
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 31292–31309
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

CityNavAgent: Aerial Vision-and-Language Navigation with
Hierarchical Semantic Planning and Global Memory

Weichen Zhang1,4, Chen Gao3*, Shiquan Yu5, Ruiying Peng1, Baining Zhao1,4,
Qian Zhang1, Jinqiang Cui4, Xinlei Chen1*, Yong Li2,3

1Shenzhen International Graduate School, Tsinghua University
2Department of Electronic Engineering, 3BNRist, Tsinghua University

4Pengcheng Laboratory, 5University of Oxford
zhangwc23@mails.tsinghua.edu.cn, chgao96@gmail.com,

chen.xinlei@sz.tsinghua.edu.cn, liyong07@tsinghua.edu.cn

Abstract
Aerial vision-and-language navigation (VLN)
— requiring drones to interpret natural language
instructions and navigate complex urban envi-
ronments — emerges as a critical embodied
AI challenge that bridges human-robot inter-
action, 3D spatial reasoning, and real-world
deployment. Although existing ground VLN
agents achieved notable results in indoor and
outdoor settings, they struggle in aerial VLN
due to the absence of predefined navigation
graphs and the exponentially expanding action
space in long-horizon exploration. In this work,
we propose CityNavAgent, a large language
model (LLM)-empowered agent that signifi-
cantly reduces the navigation complexity for
urban aerial VLN. Specifically, we design a hi-
erarchical semantic planning module (HSPM)
that decomposes the long-horizon task into sub-
goals with different semantic levels. The agent
reaches the target progressively by achieving
sub-goals with different capacities of the LLM.
Additionally, a global memory module storing
historical trajectories into a topological graph is
developed to simplify navigation for visited tar-
gets. Extensive benchmark experiments show
that our method achieves state-of-the-art perfor-
mance with significant improvement. Further
experiments demonstrate the effectiveness of
different modules of CityNavAgent for aerial
VLN in continuous city environments.

1 Introduction

Visual-and-language navigation (VLN) is a fun-
damental task where an agent is required to nav-
igate to a specified landmark or location follow-
ing language instructions (Anderson et al., 2018;
Gu et al., 2022; Gao et al., 2024a). With the in-
creasing prevalence of unmanned aerial vehicles
(UAVs), aerial VLN (Liu et al., 2023b) has gained
significant attention. This task empowers UAVs
to navigate complex, large-scale outdoor environ-
ments with language instructions, reducing the cost

*Corresponding authors

Embodied 
Agent

Environment Open-vocabulary 
Perception Module

Hierarchical Semantic 
Planning Module 

Execution Module

Global Memory 
Module

Historical 
Trajectories

Historical 
Observations

Semantic & Spatial 
Information

Hierarchical 
Sub-goals

Update

Update

Obs. Act.

Retrieve

Figure 1: The overall workflow of CityNavAgent.

of human-machine interaction and offering signifi-
cant advantages in applications such as rescue (Xu
et al., 2024), transportation (Menouar et al., 2017),
logistics (Wandelt et al., 2023), and urban inspec-
tions (Chen et al., 2024b).

Most existing methods primarily address indoor
VLN. One approach (Anderson et al., 2018; Ku-
rita and Cho, 2020; Chen et al., 2024a; Gao et al.,
2023; Huo et al., 2023; Chen et al., 2022a) formu-
lates the task in a discrete setting, where agents
teleport between nodes in pre-defined topological
graphs without motion errors, limiting real-world
applicability. Other methods mitigate reliance on
pre-defined maps using end-to-end action predic-
tion (Krantz et al., 2020; Raychaudhuri et al., 2021;
Chen et al., 2021a) or waypoint prediction (Hong
et al., 2022; An et al., 2024; Wang et al., 2024).
But the former struggles with scene semantic vari-
ations, while the latter fails to adapt to large-scale
outdoor scenarios. Although some methods (Schu-
mann et al., 2024; Liu et al., 2024) extend VLN
to outdoor ground navigation, they still rely on
pre-defined scene graphs, which are unavailable in
aerial settings. STMR (Gao et al., 2024b) intro-
duced a zero-shot LLM-based framework for aerial
VLN by constructing an online 2D semantic map,
but its failure to incorporate height information
leads to high navigation errors.

In this work, we focus on aerial VLN that has
a more realistic and challenging setting compared
to the previous VLN tasks. In this task, the agent

31292



is required to predict the next action or waypoint
to approach to the target iteratively in a continuous
aerial space. The challenges are two-fold:
• Complex scene understanding in urban envi-

ronments Urban environments exhibit consid-
erably higher object variety than indoor scenes,
incorporating extensive infrastructural elements,
architectural structures, and natural landscapes.
Moreover, the semantic density in urban scenes
is highly dynamic. When an agent operates near
ground level, the scene exhibits high semantic
density, whereas at higher altitudes the semantic
becomes markedly sparse. These disparities in
object variety and semantic density pose substan-
tial challenges for cross-modal grounding and
instruction-related object extraction.

