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Abstract

Large Language Models (LLMs) have demon-
strated remarkable capabilities in various tasks,
yet they often struggle with context-faithfulness
generations that properly reflect contextual
knowledge. While existing approaches focus
on enhancing the decoding strategies, they ig-
nore the fundamental mechanism of how con-
textual information is processed within LLMs’
internal states. As a result, LLMs remain lim-
ited in their ability to fully leverage contextual
knowledge. In this paper, we propose Context-
aware Layer Enhancement (CaLE), a novel in-
tervention method that enhances the utilization
of contextual knowledge within LLMs’ internal
representations. By employing V-usable infor-
mation analysis, CaLE strategically amplifies
the growth of contextual information at an op-
timal layer, thereby enriching representations
in the final layer. Our experiments demonstrate
that CaLE effectively improves context-faithful
generation in Question-Answering tasks, partic-
ularly in scenarios involving unknown or con-
flicting contextual knowledge.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities in various tasks, yet
they face significant challenges, including hallu-
cination and outdated knowledge (Ji et al., 2023;
Zhao et al., 2024). Retrieval-Augmented Genera-
tion (RAG) has emerged as a promising approach
to address these limitations by incorporating ex-
ternal knowledge sources into the generation pro-
cess (Ram et al., 2023; Gao et al., 2024). The
concept of context-faithfulness—the ability to gen-
erate responses that accurately reflect provided con-
textual information—has thus become crucial for
LLM applications (Zhou et al., 2023; Shi et al.,
2024b). Nevertheless, these models often struggle
to properly utilize external contextual information,
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Figure 1: An illustration of CaLE Method.

particularly when it conflicts with their pre-existing
parametric knowledge (Xie et al., 2024). As illus-
trated in the upper part of Figure 1, despite the
presence of context indicating "Google", the model
still generates a unfaithful output "Apple".

Existing efforts (Shi et al., 2024b; Jin et al.,
2024) to enhance the context-faithfulness of LLMs
primarily focus on modifying decoding strategies
or reweighting knowledge-aware neurons. The op-
timized decoding strategies (Shi et al., 2024b; Qiu
et al., 2024; Yuan et al., 2024) focus on the con-
trastive mechanism (Li et al., 2023) to ensure a
greater reliance on external information. Another
line of research is to explore the internal neurons
within models (Shi et al., 2024a). They aim to iden-
tify and reweight the neurons that are crucial in
processing contextual cues. However, these meth-
ods are only applicable to predefined data formats,
such as triplet facts or multiple-choice questions,
thereby limiting their effectiveness in complex sce-
narios (Jin et al., 2024).

Recent studies (Azaria and Mitchell, 2023; Chen
et al., 2024) have demonstrated that LLMs preserve
the highly-concentrated information within their in-
ternal states. Skean et al. (2024) further reveals that
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intermediate layers often yield more informative
representations for downstream tasks than the final
layer. These findings imply that, in RAG tasks, the
contextual information within internal states may
not always increase monotonically towards the out-
put layer. As illustrated in Figure 1, the correct
answer ("Google") attains the top probability at the
26th layer but not the final layer. Therefore, we pro-
pose to explore the contextual information retained
of LLMs’ internal states for faithful generations.

We conduct a investigation on contextual infor-
mation flow across model layers utilizing V-usable
information (Xu et al., 2020; Ethayarajh et al.,
2022). It measures the contribution that the inner
states of model can help generate the contextual an-
swer. Our findings reveal significant fluctuations in
contextual information, which could lead to under-
utilization of the given context. This fluctuation
may disclose the inherent deficiency in process-
ing the contextual information of current LLMs
based on Transformer, and thus present a critical
intervention point for preserving and enhancing
contextual information flow, potentially improving
the context-faithfulness of LLMs.

To remedy the above issues, this paper pro-
poses a Context-aware Layer Enhancement (CaLE)
method, which exploits contextual knowledge
within model’s internal representations from a
layer-specific perspective. Based on V-usable infor-
mation, CaLE identifies the context-aware layer in
either a supervised or unsupervised manner, which
exhibits the highest contextual information. Then
it enhances the layer representations through am-
plification or residual connections. As a result,
the contextual information relevant to the target an-
swers is effectively enriched. As shown in Figure 1,
CaLE identifies the 26-th layer that encodes rich in-
formation about the correct answer ("Google") and
enhances its representations, facilitating accurate
response generation at the final layer.

Experiments on CounterFact (Meng et al.,
2022a), Natural Questions (NQ) (Kwiatkowski
et al., 2019), SQuAD (Rajpurkar et al., 2016) and
StrategyQA (Geva et al., 2021a) datasets demon-
strate that CaLE significantly improves context-
faithful generation in downstream tasks. Further-
more, CaLE’s enhancements to context utilization
are independent of and complementary to various
decoding strategies, enabling cumulative improve-
ments in the faithfulnes of LLMs. This orthogonal-
ity to existing decoding methods underscores the
versatility of our approach.

The contributions of this paper are as follows:

• Through experimental analysis, we find that
LLMs often exhibit a characteristic informa-
tion fluctuation across the intermediate layers,
with certain layers maintaining a high increas-
ing context-faithful information, followed by
a plateau or decrease in the deeper layers.

• To mitigate the negative effective of the con-
textual information degradation, CaLE pro-
poses a context-aware layer identification
method to determine an optimal intervening
position. Through amplification or residual
connect, the further enhancement will lead to
richer representations in the final layer.

2 Information Flow Analysis based on
V-usable information

First, we introduce a method for measuring the
contribution of the inner states of the model to
the faithfulness of its responses, specifically focus-
ing on how to quantitatively analyze the contex-
tual information contained within each layer’s state.
Building on this, we analyze the flow of contex-
tual information across different layers in various
models, using the CounterFact (Meng et al., 2022a)
dataset to examine the variations in the flow.

2.1 V-usable Information

Unlike Shannon’s MI and in violation of the data
processing inequality, V-usable information can
be created through computation (Xu et al., 2020;
Ethayarajh et al., 2022). It reflects the ease with
which a model family V can predict the correct
answer Y given specific input hidden states hl at
layer l (Ju et al., 2024).

