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Abstract

Product Attribute Value Identification (PAVI)
involves identifying attribute values from prod-
uct profiles, a key task for improving product
search, recommendation, and business analyt-
ics on e-commerce platforms. However, ex-
isting PAVI methods face critical challenges,
such as inferring implicit values, handling out-
of-distribution (OOD) values, and producing
normalized outputs. To address these limi-
tations, we introduce Taxonomy-Aware Con-
trastive Learning Retrieval (TACLR), the first
retrieval-based method for PAVI. TACLR for-
mulates PAVI as an information retrieval task
by encoding product profiles and candidate
values into embeddings and retrieving values
based on their similarity. It leverages con-
trastive training with taxonomy-aware hard neg-
ative sampling and employs adaptive inference
with dynamic thresholds. TACLR offers three
key advantages: (1) it effectively handles im-
plicit and OOD values while producing nor-
malized outputs; (2) it scales to thousands of
categories, tens of thousands of attributes, and
millions of values; and (3) it supports efficient
inference for high-load industrial deployment.
Extensive experiments on proprietary and pub-
lic datasets validate the effectiveness and effi-
ciency of TACLR. Further, it has been success-
fully deployed on the real-world e-commerce
platform Xianyu, processing millions of prod-
uct listings daily with frequently updated, large-
scale attribute taxonomies. We release the code
to facilitate reproducibility and future research
at https://github.com/SuYindu/TACLR.

1 Introduction

Product attribute values are key components that
support the operation of e-commerce platforms.
They provide essential structural information, aid-
ing customers in making informed purchasing de-
cisions and enabling product listing (Chen et al.,
2024), recommendation (Truong et al., 2022; Sun
et al., 2020), retrieval (Magnani et al., 2019; Huang

Attribute Value
Model iPhone 12 Pro Max
Capacity 256GB
Condition almost brand new
Repairs no repairs
Brand Apple             (implicit value)
Version N/A                     (null value)

PAVE

PAVI

norm

Selling iphone12pm256, sea blue, 16.7 old system
personal use, always with a case, basically brand new,
no bumps, no teardown no repairs, local sale only

Product Title and Description

Entity Type Entity Span
Model iphone12pm
Capacity 256
Condition basically brand new
Repairs no teardown no repairs

Figure 1: Illustration of the PAVE and PAVI tasks. Un-
like PAVE, which extracts raw value spans from product
profiles, PAVI requires outputs to be normalized and
supports both the identification of implicit values and
the assignment of null to unavailable attribute values.

et al., 2014), and question answering (Kulkarni
et al., 2019; Gao et al., 2019).

However, seller-provided attribute values are of-
ten incomplete or even inaccurate—an issue that
is particularly severe on second-hand e-commerce
platforms such as Xianyu1. This undermines the ef-
fectiveness of downstream applications, making
the automatic identification of product attribute
values a fundamental requirement. Researchers
have explored Product Attribute Value Extraction
(PAVE), which involves extracting spans from prod-
uct profiles using Named Entity Recognition (NER)
(Zheng et al., 2018) or Question Answering (QA)
(Wang et al., 2020) models. The upper part of Fig-
ure 1 illustrates an example of NER-based PAVE.

Although these approaches effectively extract
value spans, the outputs remain raw text subse-
quences. Presenting attribute values in a standard-
ized format is crucial for facilitating data aggrega-

1https://www.goofish.com
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tion in business analytics and enhancing the user
experience by providing clear and consistent in-
formation. To produce standardized values, a nor-
malization step (Putthividhya and Hu, 2011; Zhang
et al., 2021) is required to map these spans to pre-
defined formats, as shown in the lower part of Fig-
ure 1. However, implicit values, such as Apple,
cannot be directly extracted and must instead be
inferred from context or prior knowledge.

Therefore, in this work, we focus on Product At-
tribute Value Identification (PAVI) (Shinzato et al.,
2023), which aims to associate predefined attribute
values from attribute taxonomy (illustrated in Fig-
ure 2) with products. The input for PAVI includes
the product category and profile, where the profile
includes textual data, such as the title and descrip-
tion, and may optionally incorporate visual infor-
mation, such as images or videos. The output is a
dictionary with predefined attributes as keys and
their inferred values as corresponding entries. In
addition, PAVI requires determining when attribute
values are missing. For instance, as shown in Fig-
ure 1, the value for Version is unavailable and is
therefore assigned an empty result or null value.

Beyond adapting PAVE approaches, researchers
have investigated classification-based (Chen et al.,
2022) and generation-based paradigms (Sabeh
et al., 2024b) for PAVI. Classification-based meth-
ods treat each value as a class; while this approach
is straightforward, it is fundamentally limited by
the inability to identify out-of-distribution (OOD)
values not present in the training data, making such
methods impractical for the continuously evolv-
ing nature of e-commerce platforms. In contrast,
generation-based methods reformulate PAVI as a
sequence-to-sequence task. Although these meth-
ods can handle implicit and OOD values, they face
significant challenges, such as generating uncon-
trollable outputs and incurring substantial compu-
tational costs in high-load scenarios due to their
reliance on Large Language Models (LLMs). In
summary, existing approaches face distinct chal-
lenges, including difficulties in identifying implicit
values, generalizing to OOD values, producing nor-
malized outputs, and ensuring scalability and effi-
ciency for large-scale industrial applications.

