could Merge multiple functions that are rele-
vant but not exactly nested. In this case, agents
should understand the outputs from the previous
functions in this turn to compose the consecutive
function. For example, the following query would
invoke both get_distance(from_loc,to_loc),
set_navigation(distance):

Can you check how many kilometers to go from

San Francisco to San Mateo and then set up the

navigation for me with the obtained distance?

Formally, for the FSP φ̃ =
(
f̃1, f̃2, · · · f̃H

)
,

we take each two consecutive turns f̃h and f̃h+1

and combine them into one turn fh =
(
f̃h, f̃h+1

)

with a probability of p = 0.3.
Node OP #3: Split is mainly designed for the
missing function information scenarios. For the
previous query, if the function get_distance is
not provided, or the query omits the destination:
Please check how many kilometers to go from San

Francisco to somewhere, the agent should ask a
clarification question. Formally, we randomly se-
lect a turn f̃h in the initial FSP and split it into
two turns fh = f̃h, fh+i+1 = f̃h+i where i =
1, . . . ,H − h− 1, and fh+1 = {}. The null node
will be labeled with ‘miss params’ or ‘miss func’
which will act as an indicator when translating.

For each FSP, we sequentially apply Merge
then Insert to obtain an enhanced FSP φ =

(f1, f2, · · · fH∗). We use H∗ to denote the new
number of turns. Then, we apply Split on φ to
obtain another enhanced FSP with missing informa-
tion φ̂ = (f1, f2, · · · fh, {}, · · · fH∗+1). Both
φ and φ̂ will proceed for back-and-forth transla-
tion. For consistency and simplicity, we call them
enhanced FSP and use the unified φ as the notation.

3.5 Hint-based context distillation
Recall that after obtaining enhanced FSPs,
we will leverage the back-and-forth transla-
tion to convert them into queries qh and ex-
ecutable FCs fch. In this step, we trans-
form (q1, fc1, t1, · · · , qH , fcH , tH) to τ =
(q1, a1, t1 · · · , qH , aH , tH), which essentially
transform from function call references fch into
model actions ah. The model action ah for each
turn may consist of different components. For ex-
ample, with the ReAct (?) style, the model actions
synthesize verbal reasoning, FCs, and textual sum-
marization of function outputs, while with other
styles, the explicit verbal reasoning might be omit-
ted. When generating positive trajectories, we hope
the teacher model to be as accurate as possible,
where the model actions fully cover the functional-
ity of fch and compose precise response to users
based on the functions However, no current LLMs
can consistently produce perfect trajectories.

Inspired by context distillation (Snell et al.,
2022), we propose to add a [Hint] section after
each query qh to indicate the functions being called
during this turn, using the fch, and provide detailed
instructions when sampling the positive trajectories.
We show the prompts in Appendix A.

On the contrary, when generating negative trajec-
tories, we hope the trajectories reflect the mistakes
made by models. So for negative trajectories, we
also include such hints but the actual content is a
misleading wrong FCs. Those FCs are collected
from the mistakes of the SFT model. Specifically,
for each data instance, we collect ten trajectories
from the SFT model. Then, for each turn in each
trajectory, we present it to the assistant LLM as a
judge to decide whether this turn includes an incor-
rect FC that conforms with any one of the errors
defined in the judgement prompt. If so, we will
collect them as misleading hints when prompting
SFT model to sample negative trajectories.

3.6 Post-processing and data mixture
We adopt the following post-processing techniques
to enhance the diversity of the SFT datasets so that
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models trained with our data could be more robust
to variations in superficial features.

• For each training data, we shuffle the order of
available functions in system prompts.

• We filter out trajectories with rule-based metrics:
we collect several key words that indicate failed
FCs at the end of each turn, such as ‘Bad request’.
‘does not match’ etc. This roughly excludes in-
correct trajectories or wrong formatting in FCs.

• Besides multi-turn data, we add the following
types of data into our final SFT data mix: single-
turn data including those that invoke single, par-
allel (same function with different arguments),
and multiple (different but relevant) FCs. This
is for warming up the model on function calling;
2) irrelevance functions where models should be
able to detect. A study on how to mix those data
is provided in Section 4.4.

3.7 Data statistics

Category # SFT # mDPO

Single-turn 20,000 1,556
Multi-turn 7,800 2,250
Irrelevance 6,200 750
Avg. FCs (for single-turns) 1.80 1.94
Avg. Turns (for multi-turns) 4.71 5.22
Avg. FCs (for multi-turns) 15.13 14.98

Table 1: Data statistics for the training sets. # SFT and
#mDPO represents the number of samples in SFT and
mDPO training sets of the corresponding category.

