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Abstract

In the context of large language models
(LLMs), current advanced reasoning methods
have made impressive strides in various reason-
ing tasks. However, when it comes to logical
reasoning tasks, major challenges remain in
both efficacy and efficiency. This is rooted in
the fact that these systems fail to fully leverage
the inherent structure of logical tasks through-
out the reasoning processes such as decom-
position, search, and resolution. To address
this, we propose a logic-complete reasoning
framework, Aristotle, with three key com-
ponents: Logical Decomposer, Logical Search
Router, and Logical Resolver. In our frame-
work, symbolic expressions and logical rules
are comprehensively integrated into the entire
reasoning process, significantly alleviating the
bottlenecks of logical reasoning, i.e., reduc-
ing sub-task complexity, minimizing search
errors, and resolving logical contradictions.
The experimental results on several datasets
demonstrate that Aristotle consistently out-
performs state-of-the-art reasoning frameworks
in both accuracy and efficiency, particularly
excelling in complex logical reasoning scenar-
ios. We will open-source all our code at https:
//github.com/Aiden0526/Aristotle.

1 Introduction

LLMs (Patel et al., 2023; Chowdhery et al., 2023)
have unlocked unprecedented potential in seman-
tic understanding (Zhao et al., 2023), sparking
immense hope for realizing AGI. A fundamental
requirement for true intelligence is the ability to
perform human-level reasoning, such as common-
sense reasoning (Wang et al., 2024c), mathematical
problem-solving (Wang et al., 2024a), and geomet-
ric reasoning (Eisner et al., 2024). To achieve this,
researchers have drawn inspiration from human
reasoning processes, proposing various methods
and strategies for LLM-based reasoning. One of
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Figure 1: Our reasoning framework vs. the SoTA
ToT: comparison in terms of Search Error (SE) and
single-step Reasoning Error (RE), as well as in terms of
average number of reasoning steps.

the most groundbreaking works is the Chain-of-
Thought (CoT) (Wei et al., 2022), which breaks
down complex problems into smaller sub-problems,
solving them step by step. The birth of CoT has
elevated the reasoning capabilities of LLMs to new
heights. Further research has built on this founda-
tion by closely emulating human cognitive patterns,
introducing more advanced approaches, such as
Least-to-Most (Zhou et al., 2023), Tree-of-Thought
(ToT) (Yao et al., 2023), Graph-of-Thought (GoT)
(Besta et al., 2024), and Plan-and-Solve (Wang
et al., 2023a), which have achieved progressively
better results on reasoning benchmarks. In sum-
mary, successful LLM-based reasoning methods
generally involve three key modules (Huang and
Chang, 2023; Li et al., 2024): problem decompo-
sition, path searching, and problem resolution.

Compared to other forms of general reasoning,
logical reasoning (Huang and Chang, 2023) stands
out as one of the most challenging tasks, as it de-
mands the strictest evidence, arguments, and log-
ical rigor to arrive at sound conclusions or judg-
ments. Logical reasoning more closely mirrors
human-level cognitive processes, making it crucial
in high-stakes domains such as mathematical proof
generation, legal analysis, and scientific discov-
ery (Cummins et al., 1991; Markovits and Vachon,
1989). In recent years, numerous studies have inves-
tigated how to integrate LLMs into logical reason-
ing. For example, some methods (Pan et al., 2023;
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Figure 2: Our Aristotle logical reasoning framework (best viewed via zooming in). In step 1, the Translator
and Decomposer together transform P and S into Pn and Sn. Then, we initialize the Ccurrent using the
decomposed Sn and ¬Sn. In step 2, the Search Router uses the Ccurrent and Pn to search for Ccomplement. The

Resolver then resolves Ccurrent with Ccomplement to produce Cresolved. The reasoning complete if: (1) the Cresolved
determines whether a contradiction exists; (2) reach the maximum number of iterations Imax. In step 3, Aristotle
then concludes the Proof DSn and D¬Sn based on the Proof Determination. Using these proofs, Aristotle
determines the final answer based on Eq. (1). Note that two distinct reasoning paths will be implemented: a solid
box representing the path starting from ¬Sn, and a dotted box representing the path starting from Sn. The complete
reasoning process for both two paths, including all iterations are shown in the right part “Reasoning Trajectories”.

Gao et al., 2023) use LLMs to translate textual prob-
lems into symbolic expressions, which are then
addressed by external logic solvers. Subsequent
work, such as SymbCoT (Xu et al., 2024), suggests
that LLMs themselves can handle both symbolic
translation and logic resolution, thus avoiding po-
tential information loss caused when using external
solvers. While SymbCoT has achieved state-of-the-
art (SoTA) performance, the inherent simplicity
of CoT’s linear reasoning process leaves consider-
able room for further improvement in LLM-based
logical reasoning.

In response, certain research (Yao et al., 2023;
Besta et al., 2024; Zhang et al., 2023) has applied
sophisticated general-purpose reasoning methods
(e.g., ToT, GoT) directly to logical reasoning tasks.
Unfortunately, these approaches largely overlook
the inherent structure of logical tasks and fail to ef-
fectively integrate logical rules into the decompose-
search-resolve framework, leaving key issues unre-
solved in both reasoning efficacy and efficiency:
▶ From an efficacy perspective, first, when LLMs
decompose logical problems, they often rely on
the linguistic token relations rather than the un-
derlying logical structure, leading to disconnected
sub-problems and faulty reasoning. Specifically,
when reasoning hinges on specific logical relation-
ships, neglecting them can result in disjointed sub-
problems, breaking the logical chain and ultimately

leading to incorrect conclusions. Furthermore, dur-
ing the search stage, current path search methods
rely heavily on evaluators that may be unreliable,
selecting nodes based on possibly flawed logic,
causing error propagation through subsequent rea-
soning steps (Chen et al., 2024; Wang et al., 2024b).
For the resolving step, these methods guide LLMs
to solve sub-questions with simple text prompts,
which frequently contain logical errors, resulting
in numerous faulty nodes in the search space (Xu
et al., 2024). These errors propagate through subse-
quent reasoning steps, causing entire paths to fail
and leading to reasoning failure. Our preliminary
experiments reveal that directly applying SoTA
general-purpose reasoning methods with a search
mechanism to logical tasks results in significant
errors, with 28.4% for reasoning and 15.0% for
search, as shown in Fig. 1.
▶ From an efficiency perspective, these ap-
proaches also lead to significant shortcomings. For
example, generating large numbers of incorrect
nodes wastes computational resources (Ning et al.,
2024). Moreover, relying on unreliable evaluators
introduces bias into the search process, leading
to unnecessary node and path explorations, ulti-
mately reducing efficiency (Chen et al., 2024). We
note that inefficient logical reasoning systems can
significantly undermine their value in practical ap-
plication scenarios.
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To address these challenges, we propose a novel
reasoning framework, Aristotle, which effec-
tively tackles the performance and the efficiency
bottlenecks in existing logical reasoning tasks by
completely integrating symbolic expressions and
rules into each stage of the decomposition, search,
and resolution. Fig. 2 illustrates the overall frame-
work. Specifically, we first introduce a Logical
Decomposer that breaks down the original prob-
lem into smaller and simpler components based
on its logical structure, reducing the complexity of
logical tasks. We then devise a Logical Search
Router, which leverages proof by contradiction to
directly search for logical inconsistencies, thereby
reducing search errors from unreliable evaluators
and minimizing the number of steps required by
existing methods. Finally, we develop a Logical
Resolver, which rigorously resolves logical con-
tradictions at each reasoning step, guided by the
Logical Search Router. Overall, Aristotle thor-
oughly considers the inherent logical structure of
tasks, fully incorporating logical symbols into the
entire decompose-search-resolve framework. This
ensures a more logically coherent reasoning pro-
cess, leading to more reliable final results.