To address these limitations, we propose a novel
retrieval-based method, Taxonomy-Aware Con-
trastive Learning Retrieval (TACLR). Our approach
formulates PAVI as an information retrieval task:
the product item serves as the query, and the
attribute taxonomy acts as the corpus, enabling

Attribute Taxonomy

Phone

Brand Capacity Model

Apple
Huawei
Samsung

128GB
256GB
512GB

iPhone 11
iPhone 12
iPhone 12 Pro

LaptopTabletcategories

attributes

values

Figure 2: An illustration of a portion of the attribute
taxonomy. Each category, such as Phone, is linked to
multiple attributes, including Brand, Model, and Ca-
pacity, with standardized values enumerated for each
attribute (e.g., Apple, Huawei, and Samsung for Brand).

efficient retrieval of relevant attribute values as
matched documents. We use a shared encoder to
generate embeddings for both the input product and
candidate values from the attribute taxonomy. Our
method adopts a contrastive learning framework
inspired by CLIP (Radford et al., 2021). Rather
than relying on in-batch negatives, we implement
taxonomy-aware negative sampling, which selects
hard negative values from the same category and
attribute to generate a more challenging and precise
contrastive signal. Additionally, learnable null val-
ues are explicitly incorporated as the ground truth
for product-attribute pairs without associated val-
ues. During inference, we address the limitations
of static thresholds by introducing dynamic thresh-
olds derived from the relevance score of null values.
This adaptive inference mechanism improves the
model’s ability to generalize across a large-scale
attribute taxonomy.

Our contributions are threefold: (1) We propose
a novel retrieval-based paradigm for PAVI, intro-
ducing a scalable and efficient framework capable
of handling implicit values, generalizing to OOD
values, and producing normalized outputs. (2) We
incorporate contrastive training into TACLR, using
a taxonomy-aware negative sampling strategy to
improve representation discrimination, and intro-
duce an adaptive inference mechanism that dynam-
ically balances precision and recall in large-scale
industrial applications. (3) We validate the effec-
tiveness of TACLR through extensive experiments
on proprietary and public datasets, and demonstrate
its successful deployment in a real-world industrial
environment, processing millions of product list-
ings across thousands of categories and millions of
attribute values.
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2 Related Work

2.1 Product Attribute Value Extraction

PAVE as Named Entity Recognition. PAVE can
be formulated as NER by identifying subsequences
in product texts as entity spans and associating
them with attributes as entity types. Early meth-
ods, such as OpenTag (Zheng et al., 2018), trained
individual models for each category-attribute pair.
Subsequent efforts generalized this approach to sup-
port multiple attributes or categories. For instance,
SUOpenTag (Xu et al., 2019) incorporated attribute
embeddings into an attention layer to handle mul-
tiple attributes, while AdaTag (Yan et al., 2021)
used attribute embeddings to parameterize the de-
coder. TXtract (Karamanolakis et al., 2020) intro-
duced a category encoder and a category attention
mechanism to tackle various categories effectively.
Additionally, M-JAVE (Zhu et al., 2020) jointly
modeled attribute prediction and value extraction
tasks while also incorporating visual information.
More recently, Chen et al. (2023) scaled BERT-
NER by expanding the number of entity types to
support a broader range of attributes.
PAVE as Question Answering. The QA frame-
work can also be adapted for PAVE by treating the
product profile as context, attributes as questions,
and value spans extracted from the context as an-
swers. Wang et al. (2020) first introduced AVEQA
for QA-based PAVE. Subsequent work extended
this framework by incorporating multi-source in-
formation (Yang et al., 2022), multi-modal feature
(Wang et al., 2022), and trainable prompts (Yang
et al., 2023). Moreover, the question can be ex-
tended by appending candidate values as demon-
strated by (Shinzato et al., 2022). Combining NER
and QA paradigms, Ding et al. (2022) proposed a
two-stage framework, which first identifies candi-
date values and then filters them.

While NER- and QA-based paradigms have
proven effective for PAVE, they struggle to iden-
tify implicit attribute values. Additionally, both
paradigms rely on post-extraction normalization to
standardize values, using either lexical (Putthivid-
hya and Hu, 2011) or semantic methods (Zhang
et al., 2021). Furthermore, extraction-based mod-
els require token-level annotations (e.g., BIO tags)
for training and evaluation. Producing such an-
notations is significantly more resource-intensive
than generating the value-level annotations used
by TACLR, further limiting the scalability of these
extraction-based methods.