IV(hl → Y ) = HV(Y )−HV(Y |hl) (1)

where HV(Y ) and HV(Y |hl) denote the predic-
tive V-entropy and the conditional V-entropy. The
latter can be estimated through the following equa-
tions:

HV(Y ) = inf
f∈V

E[− ln f [∅](Y )] (2)

HV(Y |hl) = inf
f∈V

E[− ln f [hl](Y )] (3)

where the function f [·] produces a probability dis-
tribution over the vocabulary. Put simply, we use
the logit lens (nostalgebraist, 2020) with softmax
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Figure 2: Visualization of Information Flow. The ver-
tical axis represents the variation in V-information, as
reflected by the −HV metric. The horizontal axis de-
notes the information content across different layers,
while the shaded region indicates one standard devia-
tion from the mean.

function here.

f [hl](Y ) =
evk∑

j∈|V ocab| e
vj

(4)

where v = LogitLens(hl)
1 represents the logit vec-

tor at layer l. The subscript k represents the token
index corresponding to Y .

To evaluate the variations across layers, we adopt
−HV for observation based on:

∆IV = IV(hl → Y )−IV(hl−1 → Y ) = ∆−HV

2.2 Information Flow Analysis
We analyze the flow of contextual information us-
ing models of similar sizes (Figure 2a), as well
as the Llama series models of varying sizes (Fig-
ure 2b). The details of the experimental settings
are provided in Appendix A.1.

As shown in the Figure 2, the Llama models gen-
erally exhibit relatively higher values of V-usable
information in their intermediate layers than the
final layer. A comparison between Figure 2a and
2b reveals that the models exhibit a characteristic
information fluctuation across the intermediate lay-
ers. Specifically, a subset of layers maintains a
high, monotonically increasing V-usable informa-
tion, followed by either a plateau or a decrease in
the deeper layers.

The analysis reveal that the V-usable informa-
tion does not follow a monotonically increasing
trend toward the output layer. Therefore, we pro-
pose leveraging the contextual information within
the internal states of LLMs to maintain a continu-
ous growth trend, which may potentially counteract
subsequent degradation (or stagnation) effects.

1Detailed formula can be found in Appendix B.

3 CaLE: Context-Aware Layer
Enhancement

During the inference process, information fluctu-
ations can occur with degradation (or stagnation).
This leads to a reduction in the amount of con-
textual information at the final layer (Skean et al.,
2024), resulting in a loss of contextual faithfulness
during the final decoding.

To mitigate this issue, we propose CaLE, which
first identifies the context-aware layers before
degradation and then enhances the contextual rep-
resentations within these layers. This improvement
helps to elevate the IV(hf ;Y ) in the final layer,
thereby enhancing the model’s faithfulnes. Further-
more, we provide theoretical proofs to guarantee
the effectiveness of CaLE.

3.1 Layer Enhancement Methods

According to Formula 1, IV(hf ;Y ) can be maxi-
mized by minimizing the HV(Y |hf ) of the final
layer. To minimize the V-entropy, we propose two
intervene methods for enhancing the layer with rich
contextual knowledge:

Amplification of Representations at Layer l
(CaLE-A). For layer l, the representation hl is
directly amplified by a factor α1. The enhanced
representation h

′
l is given by:

h
′
l = α1 · hl (5)

where α1 is a hyperparameter that amplifies the
representation of layer l.

Residual Connection from Layer l to Subse-
quent Layers (CaLE-R). A residual connec-
tion is added from layer l to the representations
of α2 subsequent layers. For any layer k where
l + 1 ≤ k ≤ l + α2, the enhanced representation
h

′
l is computed as:

h
′
k = hk + hl (6)

where hl is the representation of layer l, and hk is
the original representation of layer k.

Both methods ensure that contextual informa-
tion at layer l is enhanced and accumulated across
subsequent layers.

3.1.1 Theoretical Support for Enhancement
In this section, we present theoretical support for
the enhancement on a context-aware layer to mini-
mize the conditional entropy HV(Y |hf ).
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First, we expand the function f [·] at the final
layer through the lens of residual stream (Elhage
et al., 2021; Olsson et al., 2022):

f [hf ](Y ) =
evk+uk(vk)

∑
j∈|V ocab| e

vj+uj(vj)
(7)

where v denotes the logits at layer l, and u(v) in-
cludes logit contributions from layer l + 1 to the
final layer f . The deduction is detailed in Ap-
pendix C.

At final layer, the minimization objective
HV(Y |hf ) (defined as HVf

) can be simplified into
the following form:

HVf
= E[ln

∑

j

evj+uj(vj) − (vk + uk(vk))] (8)

As derived in detail in Appendix D.1, the HVf

with layer l amplification is given by:

HVf
(α)

def
= E[ln

∑

j

eαvj+uj(αvj)−(αvk + uk(αvk))]

(9)
Additionally, Appendix D.2 demonstrates that the
residual method is equivalent to a specific value
of α2, thereby the theoretical framework is also
applicable to the residual method.

Proposition 3.1. [Proof in Appendix E] Let α de-
note the amplification factor applied to the hidden
states at this layer. If k = argmaxj vj , then

lim
α→∞

HVf
(α) ≈ 0 (10)

Since we cannot guarantee that vk will achieve
the maximum probability proportion at a specific
layer, we propose setting α > 1 as a fixed hyper-
parameter for the enhancement method. This ad-
justment amplifies the probabilities of top-ranking
tokens while proportionally attenuating the noise
from less relevant tokens. In our experiments, we
discuss the impact of different values of α.

3.2 Identifying the Context-Aware Layer

CaLE amplifies the flow of contextual information
at an appropriate layer, which can produce signif-
icant performance benefits. In this section, we
describe the identification method for the layer.

2Refer to Formula 22 and 23 in Appendix D

3.2.1 Supervised Layer Identification
The supervised method involves selecting an opti-
mal lay within the Transformer model, by evaluat-
ing model performance on a validation set.

Given a set of candidate layers L =
{l1, l2, . . . , ln−1}, the method computes the perfor-
mance A(li, Dval) for each layer li on the validation
set Dval. The optimal layer l∗ is identified as the
one that maximizes validation accuracy, formally
expressed as:

l∗ = argmax
li∈L

A(li, Dval) (11)

Subsequently, the selected layer l∗ is used to
evaluate the model’s performance on the test set
Dtest, yielding the final test performance Atest =
A(l∗, Dtest).