Our final SFT training set contains 34,000 in-
stances and the preference learning set contains
4,556 instances. The total training size, 38,556, is
around half of other current public datasets such
as APIGen (60,000), Hammer (67,500) etc. We
present a detailed statistics about the number of
each data type, the number of turns, and the number
of function calls in Table 1. A study about function
contamination is presented in Appendix C.

4 Experiments

We conduct experiments on the following two
benchmarks: BFCL-v3 (Yan et al., 2024) and Tool-
Query (Ma et al., 2024). BFCL-v3 is a comprehen-
sive benchmark designed for different aspects of
function calling, including single-turn, multi-step,
multi-turn, and irrelevant function calls categories.
ToolQuery is part of a broader agent benchmark
that test model’s ability in composing multi-step
and multi-turn function calls in academia, weather,

movie areas. BFCL-v3 have in total 4,751 test
cases while ToolQuery contains 60 test cases. We
use a unified prompt format for both tasks, as
shown in Appendix A.

4.1 Setup

We fine-tune Qwen2.5-Coder-7B-instruct and
Qwen2.5-Coder-14B-instruct. For the training, we
first train with the 34,000 positive trajectories with
SFT. We set a peak learning rate of 1e-5 with warm
up and linear decay, and a batch size of 64. Then,
in the mDPO stage, we do full fine-tuning on the
7B models and set the learning rate to be 5e-7 and
batch size 32. For mDPO on 14B model, we con-
duct LoRA tuning (Hu et al., 2022) with a learning
rate of 1e-6. More details in Appendix B.

4.2 Main results on BFCL-v3

We compare the performance of our trained model
with top ranked and related models on the BFCL-v3
benchmark. Results are presented on Table 2. The
performance of our best 14B model ranks 4th on
the leaderboard, surpassing the o1 model and on par
with GPT-4-Turbo on both the overall performance
and the multi-turn performance. We show that with
mDPO on targeted loss patterns, the performance
on multi-turn scenarios can be boosted compared to
SFT only models, with a margin of 2.50% success
rate for the 14B model. Notice that all of our 7B
and 14B models, including SFT and mDPO models,
outperform the teacher model Gemini-1.5-pro-002
on the multi-turn scenario. This demonstrates that
our data synthesis pipeline introduces additional
signals and provides better supervision compared
to directly distilling from the teacher model.

Finally, comparing with base models and other
public models of the same size, our trained model
boosts the performance by 18.5 and 30.0 on multi-
turn scenarios for the base 7B and 14B Qwen2.5-
Coder models, respectively. We also outperforms
Hammer2.1-7b (FC), a competitive FC agent model
trained from the same base model.

4.3 Main results on ToolQuery

Results for ToolQuery are shown in Table 3. We
achieve a success rate of 73.3 on ToolQuery by
training Qwen2.5-Coder-14B-instruct on our data,
surpassing the performance of a strong proprietary
model, GPT-4o, and a much larger public model
tuned on the function-calling task, xLAM-8x22b-r.
Notice that all the functions from ToolQuery are un-
seen in the training set. This further demonstrates
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Model Overall Single Turn Multi-turn Hallucination Measure
Non-live AST Non-live Exec Live AST Overall Base Miss Func Miss Param Long Relevant Irrelevant

Top six models
WATT-TOOL-70B (FC) 74.31 84.06 89.39 77.74 58.75 67.50 57.50 48.50 61.50 94.44 76.32

GPT-4O-2024-11-20 (PROMPT) 72.08 88.10 89.38 79.83 47.62 59.00 41.00 35.50 55.00 83.33 83.76
GPT-4O-2024-11-20 (FC) 69.58 87.42 89.20 79.65 41.00 62.50 6.00 37.50 58.00 83.33 83.15

GPT-4-TURBO-2024-04-09 67.88 84.73 85.21 80.50 38.12 54.00 13.50 35.50 49.50 72.22 83.81
WATT-TOOL-8B* (FC) 67.33 86.44 87.73 76.23 38.25 46.00 40.00 27.00 40.00 77.78 82.89

O1-2024-12-17 (PROMPT) 66.73 78.92 82.70 78.14 28.25 40.50 5.00 34.50 33.00 61.11 89.62
Gemini models (teachers)