Table 1: Comparison of different paradigms for identi-
fying implicit, OOD, and normalized values.

Paradigm Implicit OOD Normalized

Extraction ✗ ✓ ✗
Classification ✓ ✗ ✓
Generation ✓ ✓ ✗

Retrieval ✓ ✓ ✓

2.2 Product Attribute Value Identification

Classification-Based PAVI. A straightforward ap-
proach is to frame PAVI as a multi-label classifi-
cation problem over a finite set of values. Chen
et al. (2022) trained a unified classification model
that masks invalid labels based on the product cat-
egory. However, a significant limitation of this
classification-based paradigm is its inability to rec-
ognize OOD values not included in the training set.
Consequently, its practicality is limited in dynamic
e-commerce environments, where new categories
and values frequently emerge.
Generation-Based PAVI. Recent advancements in
LLM have spurred the exploration of generation-
based PAVI methods (Sabeh et al., 2024b). Some
methods (Roy et al., 2021; Nikolakopoulos et al.,
2023; Blume et al., 2023) construct attribute-aware
prompts to generate values for each attribute indi-
vidually. In contrast, others generate values for mul-
tiple attributes simultaneously, either in a linearized
sequence format (Shinzato et al., 2023) or as a hier-
archical tree structure (Li et al., 2023). Multimodal
information has also been integrated into LLMs
to identify implicit attribute values from product
images (Lin et al., 2021; Khandelwal et al., 2023).
More recently, Brinkmann et al. (2024) explored
the use of LLMs for both the extraction and normal-
ization of attribute values. Additionally, Zou et al.
(2024) introduced the learning-by-comparison tech-
nique to reduce model confusion, and Sabeh et al.
(2024a) investigated Retrieval-Augmented Genera-
tion (RAG) technologies for PAVI.

Although generation-based methods can infer
implicit and OOD attribute values from product
profiles, they face several challenges in real-world
scenarios. A key issue is the potential for the LLMs
to produce uncontrollable or hallucinated outputs,
a known limitation of LLMs (Huang et al., 2024).
Additionally, these methods often rely on large,
computationally intensive models to achieve strong
performance, making them inefficient and costly
for large-scale industrial deployment.
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Figure 3: Overview of the training and inference process of TACLR, our retrieval-based method for the PAVI task.
The left section illustrates contrastive training with taxonomy-aware negative sampling, while the right section
demonstrates adaptive inference with pre-computed value embeddings.

3 Taxonomy-Aware Contrastive Learning
Retrieval

This section defines the PAVI task with an attribute
taxonomy (§3.1) and presents our retrieval-based
paradigm for PAVI (§3.2). We then detail the use of
contrastive training with taxonomy-aware negative
sampling (§3.3) and an adaptive inference mech-
anism with dynamic thresholds (§3.4). Figure 3
provides an overview of our approach TACLR.

3.1 PAVI Task Definition

PAVI is grounded in an attribute taxonomy that
encompasses numerous product categories. For
each category c, the taxonomy specifies a set of
attributes Ac = {a1, a2, . . . } relevant to products
in that category. For each attribute a ∈ Ac, it
provides a predefined set of standard values Va =
{v1, v2, . . . }. Figure 2 illustrates this structure2.

For a given product item i, with its title t and
description d, the item is assigned to a category
c with associated attributes Ac. The objective of
the PAVI task is to identify a relevant set of val-
ues V+

a ⊆ Va for each attribute a ∈ Ac. The
set V+

a can take one of three forms: a singleton
({v}), multiple values ({v1, v2, . . . }), or an empty
set (∅) if no information about a is available in the
product profile. Notably, a standard value may not
always appear verbatim as a text span in t or d; it
may instead be present in a paraphrased or synony-
mous form, which we refer to as an unnormalized
value (e.g., the standard value iPhone 12 Pro Max
expressed as iphone12pm in Figure 1). In other

2Our approach focuses on attribute value identification,
leveraging an existing attribute taxonomy as input rather than
constructing or updating the taxonomy itself. In the Xianyu
platform, a dedicated team and supporting system are respon-
sible for maintaining the taxonomy (i.e., “attribute mining”).

cases, a value may not be explicitly mentioned in
the product profile but can be inferred from the con-
text; these are referred to as implicit values (e.g.,
Apple in Figure 1).

3.2 Retrieval-Based PAVI

In a standard information retrieval setting, given a
query, the objective is to retrieve a list of relevant
documents from a corpus. Similarly, for PAVI, we
treat the input item as the query and the attribute
taxonomy as the corpus, aiming to retrieve relevant
attribute values as the output documents.
Encoding of items and values. We preprocess
both item profiles and candidate values as textual
inputs, utilizing a shared text encoder. For each
item, we concatenate its title (t) and description (d)
into a single input sentence formatted as: title:
{title} description: {description}. Each
candidate value is represented as a context-rich
prompt, structured as: A {category} with
{attribute} being {value}, e.g., A phone with
brand being Apple. We explore the impact of
various prompt templates in §5.3 3.
Inference pipeline. During the deployment pro-
cess, all value embeddings within the attribute tax-
onomy are pre-computed offline and indexed us-
ing the Faiss library4. During online inference,
each item is encoded into an embedding, which
is then compared against groups of indexed candi-
date value embeddings for various attributes. For
each attribute a ∈ Ac, the top-k most similar val-
ues are retrieved whose similarity scores exceed an
adaptive threshold (§3.4).