• Exponential complexity in long-horizon mo-
tion planning. The VLN task can be considered
as a Partially Observable Markov Decision Pro-
cess, where the agent predicts the next action or
waypoint based on its current state and the envi-
ronmental context. However, for the aerial VLN,
the long-horizon navigation requires the agent to
predict longer action sequences. Even if the num-
ber of available actions per step is limited, the
total number of possible action sequences grows
exponentially with the planning horizon. Specifi-
cally, if there are m actions available at each step,
the number of potential action sequences over n
steps is approximately mn, which poses a great
challenge to the agent’s action planning.
In this work, we propose CityNavAgent, which

consists of an open-vocabulary perception mod-
ule and a hierarchical semantic planning module
(HSPM) with a global memory module to ad-
dress the above challenges. 1) To extract the com-
plex and rich semantics in urban environments, the
open-vocabulary perception module first utilizes an
LLM to caption the scene and extract instruction-
related objects through prompt engineering. It
then integrates a vision foundation model for open-
vocabulary image grounding. 2) To narrow down
the possible action space during the motion plan-
ning, we design HSPM, which decomposes the
navigation task into landmark-level, object-level,
and motion-level planning, with progressively de-
creasing semantic abstraction. The planning fre-
quency decreases from low to high levels. The
landmark-level planning decomposes the naviga-
tion task into a sequence of landmarks to be tra-
versed. The object-level planning reasons about the
objects in the scene that lead to these landmarks.

The motion-level planning predicts the waypoint
and action sequence to reach the semantic target
from higher-level planners. Additionally, CityNav-
Agent incorporates a global memory module to
store effective waypoints and trajectories from his-
torical tasks, enhancing long-term navigation per-
formance.

To summarize, the main contributions of this
work are as follows:
• We focus on the urban aerial VLN task, which

is insufficiently explored yet valuable and highly
challenging, and introduce CityNavAgent—an
LLM-powered agent for zero-shot navigation.

• We propose an open-vocabulary perception mod-
ule that enables the agent to understand the ur-
ban scene and HSPM with global memory that
reduces the complexity of action planning to ad-
dress the key challenges.

• We conduct extensive experiments on two aerial
VLN benchmarks to demonstrate our proposed
method in terms of success rate and path follow-
ing. More ablation studies verify the efficacy of
our designed components.

2 Related Works
Vision-and-language Navigation (VLN) VLN is
first well defined by R2R (Anderson et al., 2018)
which is a navigation benchmark collected in a
photorealistic simulator (Chang et al., 2017) with
detailed language descriptions and visual observa-
tions. Based on R2R, tons of methods (Shridhar
et al., 2020; Gao et al., 2023; Huo et al., 2023;
Chen et al., 2021b; Kamath et al., 2023; Li and
Bansal, 2023; Li et al., 2023; Chen et al., 2022a;
Guhur et al., 2021; Qi et al., 2021) are proposed
to enable the robots with embodied navigation ca-
pacity. Specifically, Kurita et al. (Kurita and Cho,
2020) proposed a novel generative approach that
predicts the instruction distribution conditioned on
the action set. However, R2R and its derivation (Ku
et al., 2020; Jain et al., 2019) are defined in limited
indoor scenes and discrete action spaces which the
agent moves within pre-defined topological graphs.
This setting yields its practical application in the
continuous real-world space.

Krantz et al. (Krantz et al., 2020) introduced
R2R-CE tasks by adapting R2R trajectories for
continuous environments. End-to-end methods
such as LSTM-based methods (Krantz et al., 2020;
Raychaudhuri et al., 2021; Liu et al., 2023b),
transformer-based methods (Irshad et al., 2022;
Chen et al., 2021a; Krantz et al., 2021), and re-

31293



inforcement learning-based methods (Wang et al.,
2018, 2020; Chen et al., 2022b; Cheng et al., 2024)
have been explored to improve navigation policies.
More recently, waypoint-based methods, such as
(Hong et al., 2022; An et al., 2024; Wang et al.,
2023a, 2024; Gu et al., 2025) have emerged by
constructing online maps and waypoints to narrow
down the agent’s possible locations during naviga-
tion. Despite these advancements, end-to-end and
waypoint prediction-based methods still face ob-
stacles in adapting to open outdoor environments,
primarily due to the differences in spatial structures
and the semantic distribution of objects.

This work focuses on outdoor aerial VLN (Liu
et al., 2023b), a more challenging task with longer
navigation paths, more diverse scene semantics,
and more complex action spaces. More specif-
ically, unlike ground-level outdoor VLN (Chen
et al., 2019; Schumann and Riezler, 2020; Schu-
mann et al., 2024) that operate within discrete ac-
tion spaces, aerial VLN requires agents to reason
with embodied outdoor observations (Zhan et al.,
2025; Zhao et al., 2025a) and navigate through con-
tinuous 3D spatial coordinates, which is a more
realistic setting for real-world navigation.
LLM for Embodied Navigation With the rise of
LLMs (Touvron et al., 2023; Chiang et al., 2023;
Achiam et al., 2023), many methods (Chen et al.,
2023; Schumann et al., 2024; Shah et al., 2023)
have leveraged their reasoning capabilities (Zhao
et al., 2025b) for zero-shot VLN. The main chal-
lenge for zero-shot LLM-based methods lies in con-
structing condensed and structured semantic maps
of the environment, such as topological graphs,
so that LLMs can reason over the semantic in-
formation and predict the next waypoint on these
maps. Existing works either use pre-defined seman-
tic maps (Achiam et al., 2023; Zhou et al., 2024;
Chen et al., 2024a) provided by simulators or pre-
dict semantic maps within indoor scenes (Wang
et al., 2023a). However, indoor semantic map pre-
diction methods face challenges related to scale
and semantic shifts when applied to outdoor en-
vironments. STMR (Gao et al., 2024b) proposed
an outdoor online 2D semantic map construction
pipeline and achieved promising results on aerial
VLN. But it fails to leverage the height information
of the scene, which is also critical for navigation. In
this work, we propose CityNavAgent, which com-
prises a hierarchical semantic planner that predicts
waypoints in outdoor environments in a zero-shot
manner, along with a global memory module that

stores historical waypoints to enhance long-term
navigation.