Gemini-1.5-Pro-002 (Prompt) 62.19 88.58 91.27 76.72 20.75 23.00 19.50 17.50 23.00 72.22 78.15
Gemini-2.0-Flash-Exp (Prompt) 61.74 89.96 79.89 82.01 17.88 28.00 3.00 19.00 21.50 77.78 86.44

7B models
Functionary-Small-v3.1 (FC) 56.49 86.75 87.12 73.75 10.12 18.00 2.50 14.00 6.00 77.78 70.89

Hammer2.1-7b (FC) 61.83 88.65 85.48 75.11 23.50 35.50 25.50 19.00 14.00 82.35 78.59
Qwen2.5-Coder-7B-Instruct 53.13 86.83 82.27 66.99 8.25 11.50 6.50 5.50 5.50 88.89 65.39

MAGNET-7B-SFT 62.73 88.60 85.73 74.19 26.50 35.50 24.00 27.50 19.00 66.67 78.67
MAGNET-7B-mDPO 64.64 89.40 89.27 77.92 27.75 39.00 24.00 26.00 22.00 83.33 78.51

14B models
Qwen2.5-Coder-14B-Instruct 51.88 90.94 87.80 65.30 5.38 7.50 7.00 4.00 3.00 100.00 44.58

MAGNET-14B-SFT 66.83 90.02 88.20 77.92 33.38 47.00 32.00 32.00 22.50 72.22 82.59
MAGNET-14B-mDPO 68.01 90.13 89.75 79.14 37.88 52.00 36.00 35.50 28.00 88.89 84.78

Table 2: Main results on BFCL-v3. Our MAGNET series demonstrate substantial improvements compared to their
base model, Qwen2.5-Coder series, in both the multi-turn function calling and overall evaluations. Our 14B model
ranked #4 in the leaderboard, surpassing o1 and the teacher model Gemini-1.5-pro-002. Best numbers under each
test category and base models are bold. * indicates reproduced results with the exact same process as our models.

Success rate Progress rate
Qwen-Coder-7B-instruct 15.0 34.0
Qwen-Coder-14B-instruct 51.7 68.7
GPT-4o 63.3 80.1
Gemini-1.5-pro-002 68.3 74,6
xLAM-8x22b-r 68.3 75.8
MAGNET-7B-mDPO 67.7 73.4
MAGNET-14B-mDPO 73.3 78.7

Table 3: Main results on ToolQuery. Our 14B model
achieved the best performance on success rate.

the generalization ability of our trained models on
unseen functions.

4.4 Ablation Study and Analysis

We conduct ablation study to answer the questions:
(1) how each component in our pipeline affects the
overall performance? (2) how our synthetic data
is better than other public training datasets? (3) is
the effects of the synthetic data consistent among
different base models? (4) how the advantage of
the framework transfers to different teacher models,
including self-improvement. The full results are
presented in Table 4. Findings below:
Pipeline design We conduct experiments to see
the effects of local dependency graph construction,
each node operation, positive trajectories sampled
with correct hints, and negative trajectory sampled
with wrong hints in the model performance. The re-
sults, shown in the first six rows of Table 4, demon-
strate that each element positively contributes to
the model’s final performance. With the initial lo-
cal dependency graph, we are able to improve upon
the base model by around 8% on multi-turn suc-

cess rate. Building upon that, both merge and insert
operations boost the multi-turn performance by a
large margin. Finally, adding split operation di-
rectly helps with the missing function, missing pa-
rameters, and irrelevance detection scenarios 5.5%,
7.5%, and 3.69%, respectively. We also observe a
substantial boost in performance when we distill
FC references into positive trajectories compared
to directly distilling teacher trajectories from the
multi-turn queries. Finally, adding negative tra-
jectories using context distillation brings around
0.5% improvements compared to randomly sample
rejected trajectories from the SFT model.
Data sources To demonstrate the benefits of our
data, we train the base model with it and compared
it to models trained with other open-sourced data
(APIGen (Liu et al., 2024b), ToolAce (Liu et al.,
2024a)) and the Hammer2.1-7b (Lin et al., 2024)
model. As shown in the second section in Table 4,
our MAGNET-7B-SFT significantly outperforms
models trained with other data sources, especially
in multi-turn scenarios, surpassing Hammer2.1-7B
by 3 points and APIGen/ToolAce by 20.25 points.
This highlights our training data effectiveness.
Base model We analyze on the effects of base
model on the final performance. Besides the orig-
inal Qwen2.5-Coder-instruct series, we compare
with Qwen2.5-instruct series, which are trained
without additional code data, and Mixtral-8x7B-
instruct-v1. We observe that Coder series models,
although obtaining slightly weaker performance on
multi-turn and irrelevance detection without fine-
tuning on our data, have better potential to learn
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Model Overall Single Turn Multi-turn Hallucination Measure
Non-live AST Non-live Exec Live AST Overall Base Miss Func Miss Param Long Relevant Irrelevant