3This framework can be extended to multimodal scenarios
by replacing the text encoder with a multimodal encoder to
incorporate features such as images.

4https://github.com/facebookresearch/faiss
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3.3 Contrastive Training
Inspired by CLIP (Radford et al., 2021), we em-
ploy contrastive learning to train the shared encoder.
Rather than relying on in-batch negatives, we com-
pare each positive value with hard negative values
from the same category and attribute in the tax-
onomy, providing a more challenging and precise
training signal.

Formally, the subset of values matched with the
item is referred to as the ground truth value set,
V+
a ⊆ Va. If no matched values exist for a given

attribute, i.e., V+
a = ∅, we assign a specific null

value va0 for this attribute as the positive value,
i.e. v+a = va0 . Otherwise, a positive value is ran-
domly drawn from the ground truth value set, i.e.
v+a ∼ V+

a . For negative sampling, we select values
as V−

a = {v−1 , v−2 , . . . } ⊆ Va − V+
a , ensuring a

maximum of K values. The contrastive loss is then
computed as follows:

La = − log




exp( s(i,v
+
a )

τ )

exp( s(i,v
+
a )

τ ) +
∑

v∈V−
a

exp( s(i,v)τ )




where s(i, v) = I·V
∥I∥∥V ∥ denotes the cosine similar-

ity between the item embedding I and the value em-
bedding V , and τ is the temperature hyperparame-
ter. It is important to note that each item typically
includes multiple attributes, all of which share the
same item embedding I while being individually
compared against corresponding values. Therefore,
the loss for item i is the sum of losses over all
attributes from Ac:

Li =
∑

a∈Ac

La

An example logit matrix is depicted on the left
side of Figure 3. Note that the item embedding I1
contributes to the loss computations of L1

1, L2
1, and

L3
1, which correspond to the attributes a1, a2, and

a3 within the same product category. We also pad
the logit matrix with negative infinity for batched
computation if fewer than K values are available.

3.4 Adaptive Inference
During retrieval, relevance scores are assigned to
every candidate values. To filter output values, a
static threshold T can be applied to these scores.
However, in real-world e-commerce platforms with
a vast number of category-attribute pairs, using a
single threshold across all pairs is often suboptimal.

Moreover, defining a unique threshold for each pair
is tedious or even impractical.

To address this, we introduce an adaptive infer-
ence method that uses dynamic thresholds to make
cutoff decisions. As discussed in §3.3, we add an
explicit null value va0 for each category-attribute
pair, with its embedding learned during training.
In the inference phase, we compute the similarity
s(i, va0) between the item and the null value, using
it as a dynamic threshold T ′

a to exclude candidate
values for attribute a that have lower scores:

Vpred
a = {v | s(i, v) > T ′

a}

Since most category-attribute pairs have exclusive
values, meaning that each product can have at most
one value for a given attribute, we focus on the
top-1 predicted value in this work. The output can
be further simplified as follows:

vpred
a =




argmax

v∈Va

s(i, v) if max
v∈Va

s(i, v) > T ′
a

null otherwise

Equivalently, we can include the null value as an
explicit candidate and retrieve the top-1 value as:

vpred
a = arg max

v∈Va∪{va0}
s(i, v)

In this case, selecting the va0 corresponds to the sce-
nario where none of the specific candidate values
surpass the dynamic threshold.

The inference process is illustrated on the right
side of Figure 3. In this example, the predictions
for a3 and a5 are determined to be empty because
the highest-scoring value for these attributes is the
null value.

4 Experiment Settings

4.1 Datasets
To evaluate PAVI under the settings described in
§3.1, we compare our proposed method against
baselines on both proprietary and public datasets
with normalized values5. Table 2 presents statistics
of the attribute taxonomies and datasets.
Xianyu-PAVI. This dataset, derived from the e-
commerce platform Xianyu, is constructed to evalu-
ate the scalability and generalization of PAVI meth-
ods. The platform’s attribute taxonomy comprises

5Other popular benchmarks, such as AE-110k (Xu et al.,
2019) and MAVE (Yang et al., 2022), provide only unnormal-
ized values as spans extracted from product profiles, making
them unsuitable for our experiments.
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Table 2: Statistics of the attribute taxonomies and dataset splits from Xianyu-PAVI and WDC-PAVE. “CA Pairs”
refers to category-attribute pairs, “CAV Tuples” denotes category-attribute-value tuples, “PA Pairs” represents
product-attribute pairs, and “Null Pairs” indicates product-attribute pairs with null values. “Excl.” refers to the test
split excluding measurement attributes.