We conducted experiments across multiple logi-
cal reasoning benchmarks, where our method sur-
passes the current SoTA baselines by 4.5% with
GPT-4 and 5.4% with GPT-4o. Further analysis
revealed that the decomposer, search router, and
resolver modules each contributed to: (i) reduc-
ing task complexity during problem decomposi-
tion, leading to improved accuracy in subsequent
search and reasoning phases; (ii) focusing search
efforts on the most direct and relevant paths, which
reduced errors and enhanced efficiency; (iii) achiev-
ing near-perfect logical reasoning accuracy. More-
over, we observe that Aristotle delivers even
greater performance improvements in complex sce-
narios, such as those with more intricate logical
structures or longer reasoning chains. Overall, this
work marks the first successful complete integra-
tion of symbolic logic expressions into every stage
of an LLM-based reasoning framework (decompo-
sition, search, and resolution), demonstrating that
LLMs can perform complete logical reasoning over
symbolic structures.

2 Aristotle Architecture
We first formally define the logical reasoning task.
Given a set of premises P = {p1, p2, . . . , pn},
where each pi represents a logical statement, a rea-

soner should derive an answer A regarding a given
statement S. The possible answer is true (T ), false
(F ), unknown (U ), or self-contradictory (SD).1

The formal definition of each answer can be found
in Eq. (1).

As illustrated in Fig. 2, Aristotle has an ar-
chitecture with four modules: Translator, Decom-
poser, Search Router, and Resolver.

Translator. We use the LLM itself to parse
the given premises P and question statement S into
a symbolic format, which aims to eliminate ambi-
guity and ensure precision in the logical statement.
We specifically use Logic Programming (LP) lan-
guage, adopting Prolog’s grammar (Clocksin and
Mellish, 2003) to represent the problem as facts,
rules, and queries. Facts and rules (Baader et al.,
2003) are derived from P , while queries are for-
mulated based on the S. We denote the translated
premises (facts and rules) as Pt, and queries as St.
The details of the grammar can be found at A

Decomposer. By breaking down the logical
statement into a standardized logical form, we can
simplify the reasoning process, making it easier
to apply formal rules and perform efficient logical
calculations. To achieve this, we use an LLM to
transform the parsed premises Pt, and queries St

into a standardized logical form through Normaliza-
tion (Davis and Putnam, 1960) and Skolemization
(Nonnengart, 1996), converting them into Conjunc-
tive Normal Form (CNF) and eliminates quantifiers,
denoted as Pn and Sn. For example, the logical
rule ∀x (P (x) → Q(x)) will be decomposed into
¬P (x) ∨Q(x).

Search Router. We adopt the proof-by-
contradiction (Bishop, 1967) approach because it
allows us to straightforwardly search for comple-
mentary clauses. This method reduces search errors
and directly targets logical conflicts, making the
reasoning process faster and more efficient. We de-
sign a rule-based module to search for the clauses
Ccomplement ∈ Pn such that Ccurrent and Ccomplement
contain complementary terms. Terms are com-
plementary when they share the same predicate
and argument, but have opposite polarity. For ex-
ample, if the Ccurrent is P(x,True), clauses in the
premises that contains P(x,False) will be found
by the Search Router as Ccomplement, since they are
complementary (same predicate P and argument

1Self-contradictory means a statement can be proved true
and false simultaneously.
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x but opposite polarity (True vs. False)). We will
explain how we define the Ccurrent in Section 3. We
include more details about the search strategy in
Appendix B and H.

Resolver. To conduct effective step-wise rea-
soning during proof by contradiction, we adhere
to the resolution principle (Robinson, 1965) as
it provides clear and concise instructions to re-
solve logical conflicts, minimizing the likelihood
of reasoning errors. Specifically, it works by can-
celing out the complementary terms identified by
the Search Router and connecting the remaining
terms, a process that will be implemented using an
LLM. Specifically, given two clauses Ccurrent and
Ccomplement, where:

Ccurrent = P (x,True) ∨A

Ccomplement = P (x,False) ∨B

Here, P (x,True) and P (x,False) are complemen-
tary terms. The Resolver cancels out them and
connects the remaining terms. The resolved clause
becomes:

Cresolved = Resolve(Ccurrent, Ccomplement) = A∨B

If the remaining clause is empty or contradiction
(⊥)2 , we can conclude the proof and determine the
answer, which will be explained in detail in Section
3 at Step 2.

3 Logic-Complete Reasoning Processing
With Aristotle, we now demonstrate how each
module comes into play to form the integrated dual-
path reasoning process.

Step 1: Search Initialization. As shown in the
step 1 of Fig. 2, given the original premises P
and the question statement S, we first translate
them into symbolic format Pt and St, and then
decompose them into Pn and Sn, respectively.

Translate and Decompose
▶ Input: P , S
▶ Output: Pn, Sn, Ccurrent = {Sn, ¬Sn}

To implement proof by contradiction, we ini-
tialize the current clause Ccurrent with both Sn and
its negation ¬Sn, denoted as Ccurrent = Sn and
Ccurrent = ¬Sn. Considering both Sn and ¬Sn is
necessary because we need both proofs to scrupu-
lously conclude an answer, which is marked in Eq.
(1) and will be explained in detail later in Step 3.

2E.g. Resolve Ccurrent = (A) and Ccomplement = (¬A)
will get an empty clause Cresolved = ⊥. An empty clause is
equivalent to a contradiction.

Step 2: Search and Resolve. At this stage, two
reasoning paths are initiated: one from Ccurrent =
Sn and the other from Ccurrent = ¬Sn, initialized in
Step 1. We aim to reach a final answer using proof
by contradiction for both paths, iteratively search
for complementary clauses and resolve conflicts.
This helps us systematically reach an accurate final
answer more quickly. Specifically for each rea-
soning path, presented in the Step 2 of Fig. 2, the
Search Router selects clauses Ccomplement ∈ Pn that
are complementary to Ccurrent.

Search
▶ Input: Pn, Ccurrent
▶ Output: Ccomplement

The Resolver module then applies the resolution
rule Resolve(Ccurrent, Ccomplement) to produce a new
clause Cresolved.

Resolve
▶ Input: Ccurrent, Ccomplement
▶ Output: Cresolved

If the Cresolved indicates a contradiction or con-
firms the absence of a contradiction, we then ter-
minate the reasoning process. If not, we then up-
date Ccurrent = Cresolved and repeat the Search and
Resolve process. If the process reaches the maxi-
mum number of iterations Imax and still does not
find a contradiction, we conclude that there is no
contradiction and terminate the reasoning process.
Given the determination of whether contradiction
exists, we then use the formula presented below
to formally establish the proof DSn (started from
Ccurrent = Sn) and D¬Sn (started from Ccurrent =
¬Sn) to determine whether Pn entails either Sn or
¬Sn.

Proof Determination

DSn =
{
Pn ⊢ ¬Sn (Cresolved = Contradiction)
Pn ̸⊢ ¬Sn (Cresolved = No Contradiction)

D¬Sn =
{
Pn ⊢ Sn (Cresolved = Contradiction)
Pn ̸⊢ Sn (Cresolved = No Contradiction)

Step 3: Conclude Answer. This proof DSn and
D¬Sn can then be used to conclude the truth value
A of S based on Eq. (1). For example, consider a
statement S. If we get DSn = P ⊢ ¬S and D¬Sn

= P ̸⊢ S, the combination of P ⊢ ¬S and P ̸⊢ S
leads to the conclusion A that S is false according
to Eq. (1).