Ablation on pipeline components
init graph 58.54 89.60 87.13 76.96 12.75 14.50 13.00 13.50 10.00 94.44 78.95
+ merge 60.83 89.76 87.81 76.92 20.63 26.50 18.00 19.00 19.00 77.78 76.87

+ merge + insert 64.39 90.89 87.91 77.37 29.25 42.00 26.50 24.50 24.00 88.89 78.90
MAGNET-14B-SFT 66.83 90.02 88.20 77.92 33.38 47.00 32.00 32.00 22.50 72.22 82.59
MAGNET-14B-SFT 66.83 90.02 88.20 77.92 33.38 47.00 32.00 32.00 22.50 72.22 82.59

- context-distillation-positive 60.26 88.27 84.29 76.63 18.88 21.00 20.00 15.50 19.00 72.22 78.00
MAGNET-14B-mDPO 68.01 90.13 89.75 79.14 37.88 52.00 36.00 35.50 28.00 88.89 84.78

- context-distillation-negative 67.35 90.34 88.96 78.84 36.25 48.50 34.50 35.00 27.00 88.89 83.79
Comparison between training data source: Qwen-Coder-7B-instruct as base model

MAGNET-7B-SFT 62.73 88.60 85.73 74.19 26.50 35.50 24.00 27.50 19.00 66.67 78.67
APIGen + ToolAce 50.30 88.85 89.59 59.04 7.13 10.50 6.50 5.50 4.50 100.00 39.17

APIGen + ToolAce + Irrelevant 57.24 87.44 89.54 76.99 6.25 9.00 5.50 7.00 3.50 77.78 83.79
Hammer2.1-7b (FC) 61.83 88.65 85.48 75.11 23.50 35.50 25.50 19.00 14.00 b82.35 78.59

Effectiveness of MAGNET across different base models
QWEN2.5-CODER-INSTRUCT 50.01 86.15 82.45 64.46 4.25 6.00 6.50 3.50 1.00 100.00 51.60

MAGNET-QWEN2.5-CODER-INSTRUCT 62.73 88.60 85.73 74.19 26.50 35.50 24.00 27.50 19.00 66.67 78.67
QWEN2.5-INSTRUCT 52.58 86.83 82.27 66.99 7.25 8.50 10.00 5.50 5.00 88.89 65.39

MAGNET-QWEN2.5-INSTRUCT 59.84 88.12 85.48 72.86 21.12 31.00 19.00 21.00 13.50 83.33 76.67
MIXTRAL-8X7B-INSTRUCT-V0.1 36.93 47.94 51.59 57.71 0.50 1.00 0.00 0.00 1.00 38.89 75.37

MAGNET-MIXTRAL 58.17 88.46 80.20 68.46 19.75 24.50 22.50 19.00 13.00 94.44 66.47

Table 4: Ablation results on BFCL-v3. We show the effects of ablating out different components in our data
synthesis pipeline. We also compare with different base models and different data sources. Results demonstrate
the effectiveness of our training data from different aspects.
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Figure 3: The performance when changing the data
mixture with different number of irrelevance data.

from the training data, which achieves 5.38 bet-
ter performance on multi-turn cases. Besides, by
training comparing Mixtral-8x7B-instruct-v1 and
MAGENT-Mixtral, we demonstrate that the per-
formance boost brought by our data on function
calling can be generalized to other models as well.
Teacher model We analyze on the effects of using
different teacher models for synthesizing trajec-
tories. Specifically, we use Gemini-1.5-pro-002
(original setting), GPT-4o as teachers and also in-
vestigate using the Qwen2.5-Coder-14B-Instruct
itself as the teacher model given the hint-based
trajectory distillation. We find that Gemini-1.5-
pro-002 and GPT-4o as teachers show comparable
performance. This reflects that using the hints as
context closes the gap between the original perfor-
mance of teachers on multi-turn scenarios. Fur-
thermore, self-improvement is also possible under
the current data generation framework, despite of
slight performance drops.
Discussion: the impact of data mixture