3 Problem Formulation

Given a language instruction I and the agent’s ego-
centric observation O, the aerial VLN agent has
to determine a sequence of action to reach the tar-
get location pd in a continuous 3D space. At each
action step t, the agent follows a policy π taking
current observation ot and instruction I as input to
predict the next action at and move to location pt
by its kinematic model F , which is given by:

pt = F(pt−1, π(ot, I)), (1)

Given a sequence of action, the agent reaches a
final position, and the success probability Ps of
reaching the target pd is

Ps = P (||F(π(p0,O, I))− pd|| < ϵ), (2)

where || · || is the Euclidean distance and ϵ is the
threshold that indicates if the target is reached.
Thus, the goal of VLN is to find a policy π∗ that
maximizes the success rate, given by:

π∗ = argmaxπPs. (3)

4 CityNavAgent

In this section, we present the workflow of the pro-
posed CityNavAgent for zero-shot aerial VLN in
urban environments. As shown in Figure 1, City-
NavAgent framework comprises three key mod-
ules. 1) The open-vocabulary perception module
extracts structured semantic and spatial informa-
tion from its panoramic observation via a founda-
tion model. 2) The hierarchical semantic planning
module (HSPM) leverages LLM to decompose the
navigation task into hierarchical planning sub-tasks
to reduce the planning complexity and predict the
intermediate waypoint for the execution module.
3) The global memory module, represented as a
topological graph, stores valid waypoints extracted
from historical trajectories to further reduce the
action space of motion planning and enhance long-
range navigation stability.

4.1 Open-vocabulary Perception Module

To accurately understand complex semantics in the
urban environment, we leverage the powerful open-
vocabulary captioning and grounding model to ex-
tract scene semantic features. Besides, integrating
the scene semantics and depth information, we con-
struct a 3D semantic map for further planning.

31294



Memory Graph Update

History TrajectoryHistory Trajectory

Hierarchical Semantic Planning Module

Global Memory Module

Memory Graph Search

Semantic Graph 
Search

Waypoint 
Sequence

Object-level Planner

Start Landmark
Objects on 

the way

Object-level Planner

Start Landmark
Objects on 

the wayStart End
Landmarks on 

the path

Landmark-level Planner

Start End
Landmarks on 

the path

Landmark-level Planner Motion-level 
Planner

Motion-level 
Planner

Visual 
Detector (VD)

Visual 
Detector (VD)

Image 
Captioner 

(CAP)

Image 
Captioner 

(CAP)

Image 
Captioner 

(CAP)

Segmentation 
(SEG)

Visual 
Tokenizer (VT)

Visual 
Tokenizer (VT)

Semantic Point Cloud

Object Phrases

Open-vocabulary 

Object phrases: 

road, white 

buildings

Object Phrases

Open-vocabulary 

Object phrases: 

road, white 

buildings

Geometric 
Projector (GP)

Geometric 
Projector (GP)

Semantic masksSemantic masksRGB Images RGB Images Depth ImagesDepth Images

Open-vocabulary Perception Module

Go straight to the 

telephone booth at 

the end of the road. 

Then find the white 

statue on your right.

Instruction

Go straight to the 

telephone booth at 

the end of the road. 

Then find the white 

statue on your right.

Instruction

Next Waypoint

Figure 2: CityNavAgent consists of three key modules. The open-vocabulary module extracts open-vocabulary
objects in the scenes and builds a semantic point cloud of the surroundings. The hierarchical semantic planning
module decomposes the original instruction into sub-goals with different semantic levels and predicts the agent’s
next action to achieve the high-level sub-goals. The global memory module stores historical trajectories to assist
motion planning toward visited targets.

Scene Semantic Perception Extracting urban
scene semantics requires robust open-vocabulary
object recognition. As shown in Figure 2, given a
set of panoramic images {ItRi

} at step t, we first
use an open-vocabulary image captioner CAP(·)
empowered by GPT-4V (Achiam et al., 2023) to
generate object captions cti for the image ItRi

. Then,
we leverage a visual detector VD(·) named Ground-
ingDINO (Liu et al., 2023a), to generate the bound-
ing boxes obbti for captioned objects by

obbi = VD(cti, I
t
Ri
), cti = CAP(ItRi

). (4)

Finally, the bounding boxes are tokenized by a
visual tokenizer VT(·), which is then fed into a
segmentation model SEG(·) (Kirillov et al., 2023)
to generate fine-grained semantic masks ItSi

for
objects as follows:

ItSi
= SEG(VT(obbi), ItRi

). (5)

Scene Spatial Perception Considering that ego-
centric views suffer from perspective overlap (An
et al., 2023) and fail to capture 3D spatial rela-
tionships (Gao et al., 2024b), we construct a 3D
point map by projecting segmentation masks of
observations into metric 3D space. Leveraging the
RGB-D sensor’s depth map ItDi

and agent’s pose
(R, T ), a geometric projector (GP) transforms each
segmented pixel pik = (u, v) ∈ ItSi

labeled with
caption ctik into a 3D point Pik via:

Pik = R · ID(u, v) ·K−1 · p+ T, (6)

where K is the intrinsic matrix of the camera, while
R ∈ SO(3) and T ∈ R3 represent the agent’s in-
stantaneous orientation and position in world co-

ordinates. Mapping the object caption from 2D
masks to 3D point cloud, a local semantic point
cloud {(Pik, c

t
ik)|i = 1, . . . , n, k = 1, . . . ,m} is

constructed, where n is the number of panoramic
images and m is the number of pixels.