3.2.2 Unsupervised Layer Identification
In real-world scenarios, label Y may not be avail-
able for evaluating layer enhancement performance.
We aim to approximate V-usable information
through an alternative metric.

Since the answer Y is uniquely determined by
the context-query pair (c, q), the information con-
tent encoded in (c, q) necessarily exceeds that of
Y . Then we can establish the following:

IV(hl;Y ) ≤ IV(hl; c, q) (12)

where

IV(hl; c, q) = IV(hl; q) + IV(hl; c | q) (13)

Based on the relationship between Kullback-
Leibler (KL) divergence (Kullback and Leibler,
1951) and MI, we have:

IV(hl;Y ) ≤ IV(hl; q) + IV(hl; c | q)
= EP (q)

[
KL[P (hl | q) ∥P (hl)]

]
+

EP (q,c)

[
KL[P (hl | q, c) ∥P (hl | q)]

]
(14)

It suggests that we can estimate the upper bound of
V-usable information through the KL divergences
of the distribution of hidden states.

Layer Identification based on KL Divergence.
Given that this approximation imposes only a unidi-
rectional constraint, it does not provide a definitive
guarantee for the V-usable information. Therefore,
we conduct empirical statistics to assess the re-
liability of the KL divergence as a measurement
criterion.
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Figure 3: Variation of the KL divergences across lay-
ers in different models. The KLq quantifies the impact
of question conditioning on layer representations by
measuring their distributional divergence, while KLc

captures the incremental influence of context condition-
ing given the question on these representations. The
shaded region represents the confidence interval.

We denote the KL divergences in Formula 14 as
follows:

KLq(l)
def
= KL[P (hl | q) ∥P (hl)] (15)

KLc(l)
def
= KL[P (hl | q, c) ∥P (hl | q)] (16)

We estimate the KL divergences on the Counter-
Fact (Meng et al., 2022a) dataset with different
models. The settings are detailed in Appendix A.2.

Figure 3a demonstrates a strong correlation be-
tween KLc(l) and IV(hl;Y ) across the models.
This consistency suggests that the divergence can
effectively approximate the V-usable information,
capturing the incremental influence of context con-
ditioning given the question. Furthermore, for the
same question, the information of the correct an-
swer is inherently contained within the context,
making KLq relatively irrelevant. Supporting ev-
idence from Figure 3b indicates a low correlation
between IV(hl;Y ) and KLq. Therefore, we pro-
pose the following approximation:

IV(hl;Y ) ∝ EP (q,c)KL [P (hl | q, c) ∥P (hl | q)]
(17)

We identify the optimal layer by selecting one
that exhibits maximal information in IV(hl;Y ),
which is measured by KLc(l) according to For-
mula 17. Therefore, the layer is selected as follows:

l∗ = argmax
l

EP (q,c)[KLc(l)] (18)

Due to the term EP (q,c), we measure the average
KLc across all data points for layer selection.

4 Experiments

4.1 Settings
Data. We evaluate the performance of CaLE
across diverse QA datasets, including Counter-
Fact (Meng et al., 2022a) NQ (Kwiatkowski et al.,

2019), SQuAD (Rajpurkar et al., 2016), and Strate-
gyQA (Geva et al., 2021a). 3 More details of the
data are in Appendix F.

Models. We conduct experiments on state-of-
the-art language models, including several vari-
ants from the Llama model family—specifically,
Llama2-7B, Llama3.1-8B, and Llama3.2-3B—as
well as the Mistral-7B and Gemma2-9B models.

Baselines. To demonstrate the effectiveness of
CaLE, we compare it with the following baselines:
Original, which refers to the LLMs without any
modification; Early Exit (Xin et al., 2021; Men
et al., 2024; Fan et al., 2024), where the model
exits early at the layer with the best performance;
and IRCAN (Shi et al., 2024a), which reweights
the neurons critical for processing contextual cues.
Both intervention methods are supervised.

For the supervised CaLE method, we construct
the validation set using 0.5k samples, randomly
selected from the training data to ensure no overlap
with the test set.

We also combine several decoding methods,
since the above methods work in completely dif-
ferent ways with decoding strategies: Context-
Aware Decoding (CAD) (Shi et al., 2024b), Con-
trastive Decoding (CD) (Li et al., 2023), and Con-
textual Information-Entropy Constraint Decoding
(COIECD) (Yuan et al., 2024). Detailed descrip-
tion are provided in Appendix G.

Metrics. We use the Exact Match (EM) and F1
scores for evaluating the QA performance of LLMs.
For the binary classification in StrategyQA, the
accuracy is used as the metric.

4.2 A Thorough Analysis on the CounterFact
Dataset

We first conduct a comprehensive analysis by apply-
ing supervised CaLE intervention on the Counter-
Fact dataset. Specifically, we partition the Counter-
Fact dataset into "known" and "unknown" subsets
(with "total" representing the complete set). The
classification is based on whether the external con-
textual knowledge is consistent with the model’s
parametric knowledge (Ren et al., 2025)4.

3For the CounterFact, α1 = 5 for CaLE-A, and α2 = 3
for CaLE-R. For the other datasets, α1 = 3 and α2 = 1.

4The details of the posteriori judgement for the dataset are
in Appendix F.1.