Final Answer
▶ Input:

DSn ∈ {Pn ⊢ ¬Sn, Pn ̸⊢ ¬Sn}
D¬Sn ∈ {Pn ⊢ Sn, Pn ̸⊢ Sn}

▶ Output:
A ∈ {True, False, Unknown, Self-Contradictory}
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A =





True, Pn ⊢ Sn ∧ Pn ̸⊢ ¬Sn

False, Pn ̸⊢ Sn ∧ Pn ⊢ ¬Sn

Unknown, Pn ̸⊢ Sn ∧ Pn ̸⊢ ¬Sn

Self-Contradictory, Pn ⊢ Sn ∧ Pn ⊢ ¬Sn

(1)

The full algorithm and an example case can be
found in Appendix H and I, respectively.

4 Experiments
We present the experiment settings, baselines and
results in this Section.

4.1 Settings

LLMs. We assess the baselines and our method
using GPT-4 and GPT-4o. We also include Claude
and LLaMA to verify whether our method can
generalize to different LLMs other than GPT series.

Dataset. We evaluated both the baselines and our
method on three carefully selected logical reason-
ing datasets: ProntoQA (Saparov and He, 2023),
ProofWriter (Tafjord et al., 2021) and LogicNLI
(Tian et al., 2021). These datasets were chosen
to reflect increasing levels of difficulty, with Pron-
toQA being the easiest, ProofWriter moderately
complex, and LogicNLI the most challenging due
to their intricate logical structures. ProntoQA
focuses on basic deductive logical relationships,
ProofWriter introduces more complex structures
such as “and/or,” and LogicNLI presents the most
intricate reasoning with constructs such as “ei-
ther/or” and “if and only if”. This progression
enables us to comprehensively evaluate the effec-
tiveness of our method across varying levels of
complexity in logical structure. The details of each
dataset can be found in appendix D.

Baselines. We compare with a wide range of es-
tablished baselines. Those baselines can be classi-
fied into three main categories. (1) Linear Reason-
ing (LR) refers to approaches where the model ar-
rives at an answer through a single-step process, us-
ing a straightforward response based on the initial
prompt including: Naive Prompting and CoT (Wei
et al., 2022); (2) Aggregative Reasoning (AR)
refers to methods where the model performs rea-
soning multiple times or aggregates the results to
reach a final answer. This includes: CoT-SC (Wang
et al., 2023b); Cumulative Reasoning (CR; Zhang
et al., 2023); DetermLR (Sun et al., 2024); ToT
(Yao et al., 2023); (3) Symbolic Reasoning (SR),
which engages symbolic expressions and rules in
the reasoning framework including: SymbCoT (Xu
et al., 2024) and Logic-LM (Pan et al., 2023). More
details can be found in Appendix G.
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Figure 3: Ablation results (w/ GPT-4o).

4.2 Main Result
The main results are presented in Table 1, from
which we can learn the following observations:
Our method consistently outperforms all base-
lines across the three datasets. Specifically, we
achieve average improvements over CoT-SC, ToT,
CR, and SymbCoT of 11.6%, 11.4%, 7.6%, and
4.5% on GPT-4, and 5.6%, 11.5%, 5.4%, and 6.2%
on GPT-4o, respectively. These results demonstrate
the general advantage of our method over the exist-
ing baselines across different datasets.
Our method performs even more effectively in
complex logical scenarios. We notice in Table 1
that our approach does not yield an improvement
on the ProntoQA dataset. This can be attributed to
the relative simplicity of the dataset, where most
baselines already achieve high accuracy, leaving
limited room for further enhancement. However,
our improvements are more pronounced on the
challenging datasets. Specifically, we achieve a
4.3% and 6.2% improvement over the second-best
baseline on ProofWriter with GPT-4 and GPT-4o,
respectively. On the most challenging dataset, Log-
icNLI, we observe even greater improvements of
6.3% for GPT-4 and 6.4% for GPT-4o. These re-
sults highlight the advantages of our method in
scenarios involving complex logical structures and
increased difficulty.
Our method is generalizable across different
models. In Table 2, we present the results for
two models (Claude and Llama) outside the GPT
series. We compare our method with strong base-
lines that aggregate multiple reasoning paths. Our
method demonstrates similar improvements over
the selected strong baseline, highlighting its gener-
alizability across different models.

4.3 Model Ablation
To evaluate the contribution of each module in
our framework, we conducted an ablation study
by replacing each module individually with sim-
pler alternatives. Specifically, we substitute (1) the
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Method GPT-4 GPT-4o

ProntoQA ProofWriter LogicNLI Avg ProntoQA ProofWriter LogicNLI Avg
L

R Naive 77.4 53.1 49.0 59.8 89.6 48.7 53.0 63.8
CoT 98.9 68.1 51.0 72.6 98.0 77.2 61.0 78.7

A
R

CoT-SC 93.4 69.3 57.3 73.3 99.6 78.3 64.3 80.7
CR 98.2 71.7 62.0 77.3 99.6 82.2 61.0 80.9
DetermLR 98.6 79.2 57.0 78.3 93.4 69.8 58.0 75.7
ToT 97.6 70.3 52.7 73.5 98.6 69.0 56.7 74.8

SR

SymbCoT 99.6 82.5 59.0 80.4 99.4 82.3 58.7 80.1
Logic-LM 83.2 79.7 - - 83.2 72.0 - -
Ours 99.6 86.8 68.3 84.9 99.6 88.5 70.7 86.3

(+0.0) (+4.3) (+6.3) (+4.5) (+0.0) (+6.2) (+6.4) (+5.4)

Table 1: Performance on GPT-4 and GPT-4o. The second best score is underlined and bold one is the best. In the
brackets are the corresponding improvements in between.

ProntoQA ProofWriter LogicNLI Avg
• Claude-3.5-Sonnet
CoT-SC 98.0 78.5 54.3 77.0
CR 88.8 57.8 57.7 68.1
ToT 92.0 69.5 46.7 69.4
Ours 99.0 86.5 61.3 82.3

(+1.0) (+8.0) (+3.6) (+5.3)

• Llama-3.1-405b
CoT-SC 84.0 69.5 60.3 71.3
CR 96.0 56.3 50.7 67.7
ToT 98.4 65.5 56.7 73.5
Ours 98.4 89.5 69.0 85.6

(+0.0) (+20.0) (+8.7) (+12.1)

Table 2: Performance by using Claude-3.5-Sonnet and
Llama-3.1-405B LLMs.

Decomposer by prompting the LLM for simple de-
composition, (2) the Resolver by prompting the
LLM to infer using the given premises, and (3) the
Search Router by prompting the LLM to search for
relevant premises.

The results, shown in Fig. 3, demonstrate that
removing any module leads to a significant per-
formance drop, highlighting the importance of
each component. Notably, replacing the Search
Router results in the largest performance decline
(50.8% and 31.6% for ProofWriter and LogicNLI,
respectively), emphasizing the benefits of search-
ing complementary premises under the proof-by-
contradiction strategy. Besides, the Decomposer
has a greater impact than the Resolver on Logic-
NLI, whereas in ProofWriter, the Resolver plays a
more significant role than the Decomposer. This
is because LogicNLI includes more complex logi-
cal structures, such as “either...or...”, “vice versa”,
and “if and only if”, while ProofWriter primarily
involves simpler conjunctions such as “and”, “or”.
As a result, LogicNLI relies more heavily on the
Decomposer to break down complex logical state-
ments into simpler forms for optimal performance.
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Figure 4: Accuracy vs. Efficiency on ProofWriter using
GPT-4. Efficiency is measured as the average number of
visited nodes/steps required to solve the problem. The
upper-left corner is the optimal point, representing the
best performance with the fewest visited nodes.