(a) Statistics of the attribute taxonomies.

Statistic Xianyu WDC

# Categories 8,803 5
# Attributes 3,326 24
# CA Pairs 26,645 37
# CAV Tuples 6,302,220 2,297

(b) Statistics of the datasets.

Statistic Xianyu-PAVI WDC-PAVE

Train Valid Test Train Test Excl.

# Products 809,528 81,699 85,024 1,066 354 354
# PA Pairs 3,584,462 358,582 458,954 8,832 2,937 2,285
# Null Pairs 2,345,577 228,534 272,285 3,973 1,330 916

8,803 product categories, 26,645 category-attribute
pairs, and 6.3 million category-attribute-value tu-
ples. On average, each category is associated with
3 attributes, each attribute has 237 possible values,
and there are 716 candidate values per category.

For our experiments, we randomly sampled 1
million product items for training, 10,000 for vali-
dation, and 10,000 for testing. Each item is anno-
tated with a category label and multiple attribute-
value pair labels. Category labels were generated
through a multi-step process involving automated
classification, seller feedback, and annotator re-
view, during which misclassified samples were dis-
carded. Attribute-value pair labels were obtained
through a multi-stage manual annotation process:
a pool of annotators conducted the initial labeling,
followed by quality checks and a second round of
review, with items reassigned to different annota-
tors after shuffling.
WDC-PAVE (Brinkmann et al., 2024). This dataset
contains 1,066 training and 354 test product items
across 5 categories, with 8,832 and 2,937 product-
attribute pairs (3,973 and 1,330 nulls), respectively.
On average, each category is associated with 7.4 at-
tributes, each attribute has 62 values, and there are
459 attribute-value pairs per category. We conduct
two evaluations: the first on the original test set,
and the second on a test split that excludes measure-
ment attributes, which require complex reasoning
for unit conversion.

4.2 Metrics

Since most attributes in the taxonomy are exclusive,
i.e., each product can have at most one value per
attribute, we evaluate PAVI methods using micro-
averaged precision@1, recall@1, and F1 score@1.

For each attribute, the ground truth is a set of
values V from the taxonomy. If the ground truth set
is empty (∅), a correct prediction (True Negative,
TN) occurs when the model also predicts an empty

Table 3: Confusion matrix comparing ground truth value
set with predicted top-1 value.

Label Prediction Outcome

∅ ∅ True Negative (TN)
∅ v False Positive (FP)
V v ∈ V True Positive (TP)
V ∅ False Negative (FN)
V v′ /∈ V FP & FN

set; otherwise, it is a False Positive (FP). When the
ground truth set is not empty, the model’s top-1 out-
put is a True Positive (TP) if it matches any ground
truth value. Predicting an empty set in this case
results in a False Negative (FN), while mismatched
predictions are both False Positives (FP) and False
Negatives (FN), as it simultaneously introduces an
error and misses the correct value. Table 3 sum-
marizes these outcomes6. Final precision, recall,
and F1 scores are computed by aggregating TP,
FP, and FN counts across the dataset, providing a
comprehensive performance evaluation.

4.3 Baselines

We evaluate our retrieval-based method, TACLR,
against classification and generation baselines7.
For implementation details, refer to Appendix A.
BERT-CLS. This baseline frames PAVI as a multi-
label classification task, treating each category-
attribute-value tuple as an independent label. The
model is fine-tuned to predict matches, with label
masking applied to exclude irrelevant labels for
each category, following (Chen et al., 2022). The
model outputs a probability distribution over val-

6In prior work (Shinzato et al., 2023), metrics did not
account for the FP case, and FP & FN cases were counted as
FP only. We adopt more stringent metrics in this paper.

7Extraction baselines, such as NER and QA models, are
not included because (1) they produce unnormalized outputs,
requiring an established normalization strategy for fair com-
parison, and (2) the large-scale Xianyu-PAVI lacks token-level
annotations (e.g., BIO tags) necessary for these methods.
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Table 4: Performance comparison of classification-, generation-, and retrieval-based methods on Xianyu-PAVI and
WDC-PAVE. "F1 Excl." denotes the F1 score computed excluding measurement attributes (e.g., width and height),
which require complex unit normalization reasoning.

Paradigm Method Xianyu-PAVI WDC-PAVE

Precision Recall F1 Precision Recall F1 F1 Excl.