31730



Total Unknown Known

Models Methods Original Early Exit IRCAN CaLE-R CaLE-A Original Early Exit IRCAN CaLE-R CaLE-A Original Early Exit IRCAN CaLE-R CaLE-A

Llama2-7B

Regular* 54.32 70.76 71.15 74.86 74.98 42.53 66.47 63.56 69.22 69.62 90.90 86.86 89.35 92.25 91.30
CD 59.22 71.36 74.41 76.56 76.26 51.12 67.07 69.57 71.41 71.66 83.51 86.21 90.35 92.15 90.75
CAD 63.67 69.92 69.35 76.81 75.66 57.92 66.32 66.17 72.21 71.44 79.51 84.23 77.66 89.41 88.66
COIECD 63.72 70.26 69.62 76.76 75.81 57.47 66.62 66.87 71.91 71.51 81.06 84.96 77.91 90.35 89.26

Llama3.1-8B

Regular 57.72 67.52 65.57 71.06 73.91 45.98 59.97 56.32 63.57 67.22 90.05 86.41 90.50 92.50 92.00
CD 62.42 67.76 67.77 73.66 75.46 54.07 61.22 61.37 67.42 70.21 83.96 84.56 86.46 89.86 92.03
CAD 66.92 68.37 70.06 77.16 77.71 60.87 62.57 65.22 72.66 73.36 81.61 81.18 82.66 86.31 86.21
COIECD 66.62 68.45 70.46 76.91 77.31 60.02 62.42 65.02 71.96 72.71 82.81 82.06 84.11 87.16 87.06

Llama3.2-3B

Regular 57.67 71.91 76.61 76.81 79.21 48.28 66.07 71.71 71.16 74.31 91.95 91.25 93.75 95.80 95.90
CD 63.02 72.71 78.46 79.16 80.31 56.77 67.37 74.56 74.26 75.86 85.96 89.36 93.50 94.65 94.35
CAD 69.77 73.52 77.71 81.11 82.06 64.87 68.85 74.16 77.01 78.26 84.36 85.81 90.02 91.50 92.05
COIECD 69.12 73.69 78.52 80.81 81.81 64.02 68.73 74.65 76.66 78.01 85.51 86.96 91.30 92.15 92.60

* Regular refers to the greedy decoding strategy.

Table 1: EM results on the CounterFact dataset with supervised intervene methods. The CaLE-A/R method denote
the amplification or residual methods for enhancement. The highest scores with different decoding strategies are
highlighted in bold.
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Figure 4: Validation set size impact on supervised layer
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vised CaLE. The selected layers are detailed in Table 4.

EM Llama2-7B Llama3.1-8B Llama3.2-3B

∆=(sup.- unsup.) CaLE-R(∆) CaLE-A(∆) CaLE-R(∆) CaLE-A(∆) CaLE-R(∆) CaLE-A(∆)

Total 74.86 (−0.00) 74.98 (−0.00) 71.06 (−0.56) 73.91 (−1.23) 76.81 (−0.00) 79.21 (−0.00)
Unknown 69.22 (−0.00) 69.62 (−0.00) 63.57 (−1.05) 67.22 (−1.14) 71.16 (−0.00) 74.31 (−0.00)
Known 92.25 (−0.00) 91.30 (−0.00) 92.50 (−0.50) 92.00 (−0.91) 95.80 (−0.00) 95.90 (−0.00)

Table 2: Performance comparison between supervised
and unsupervised CaLE. The black numbers represent
the scores of the supervised CaLE method, with the
values in "()" indicating the difference between the su-
pervised and unsupervised methods.

4.2.1 Overall Performance
Superior Performance. As shown in Table 1, the
experimental results demonstrate that both super-
vised CaLE variants (CaLE-A and CaLE-R) con-
sistently outperform baseline methods across all
models. This suggests that enhancing the context-
aware layer within the model significantly im-
proves context-faithfulness generation. Further-
more, the advantage of our method is particu-
larly pronounced when handling new ("unknown")
knowledge, whereas ICRAN underperforms even
compared to Early Exit method on Llama2-7b and
Llama3.1-8b with Regular decoding strategy.

Difference Between CaLE-R and CaLE-A
While both CaLE-R and CaLE-A enhance ac-
curacy, their mechanisms lead to differences in

performance. CaLE-R, which incorporates resid-
ual connections, provides a stable but modest im-
provement in the "Unknown" subset. In contrast,
CaLE-A, which amplifies knowledge representa-
tions, achieves nearly the highest scores across all
models. This indicates that CaLE-A’s amplification
mechanism is more effective at handling new fac-
tual knowledge. On the other hand, CaLE-R excels
in the generation of consistent internal and external
knowledge, as evidenced by its performance in the
"Known" subset.

Versatility with Decoding Methods. One of the
key strengths of CaLE lies in its versatility across
different decoding methods. Regardless of the strat-
egy used—CD, CAD, or COIECD—CaLE-based
models consistently achieve higher EM scores com-
pared to other baselines. In contrast, Early Exit and
IRCAN do not show the same level of reliability,
with fluctuating gains and occasional declines, par-
ticularly in the Llama2-7B model.

4.2.2 Comparison between unsupervised and
supervised methods of CaLE

In the case of supervised CaLE, we use a validation
set size of 0.5k. As shown in Figure 4a, the vertical
axis represents the proportion of the mode of the
best layer selected based on validation accuracy
across 20 trials. The figure indicates that a valida-
tion set size of 0.5k is sufficient for robust layer
selection. Next, we analyze the KL-based unsuper-
vised CaLE method on CounterFact dataset.

Layer Selection Comparison. As illustrated in
Figure 4b, the solid line represents the performance
of different amplified layer in a validation set trial.
The red dots indicate the layers selected using the
KL-based metric in an unsupervised manner. No-
tably, these layers correspond closely to the peaks
in supervised performance, particularly around lay-
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Figure 5: Visualization of Analysis on the CounterFact
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ers 23, 25, and 26. This strong correlation suggests
that the KL-based selection method effectively
identifies context-aware layers that contribute sig-
nificantly to contextual information.

Performance Comparison. The experimental re-
sults in Table 2 further validate this observation.
Across various Llama models, although the unsu-
pervised method generally performs worse than the
supervised method, it consistently outperforms all
other baselines in Table 1. Notably, for Llama2-7B
and Llama3.2-3B, the unsupervised CaLE method
achieves scores identical to its supervised counter-
part, as both methods identify the same layer for
enhancement. These findings underscore the ef-
fectiveness of the KL-based CaLE, demonstrating
its ability to approximate optimal layer selections
without the need for labeled supervision.

4.2.3 Further Analysis
Increased Information. Figure 5a provides theo-
retical validation for the effectiveness of our CaLE-
A method. The approach aims to enhance con-
textual information representation in the model’s
final layer, quantitatively assessed through nega-
tive V-entropy measurements. The results demon-
strate that the amplification mechanism success-
fully transforms the previously observed informa-
tion degradation, represented by solid lines, into an
upward trend, as shown by the dashed lines.