4.2 Hierarchical Semantic Planning Module

4.2.1 Landmark-level Planning
Since aerial VLN tasks typically involve long-
range decision-making (Liu et al., 2023b; Chen
et al., 2019), directly assigning the entire naviga-
tion task to the agent can hinder accurate alignment
with the instructions and task progress tracking. A
more effective approach is to decompose the task
into a sequence of manageable sub-goals. By ad-
dressing these sub-goals step by step, the agent
can progressively reach the final destination. To
achieve this, we propose an LLM-driven landmark-
level planner to parse free-form instructions T and
extract a sequence of landmark phases L along the
path through prompt engineering. These landmarks
act as sub-goals for the agent. We present a simple
prompt as follows (more details in Appendix A):

You need to extract a landmark sequence
from the given instruction. The sequence
order should be consistent with their appear-
ance order on the path.

4.2.2 Object-level Planning
After landmark-level planning and obtaining a se-
quence of sub-goals, the object-level planner OP(·)

31295



employs the LLM to further decompose these sub-
goals into more achievable steps for the agent. The
key idea is to leverage the commonsense knowl-
edge of the LLM to reason for the visible object
region most pertinent to the invisible sub-goal in
the current panorama. This region is referred to as
the object region of interest (OROI) in this paper.
For example, if the agent only sees the buildings
and a road in the current view while its sub-goal
is the traffic light, by commonsense reasoning, the
next OROI it should go is the road. We design a
prompt that comprises the original navigation in-
struction T , scene object captions ct, and current
sub-goals Li for OP(·) to reason for OROI ctOROI ,
which is given by:

ctOROI = OP(T, Li, c
t), (7)

Its template is (more details in Appendix A.1):

The navigation instruction is: .... Your next
navigation subgoal is: ... Objects or areas
you observed: ...

Based on the instruction, next sub-
goal, and observation, list 3 objects most
pertinent to the subgoal or you will probably
go next from your [Observed Objects].
Output should be in descending order of
probability.

We select the OROI with the highest possibility
given by LLM to the next landmark as the next
waypoint for the agent.

4.2.3 Motion-level Planning
Motion-level planning is responsible for translat-
ing the output of high-level planning modules into
reachable waypoints and executable actions for
the agent. Given a reasoned ctOROI , the motion-
level planner first determines corresponding points
{(Pk, c

t
k)|ctk == ctOROI} from the semantic point

cloud in §4.1 and compute the next waypoint by
averaging the coordinates of selected points. Then,
the planner decomposes the path to the waypoint
into a sequence of executable actions for the agent.

If the agent has reached a location close to the
memory graph, the motion planner will directly
use the memory graph to predict the agent’s future
actions, which is introduced in the next section.

4.3 Global Memory Module
Since the agent sometimes revisits the target or
landmarks, we designed a global memory module

with a memory graph that stores historical trajecto-
ries, which helps to reduce the action space in mo-
tion planning and improves navigation robustness.
Different from prior works that rely on predefined
memory graphs (Chen et al., 2021a, 2022a) or 2D
grid maps (Wang et al., 2023b) lacking height infor-
mation, our approach constructs a 3D topological
memory graph from the agent’s navigation history.

Memory Graph Construction Each historical
trajectory Hi can be represented as a topologi-
cal graph Gi(Ni, Ei) whose nodes Ni encapsulate
both the coordinates of the traversed waypoints
and their visual observations, and edges Ei are
weighted by the distance between adjacent way-
points. The memory graph M is constructed by
merging the historical trajectory graphs, given by:

M = G(N,E),

N = N1 ∪ · · · ∪Nd,

E = E1 ∪ · · · ∪ Ed,

(8)

where d is the number of historical trajectories.

Memory Graph Update The memory graph is up-
dated progressively by merging newly generated
historical trajectory graph Ghist. The merging pro-
cess is similar to Equation 8 merging the nodes and
edges of two graphs. In addition, it will generate
new edges if M and Ghist are connective. We cal-
culate the distance between every pair of nodes in
the two graphs. If the distance between any pair of
nodes is less than a threshold H , it is inferred that
these nodes are adjacent and a new edge is added
to the merged graph. Note that the memory graph
only merges trajectories that successfully navigate
to the target, ensuring the validity of the waypoints
in the memory graph.

Memory Graph Search for Motion-level Plan-
ning When the agent reaches a waypoint in the
memory graph, the agent directly leverages the
graph to determine a path and action sequence to
fulfill the remaining sub-goals from the landmark-
level planner. Given a sequence of remaining sub-
goals L(r) = {l1, . . . , lr} represented by land-
mark phases, our target is to find a path V ∗ =
{v1, . . . , vd} ⊆ N with the highest possibility of
traversing Lr in order. Note that each node Ni in
the graph contains visual observation ovi of the sur-
roundings. Therefore, the possibility of traversing
landmark lj by a node Ni can be formulated as
P (lj |oi). And the objective function can be formu-

31296



lated as:

V ∗ = max
V

r∏

k=1,1≤m1<···<mr≤d

P (lk|ovmk
). (9)

We leverage the graph search algorithm in LM-Nav
(Shah et al., 2023) to solve this problem, which
is more detailed in Alg. 1 in Appendix A.2.1.
Once V ∗ is obtained, the agent decomposes it into
an executable action sequence to reach the target.
To reduce the high complexity and inefficiency of
searching over the full global memory graph, the
agent extracts a subgraph for navigation. The agent
first selects nodes and edges within a radius R to
form a spherical subgraph. It then computes the
semantic relevance between subgraph nodes and
the landmarks, and applies non-maximum suppres-
sion to prune redundant nodes. This results in a
sparse memory subgraph for efficient and accurate
navigation. More details in Appendix A.2.2.