5 Analysis and Discussion

We now take one step further, delving into the un-
derlying working mechanisms of our system.

5.1 Accuracy vs. Efficiency

Our method achieves better reasoning accuracy
with higher efficiency. Here, we measure the
average number of steps or nodes for solving prob-
lems in the ProofWriter dataset. As shown in Fig.
4, our method not only achieves the highest accu-
racy across all baselines but does so with the least
number of visited nodes indicating both superior
efficacy and efficiency. Specifically, our method
achieves the highest accuracy among all baselines,
while visiting only 11.65 nodes on average, reduc-
ing the number of nodes visited by 52.6%, 30.5%,
and 20.4% compared to ToT, CR, and DetermLR,
respectively. This demonstrates that our approach
effectively balances accuracy and computational ef-
ficiency. By directly targeting contradictions, it sig-
nificantly streamlines the reasoning process, mak-
ing it both precise and efficient.
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Figure 5: One-step reasoning accuracy using GPT-4o.

5.2 Step-wise Reasoning Accuracy
The Resolver can achieve near-perfect ac-
curacy in one-step logical inference. To under-
stand why our framework is effective, we must also
examine its one-step logical reasoning accuracy.
Since the final answer is derived from these indi-
vidual inferences (i.e., nodes in ToT and steps in
Ours), their accuracy directly impacts the overall
performance. We compare the one-step reasoning
accuracy of our method with that of ToT shown in
Fig. 5.3 ToT demonstrated around 70% accuracy,
which is consistent with prior research showing
that LLMs can sometimes introduce logical errors.
In contrast, our Aristotle achieved near-perfect
accuracy in one-step inference, underscoring the
effectiveness of the Resolver module’s use of the
resolution principle. This is because the resolution
principle provides a systematic and logically rig-
orous way to resolve contradictions, simplifying
the reasoning process compared to methods that
rely on LLMs to reason from previous steps and
multiple premises.

5.3 Search Error
Our method effectively reduces errors from the
search strategy. Apart from one-step logical in-
ference, the search router also plays a crucial role.
Previous research has shown that methods involv-
ing an evaluator to guide the search tend to under-
perform as the evaluator can be unreliable and may
mislead the reasoning process, resulting in incor-
rect answers. We assess the search error4, as shown
in Fig. 6. Our search strategy significantly reduces
errors, lowering them by 11.2% in ProofWriter
and 9.0% in LogicNLI. This demonstrates that our
logic-based search approach outperforms LLM self-
evaluation, effectively addressing the limitations
posed by unreliable evaluators in logical reasoning.

3We randomly sample 100 cases with manual evaluation.
4In ToT, search errors occur when the evaluator selects

a logically flawed node for expansion. In contrast, in our
method, search errors arise when either the complementary
clause is not found or a non-complementary clause is selected.
The evaluation process is conducted manually.
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Figure 7: Studying the effect of reasoning depth with
GPT-4 on ProofWriter.

An explanation is that our method simplifies the
search process by focusing on identifying comple-
mentary clauses, a task with clear definitions and
rules that an LLM can easily follow with a few
examples. In contrast, having an LLM evaluate log-
ical inferences, such as in ToT, requires complex
judgments, making it more prone to errors (Chen
et al., 2024; Wang et al., 2024b).

5.4 Complex Reasoning
Our method demonstrates a clear advantage
in handling problems of increasing difficulty.
We evaluate accuracy across different reasoning
difficulties in ProofWriter, as shown in Fig. 7.
Our method consistently outperforms others at all
depths, maintaining superior accuracy. It excels
particularly at moderate and challenging depths,
surpassing baselines like SymbCoT and Logic-LM.
Even as other methods struggle at higher depths,
our approach remains robust, demonstrating better
scalability and resilience to problem difficulty. This
effectiveness is due to two main factors: (1) using
the resolution principle minimizes errors at each
step and prevents them from compounding, and (2)
streamlining the reasoning process reduces steps,
lowering the likelihood of error accumulation.

The cost scaling is stable with increased reason-
ing depth. To complement the performance anal-
ysis on different reasoning depth, we also address
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Dataset Avg. TU Std. Dev. CV

ProofWriter 3076.8 19.1 0.71%
LogicNLI 2071.1 26.4 0.85%

Table 3: Token usage statistics per reasoning step. TU
denotes Token Usage, Std. Dev. denotes Standard Devi-
ation, and CV denotes Coefficient of Variation.

concerns about the scalability of our framework
when applied to tasks requiring deeper reasoning
involving greater reasoning depth. Specifically, we
provide a detailed examination of the marginal com-
putational costs and token usage associated with
extended reasoning chains. Aristotle is designed
to handle increased reasoning depth in an efficient
and controlled manner.

Each reasoning step in our framework consists
of two operations. First, a search operation is per-
formed using a deterministic rule-based method,
which introduces minimal computational overhead
and does not contribute additional token usage as
reasoning depth increases. Second, a resolve op-
eration is executed by the resolver module, which
processes one reasoning step at a time and is the
only component contributing to token-based com-
putational cost.

This modular design ensures that total token us-
age grows linearly with the number of reasoning
steps, keeping the marginal cost per additional step
low and predictable. To empirically validate the ef-
ficiency and stability of our approach, we analyzed
token usage for individual reasoning steps across
two benchmark datasets, ProofWriter and Logic-
NLI, as shown in Table 3. The statistics indicate
that token usage per reasoning step is highly con-
sistent, exhibiting low standard deviation and coef-
ficient of variation. Moreover, the absolute token
cost per step remains modest, ensuring that deeper
reasoning does not impose a significant computa-
tional burden. Given the stable, linear scaling of
token consumption and the low per-step cost, our
framework maintains its efficiency even for tasks
requiring extended reasoning chains.

5.5 Error Analysis
To thoroughly understand the limitations of our
framework, we conduct a manual error analysis
on the ProofWriter and LogicNLI datasets using
GPT-4o. The detailed error statistics are presented
in Fig. F.

The majority of errors stem from the Contra-

ProofWriter LogicNLI

Figure 8: Error analysis on ProofWriter and LogicNLI
with GPT-4o.

diction Error, primarily due to flaws in dataset
construction. The next most common source is
the Search module, where complementary clauses
exist but are not retrieved. This is often due to un-
expected symbols (e.g., LaTeX code) in the LLM’s
output that disrupt regular expression matching.

Translation and Decomposition errors are the
third largest category. These occur when the LLM
struggles to parse complex logical relationships or
convert them into the correct symbolic form. Such
errors are more prevalent in LogicNLI, which fea-
tures more intricate constructs (e.g., "either...or..."
and "if and only if") compared to the simpler logic
in ProofWriter (e.g., "and," "or").

Another notable source of error is Insufficient
Iterations, where the reasoning process terminates
prematurely, often concluding "No contradiction"
when further iterations might reveal one. While
increasing the iteration threshold could mitigate
this, it must be balanced against computational
efficiency.

Finally, Resolution errors, often due to incor-
rect variable instantiations, are relatively infrequent.
This is because logical statements have been re-
duced to a simple conjunctive normal form (CNF)
by this point, making them easier to interpret, and
the resolution principle offers clear guidance for
resolving inconsistencies.