Unknown Contexts with Higher KL Divergence.
In Figure 5b, the KL divergence of contexts in "Un-
known" subset consistently exhibits a greater mag-
nitude compared to known contexts across deeper
layers. The peak observed at layer 25 aligns with
the layer selected by the CaLE method, offering
robust validation for both approaches. The KL
metric provides an interpretable rationale for layer
selection decisions, as it quantifies the distribu-
tional impact of the contextual input c on each layer.
This metric effectively captures the extent to which

NQ NQ-Swap SQuAD StrategyQA

EM F1 EM F1 EM F1 Acc

Llama2-7B 75.84 77.48 53.73 54.92 61.37 73.02 80.41
unsup. —— —— —— —— —— —— ————

+ CaLE-R 77.69 79.41 58.68 59.98 63.52 74.68 82.74
+ CaLE-A 78.19 80.06 58.78 60.01 63.59 74.70 82.91

sup. —— —— —— —— —— —— ————
+ IRCAN 75.79 78.81 58.32 60.34 62.01 73.97 80.41
+ CaLE-R 77.69 79.41 59.78 61.35 64.42 75.27 81.26
+ CaLE-A 78.19 80.06 63.83 64.83 64.62 75.35 83.16

Llama3.1-8B 76.94 78.81 49.52 50.50 64.93 78.01 85.86
unsup. —— —— —— —— —— —— ————

+ CaLE-R 79.74 81.39 53.58 54.61 65.68 78.33 85.90
+ CaLE-A 79.79 81.43 53.63 54.80 67.38 79.07 88.56

sup. —— —— —— —— —— —— ————
+ IRCAN 79.08 80.89 59.43 60.56 64.58 76.28 87.01
+ CaLE-R 78.29 80.11 56.08 57.52 65.68 78.33 86.21
+ CaLE-A 80.44 81.99 60.52 61.80 67.38 79.07 88.11

Mistral-7B 77.32 78.87 49.13 50.07 63.97 76.09 87.26
unsup. —— —— —— —— —— —— ————

+ CaLE-R 79.94 80.91 53.43 54.31 65.72 77.80 87.66
+ CaLE-A 80.69 81.76 53.38 54.26 65.82 77.81 88.71

sup. —— —— —— —— —— —— ————
+ IRCAN 78.61 80.03 58.02 58.82 64.27 77.02 86.76
+ CaLE-R 79.94 80.91 56.38 57.30 64.12 76.36 88.01
+ CaLE-A 80.69 81.76 58.58 59.28 66.42 78.01 89.16

Gemma2-9B 78.49 81.46 47.27 49.07 61.42 75.78 84.86
unsup. —— —— —— —— —— —— ————

+ CaLE-R 79.54 81.93 51.76 53.84 64.22 77.06 90.01
+ CaLE-A 79.75 82.12 52.33 54.25 64.92 76.93 90.47

sup. —— —— —— —— —— —— ————
+ IRCAN 78.74 81.39 65.01 66.33 64.10 76.34 84.63
+ CaLE-R 79.54 81.93 62.54 64.81 66.87 78.72 90.15
+ CaLE-A 79.94 82.58 63.03 65.38 67.92 79.88 90.41

Table 3: EM and F1 scores for the diverse QA datasets.
The unsup. and sup. denote the unsupervised and
supervised intervene methods. The best scores are high-
lighted in bold.

different layers encode and propagate contextual
knowledge, particularly for new knowledge.

4.3 Application on Diverse QA Datasets

Conflicting Contexts. To further explore CaLE’s
effectiveness in handling novel information, we
conduct comprehensive contrastive analyses using
the NQ dataset (Kwiatkowski et al., 2019) and its
variant, NQ-Swap (Longpre et al., 2021). The NQ-
Swap dataset, derived from the original NQ, exclu-
sively consists of conflicting contextual knowledge
that contradicts the model’s parametric knowledge.

As illustrated in Table 3, the improvement of
CaLE is particularly evident when evaluated on
the NQ-Swap dataset, which is entirely composed
of conflicting knowledge. These findings indicate
that CaLE intervention effectively facilitates the
utilization of new knowledge in the model.

Generalization on ComplexQA. We extend our
evaluation to other complex QA datasets, includ-
ing SQuAD (Rajpurkar et al., 2016) and Strate-
gyQA (Geva et al., 2021a), across various models.
As demonstrated in Table 3, we compare our ap-
proach with the strongest baseline method, IRCAN.
Our CaLE approach achieves superior performance
on the QA datasets compared to the baseline.

For all diverse QA datasets, the CaLE method

31732



0 5 10 15 20 25 30
Layer number

0

10

20

30

40

50

60

70
Ex

ac
t M

at
ch

Hidden States Amplification

0 5 10 15 20 25 30
Layer number

0

10

20

30

40

50

60

70

Attention Amplification

0 5 10 15 20 25 30
Layer number

0

10

20

30

40

50

60

70

MLP Amplification

alpha:

0.5 1 2 3 4 5 6 8 10 16

Figure 6: The effect of amplification across different
components of Llama2-7b on the CounterFact dataset.
The yellow horizontal line is the original EM score eval-
uated by α = 1 (without intervention). In the Attention
and MLP components, it is clear that the amplification
would damage the parameters space as there is very little
performance increase. However, for the hidden states,
CaLE goes from uniformly harming to improving the
performance in the deep layers.

almostly outperforms the IRCAN method. Specifi-
cally, we observe that the IRCAN method does not
perform well on the StrategyQA dataset with long
contexts, often exhibiting minimal effects. Fur-
thermore, the supervised CaLE method yields bet-
ter results than its unsupervised counterpart, with
CaLE-A outperforming CaLE-R. This suggests that
CaLE-A possesses stronger generalization capabil-
ities relative to CaLE-R.

Effectiveness on Different Model Architectures.
Across different model architectures, our method
maintains robust performance on the Mistral and
Gemma2 models, achieving improvements com-
parable to those observed with the Llama family
models. This finding highlights the effectiveness
of our approach.

4.4 Ablation Study

In this section, we analyze the effectiveness of am-
plifying different components of the Llama2-7B
model: Hidden states, Attention, and MLP with
different values of α, as illustrated in Figure 6.