Classification BERT-CLS 50.9 50.1 50.5 68.9 12.0 20.5 23.4

Generation

Llama3.1 (zero-shot) 29.1 46.2 35.7 56.6 60.8 58.6 64.6
Llama3.1 (few-shot) 31.0 51.1 38.6 76.0 74.1 75.0 79.0
Llama3.1 (RAG) 40.8 57.2 47.6 78.2 76.3 77.2 80.1
Llama3.1 (fine-tune) 86.9 82.7 84.7 57.7 60.4 59.0 64.5

Qwen2.5 (zero-shot) 42.7 55.7 48.4 51.9 60.3 55.8 60.8
Qwen2.5 (few-shot) 45.8 58.6 51.4 72.2 72.3 72.2 76.2
Qwen2.5 (RAG) 58.3 69.1 63.2 75.1 73.4 74.2 78.3
Qwen2.5 (fine-tune) 84.5 79.1 81.7 54.1 60.0 56.9 61.7

Retrieval TACLR 85.4 87.1 86.2 74.3 70.9 72.6 80.3

ues and selects the highest-probability value for
each attribute. If no probability exceeds a specified
threshold, the prediction is set to empty.
LLM. For generation-based baselines, we uti-
lize state-of-the-art open-source LLMs, including
Llama3.1-7B (Llama Team, 2024) and Qwen2.5-
7B (Qwen Team, 2024). These models are eval-
uated in zero-shot and few-shot settings using a
template adapted from (Brinkmann et al., 2024),
which incorporates the category, attribute, product
profile, and detailed value normalization guidelines.
We further fine-tune the LLMs using LoRA (Hu
et al., 2022) to improve performance.
RAG. We implement RAG baselines based on
both Qwen2.5 and Llama3.1, using BGE embed-
dings (Xiao et al., 2023) to retrieve the top-5 most
similar product items from the training set. The
LLM prompt is augmented with the profiles and
structured attribute-value pair outputs of these re-
trieved examples. For all generation baselines, we
apply greedy decoding to ensure reproducibility,
and model outputs are formatted in JSON.

5 Results

5.1 Main Results

Table 4 presents the performance comparison be-
tween our retrieval-based method TACLR and
classification- and generation-based baselines. On
Xianyu-PAVI, TACLR achieves the highest F1
score of 86.2%, surpassing fine-tuned Llama3.1,
which obtains 84.7%. Notably, TACLR excels in
recall, achieving 87.1% compared to Llama3.1’s
82.7%. On WDC-PAVE, TACLR achieves the high-
est F1 Excl. score of 80.3%, which excludes mea-
surement attributes requiring unit normalization

reasoning. These results highlight TACLR’s effec-
tiveness and robustness in addressing general PAVI
across diverse datasets.

The classification-based baseline, BERT-CLS,
shows the weakest performance on both datasets.
It achieves an F1 score of 50.5% on Xianyu-PAVI,
but its performance drops drastically to 20.5% on
WDC-PAVE, underscoring the limitations of clas-
sification approaches in generalization. One con-
tributing factor is the extreme label sparsity in this
formulation: there are over 6.3M category-attribute-
value labels, but the training set contains fewer than
3.6M instances, making it difficult for the model to
learn a reliable classification head.

Among generation-based methods, performance
improves steadily from zero-shot prompting to
few-shot prompting, retrieval-augmented genera-
tion, and fine-tuning on the large-scale Xianyu-
PAVI dataset. Llama3.1 progresses from 35.7%
(zero-shot) to 38.6% (few-shot), 47.6% (RAG), and
84.7% (fine-tune), while Qwen2.5 improves from
48.4% to 51.4%, 63.2%, and 81.7%, respectively.
A similar trend holds on WDC-PAVE, though fine-
tuning is less effective due to limited supervision.
In this setting, RAG outperforms few-shot prompt-
ing for both Llama3.1 (77.2% vs. 75.0%) and
Qwen2.5 (74.2% vs. 72.2%), offering a viable
alternative when labeled data is limited. Nonethe-
less, TACLR consistently surpasses RAG, particu-
larly on Xianyu-PAVI (86.2% vs. 47.6%/63.2%),
demonstrating better scalability for large-scale in-
dustrial applications. On WDC-PAVE, TACLR
matches or exceeds RAG and retains a slight ad-
vantage in non-measurement attributes (F1 Excl.:
80.3% vs. 80.1%/78.3%).
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Table 5: Inference efficiency comparison on Xianyu-
PAVI (Throughput in samples/second).

Method Time (ms) Throughput

BERT-CLS 8.6 930

Llama3.1 (zero-shot) 101.3 80
Llama3.1 (few-shot) 124.8 64
Llama3.1 (RAG) 137.9 58
Qwen2.5 (zero-shot) 84.0 95
Qwen2.5 (few-shot) 98.4 81
Qwen2.5 (RAG) 108.3 74

TACLR 12.7 630

Table 6: F1 scores on product-attribute pairs with nor-
malized vs. unnormalized and implicit values.

Method Normalized Unnorm. & Implicit

Llama3.1 83.2 79.4
Qwen2.5 82.6 78.6

TACLR 87.9 82.9

5.2 Inference Efficiency

Table 5 presents a comparison of inference effi-
ciency across different PAVI paradigms under iden-
tical conditions, using an unoptimized PyTorch im-
plementation on a single NVIDIA V100 GPU.