To conclude, with the two specially designed per-
ception and planning modules, along with the mem-
ory module, the aforementioned key challenges of
the aerial VLN are addressed one by one.

5 Experiments
5.1 Experimental Setup

Datasets We evaluate CityNavAgent on a novel
aerial VLN benchmark named AirVLN-S provided
by Liu et al.(Liu et al., 2023b). The benchmark is
collected in Unreal Engine 4 to mimic real-world
urban environments. It contains 25 different city-
level scenes including downtown cities, factories,
parks, and villages, with more than 870 different
kinds of urban objects. It also consists of 3,916
flying paths collected by experienced UAV pilots.

While AirVLN provides a valuable benchmark,
it suffers from ambiguous landmark references in
its relatively coarse-grained instructions. This lack
of explicit spatial grounding (e.g., "going straight
to the buildings") makes it challenging to systemat-
ically assess the agent’s performance at following
each part of the instruction. To address this limi-
tation, we follow the similar idea of (Hong et al.,
2020) to enrich the original instruction with sub-
instructions and their corresponding paths. We
collect 101 fine-grained instruction-path pairs in
10 scenes from AirVLN to construct an instruction-
enriched aerial VLN benchmark, named AirVLN-
Enriched. The details are in Appendix A.5.
Metrics Following the same metrics used in
AirVLN, we report and compare Success Rate (SR),
Oracle Success Rate (OSR), Navigation Error (NE),

SR weighted by Normalized Dynamic Warping
(SDTD) and SR weighted by Path Length (SPL) of
tested methods. The task is successfully completed
if NE is within 20 meters.
Implmentation Details We take the training sam-
ples as the historical tasks and initialize the mem-
ory graph by their trajectories. The memory graph
remains accessible to the agent throughout the eval-
uation. In each test case, the agent is spawned at
a random location in the scene. It first follows the
instruction to explore the environment, and upon
reaching the memory graph, it leverages the graph
to complete the rest of the navigation path. It has
six low-level actions: Forward, Turn Left, Turn
Right, Ascend, Descend, Stop. The number of total
action steps is counted based on low-level actions.
If the agent requires n low-level actions to reach
the next waypoint, the action count increases by
n. The agent stops when it either triggers the stop
action or exceeds the maximum action steps.
Baselines We choose three mainstream types of
continuous VLN baselines.
• Statistical-based Methods. We use random sam-

ple (RS) that agents uniformly select an action
from the action space at each step and action
sample (AC) that agents sample actions accord-
ing to the action distribution of the dataset as our
baselines.

• Learning-based Methods. We choose classic
learning-based methdods Seq2Seq (Anderson
et al., 2018), CMA (Krantz et al., 2020), and
LingUNet (Misra et al., 2018) as our baselines.

• Zero-shot LLM-based methods. We use SOTA
outdoor VLN methods VELMA (Schumann
et al., 2024), LM-Nav (Shah et al., 2023), and
STMR (Gao et al., 2024b) as baselines. To val-
idate the effectiveness of indoor VLN methods,
we also evaluate SOTA indoor VLN methods:
NavGPT (Zhou et al., 2024) and MapGPT (Chen
et al., 2024a).

5.2 Overall Performance
In Table 1 and Table 2, we report the overall per-
formance of CityNavAgent and baselines on the
two aerial VLN benchmark. From these results, we
have the following observations:
• CityNavAgent significantly outperforms pre-

vious SOTAs. 1) Statistical-based methods have
the worst performance indicating aerial VLN re-
quires stronger planning capacity rather than ran-
dom guess. 2) Learning-based methods that pre-
dict agent’s action directly also have relatively

31297



Table 1: Overall performance comparisons on AirVLN-S.

Method
Validataion Seen Validation Unseen

SR↑ SPL↑ OSR↑ SDTW↑ NE↓ SR↑ SPL↑ OSR↑ SDTW↑ NE↓
Statistical-based Methods
RS 0.0 0.0 0.0 0.0 109.6 0.0 0.0 0.0 0.0 149.7
AC 0.9 - 5.7 0.3 213.8 0.2 - 1.1 0.3 237.6
Learning-based Methods
LingUNet (Misra et al., 2018) 0.6 - 6.9 0.2 383.8 0.4 - 3.6 0.9 368.4
Seq2seq (Liu et al., 2023b) 4.8 - 19.8 1.6 146.0 2.3 - 11.7 0.7 218.9
CMA (Liu et al., 2023b) 3.0 - 23.2 0.6 121.0 3.2 - 16.0 1.1 172.1
LLM-based Methods
NavGPT (Zhou et al., 2024) 0.0 0.0 0.0 0.0 163.5 0.0 0.0 0.0 0.0 82.1
MapGPT (Chen et al., 2024a) 2.1 1.5 4.7 0.8 124.9 0.0 0.0 0.0 0.0 107.0
VELMA (Schumann et al., 2024) 0.0 0.0 0.0 0.0 150.5 0.0 0.0 0.0 0.0 117.4
LM-Nav (Shah et al., 2023) 12.5 9.4 28.5 4.6 81.1 10.4 9.3 33.9 4.7 60.3
STMR (Gao et al., 2024b) 12.6 - 31.6 - 96.3 10.8 - 23.0 - 119.5

CityNavAgent 13.9 10.2 30.2 5.1 80.8 11.7 9.9 35.2 5.0 60.2

Table 2: Overall performance comparisons AirVLN-E.