Value of α . Amplifying hidden states results in
a clear performance boost, with the effectiveness
varying across different layers and amplification
factors α. The optimal amplification factor appears
to be between 4 and 6, as evidenced by the higher
EM scores in the upper curves of the left plot.

Intervention Layer. Notably, the intervention is
most effective when applied in later layers (20-25),
where all α values lead to convergence around 70%
EM score. This suggests that the model’s represen-
tational capacity is most malleable and responsive
to amplification in these deeper layers, possibly

due to their role in high-level feature integration.

Attention and MLP. The Attention and MLP
amplification show more erratic results, with fluc-
tuating performance across layers. For these com-
ponents, amplifying either leads to diminishing re-
turns or even decreases in performance, suggesting
that these layers do not benefit from amplification
in the same way as hidden states.

The poor performance of Attention and MLP am-
plification can be attributed to several factors. For
the attention mechanism, which is finely controlled
for inference tasks (Jin et al., 2024; Zhou et al.,
2024), further amplification may disrupt the deli-
cate balance, leading to noise amplification. Fur-
thermore, the MLP is generally responsible for
storing knowledge (Meng et al., 2022b; Geva et al.,
2021b). The amplifying the entire MLP can re-
sult in a proportional increase in all stored knowl-
edge, which may effectively render the amplifica-
tion meaningless.

5 Related Work

Existing approaches to enhancing context-
faithfulness in LLMs can be broadly classified
into three categories: fine-tuning methods (Bi
et al., 2024), external interventions (Zhou et al.,
2023) and internal interventions. The internal
interventions predominantly focus on modifying
decoding strategies or reweighting knowledge-
aware neurons. Methods such as CAD (Shi
et al., 2024b) and COIECD (Yuan et al., 2024)
optimize decoding strategies through a contrastive
mechanism (Li et al., 2023) to promote greater
reliance on external information. However, these
decoding-based approaches operate at the output
level, resulting in only limited improvements.
Another stream of research explores the internal
states of models. For instance, Jin et al. (2024)
and Shi et al. (2024a) aim to identify and reweight
neurons crucial for processing contextual cues,
thereby alleviating conflicts through targeted
interventions at critical points.

6 Conclusion

In this paper, we propose a novel intervention
method called CaLE, which exploits contextual
knowledge within LLMs’ internal representations.
It strategically amplifies the contextual information
growth at an appropriate layer, which facilitates
richer representations in the final layer. Our experi-
ments demonstrate that CaLE effectively improves
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context-faithful generation in QA tasks, particu-
larly in scenarios involving unknown or conflicting
contextual knowledge.

Limitations

The CaLE approach is to simply conduct one-time
intervention during the inference process. While
there are several other potential methods to exe-
cute interventions continuously, we leave the ex-
ploration of these alternatives for future work.

The intervention analysis on the MLP and Atten-
tion components adopts the amplification method
proposed in the paper. While numerous stud-
ies (Meng et al., 2022b; Geva et al., 2021b) have
discussed the role of these components in manipu-
lating knowledge, this study does not specifically
explore whether alternative intervention methods
beyond amplification, or selective interventions
within layers, should be employed. Instead, a
uniform approach of amplifying entire layers is
adopted, which may introduce limitations.
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A Experimental Settings for CounterFact

A.1 Data Format in Section 2
We use question q with context c from COUNTER-
FACT (Meng et al., 2022a). For a given model,
we input the sample data for which the model pre-
dicts the correct answer (e.g., "Danielle Darrieux,
a native French. The mother tongue of Danielle
Darrieux is _"). In this section, we refer to the
token predicted by the model for a given input as
the answer.

c: {{paraphrased prompt} {target
true}.}
q: {{prompt}}

A.2 Data Format in Section 3
Similarly, we construct the data for computing
these two KL divergences based on the CounterFact
dataset:

KLq(l) = KL [P (hl | q) ∥P (hl)]

KLc(l) = KL [P (hl | q, c) ∥P (hl | q)]

The term without c (i.e., P (hl | q)) is generated
by excluding c from the input.

q: {{prompt}}

The term without both q and c (i.e., P (hl)) is
derived by providing an empty input.

{∅}

B Logit Lens

The LogitLens is a technique that decodes hidden
states hl directly into the vocabulary distribution
using the LayerNorm and the unembedding ma-
trix of the LLM for interpretability (nostalgebraist,
2020):

LogitLens
(
hl
)
= LayerNorm(hl)W U (19)

The final layer’s residual stream state is then pro-
jected into the vocabulary space using the Unem-
bedding Matrix W U ∈ Rd×|V| and normalized via
the softmax function to produce a probability dis-
tribution over the vocabulary, from which a new
token is sampled.

This approach has been validated in various stud-
ies as an effective method for interpreting LLMs’
weight matrices or hidden states (Yu et al., 2023;
Hanna et al., 2023; Zhou et al., 2024).

C Residual Stream

We interpret transformer decoder-only architecture
(also known as GPT-like) through the perspective
of the residual stream (Elhage et al., 2021; Ols-
son et al., 2022). Due to the residual connections
in Transformers, each layer l takes a hidden state
hl−1 as input and adds information obtained from
its Attention Heads and Feed-Forward Networks
(FFNs) to the hidden state via the residual connec-
tion. In this context, the hidden state acts as a resid-
ual stream passed through the layers, with each
attention and FFN contributing to the final predic-
tion by adding information to the residual stream,
resulting in the Residual Stream States. Formally,
the hidden state hl at layer l is calculated as:

hl = hl−1 + MHA(hl−1) + FFN(al)

= hl−1 + al +ml

where al and ml are the outputs from the MHA
and FFN block in the l-th layer. Both quantities are
dependent on hl−1 and can thus be formulated as
functions of it (See Eq. 20).

Then, the hidden state hl+1 at layer l + 1 is
calculated as:

hl+1 = hl + al+1 +ml+1

= hl−1 + al +ml + al+1 +ml+1

= hl−1 +
l+1∑

k=l

ak +
l+1∑

k=l

mk

Consequently, the hidden state hN
i at the final

layer N(N ≥ l) can be calculated as:

hN = hN−1 + aN +mN

= hN−2 + aN−1 +mN−1 + aN +mN

= ...

= hl +
N∑

k=l+1

ak +
N∑

k=l+1

mk

where si represents the sum of the contributions
from the subsequent layers to the final layer.