TACLR achieves a strong balance between
model capacity and efficiency, processing each
sample in 12.7 ms and achieving a throughput of
630 samples per second. In contrast, generation-
based methods using Llama3.1 and Qwen2.5 ex-
hibit substantially higher inference times (over
100 ms per sample) and lower throughput (below
100 samples per second), primarily due to the over-
head of autoregressive decoding and reliance on
large-scale models. The BERT-CLS classification
baseline offers the highest raw efficiency (8.6 ms,
930 samples per second), but its inability to handle
out-of-distribution values and limited generaliza-
tion capacity reduce its practical applicability.

In summary, among these methods, TACLR pro-
vides the best trade-off between identification ca-
pability and inference efficiency, making it well-
suited for scalable industrial deployment.

5.3 Analysis

This section analyzes our method on the Xianyu-
PAVI dataset, selected for its large scale and diverse
attribute taxonomy. In contrast, the WDC-PAVE
dataset is substantially smaller in both size and cov-
erage, making it insufficient for robust evaluation
of scalability and generalization.
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Figure 4: Comparison of negative sampling strategies
with increasing number of samples.

Robustness Evaluation on Diverse Values. To
better assess model robustness under various con-
ditions, we partition the test set into three subsets
based on the nature of the ground truth: (1) normal-
ized values, appear verbatim in the product profile;
(2) null values, where the attribute is marked as un-
available; and (3) unnormalized or implicit values,
which either appear in a lexically varied form, or
must be inferred. In our Xianyu-PAVI dataset, nor-
malized values account for approximately 15.2%,
unnormalized or implicit values for 27.2%, and
null values for 57.6%.

Table 6 reports the F1 scores on the normal-
ized and unnormalized/implicit subsets. TACLR
achieves the highest performance on both subsets,
with an F1 score of 87.9% on normalized val-
ues and 82.9% on unnormalized or implicit val-
ues. Compared to the fine-tuned LLM baselines,
TACLR demonstrates stronger ability to recognize
standardized values and better robustness to lexical
variation and implicit reasoning.
Impact of Taxonomy-Aware Negative Sampling.
Figure 4 compares the proposed taxonomy-aware
negative sampling (§3.3) with in-batch negative
sampling across varying sample sizes. As the num-
ber of sampled values increases, the F1 score im-
proves consistently, aligning with findings from
(Chen et al., 2020). Using in-batch sampling as the
baseline, the model achieves an F1 score of 53.3%
with a sample size of 128. In contrast, taxonomy-
aware sampling yields substantial improvements,
boosting the F1 score from 84.0% to 86.2% as the
sample size grows from 16 to 128.

These results demonstrate that taxonomy-aware
sampling provides more effective supervision, en-
couraging the model to distinguish between fine-
grained, semantically similar values within the
same category and attribute. In contrast, in-batch
sampling often yields random negatives that are
less relevant and frequently trivial, limiting the effi-
cacy of contrastive learning for PAVI. For example,
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Figure 5: Performance analysis across inference thresholds, prompt templates, and data domains.

in Figure 1, negatives such as iPhone 12 Pro or
iPhone 13 Pro Max, which belong to the model
attribute under the phone category, provide more
challenging and informative supervision than ran-
dom values such as L for T-shirt size.
Comparison of Dynamic and Static Thresholds.
Figure 5a compares our dynamic thresholding ap-
proach (§3.4) with static thresholds of 0.6, 0.65,
and 0.7, selected via validation. The dynamic
threshold achieves the highest F1 (86.2%), out-
performing the static baselines (75.5%, 80.2%,
and 78.2%). Static thresholds exhibit the typi-
cal precision–recall trade-off: higher thresholds
increase precision (65.1%→84.5%) but reduce re-
call (90.0%→72.8%). In contrast, the dynamic
threshold balances precision (85.4%) and recall
(87.1%) without manual tuning. This gain stems
from a scalable design: instead of relying on fixed,
hand-tuned cutoffs per category-attribute pair, our
method learns null value embeddings whose simi-
larity scores act as adaptive thresholds.
Performance Gains from Context-Rich Prompts.
The influence of varying value prompt templates
on the PAVI task is shown in Figure 5b. Using
only the value as a prompt achieves an F1 score
of 83.2%. Adding category information raises the
F1 score to 83.9%, while incorporating attribute
information further improves it to 85.4%. The most
comprehensive template, combining category, at-
tribute, and value information (i.e., A {category}
with {attribute} being {value}), achieves
the highest F1 score of 86.2%. These results are
consistent with prior work (Radford et al., 2021),
highlighting that context-rich prompts enhance the
model’s discriminative performance.
Zero-Shot Generalization Across Data Domains.
Figure 5c presents zero-shot transfer results on
unseen categories and values. The in-domain
split achieves an F1 score of 88.7%, while cross-

category and cross-value splits decline to 80.2%
and 78.2%, respectively, reflecting the challenges
of adapting to evolving attribute taxonomies in
out-of-distribution domains. Despite this, TACLR
maintains a strong overall F1 of 86.2%, demonstrat-
ing robust generalization. The model’s generaliza-
tion relies on the shared textual encoder’s semantic
understanding and the retrieval-based approach’s
capacity to leverage these embeddings for zero-shot
matching. Such adaptability is critical for dynamic
e-commerce platforms, where new products and
attribute-value pairs continuously emerge, reduc-
ing the need for frequent retraining and lowering
maintenance costs.