We analyze the impact of data mixture to the fi-

nal performance. As discussed in (Lin et al., 2024),
the proportion of queries that involve missing or
irrelevant functions would impact the overall behav-
ior of models. We conduct an analysis to study the
ratio of single-turn irrelevance samples versus the
multi-turn samples. We fix the number of single-
turn function call samples and multi-turn samples
to 20k and 8k and adjust the ratio of irrelevance
samples among 6.7%, 9.6%, 12.5%, 15.2%, 17.5%,
20.0%, and 26.3%, which corresponds to 2k, 3k
. . . 7k and 10k irrelevance samples. We test on our
development set which consists of 200 irrelevance
test cases and 200 multi-turn test cases. Figure 3 ex-
hibits a performance trade-off between multi-turn
success and irrelevance detection when adjusting
the number of irrelevance examples. The optimal
ratio of irrelevance data that balances the two as-
pects lies around 15% to 17%, based on which we
set the final training data mixture in our case. The
exact ratio is subject to changes based on differ-
ent tasks and models but would provide a general
guideline when considering data mixture.

5 Conclusion

We proposed a novel pipeline, MAGNET, for syn-
thesizing multi-turn trajectories for training tool-
use LLM agents. Targeted at the challenges in
multi-turn FC, We proposed a graph-based multi-
turn queries and reference FCs synthesis method to
cover those challenges. We further converted those
query-reference pairs into trajectories for both SFT
and then mDPO training of LLMs. We demon-
strated strong performance on agentic benchmarks.
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Limitations

In this section, we discuss the limitations of the
work. First, the function signatures we studied
in the paper mainly consist of English and pure
texts. It is possible some conclusions of this work
might not generalize well to other languages and
modalities. Future work could consider study multi-
lingual and multi-modal tools as an extension to
this work.

Second, in our qualitative study, we observe that
our trained model might make mistakes when the
knowledge retrieved by the tool is conflicted with
the internal knowledge of the model. For exam-
ple, consider a function get_todays_date, the
tool might return a value that would be changing
permanently. However, we found that even with
the tool outputs, the model might still output some
fixed date such as 2024-05-02. This reflects some
limitations in resolving knowledge conflicts within
context and internal knowledge.

Third, more exploration abilities could be incor-
porated into the model in future work. An ideal
agent would be able to reflect on their wrong ac-
tions and restart the exploration, which is currently
limited in our model, due to lack of such data in
our training set.

Ethical Statement

This work develops data synthesis framework for
enhancing model capabilities in tool-use in multi-
turn scenarios. The usage of the synthetic data
should be governed by stringent privacy considera-
tions and user policies to prevent potential misuse.
This involves ensuring that the synthetic data does
not inadvertently replicate or expose sensitive in-
formation patterns and that the model’s tool-use
behaviors align with established ethical guidelines
and operational protocols.

Furthermore, significant efforts should also be
made to identify and remove biases that can hap-
pen in the synthetic data or the model’s learning
process, which could lead to unfair or skewed tool
selection.

Finally, our data mainly focuses on data, includ-
ing prompts, tool information in English. Future
work could extend this data synthesis framework
to encompass multi-lingual scenarios.
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A Prompts

In this section, we list the prompts we used over
the data synthesis and model inference process.
System prompts for training and evaluation We
use the following system prompt following BFCL-
v3 for both the training trajectories and the BFCL-
v3, ToolQuery inference.

You are an expert in composing
functions. You are given a question and
a set of possible functions. Based on
the question, you will need to make one
or more function/tool calls to achieve
the purpose. If none of the function
can be used, point it out. If the given
question lacks the parameters required
by the function, also point it out.
You should only return the function
call in tools call sections. If you
decide to invoke any of the function(s),
you MUST put it in the format of
[func_name1(params_name1=params_value1,
params_name2=params_value2...),
func_name2(params)]. You SHOULD NOT
include any other text in the response.
Here is a list of functions in JSON
format that you can invoke.