The final layer’s residual stream state is then
projected into the vocabulary space using the Un-
embedding Matrix W U ∈ Rd×|V|. The final output
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logits of the LLM can be expressed as:

logitsN = hlW U +

(
N∑

k=l+1

ak +
N∑

k=l+1

mk

)
W U

= v + u(v) (20)

For analytical simplicity, we ignore the final Layer-
Norm function following Elhage et al. (2021) and
Sun et al. (2024). It adds a fair amount of com-
plexity to consider explicitly, and up to a variable
scaling, layer norm can be merged into adjacent
weights. Conceptually, v and u(v) capture the in-
formation encoded in layer l and later layer > l
respectively.

Finally, the logit would be normalized via the
softmax function to produce a probability distribu-
tion over the vocabulary, from which a new token
is sampled.

P =
evk+uk(vk)

∑
j∈|V ocab| e

vj+uj(vj)
(21)

D Theoretical Support for Enhancement

D.1 Analysis on the Amplification
Suppose we amplify the hidden states at layer l by
the factor α:

hl
modified = αhl

We will analyze how this scaling affects the subse-
quent computations. Here Let’s take LayerNorm
as an example.

At Layer l + 1. Since LayerNorm is scale-
invariant:

h̃
l
modified = LayerNorm(αhl)

= LayerNorm(hl) = h̃
l

The scaling by α has no effect on the output of the
first LayerNorm. Therefore, the input to the MHA
sublayer remains unchanged:

al+1 = MHA(h̃
l
)

After the MHA sublayer, the residual connection
adds al back to the scaled hl:

hl+1
modified = hl

modified + al+1 = αhl + al+1

Then the scaled hidden state αhl is now part of
hl+1, which will be normalized for FFN input.

h̃
l+1
modified = LayerNorm(hl+1

modified)

= γ ⊙ αhl + al − µl+1
modified

σl+1
modified

+ δ

where

µl+1
modified =

1

D

D∑

i=1

(
αhl + al

)
= αµl + µa

σl+1
modified =

√√√√ 1

D

D∑

i=1

(
αhl + al − µl+1

modified

)2

The normalization does not cancel out α com-
pletely because al is not scaled. Therefore, the
information in a is relatively compressed. Then,

ml+1
modified = MLP(h̃

l+1
modified)

The output at layer l + 1 is:

hl+1
modified = hl

modified + al+1 +ml+1
modified

= αhl + al+1 +ml+1
modified

At Layer k > l + 1. The altered hidden state
hl+1

modified affects all subsequent layers in a similar
fashion. And the amplification effect of α persists
due to the residual connections.

The hidden state can be represented recursively:

hk
modified = αhl + al+1 +mk+1

modified

+
k∑

i=l+2

(
ai

modified +mi
modified

)

Therefore, the amplification effect of α accumu-
lates through the residual connections and affects
all subsequent layers.

At Final Layer N . The logits are computed us-
ing the final hidden state hN

modified:

logitsmodified = hN
modifiedW U

Breaking Down hN
modified, the logits can be calcu-

lated as:

logitsmodified = αhlW U + (al+1 +ml+1
modified

+
N∑

i=l+2

(ai
modified +mi

modified))W U

Finally, the softmax probabilities become:

Pmodified =
eαvk+u

(A)
k (αv)

∑
j∈|V ocab| e

αvj+u
(A)
j (αv)

(22)

where: v = hLW U , and u(A)(·) includes contri-
butions from the subsequent layers by amplifica-
tion.
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This leads to a proportional change in the log-
its and alters the softmax probability distribution,
potentially affecting the model’s predictions.

In correspondence with Formula 21, the V-
entropy is derived as follows:

HVf
(α)

def
= E[ln

∑

j

eαvj+uj(αvj)−(αvk + uk(αvk))]

D.2 Analysis on the Additional Residual
Connection

Suppose we introduce an additional residual con-
nection at layer l, which directly propagates hl to
α subsequent layers:

At Layer l + 1. With the inclusion of the new
residual connection, the hidden state is modified as
follows:

hl+1
modified = (hl + al+1 +ml+1) + hl

= 2hl + al+1 +ml+1

At Layer k where l+1 < k ≤ l+α. Due to the
cumulative effect of the residual connections, the
hidden state at layer k can be expressed as:

hk
modified = (k − l + 1)hl + al+1 +ml+1

+

k∑

i=l+2

(ai
modified +mi

modified)

where (k − l + 1) represents the number of times
the residual connection has been accumulated.

At the Final Layer N . The final logits are com-
puted as:

logitsmodified = hN
modifiedW U

= (α+ 1)hlW U + (al+1 +ml+1

+
N∑

i=l+2

(ai
modified +mi

modified))W U

Similar to the previous deduction (Appendix D.1),
the final softmax probability distribution is given
by:

Pmodified =
e(α+1)vk+u

(R)
k ((α+1)v)

∑
j∈|V ocab| e

(α+1)vj+u
(R)
j ((α+1)v)

(23)
where v = h(l)W U . While u(R)(·) encapsulates
the contributions from the subsequent layers, it dif-
fers fundamentally from the u(A)(·) function in
the Amplification method, as the underlying mod-
ifications to the information flow in these two ap-
proaches are inherently distinct.

Compared with Amplification. This analysis
reveals that adding cumulative residual connec-
tions provides a structured approach to amplifying
the influence of intermediate layer representations.
While there are subtle differences in how these
methods affect subsequent layers, we empirically
compare their performances through experiments
in Section 4.

E Proof for Proposition 3.1

Proposition. Let α denote the scaling factor ap-
plied to the hidden states at this layer. If k =
argmaxj vj , then

lim
α→∞

HVf
(α) ≈ 0

Proof. First, consider the following decomposi-
tion:
∑

j

eαvj+uj(αv) = eαvk+uk(αv)·

1 +

∑

j ̸=k

eα(vj−vk)+uj(αvj)−uk(αvk)




When j ̸= k, vj − vk < 0. All terms with j ̸= k
exponentially diminish as α increases5. Therefore:

lim
α→∞

∑

j

eαvj+uj(αvj) ≈ eαvk+uk(αvk) (1 + ϵ(α))

where ϵ(α) → 0 as α → ∞.
Applied to the Formula 9, we have

lim
α→∞

HVf
(α) ≈ E

[
αvk + uk(αv) + ln (1 + ϵ(α))

− (αvk + uk(αv))
]

= E [ln (1 + ϵ(α))]

= 0

Therefore, the result is proven.