6 Conclusion

In this work, we present TACLR, a novel retrieval-
based approach for PAVI. By formulating PAVI as
an information retrieval problem, TACLR enables
the inference of implicit values, generalization to
OOD values, and the production of normalized out-
puts. Building on this framework, TACLR employs
contrastive training with taxonomy-aware sampling
and adaptive inference with dynamic thresholds to
enhance retrieval performance and scalability.

Comprehensive experiments on proprietary and
public datasets demonstrated TACLR’s superiority
over classification- and generation-based baselines.
Notably, TACLR achieved an F1 score of 86.2%
on the large-scale Xianyu-PAVI dataset. Our effi-
ciency analysis further highlighted its advantage,
achieving significantly faster inference speeds than
generation-based methods. Beyond these experi-
mental results, TACLR has been successfully de-
ployed on the real-world e-commerce platform Xi-
anyu, processing millions of product listings daily
and seamlessly adapting to dynamic attribute tax-
onomies, making it a practical solution for large-
scale industrial applications.
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7 Limitations

TACLR assumes access to a predefined attribute
taxonomy, which serves as a foundation for accu-
rate value identification. While this setup is real-
istic in many e-commerce platforms, where ded-
icated systems and teams maintain evolving tax-
onomies, it does require ongoing manual updates
to incorporate new categories, attributes, and val-
ues. Automating product attribute mining remains
an open area for future research (Ghani et al., 2006;
Zhang et al., 2022; Xu et al., 2023).

Another limitation is that TACLR currently op-
erates on textual product profiles and does not in-
corporate multimodal information, such as images
or videos. Multimodal inputs could provide com-
plementary signals for attributes that are difficult
to infer from text alone (e.g., color, material, or
shape). Extending the method to support multi-
modal input could further improve its coverage and
accuracy in practical applications.

A further limitation of TACLR, as a retrieval-
based approach, is its difficulty in handling mea-
surement attributes that require unit conversion
or numerical reasoning. To address this, future
work could explore hybrid methods that combine
TACLR’s retrieval strengths with generative tech-
niques to improve performance in such cases.
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A Implementation Details

For both the BERT-CLS baseline and our TACLR
method, we utilize pre-trained RoBERTa-base (Liu
et al., 2019; Cui et al., 2020) as the backbone. For
TACLR, we augment the model with a linear pro-
jection head to map the embedding dimension to
256. For each product-attribute pair, we sample
up to 128 values for the contrastive learning setup,
including a null value, an optional positive value (if
present for the attribute), and negative values sam-
pled from the value set with the same category and
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attribute. In the case of the null value, we replace
the value slot in the prompt template with null
(e.g., A phone with capacity being null.).

The temperature parameter is fixed at 0.05. This
choice is motivated by both prior research (e.g.,
SimCLR (Chen et al., 2020) and MoCo (He et al.,
2020)) and empirical tuning on our validation set.
The encoder is fine-tuned using the AdamW opti-
mizer, with a batch size of 32, a learning rate of
2× 10−5, and a maximum of 5 epochs.

For LLM fine-tuning, we employ LoRA (Hu
et al., 2022) for efficient adaptation. The core hy-
perparameters are as follows: 3 training epochs,
batch size of 128, AdamW optimizer, maximum
learning rate of 5 × 10−5, 1% warmup steps, co-
sine learning rate scheduler, LoRA rank of 8, LoRA
alpha of 16, and LoRA dropout rate of 0.1.

All hyperparameters and model checkpoints are
selected to maximize the F1 score on the validation
set. For further details, please refer to our codebase:
https://github.com/SuYindu/TACLR.

B Deployment

The proposed TACLR has been successfully inte-
grated into key functionalities of the e-commerce
platform Xianyu, including product listing, search,
recommendation, and price estimation. The sys-
tem is designed to be highly scalable, efficiently
processing millions of products daily.

During the product listing process, TACLR au-
tomatically identifies attribute–value pairs from
user-provided titles and descriptions. This automa-
tion significantly reduces manual effort and errors,
while enhancing the quality of structured product
information.

For product search, the improved structured in-
formation directly supports more effective lexical
retrieval and enables structured search, where items
are filtered based on attributes. This leads to more
accurate matching with user queries. In addition,
the enriched product features enhance the quality
of personalized recommendations.

In the context of price estimation, TACLR iden-
tifies key attributes that influence pricing, enabling
more accurate price predictions. This functionality
provides sellers and buyers with reliable, market-
aligned information in the context of second-hand
transactions.
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