Methods SR↑ SPL↑ NE↓
Statistical-based Methods
RS 0.0 0.0 129.6
AC 0.0 0.0 290.4
Learning-based Methods
Seq2seq (Liu et al., 2023b) 0.0 0.0 398.5
CMA (Liu et al., 2023b) 0.0 0.0 278.3
LLM-based Methods
NavGPT (Zhou et al., 2024) 0.0 0.0 127.2
MapGPT (Chen et al., 2024a) 3.3 1.5 133.7
VELMA (Schumann et al., 2024) 0.0 0.0 138.0
LM-Nav (Shah et al., 2023) 23.6 19.2 119.4

CityNavAgent 28.3 23.5 95.1

poor performance with SR less than 5%, which
can be explained by the complex action space for
long-range navigations. 3) Indoor LLM-based
methods suffer significantly performance drop
while outdoor LLM-based methods have better
performance. 4) Compared to these baselines,
CityNavAgent outperforms the best of them by
1.3%, 0.8%, 0.5%, and 16.1% in SR, SPL, SDTW
and NE for validation seen dataset and by 0.9%,
0.6%, 1.3%, and 0.2% in SR, SPL, SDTW and
NE for validation unseen dataset. It demonstrates
that the semantic hierarchical planning and mem-
ory graph-based motion planning improve the
agent’s long-range navigation capacity.

• CityNavAgent has better instruction-following
performance. We can observe that our pro-
posed CityNavAgent achieves the highest SPL
and STDW, which outperforms the best of base-
lines by 0.8% and 0.5%, respectively. We explain
the cause of this result as: 1) the HSPM decom-
poses the original long-distance navigation task
into shorter sub-navigation tasks, reducing the
planning difficulty. 2) memory graph-based mo-
tion planning further guides the agent to traverse

Table 3: Effectiveness of different modules in CityNav-
Agent. MG and SM represent the memory graph and
semantic map, respectively.

Modules SR↑ SPL↑ NE↓
w/o MG 11.7 9.1 206.1
w/o SM 23.6 19.2 119.4
w/ LLaVA-7B 1.7 1.4 125.7
w/ GPT-3.5 23.3 16.1 98.9
w/ GPT-4V (ours) 28.3 23.5 95.1

Table 4: Comparison of waypoint predictor under dif-
ferent scenarios.

Inputs |△| drel ↓ dC ↓ dH ↓

Outdoor
RGBD 1.66 0.88 6.46 5.16
RGB 1.59 0.88 6.40 5.15
Depth 1.60 0.88 6.48 5.26

Indoor
RGBD 1.40 - 1.05 2.01
RGB 1.38 - 1.08 2.03
Depth 1.39 - 1.04 2.01

the decomposed landmark sequence.
• Enriched Instructions Promote Navigation

Performance. The performance of MapGPT,
LM-Nav, and CityNavAgent on AirVLN-E is
better than on AirVLN-S. The highest improve-
ments in SR and SPL are 14.4% and 13.3%, re-
spectively, indicating that the enriched instruc-
tions provide clearer landmarks, helping the
agent follow the path to the target more effec-
tively.

5.3 Ablation Study

Effect of semantic map-based exploration. To
evaluate the effectiveness of semantic map-based
waypoint prediction, we substitute this module with
a random walk strategy. As shown in Table 3, the
agent without the semantic map (second row) suf-

31298



(a) (b) 

Figure 3: The qualitative result of CWP. From left to
right are the top-down view and the front-facing view.
Red and black circles denote predicted waypoints and
reference waypoints on real trajectories.

Figure 4: The qualitative result of failure cases. The
green captions and bounding boxes are the referred
landmarks in instructions. The red bounding boxes are
the misreferred landmarks due to three failure reasons.

fers a 4.7% and 4.3% drop in SR and SPL, and
a 25.6% increase on NE with CityNavAgent (last
row). This result reveals that the semantic map ex-
tracts structured environmental information, facili-
tating the LLM in commonsense reasoning so that
the agent navigates to the region or objects that are
more relevant to the navigation task. Consequently,
the accuracy and efficiency of the navigation is
improved.
Effect of memory graph-based exploitation. In
this case, we omit the global memory module dur-
ing the navigation and replace the graph search al-
gorithm with the random walk strategy. Presented
in the first row in Table 3, the lack of memory
graph results in a 16.6%, 14.4% decrease in SR,
SPL, and a 116.7% increase in NE over CityNav-
Agent. Moreover, the memory graph has a more
noticeable impact on the agent’s navigation perfor-
mance compared with the semantic map. This in-
dicates that the memory graph effectively prevents
the agent from falling into dead ends or engaging
in blind exploration in long-distance outdoor navi-
gation scenarios, thereby ensuring the stability of
navigation performance.
Effect of different LLMs. We also evaluate
the effectiveness of different LLMs for common-
sense reasoning in object-level planning (§4.2).

Agent with LLaVA-7B as the object-level plan-
ner achieves the poorest performance, which is
mainly due to the perception hallucination and un-
structured output formats. Although CityNavAgent
with GPT-3.5 demonstrates a competitive perfor-
mance, replacing GPT-3.5 with GPT-4V which has
enhanced reasoning capability results in further
performance improvement, e.g., 5.0% and 7.4%
increases in SR and SPL, respectively. We attribute
this improvement to the fact that GPT-4V has a
lower hallucination rate and stronger reasoning
ability. Thus, it generates more contextually ap-
propriate responses based on the semantic map and
navigation instruction to facilitate the agent in ex-
ploring areas most relevant to the target.