For the list of functions, each function is format-
ted in this way:

1 template = {
2 "category": "",
3 "tool_name": "",
4 "tool_description": "",
5 "api_name": "",
6 "api_description": "",
7 "parameters": {
8 "type": "dict",
9 "properties": {

10 },
11 "required": [],
12 "optional": [],
13 }
14 }

Function domain classification prompt We use
the following prompt to classify the domains of
functions:
You will be given a few domains and

a function from one of those domains.
You will be given the function name,
description, and the required parameters
of it. Your task is to classify

the function into one of the domains.
The domains are: ‘Cybersecurity’,
‘Artificial_Intelligence’, ‘Commerce’,
‘Advertising’, ‘Payments’, ‘News_Media’,
‘Cryptography’, ‘Devices’, ‘Business’,
‘eCommerce’, ‘Logistics’, ‘Finance’,
‘Events’, ‘Email’, ‘Business_Software’,
‘Music’, ‘Database’, ‘Translation’,
‘Jobs’, ‘Gaming’, ‘Monitoring’,
‘func_source_code’, ‘Education’,
‘Entertainment’, ‘Visual_Recognition’,
‘Sports’, ‘SMS’, ‘Media’, ‘Search’,
‘Finance’, ‘Location’, ‘Movies’,
‘Transportation’, ‘Text_Analysis’,
‘Mapping’, ‘Energy’, ‘Customized’,
‘Medical’, ‘Storage’, ‘Food’,
‘Health’, ‘Video_Images’, “Science’,
’Communication’, ‘Travel’, ‘Social’,
‘Data’, ‘Reward’, ‘Weather’. Return one
line with the name of the domain. Or, if
you cannot decide on which domain the
function belongs to or think the function
does not belong to any of the domains,
output ’misc’.
Dependency prompt We use the following prompt
to determine whether any of the candidates function
could be neighbors to a target function:
You will be given a few API functions.

You will also be given a target API. Your
task is to create the adjacent list of the
target API from those APIs. Each element
in the adjacent list should be related to
the target API. We say another function
is related to the target API if: 1) the
output of the target API is the premise
of executing the function. For example,
the output of fileexists(’file.txt’)
API determines whether we can call
downloadfile(’file.txt’). 2) the output
of the target API is exactly the input
parameters of the function. For example,
when calculating the area of a circle,
the function getradius(obj) is the source
node and calculate(radius) is the target
node. 3) the output of the target API is
partial input parameters of the function.
For example, when posting something to
social media, one might first get the
content. In this case, the content =
getcontent(’file.txt’) is the source node
and posting(content, id, tags) is the
target node. Notice that the relation
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might cross the boundary of domains. For
example, when the given APIs are in
the domain of weather and travel, it
is possible that a weather API could be
related to a travel API since the weather
determines the travel schedule. Also,
the target API itself should not be in
the adjacent list. For example, if the
target API is get_id, there should not be
a get_id function in the adjacent list.
Return only the adjacency dictionary in
a json format. Use exactly the original
name of the tool as the key and values.
In the adjacency dictionary, the only key
is the target API, and each value is a
list that contains the relevant APIs for
that target API.
Check nested prompt We use the following
prompt to determine whether two functions are
nested:
You will be given two function

information including their descriptions,
parameters, response info etc. Your task
is to determine whether the two functions
can be nested. We call two functions
to be nested when some parameter values
for the later function call can be
obtained by the first function call.
For example when the first function
is convert_usd_from_rmb(rmb_number=),
and the second function is
set_budget_limit(budget_limit_in_usd=).
The two functions are nested because
set_budget_limit needs a parameter value
in dollars and convert_usd_from_rmb
could output a dollar value. As another
example, when the first function is
get_airport_symbol_by_city(city=,range=),
the second function
get_flight_by_airport(airport_symbol=).
The two functions are nested because the
second function needs a symbol of airport
while the first function provides that
in the output. Please judge whether the
input functions satisfy this nesting
relationship. Return two lines: In the
first line, If those two functions are
nested, output yes, otherwise output no,
Use lower case. In the second line, give
a brief explanation on why you think they
are nested.
Context distillation for positive trajectories