Potential improvements include incorporating
more targeted in-context learning (ICL) examples
to enhance translation and resolution. Besides, en-
hancing regular expression patterns to accommo-
date a wider range of syntactic variations could
further reduce search errors. Additionally, tun-
ing iteration limits would help achieve a better
balance between accuracy and computational effi-
ciency. More details of error analysis can be found
at Appendix F.
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6 Related Work
Enhancing the logical reasoning of LLMs to
achieve human-like levels has been a key focus
in recent research (Huang and Chang, 2023; Duni-
vin, 2024). Existing approaches can be broadly
categorized into the following:
Linear Reasoning. These approaches involve
prompting LLMs once to emulate human reasoning
in a sequential manner. The representative is the
CoT method (Wei et al., 2022), which guides the
model to generate reasoning steps linearly. Build-
ing upon CoT, SymbCoT (Xu et al., 2024) incor-
porates symbolic expressions and rules into the
linear reasoning process to achieve more rigor-
ous logical reasoning. However, these methods
lack any searching or backtracking mechanism to
avoid flawed reasoning paths, leading to subopti-
mal performance. In this paper, we thus consider
the searching-based reasoning framework.
Sampling Methods. These methods obtain the
final answer through samplings to enhance reason-
ing diversity and accuracy (Wang et al., 2023b; Fu
et al., 2023; Manakul et al., 2023). This involves
running the reasoning process multiple times, with
the increased diversity of reasoning paths contribut-
ing to better results. However, they do not resolve
the underlying issue of flawed logical reasoning in-
herent to the LLM, which is resolved by the resolu-
tion principle (Robinson, 1965) in our framework.
Iterative Reasoning with Search. These meth-
ods rely on an evaluator to search for different rea-
soning paths to avoid flawed nodes. Techniques
such as ToT (Yao et al., 2023), and its variances
(Xie et al., 2023; Zhang et al., 2023; Sun et al.,
2024), generate multiple thoughts during the rea-
soning. An evaluator repetitively selects the most
probable paths to expand to the next level until the
final answer. However, the evaluator may not be re-
liable (Chen et al., 2024; Wang et al., 2024b), poten-
tially selecting incorrect nodes for expansion and
propagating errors. This paper proposes a search
mechanism that relies on matching symbolic logic,
avoiding the use of an unreliable evaluator.
Reasoning Relying on External Tools. Here
LLMs often involve integrating well-developed
rule-based reasoning engines, where LLMs act as
mere translators, converting the natural language of
reasoning questions into specific symbolic forms
to be processed by external rule-based engines. Ex-
amples include Logic-LM (Pan et al., 2023), LINC
(Olausson et al., 2023) and PAL (Gao et al., 2023).

The limitation of this approach lies in the strict
formatting requirements of external logic resolver;
LLMs inevitably introduce syntax errors during
translation, leading to failures in the reasoning pro-
cess. Fortunately, the success of SymbCoT (Xu
et al., 2024) preliminarily demonstrates that en-
abling LLMs to perform logical reasoning based on
symbols is feasible and promising. In our paper, we
further prove that symbolic logic expressions can
be fully integrated into all processes of the reason-
ing framework, including decomposition, search,
and inference, thereby demonstrating that LLMs
themselves can completely achieve high-level sym-
bolic logical reasoning.

7 Conclusion
We presented Aristotle, a logic-complete reason-
ing framework designed to tackle the challenges
of logical reasoning, which comprehensively inte-
grates symbolic expressions and logical rules into
three core components: Logical Decomposer, Log-
ical Search Router, and Logical Resolver. These
modules streamline the reasoning process by re-
ducing the task complexity, minimizing the search
errors, and rigorously resolving logical contradic-
tions. Our experiments show that our method con-
sistently outperforms state-of-the-art frameworks
in both accuracy and efficiency significantly.
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Potential Limitations

Our method faces two potential limitations. First,
the reasoning process relies on the quality of trans-
lation and decomposition. However, even with a
few-shot approach, LLMs cannot always guaran-
tee that these processes are fully correct. Future
work could consider more advanced methods to
guarantee the quality of these processes, such as
fine-tuning. Secondly, our reasoning approach re-
quires that all necessary information is explicitly
stated in the premises. If any implicit information
or assumptions exist, our method may fail to cap-
ture them, leading to incorrect reasoning. A more
detailed analysis of this limitation is provided in
Appendix E. Nevertheless, there are existing meth-
ods that explore how to make implicit information
explicit. Future work could integrate those methods
into this framework to address this limitation.
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A Logical Grammar

Facts: A fact is an assertion about specific individu-
als in the domain. It involves a predicate applied to
constants (not variables) and states that a particular
relationship holds between these individuals. For
example, Sees(Jack,Tom,True) asserts Jack sees
Tom.

Rules: A rule delineates a logical relationship be-
tween predicates and forms an integral component
of the domain’s terminological knowledge. These
rules typically incorporate variables and are univer-
sally quantified, ensuring their applicability across
all relevant instances within the domain. Rules can
involve logical connectors such as "and" (∧), "or"
(∨), "either...or..." (exclusive or, ⊕), and "not" (¬),
appearing on both sides of the implication (→) or
biconditional (↔) operators. For instance, the rule

∀x, y (Sees(x, y) → Knows(x, y))

asserts that for all individuals x and y, if x sees y,
then x knows y.

Query: A query is a fact that needs to be proven
based on the given facts and rules.

B Three potential situations for searching
complement

When searching for a complementary clause during
the resolution process, three potential situations
may arise.

1) If exactly one complementary clause is found
the resolution will be directly implemented.

2) If multiple complementary clauses are identi-
fied, we prioritize the shorter clauses, while
saving the remaining clauses as backup op-
tions. In cases where the current reasoning
path cannot find any further complementary
clauses before reaching the predefined maxi-
mum number of iterations, we will backtrack
and attempt to use these backup clauses.

3) If no complementary clause is found initially,
we will backtrack to the backup list. Should
the backup list also be exhausted, we will con-
clude the reasoning process by determining
the result as "No contradiction found."

This approach ensures a structured and efficient
search and resolution process, while also account-
ing for cases where multiple or no complementary
clauses are found, improving overall search robust-
ness.

C Conjunctive Normal Form

Conjunctive Normal Form (CNF) is a standardized
way of expressing logical statements in Boolean
logic. In CNF, a formula is composed of a conjunc-
tion (AND, denoted as ∧) of clauses, where each
clause is a disjunction (OR, denoted as ∨) of liter-
als. A literal is either a variable or its negation. For
example, the logical statement (A∨¬B)∧(C∨D)
is in CNF. Each group within the parentheses is a
clause, and the entire expression is the conjunc-
tion of these clauses. The reason we need logical
statements to be in CNF to conduct resolution is
that resolution is a fundamental inference rule in
automated theorem proving. It works by finding
pairs of clauses where one contains a literal and the
other contains its negation. These pairs can then be
combined to eliminate the opposing literals, sim-
plifying the overall logical expression. Since CNF
breaks down complex statements into smaller, man-
ageable components of ANDs and ORs, it allows
the resolution rule to systematically and efficiently
simplify or refute logical expressions, thus enabling
automated reasoning systems to solve problems.

D Dataset Specifications

ProntoQA is a synthetic dataset designed to assess
models’ deductive reasoning abilities. For our eval-
uation, we use the most difficult 5-hop subset. Each
question in this dataset requires verifying whether
a given claim is "True" or "False" based on the
provided premises. The dataset focuses on basic
logical relationships. For instance, given "X is Y",
"Y is Z", determining whether "X is Z".
ProofWriter is a popular dataset for logical deduc-
tive reasoning. The dataset has five subsets with
different reasoning depths (from 1 to 5). We use
the hardest depth-5 subset for evaluation. And the
context in this dataset contains more challenging
logical relationships such as the combination of
"and" and "or".
LogicNLI is a challenging NLI-style dataset that
effectively disentangles the target logical reasoning
from commonsense inference. In addition to com-
mon logical relationships such as "and" and "or", it
presents the most difficult relationships among the
three datasets, such as "either...or...", "vice versa",
and "if and only if".