5.4 Effectiveness of Indoor Waypoint
Prediction

To evaluate the effectiveness of the waypoint pre-
diction method CWP (Hong et al., 2022) in pre-
vious continuous VLN methods (An et al., 2024;
Koh et al., 2021; Wang et al., 2023a,b; Krantz and
Lee, 2022; Wang et al., 2024), we compare the pre-
dicted waypoint with target waypoints in outdoor
environments. We apply waypoint metrics (Hong
et al., 2022) to assess the quality of predicted way-
points. |△| measures the difference in the number
of target waypoints and predicted waypoints. drel
measures the ratio of average waypoint distance.
dC and dH are the Chamfer distance and the Haus-
dorff distance, respectively. As depicted in Table
4, CWP achieves the best performance in indoor
environments with 1.04 dC and 2.01 dH while in
outdoor environments with 6.4 dC and 5.15 dH .
This result indicates that although the predicted
indoor waypoints by CWP are close to the indoor
target waypoints, predicted outdoor waypoints are
far from outdoor target waypoints, which is illus-
trated intuitively in Figure 3(a). We attribute this
to the scale difference between indoor and outdoor
environments. Besides, the dimensional difference
is another negative factor for CWP. Depicted in Fig-
ure 3(b), CWP only predicts waypoints in 2D space
and cannot be applied to open urban environments.

5.5 Case Analysis

In this section, we analyze the failure cases across
different datasets and categorize them into three
types: 1) Instruction Ambiguity: The navigation
instruction lacks clear landmarks, or there are many
similar landmarks within the same scene, making it
difficult for the agent to accurately refer to the land-

31299



mark mentioned in the instruction. 2) Perception
Failure: Despite the strong object recognition and
detection capabilities of our open-vocabulary per-
ception module, outdoor scenes still present many
edge cases, leading to incorrect identification of
landmarks referenced in the instruction. 3) Rea-
soning Module: During the hierarchical planning
process, the object-level planner may encounter rea-
soning errors when attempting to infer the location
of OROI. This can happen when there is insuffi-
cient semantic connection between the objects in
the scene and the referenced landmarks, resulting
in incorrect OROI reasoning. The visualization re-
sults of these failure cases are shown in Figure 4.
More qualitative results are in Appendix A.6.3.

6 Conclusion
In this paper, we approach the problem of zero-
shot vision-language navigation by proposing an
embodied aerial agent, CityNavAgent, which lever-
ages the pre-trained knowledge in large foundation
models and historical experience to deal with long-
term navigation in urban spaces. The experimental
results illustrate the efficacy and robustness of our
method from different perspectives.

Limitations
One limitation of our work is that the whole system
has not been deployed on a real drone. Though
our methods achieve promising results in simulated
outdoor environments, low-level motion control
problems such as self-pose estimation, control la-
tency, and control errors are not considered in our
work. The second is that the agent lacks a back-
tracking mechanism. CityNavAgent so far only
relies on the sub-goal decomposition to track the
navigation path.

Acknowledgements

This paper was supported by National Key
Research and Development Program of China
2024YFC3307603, Natural Science Foundation
of China under Grant 62371269, 72442026,
U23B2030, 62171260, Tsinghua Shenzhen In-
ternational Graduate School Cross-disciplinary
Research and Innovation Fund Research Plan
(JC20220011), Meituan Academy of Robotics
Shenzhen, Talent Program of Guangdong Province
(2021QN02Z107) and National Science and Tech-
nology Major Project (2024ZD01NL00103).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Dong An, Yuankai Qi, Yangguang Li, Yan Huang, Liang
Wang, Tieniu Tan, and Jing Shao. 2023. Bevbert:
Multimodal map pre-training for language-guided
navigation. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 2737–
2748.

Dong An, Hanqing Wang, Wenguan Wang, Zun Wang,
Yan Huang, Keji He, and Liang Wang. 2024. Etpnav:
Evolving topological planning for vision-language
navigation in continuous environments. IEEE Trans-
actions on Pattern Analysis and Machine Intelli-
gence.

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce,
Mark Johnson, Niko Sünderhauf, Ian Reid, Stephen
Gould, and Anton Van Den Hengel. 2018. Vision-
and-language navigation: Interpreting visually-
grounded navigation instructions in real environ-
ments. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3674–
3683.

Angel Chang, Angela Dai, Thomas Funkhouser, Maciej
Halber, Matthias Niessner, Manolis Savva, Shuran
Song, Andy Zeng, and Yinda Zhang. 2017. Matter-
port3d: Learning from rgb-d data in indoor environ-
ments. arXiv preprint arXiv:1709.06158.

Howard Chen, Alane Suhr, Dipendra Misra, Noah
Snavely, and Yoav Artzi. 2019. Touchdown: Nat-
ural language navigation and spatial reasoning in
visual street environments. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 12538–12547.

Jiaqi Chen, Bingqian Lin, Ran Xu, Zhenhua
Chai, Xiaodan Liang, and Kwan-Yee K Wong.
2024a. Mapgpt: Map-guided prompting for uni-
fied vision-and-language navigation. arXiv preprint
arXiv:2401.07314.

Kevin Chen, Junshen K Chen, Jo Chuang, Marynel
Vázquez, and Silvio Savarese. 2021a. Topological
planning with transformers for vision-and-language
navigation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 11276–11286.