prompt We use the following prompt for con-
text distillation of positive trajectories: You
are an expert in composing functions.
You are given a question and a set
of possible functions. Based on the
question, you will need to make one or
more function/tool calls to achieve the
purpose. If none of the function can
be used, point it out. If the given
question lacks the parameters required
by the function, also point it out.
You should only return the function
call in tools call sections. If you
decide to invoke any of the function(s),
you MUST put it in the format of
[func_name1(params_name1=params_value1,
params_name2=params_value2...),
func_name2(params)]. You SHOULD NOT
include any other text in the response.
Here is a list of functions in JSON
format that you can invoke. Notice that
for each question, I already added hint
function calls, following the [Hint] key
words. Please compose your answer based
on those hints while not mentioning
those hints explicitly in your responses,
i.e., when you decide to invoke function
calls, just return the functions, and
when you provide textual response, do
not mention that there is a hint. Your
textual response should summarize the
function call outputs. Most of the time
the hints are correct answers, just
follow it... However, sometimes, those
hints might not be perfectly correct, for
example, you might see placeholders in
the hints parameters like param1=unknow.
So, when the hints are not correct, you
need to identify them and compose the
proper functions by looking for those
parameter values from all previous turns.
When you see [Hint]: miss function,
this means the function needed in this
step is missed. You should not simply
output miss function in this case but
try to use natural language to describe
the situation and what functionality is
missed. Similarly, when you see [Hint]:
missed params, this means that some
required parameters for the function
is not mentioned in the query, just
output some pure texts to ask for the
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information. However, in your response,
do not mention the hint, just answer to
the query. When you encounter errors in
function outputs, please try composing
the functions again based on the error
information in the errors. Do not just
output textual response at once. **This
is important**: when you see the [Hint]
contains multiple function calls, i.e.,
more than one functions should be called
for the query, this means those functions
are relevant and nested. In this case,
at each turn of your response, call
only one function. Then, wait for the
feedback from the user and then, call the
next function. This is because sometimes
the parameters of the later functions
are missed without the user feedback.
For example, when you see [Hint]:
func_name1(params_name1=params_value1),
func_name2(params_name2=params_value2),
you should first output [func_name1(...)]
with the correct parameter values and
wait for the user response. Then, after
you get the user response, based on the
response, you call the next function
[func_name2(...)] with the correct
parameter values.
Hints selection for negative trajectories We use
the following prompt for the judgement model
which is also a Gemini-1.5-pro-002, for deter-
mining a negative trajectory hint: You will be
given a multi-turn conversation between
a user and an agent, the agent response
for a single turn, which is possibly a
function call, and a reference response.
Your task is to judge whether the model
response is a correct one based on the
reference response. Below are possible
error types. When both the reference and
the model response are function calls,
your judgement is for whether the model
response accurately invoke the correct
function call.
A response might be wrong in the following
way:
1. Nested function calls: There are
missing function calls. Model fails to
call some necessary functions because
they are not explicitly mentioned in the
query.
2. Short dependency: There are outputs

from a previous function call in this
turn that is not used correctly in later
function calls.
3. Long dependency: There are
some parameter values exist in the
conversation history but not properly
used in this turn.
When both the reference and the model
response are not function call but general
textual response, your judgement is for
whether the model response covers all
the necessary information but also not
hallucination based on the reference
response.
4. Wrong summarization: whether the model
response is a wrong summarization of the
reference response.
When either one of the reference or the
model response is not a function call
while the other one is:
5. Missed function or parameters: there
are some parameter values or functions
present or not present in the context
while the model thinks the opposite.
Additional guidelines: If one of the
reference and model responses is function
call while the other is not, directly
output no.
Notice that when you see redundant
parameters from the model response when
it is function call, it might because it
gives all the parameters even the default
ones. So, as long as other parameters take
the same values, regard this as correct.
In the first line, return yes or no. If
your answer is no, in the second line,
return a number to represent the error
type.
Forth-translation prompt We use the following
prompt for forth-translation to fill in function call
parameters to make them executable: Now you
are role-playing as a function-calling
agent that involves in a multi-turn
conversation with a user. You will
be given the functions called by the
history of this multi-turn conversation,
indicated by round numbers. The functions
called last round start with [Last
Round].You will also be provided with a
candidate function in a dictionary format
with its descriptions and parameters. I
would like you to generate the function
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call for the next round using this
function signature. Make sure the
parameters for this candidate function
should be derived from the user query
and reference outputs from the last round
function call. Rules: - You should
use the function with the original name
without any changes.
- For all the functions, make sure
your generated function calls contain
ALL the required parameters fields from
the function documentation. You may
also include some optional parameters.
However, do not hallucinate any
parameters outside of those. Use only
the parameters indicated in the required
and optional fields of the function
documentation.
- Then, the parameter values for the new
function should be related to the output
from last round, please refer to the
[Reference Output] for the corresponding
values. - You can have parallel function
call with the candidate function, i.e.,
call the function with different set of
parameters, for your new query. However,
**do not call more than three parallel
functions**.
Format:
Thought: <the thought on which parameter
values to use>
Answer: <You need to provide a
groundtruth for the function calls that
will be invoked in the next round as
well as the parameters. Separate your
reference function calls by comma. No any
other separator is acceptable, only using
comma. Also, if any of your parameters are
with string value, use double quotation
marks to include the parameters. If no
answer can be generated, output FINISH
in this line>
Back-translation prompt We use the following
prompt for back-translation from a function sig-
nature to a query. The in-context examples are
skipped for clarity:
Now you are role-playing as a user that