The test sizes are 500 for ProntoQA, 600 for
ProofWriter, and 300 for LogicNLI, respectively.
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Model FOLIO LogiQA
CoT 75.0 65.6
Aristotle 76.5 31.2

Table 4: Performance on Real-world’s Benchmark

E Evaluation on Real-world Dataset

The ability to solve real-world problems is impor-
tant, as it reflects a model’s applicability beyond
synthetic or constrained settings. Numerous bench-
marks (Han et al., 2022; Patel et al., 2024; Liu et al.,
2023; Parmar et al., 2024; Liu et al., 2020; Yu et al.,
2020; Tyagi et al., 2024) have been introduced to
evaluate this capability by incorporating tasks that
require implicit reasoning, background knowledge,
and commonsense understanding.

We include an evaluation on real-world datasets
FOLIO (Han et al., 2022) and LogiQA (Liu et al.,
2020), to provide a deeper understanding of Aristo-
tle. As shown in Table 4, Aristotle’s performance
is suboptimal. This is primarily due to its design:
it operates on explicitly stated premises and delib-
erately avoids relying on unstated assumptions or
external background knowledge. However, real-
world scenarios frequently depend on such implicit
information and commonsense reasoning, making
these capabilities essential for robust performance.

While Aristotle promotes clarity and precision
in logical inference, it may not fully capture the
complexities inherent in real-world tasks—a lim-
itation we have acknowledged in the main paper.
Notably, Aristotle’s performance on LogiQA is sig-
nificantly worse than on FOLIO. Our qualitative
analysis reveals that this discrepancy stems from
LogiQA’s greater reliance on commonsense knowl-
edge and implicit assumptions, which makes it less
compatible with Aristotle’s strictly premise-driven
reasoning approach.

To address this, our plan is to incorporate exter-
nal knowledge to better handle such scenarios in fu-
ture work. For instance, information retrieval from
the internet or commonsense knowledge graphs
could supplement the explicit premises with the
necessary implicit knowledge for reasoning. This
integration would enable our method to leverage
background information that is not explicitly pro-
vided, improving its applicability and performance
in solving real-world tasks.

F Error Analysis

Here, we present a more detailed error analysis.

F.1 False Contradiction

False contradiction refers to when the method iden-
tifies a contradiction when none should exist, lead-
ing to an incorrect final answer. This issue often
arises in cases where the ground truth of a problem
is false. For example, when the ground truth is
false, we should find a contradiction when reason-
ing from the negation of the statement and no con-
tradiction when reasoning from the original state-
ment, as outlined in the equation 1.

However, our method sometimes finds a con-
tradiction even when reasoning from the original
statement, altering the final answer and producing
errors. This should be due to the way datasets are
constructed. When the ground truth is false, for in-
stance, the dataset may be built such that the false
statement is provable, but the construction process
might fail to ensure that the true statement is not
provable. This oversight results in both the true and
false values being provable, making the problem
self-contradictory. This situation occurs more fre-
quently when the ground truth is either true or false,
suggesting that the dataset did not fully account
for the exclusive relationship between proving one
value and excluding the other.

In an ideal dataset construction where the ground
truth is true or false, the premises should only
allow for the ground truth to be provable, while
any other possible answers should be logically ex-
cluded. That is, if a statement is provably true,
it should be impossible to prove its negation, and
vice versa. Ensuring this exclusivity is crucial for
logical consistency.

That said, it’s important to note that these False
Contradictions represent only a small portion of the
overall dataset. While this issue can affect some
instances, it doesn’t significantly undermine the
dataset’s overall effectiveness for testing reasoning
models.

F.2 Resolver Instantiation Error

An instantiation error occurs when a resolver
incorrectly substitutes a variable, leading
to an inaccurate conclusion. For example,
given two clauses: Smart(Gary, False)
and Smart(Gary, True) ∨ Nice(x, False),
the correct resolution would recognize that
Smart(Gary, False) directly complements
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Smart(Gary, True), resulting in the simplified
clause Nice(x, False) without needing to instan-
tiate ‘x‘. However, if the resolver mistakenly
instantiates "x" as "Gary," the clause changes to
Nice(Gary, False), which is more specific than
necessary.

This error restricts the generality of the conclu-
sion, as the correct clause Nice(x, False) is in-
tended to apply to any individual, not just "Gary."
Such improper instantiation can lead to faulty rea-
soning in subsequent steps, where conclusions
might be incorrectly drawn because the reasoning
process has been prematurely narrowed to a spe-
cific case. Ensuring that instantiation only occurs
when necessary can help prevent these errors and
maintain the validity of logical deductions.

G Baselines

Here we illustrate the details of each baseline.

Naive Prompting Naive Prompting refers to a
basic prompting technique where a model is given a
question or task without any complex instructions
or intermediate steps. The model is expected to
output a direct answer based on its existing knowl-
edge. In this approach, the reasoning process is
implicit, and the model simply leverages its pre-
trained knowledge to respond without additional
structured reasoning or step-by-step guidance.

Chain-of-Thought (CoT) Chain-of-Thought
(CoT) prompting is a more advanced prompting
strategy that encourages the model to generate
intermediate reasoning steps before arriving at a
final answer. Instead of asking the model for an
immediate response, the prompt guides the model
to break down the reasoning process into smaller,
logical steps. This allows the model to engage in
more thoughtful problem-solving and often leads
to better performance on tasks requiring multi-step
reasoning (Wei et al., 2022).

Chain-of-Thought with Self-Consistency (CoT-
SC) Chain-of-Thought with Self-Consistency
(CoT-SC) improves upon the standard CoT method
by running the chain-of-thought reasoning process
multiple times independently. Instead of produc-
ing just one reasoning chain per query, the model
generates multiple chains for the same task. Af-
ter running these different reasoning processes, the
final answer is determined by applying majority
voting on the outputs. This ensures that the model
selects the answer that is most consistent across

multiple reasoning attempts, which helps reduce
variability and errors caused by randomness or in-
correct intermediate steps in any single chain(Wang
et al., 2023b).

Cumulative Reasoning (CR) Cumulative Rea-
soning builds on the idea that reasoning can be
improved over successive iterations. The model
does not simply reach a conclusion in one step, but
rather, the reasoning evolves across multiple stages
or passes. In this process, intermediate results are
used as building blocks for the final solution, allow-
ing the model to accumulate information and refine
its reasoning step by step (Zhang et al., 2023).

DetermLR DetermLR is a reasoning approach
that rethinks the process as an evolution from inde-
terminacy to determinacy. It categorizes premises
into determinate (clear) and indeterminate (uncer-
tain) types, guiding models to convert indetermi-
nate data into determinate insights. The approach
uses quantitative methods to prioritize relevant
premises and employs reasoning memory to store
and retrieve historical reasoning paths. This helps
streamline the reasoning process, progressively re-
fining the model’s understanding to produce more
determinate and accurate conclusions (Sun et al.,
2024).

Tree-of-Thought (ToT) Tree-of-Thought (ToT)
is a framework that uses a tree-like structure for
reasoning. Instead of generating a single chain
of thought, the model explores multiple reasoning
pathways in parallel, branching out into different
possible solutions. The tree structure allows the
model to evaluate and prune different paths, keep-
ing only the most promising routes to reach the
correct solution. This approach is particularly use-
ful for problems where multiple reasoning paths
can lead to the answer, allowing for exploration
and selection of the best path (Yao et al., 2023).