F Dataset Details

CounterFact. The CounterFact (Meng et al.,
2022a) dataset is derived from the PARAREL
dataset (Elazar et al., 2021) and contains knowl-
edge tuples of the kind tc = (s, r, oc), where s is
the subject, r is the relation and o is the object.
These tuples are constructed using entities listed

5Since α approaches zero, uj(αv) − uk(αv) represents
the difference between two extremely small quantities. It can
be negligible compared to the α(vj − vk).
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in Wikidata. The data are accompanied by hand-
written paraphrased prompts for each sample. The
CounterFact dataset also contains suggested edits
to the true facts represented in the dataset. For this
study, the set of counterfactual edits are not used.

NaturalQuestions. NQ (Kwiatkowski et al.,
2019) consists of real-world information-seeking
queries issued to the Google search engine and
their corresponding long answers (gold evidence
passage) and short answers (one or more entities).
In our study, we employ the long answers as the
input context and short answers as the ground truth,
and conduct evaluations on the dev set.

NQ-Swap NQ-Swap is based on the NQ dataset,
where the objective is to answer questions based on
a reliable gold document. To generate NQ-Swap,
Longpre et al. (2021) first identify questions in
NQ with named entity answers, find the supportive
document for each question and then replace the
gold answer entity in the document with a random
entity. A faithful LM should generate the replaced
entity as the answer when given the question and
modified document.

SQuAD. The SQuAD (Rajpurkar et al., 2016) 1.1
is a common QA benchmark. It includes questions
posed by human annotators on a given Wikipedia
paragraph, where the answer to each question is a
segment of text (or span) from the paragraph. In
our experiments, we conduct experiments on the
dev for evaluation.

StrategyQA. StrategyQA (Geva et al., 2021a) is
a fact reasoning benchmark that necessitates the im-
plicit question decomposition into reasoning steps.
Built around Wikipedia terms, these questions are
accompanied by multiple evidence paragraphs. The
model is expected to provide a True or False an-
swer. We concatenate question-relevant evidences
to form the input context. We adopt the training set
for evaluation, considering the volume of data.

F.1 Posteriori judgement for CounterFact
We delineates the process of identifying knowl-
edge boundary of "unknown" and "known" con-
texts. The evaluation is based on the accuracy of
the model’s responses when context is not provided.
The scenarios are divided into two categories:

• Unkown: This category refers to instances
where the model is unable to provide the cor-
rect answer without relying on the provided

context. Such cases indicate that the exter-
nal contextual knowledge represents informa-
tion not contained within the model’s inherent
parametric knowledge.

• Known: This category describes scenarios
in which the model can accurately answer
a question without requiring its correspond-
ing context. These instances demonstrate that
the model has internalized the relevant knowl-
edge, reflecting an alignment between its para-
metric knowledge and the external contextual
information.

G Decoding Strategies

Contrastive Decoding (CD) In our experiments,
we employ the distribution g(yt) with a certain
threshold as a baseline decoding method, referred
to as the CD (Li et al., 2023) method. We modify
the original object of CD (computes the distribution
discrepancy between an small amateur model and
an expert larger model) to simulate the form of
g(yt).

CD = log p(yt|x, y < t)− p(yt|y < t)

= log g(yt)

The threshold is same as in the original CD method:

Vhead(y<t) ={
yt ∈ V : p(yt|y<t) ≥ 0.1 ·max

y
p(y|y<t)

}

Here, we represent the input context as x. CD
adopts the object of difference between the output
likelihood when inputs are presented with and with-
out input context. It enhances the influence of the
context for high-probability words within a crude
threshold.

Context-Aware Decoding (CAD) In CAD (Shi
et al., 2024b) method, the output probability is a
product-of-experts of the original output probabil-
ity and PMI weighted by α = 0.5 as follow:

yt ∼ softmax[(1 + α) logitθ(yt | c,x,y<t)

− α logitθ(yt | x,y<t)]

COntextual Information-Entropy Constraint
Decoding (COIECD) First, the contextual con-
trastive object g is calculated to quantify the diver-
gence between p1 and p2:

g(yt) = log p2(yt)− log p1(yt)
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where

p1(yt) = p(yt|x,y<t)

p2(yt) = p(yt|x, c,y<t)

The g is to factor out the model’s inherent memory
and favor the contextual knowledge.

The contextual information-entropy constraint is
utilized with g on the output distribution π as:

log π(yt | x, c,y<t) (24)

=

{
log p1(yt) + α · g(yt) if yt ∈ C(y<t),

log p2(yt) + α · g(yt) otherwise.

where α is a scaling weight to control the contex-
tual impact. The final decoding strategy can be
formalized as:

yt ∼ softmax[log π(yt | x, c,y<t)] (25)

In this way, COIECD strikes a balance between
the two sources of knowledge to achieve a more
effective and holistic decoding strategy.

H Layer Selection by CaLE

Here, we present some models that employ the
CaLE method, as shown in Tables 1 and 3, which
enhance various layers selected through both super-
vised and unsupervised identification, as indicated
in Table 4. Our findings reveal that nearly all of the
selected layers are distributed in the middle to later
stages, suggesting that intervening at deeper layers
is a more effective choice.

Layer selected CounterFact NQ NQ-swap
by CaLE sup. unsup. sup. unsup. sup. unsup.

Llama2-7B 25 25 26 26 15 26
Llama3.1-8B 23 26 28 25 19 23
Llama3.2-3B 23 23 - - - -
Mistral-7B - - 25 25 15 25
Gemma2-9B - - 32 39 29 25

SQuAD StrategyQA
sup. unsup. sup. unsup.

Llama2-7B 22 26 22 21
Llama3.1-8B 26 26 30 25
Mistral-7B 25 27 22 30
Gemma2-9B 36 38 35 36

Table 4: Layer selection of CaLE across different
datasets and models. The unsup. and sup. denote
the unsupervised and supervised CaLE methods.
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