involves in a multi-turn conversation
with a function-calling agent. You will
be given the functions called by the
history of this multi-turn conversation,
indicated by round numbers. The functions

called last round start with [Last Round].
You will also be provided with a list
of candidate functions in a dictionary
format where the keys are the functions
called last round and values are related
and candidate functions that can be called
in this round. I would like you to
generate the query of this round which
calls one or multiple functions from the
candidate function list. When calling
multiple functions, make sure you call
no more than three functions at a single
round.
Rules:
- The preferred next round query should
be motivated by the outputs from the last
round function output. Preferably, those
outputs are used as the input parameters
for as least one of the functions being
called at this round.
- You should NOT mention which functions
to use in your query explicitly.
- After you decide on which function
to use, make sure your new query
contains information for all the required
parameters of the functions you want to
call, although some information may be
referred to implicitly as the outputs
from the last round. If the value for
some required parameters are not clear
given the context, you may want to create
a value for that required parameter but
just remember, have information for all
required parameters.
- Use no parameters besides the parameters
indicated in the required and optional
fields of the function documentation.
- For outputs from the last round, try not
to mention the exact parameters that you
will use. Instead, use references such as
’the location you just found’, ’With the
listed items’... to refer to the output
of last round that will be leveraged next.
- Do not repeat any queries in the
conversation history. This means your new
query should not call the same function
with the same set of parameters as any of
the queries in the conversation, even the
function exists in the adjacent list.
- Avoid using the APIs in [Do not use these
APIs].
- Try to make the conversation as natural
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as possible. Mind the logic between two
consecutive queries. Do not just create
an independent new query.
- Below are some examples of good output
given conversation history. Please follow
the style of conversation and make your
new query chained with previous queries.

B Training setup

We fine-tune Qwen2.5-Coder-7B-instruct and
Qwen2.5-Coder-14B-instruct as the starting point
and conduct SFT+RLHF over them. The reason for
choosing these base models is that they have been
adopted by other strong function calling models
as the base model and have demonstrated strong
potential for function calling abilities. All exper-
iments are conducted on 16 Nvidia A100 GPUs
on the same node. For SFT training, we fine-
tune the full parameters for both sizes. We use
a fixed max length of 8,172, warm up date of 0.1,
Adam (Kingma, 2014) as optimizer and search over
learning rate {1e-5, 5e-5}, batch size {64, 128}
with gradient accumulation, and epochs {1, 2}. In
general, we find that training for 1 epoch works the
best. Other parameters are set as in the Section 4.1.
For mDPO, we use LoRA tuning for 14B SFT
model with a fixed rank 32 and alpha 64 and fully
train the 7B SFT model. We search over learning
rate {5e-7, 1e-6, 5e-6}, batch size {32, 64}, epoch
{1, 2, 3}, beta {0.1, 0.01, 0.3}.

We use the transformer-trl 4 package for train-
ing SFT models and use the implementation
from Xiong et al. (2024), which is also based on
transformer-trl, for the mDPO training.

C Data contamination study on BFCL-v3

Note that both the ToolQuery test set and the Sta-
bleToolBench functions have minimal concerns on
data contamination. Here, we focus on the BFCL-
v3 datasets and study the data contamination of
using the backend implementation of python func-
tions of BFCL multi-turn scenarios. We analyze
from two aspects: 1) how much performance boosts
come from the more general StableToolBench func-
tion pool and how much the performance comes
from the BFCL-v3 functions; 2) treating the FSP
as a sequence of tokens, how much is the n-gram
overlap and exact match are there between the test
set and training set.

4https://github.com/huggingface/trl

From the first direction, we find that without
StableToolBench data, the multi-turn performance
on basic, missing function, missing parameters,
and long-context are 31.0, 21.0, 17.0, 13.0, with
an average of 20.5 score. Comparing to the final
performance of 37.5. The general functions from
StableToolBench contributes the performance by a
large margin.

From the second direction, we observe 0.3% ex-
act matched underline FSPs on basic multi-turn test
cases of BFCL-v3 and 0% exact match on other
categories of multi-turn test cases on BFCL-v3, de-
spite of changed function names. We also examine
the 2-gram overlaps on the FSPs between turns,
and there are 5.3% of 2-gram overlaps.
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