SymbCoT SymbCoT integrates symbolic expres-
sions and rules into the chain-of-thought (CoT) pro-
cess. It translates natural language input into sym-
bolic representations, allowing the model to reason
based on these symbolic expressions. The LLM
then applies symbolic rules to process and analyze
the information, enhancing its ability to handle
tasks that require formal reasoning and structured
problem-solving (Xu et al., 2024).

Logic-LM Logic-LM translates natural language
input into a symbolic format and then applies a rule-
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based logical engine to perform reasoning. This
approach leverages formal logic rules to process
and analyze the symbolic representation, enabling
more structured and precise reasoning, particularly
for tasks that require strict logical inferences (Pan
et al., 2023).
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H Full Algorithm

Algorithm 1: Methodology
Input: Premises P , Question Statement S, LLM pθ , Translator T (), Decomposer D(), Search Router SR(), Resolver

R(), Search Round Limit S
1 Pt, St ← T (P, S) ; // Translate the given premises and statement
2 Pn, Sn ← D(Pt, St) ; // Decompose the translated premises and statement
3 Ccurrent_list ← [Sn,¬Sn] ; // Initiate search with Sn and its negation
4 Search_round← 0;
5 foreach Ccurrent in Ccurrent_list do
6 while Search_round < S do
7 Csearched_list ← SR(Ccurrent, Pn) ; // Search for complementary clause
8 num_searched_C ← len(Csearched_list);
9 if num_searched_C >= 1 then

10 Csearched ← Csearched_list[0];
11 else
12 Csearched ← Csearched_list.pop(0);
13 end
14 cache← {Pn : Csearched_list} ; // If more than one Ccurrent, save in cache
15 if num_searched_C == 0 then
16 if cache[Ccurrent] is not empty then
17 Ccurrent ← next(iter(cache)) ; // If no Ccurrent found, search from cache
18 Csearched ← cache[Ccurrent].pop(0);
19 end
20 else
21 if Start from Sn then
22 DSn ← P ̸⊢ ¬S ; // If cache is empty, make conclusion
23 end
24 if Start from ¬Sn then
25 D¬Sn ← P ̸⊢ S;
26 end
27 break;
28 end
29 end
30 Cresolved ← R(Ccurrent, Csearched);
31 if Cresolved == ‘Contradiction’ then
32 if Start from Sn then
33 DSn ← P ⊢ ¬S ; // If contradiction is found, make conclusion
34 ;
35 end
36 if Start from ¬Sn then
37 D¬Sn ← P ⊢ S;
38 end
39 break;
40 end
41 else
42 Pn ← Pn ∪ {Cresolved} ; // Append Cresolved on Pn

43 end
44 Ccurrent ← Cresolved;
45 end
46 if Start from Sn then
47 DSn ← P ̸⊢ ¬S ; // If no contradiction found and reach max iterations, make conclusion
48 end
49 if Start from ¬Sn then
50 D¬Sn ← P ̸⊢ S;
51 end
52 end
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I Case Study

Given the premises, we need to determine whether the question statement S "Dave is not nice" is
true/false/unknown/self-contradictory. We first start the first reasoning path from Ccurrent = Sn. Ccomplement
is the complementary clause found by the Search Router from Pn.

Logical Resolution Steps

Translated and Decomposed Premises Pn:

1. If someone is green then they are nice ::: ∀x (Green(x,False) ∨ Nice(x,True))

2. If someone is smart then they are green ::: ∀x (Smart(x,False) ∨ Green(x,True))

3. Dave is smart ::: Smart(Dave,True)

Question Statement Sn: Dave is not nice ::: Nice(Dave, False)

Ccurrent : Nice(Dave,False)

Resolution Steps:

1. First Resolution:

Resolve
(
Ccurrent = Nice(Dave,False), Ccomplement = ∀x (Green(x,False) ∨ Nice(x,True))

)

• Instantiate Ccomplement for x = Dave:

Green(Dave,False) ∨ Nice(Dave,True)

• Resolve with Ccurrent = Nice(Dave,False):

Nice(Dave,False)

and

Green(Dave,False) ∨ Nice(Dave,True)

• Since Nice(Dave,False) contradicts Nice(Dave,True), the new resolved clause is:

Cresolved = Green(Dave,False)

• Update Ccurrent to Cresolved:

Ccurrent = Cresolved = Green(Dave,False)

2. Second Resolution:

Resolve
(
Ccurrent = Green(Dave,False), Ccomplement = ∀x (Smart(x,False) ∨ Green(x,True))

)

• Instantiate Ccomplement for x = Dave:

Smart(Dave,False) ∨ Green(Dave,True)

• Resolve with Ccurrent = Green(Dave,False):

Green(Dave,False)

and

Smart(Dave,False) ∨ Green(Dave,True)
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• Since Green(Dave,False) contradicts Green(Dave,True), the new resolved clause is:

Cresolved = Smart(Dave,False)

• Update Ccurrent to Cresolved:

Ccurrent = Cresolved = Smart(Dave,False)

3. Third Resolution:

Resolve
(
Ccurrent = Smart(Dave,False), Ccomplement = Smart(Dave,True)

)

• Resolve Smart(Dave,False) with Smart(Dave,True):

Smart(Dave,False)

and

Smart(Dave,True)

• Since Smart(Dave,False) contradicts Smart(Dave,True), the final resolved clause is:

Cresolved = Contradiction

Conclusion: DSn = P ⊢ ¬S

We then start the second reasoning path from Ccurrent = ¬Sn.

Logical Resolution Steps

Translated and Decomposed Premises Pn:

1. If someone is green then they are nice ::: ∀x (Green(x,False) ∨ Nice(x,True))

2. If someone is smart then they are green ::: ∀x (Smart(x,False) ∨ Green(x,True))

3. Dave is smart ::: Smart(Dave,True)

Question Statement Sn: Dave is not nice ::: Nice(Dave, False)

Ccurrent = ¬Sn = Nice(Dave,True)

Resolution Steps:

1. First Resolution:

No complementary clause was found from the given premises, thus we directly conclude "No
contradiction found"

Conclusion: D¬Sn = P ̸⊢ S

Since we get: DSn = P ⊢ ¬S and D¬Sn = P ̸⊢ S from two reasoning paths correspondingly, according
to Eq. (1), the final answer is False.
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J Full Prompting of Each Module

J.1 ProntoQA

Translation

Task Description:
You are given a problem description and a question. The task is to:

1. Define all the predicates in the problem.

2. Parse the problem into logic rules based on the defined predicates.

3. Write all the facts mentioned in the problem.

4. Parse the question into the logic form.

Premises P :

• Each jompus is fruity. Every jompus is a wumpus. Every wumpus is not transparent. Wumpuses are tumpuses.
Tumpuses are mean. Tumpuses are vumpuses. Every vumpus is cold. Each vumpus is a yumpus. Yumpuses
are orange. Yumpuses are numpuses. Numpuses are dull. Each numpus is a dumpus. Every dumpus is not shy.
Impuses are shy. Dumpuses are rompuses. Each rompus is liquid. Rompuses are zumpuses. Alex is a tumpus.

Statement S:

• True or false: Alex is not shy.

Facts (included in Pt):

• Tumpuses(Alex): Alex is a tumpus.

• (... more facts ...)

Rules (included in Pt):

• Jompus(x)⇒ Fruity(x): Each jompus is fruity.

• (... more rules ...)

Translated Query St:

• Shy(Alex, False) ::: Alex is not shy

Decomposition

Task Description:
You are given a problem description and a question. The task is to:

1. Given the premises and conjecture in logical form, decompose the logical statements using normalization and
skolemization.

2. Normalization: Convert each premise and conjecture into Prenex Normal Form (PNF), then into Conjunctive
Normal Form (CNF).

3. Skolemization: Eliminate existential quantifiers by introducing Skolem constants or functions.

Premises Pt:
• Jompus(x, True)→ Shy(x, False)

• Jompus(x, True)→ Y umpus(x, True)

• (...more premises... )

Query St:
• Sour(Max, True)

Decomposed Premises Pn:
• 1. ¬Jompus(x, True) ∨ Shy(x, False)

• 2. (¬Jompus(x, True) ∨ Y umpus(x, True)

• (... additional decomposed premises ...)

Query Sn:
• Sour(Max, True)
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Resolve

Task Description:
You are given a problem description and a question. The task is to:

1. Check for Complementary/Contradictory Terms. Two terms are contradictory if they share the same predicate and
arguments but differ in boolean value (True vs. False).

2. If contradictory terms are found, apply the resolution rule: From (P (x, True)∨Q(x, True)) and (P (x, False)∨
M(x, True)), derive Q(x, True) ∨M(x, True).

3. If the resolution leads to an empty clause or direct contradiction, then output "Contradiction". Otherwise output
the new clause after resolution.

Example: Given Clauses (Ccurrent and Ccomplement)

• Difficult(Bradley, True) ∨Known(x, False)

• Difficult(x, False) ∨ Embarrassed(x, True) ∨ Colorful(x, False)

Resolved Cresolved:

• Known(x, False) ∨ Embarrassed(Bradley, True) ∨ Colorful(Bradley, False)

(...more examples...)

J.2 ProofWriter

Translation

Task Description:
You are given a problem description and a question. The task is to:

1. Define all the predicates in the problem.

2. Parse the problem into logic rules based on the defined predicates.

3. Write all the facts mentioned in the problem.

4. Parse the question into the logic form.

Premises P :

• Anne is quiet. Erin is furry. Erin is green. Fiona is furry. Fiona is quiet. Fiona is red. Fiona is rough. Fiona is
white. Harry is furry. Harry is quiet. Harry is white. Young people are furry. If Anne is quiet then Anne is red.
Young, green people are rough. If someone is green then they are white. If someone is furry and quiet then they
are white. If someone is young and white then they are rough. All red people are young.

Statement S:

• Is the following statement true, false, or unknown? Anne is white.

Facts (included in Pt):

• Quite(Anne, True): Anne is quiet.

• (... More facts ...)

Rules (included in Pt):

• Y oung(x, True)⇒ Furry(x, True): Young people are furry.

• (... More rules ...)

Query St:

• White(Anne, True) ::: Anne is white.

Decomposition

Task Description:
You are given a problem description and a question. The task is to:

1. Given the premises and conjecture in logical form, decompose the logical statements using normalization and
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skolemization.

2. Normalization: Convert each premise and conjecture into Prenex Normal Form (PNF), then into Conjunctive
Normal Form (CNF).

3. Skolemization: Eliminate existential quantifiers by introducing Skolem constants or functions.

Premises Pt:

• Quite(Anne, True): Anne is quiet.

• Y oung(x, True)⇒ Furry(x, True): Young people are furry.

• (...more premises... )

Query St:

• White(Anne, True) ::: Anne is white.

Decomposed Premises Pn:

• 1. Quite(Anne, True)

• 2. Y oung(x, False) ∨ Furry(x, True)

• (... additional decomposed premises ...)

Query Sn:

• White(Anne, True)

Resolve

Task Description:
You are given a problem description and a question. The task is to:

1. Check for Complementary/Contradictory Terms. Two terms are contradictory if they share the same predicate and
arguments but differ in boolean value (True vs. False).

2. If contradictory terms are found, apply the resolution rule: From (P (x, True)∨Q(x, True)) and (P (x, False)∨
M(x, True)), derive Q(x, True) ∨M(x, True).

3. If the resolution leads to an empty clause or direct contradiction, then output "Contradiction". Otherwise output
the new clause after resolution.

Example: Given Clauses (Ccurrent and Ccomplement)

• Difficult(Bradley, True) ∨Known(x, False)

• Difficult(x, False) ∨ Embarrassed(x, True) ∨ Colorful(x, False)

Resolved Cresolved:

• Known(x, False) ∨ Embarrassed(Bradley, True) ∨ Colorful(Bradley, False)

(...more examples...)

J.3 LogicNLI

Translation

Task Description:
You are given a problem description and a question. The task is to:

1. Define all the predicates in the problem.

2. Parse the problem into logic rules based on the defined predicates.

3. Write all the facts mentioned in the problem.

4. Parse the question into the logic form.

5. Please make sure to differentiate ’or’ and ’either. . . or. . . ’. For ’or’, you should translate it with the inclusive ’or’
(∨) operator. For ’either. . . or. . . ’, you should translate it with the ’exclusive or’ (⊕) operator.
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6. Please be careful when translating clauses with words "equivalent", "vice versa" and "if and only if". Make sure
you use the biconditional "↔" in those translations.

Premises P :

• Medwin is doubtful. Roberto is not bitter. Roberto is not grieving. If someone is not bitter, then he is not grieving.
Medwin being not sociable implies that Medwin is not pure. If there is someone who is either not pure or not
doubtful, then Lynda is not grieving.

Statement S:

• Bernard is not bitter.

Facts (included in Pt):

• Doubtful(Medwin, True) ::: Medwin is doubtful.

• (... More facts ...)

Rules (included in Pt):

• Bitter(x, False)⇒ Grieving(x, False): If someone is not bitter, then he is not grieving.

• (... More rules ...)

Query St:

• Bitter(Bernard, False) ::: Bernard is not bitter.

Decomposition

Task Description:
You are given a problem description and a question. The task is to:

1. Given the premises and conjecture in logical form, decompose the logical statements using normalization and
skolemization.

2. Normalization: Convert each premise and conjecture into Prenex Normal Form (PNF), then into Conjunctive
Normal Form (CNF).

3. Skolemization: Eliminate existential quantifiers by introducing Skolem constants or functions.

Premises Pt:

• Doubtful(Medwin, True) ::: Medwin is doubtful.

• Bitter(x, False)⇒ Grieving(x, False): If someone is not bitter, then he is not grieving.

• (...more premises... )

Query St:

• Bitter(Bernard, False) ::: Bernard is not bitter.

Decomposed Premises Pn:

• 1. Doubtful(Medwin, True)

• 2. Bitter(x, True) ∨Grieving(x, False)

• (... additional decomposed premises ...)

Query Sn:

• Bitter(Bernard, False)

Resolve

Task Description:
You are given a problem description and a question. The task is to:

1. Check for Complementary/Contradictory Terms. Two terms are contradictory if they share the same predicate and
arguments but differ in boolean value (True vs. False).
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2. If contradictory terms are found, apply the resolution rule: From (P (x, True)∨Q(x, True)) and (P (x, False)∨
M(x, True)), derive Q(x, True) ∨M(x, True).

3. If the resolution leads to an empty clause or direct contradiction, then output "Contradiction". Otherwise output
the new clause after resolution.

Example: Given Clauses (Ccurrent and Ccomplement)

• Difficult(Bradley, True) ∨Known(x, False)

• Difficult(x, False) ∨ Embarrassed(x, True) ∨ Colorful(x, False)

Resolved Cresolved:

• Known(x, False) ∨ Embarrassed(Bradley, True) ∨ Colorful(Bradley, False)

(...more examples...)
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