Peihao Chen, Xinyu Sun, Hongyan Zhi, Runhao
Zeng, Thomas H Li, Gaowen Liu, Mingkui Tan,
and Chuang Gan. 2023. A2 nav: Action-aware
zero-shot robot navigation by exploiting vision-
and-language ability of foundation models. arXiv
preprint arXiv:2308.07997.

Shizhe Chen, Pierre-Louis Guhur, Cordelia Schmid,
and Ivan Laptev. 2021b. History aware multimodal

31300



transformer for vision-and-language navigation. Ad-
vances in neural information processing systems,
34:5834–5847.

Shizhe Chen, Pierre-Louis Guhur, Makarand Tapaswi,
Cordelia Schmid, and Ivan Laptev. 2022a. Think
global, act local: Dual-scale graph transformer for
vision-and-language navigation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 16537–16547.

Xuecheng Chen, Haoyang Wang, Zuxin Li, Wenbo
Ding, Fan Dang, Chengye Wu, and Xinlei Chen.
2022b. Deliversense: Efficient delivery drone
scheduling for crowdsensing with deep reinforcement
learning. In Adjunct proceedings of the 2022 ACM
international joint conference on pervasive and ubiq-
uitous computing and the 2022 ACM international
symposium on wearable computers, pages 403–408.

Xuecheng Chen, Zijian Xiao, Yuhan Cheng, Chen-Chun
Hsia, Haoyang Wang, Jingao Xu, Susu Xu, Fan Dang,
Xiao-Ping Zhang, Yunhao Liu, et al. 2024b. Sosched-
uler: Toward proactive and adaptive wildfire suppres-
sion via multi-uav collaborative scheduling. IEEE
Internet of Things Journal, 11(14):24858–24871.

Yuhan Cheng, Jirong Zha, Renjue Yang, Zhi Sun, Susu
Xu, and Xinlei Chen. 2024. Multi-agent target pur-
suit using perception uncertainty-aware reinforce-
ment learning. In Proceedings of the 30th Annual
International Conference on Mobile Computing and
Networking, pages 1992–1997.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al.
2023. Vicuna: An open-source chatbot impressing
gpt-4 with 90%* chatgpt quality. See https://vicuna.
lmsys. org (accessed 14 April 2023), 2(3):6.

Edsger W Dijkstra. 2022. A note on two problems in
connexion with graphs. In Edsger Wybe Dijkstra:
His Life, Work, and Legacy, pages 287–290.

Chen Gao, Xingyu Peng, Mi Yan, He Wang, Lirong
Yang, Haibing Ren, Hongsheng Li, and Si Liu.
2023. Adaptive zone-aware hierarchical planner for
vision-language navigation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 14911–14920.

Peng Gao, Peng Wang, Feng Gao, Fei Wang, and
Ruyue Yuan. 2024a. Vision-language navigation
with embodied intelligence: A survey. arXiv preprint
arXiv:2402.14304.

Yunpeng Gao, Zhigang Wang, Linglin Jing, Dong Wang,
Xuelong Li, and Bin Zhao. 2024b. Aerial vision-
and-language navigation via semantic-topo-metric
representation guided llm reasoning. arXiv preprint
arXiv:2410.08500.

Jing Gu, Eliana Stefani, Qi Wu, Jesse Thomason, and
Xin Eric Wang. 2022. Vision-and-language naviga-
tion: A survey of tasks, methods, and future direc-
tions. arXiv preprint arXiv:2203.12667.

Qiuyi Gu, Zhaocheng Ye, Jincheng Yu, Jiahao
Tang, Tinghao Yi, Yuhan Dong, Jian Wang, Jin-
qiang Cui, Xinlei Chen, and Yu Wang. 2025.
Mr-cographs: Communication-efficient multi-robot
open-vocabulary mapping system via 3d scene
graphs. IEEE Robotics and Automation Letters.

Pierre-Louis Guhur, Makarand Tapaswi, Shizhe Chen,
Ivan Laptev, and Cordelia Schmid. 2021. Airbert: In-
domain pretraining for vision-and-language naviga-
tion. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1634–1643.

Yicong Hong, Cristian Rodriguez-Opazo, Qi Wu,
and Stephen Gould. 2020. Sub-instruction aware
vision-and-language navigation. arXiv preprint
arXiv:2004.02707.

Yicong Hong, Zun Wang, Qi Wu, and Stephen Gould.
2022. Bridging the gap between learning in
discrete and continuous environments for vision-
and-language navigation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 15439–15449.

Jingyang Huo, Qiang Sun, Boyan Jiang, Haitao Lin,
and Yanwei Fu. 2023. Geovln: Learning geometry-
enhanced visual representation with slot attention for
vision-and-language navigation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 23212–23221.

Muhammad Zubair Irshad, Niluthpol Chowdhury
Mithun, Zachary Seymour, Han-Pang Chiu,
Supun Samarasekera, and Rakesh Kumar. 2022.
Semantically-aware spatio-temporal reasoning agent
for vision-and-language navigation in continuous en-
vironments. In 2022 26th International Conference
on Pattern Recognition (ICPR), pages 4065–4071.
IEEE.

Vihan Jain, Gabriel Magalhaes, Alexander Ku,
Ashish Vaswani, Eugene Ie, and Jason Baldridge.
2019. Stay on the path: Instruction fidelity in
vision-and-language navigation. arXiv preprint
arXiv:1905.12255.

Aishwarya Kamath, Peter Anderson, Su Wang, Jing Yu
Koh, Alexander Ku, Austin Waters, Yinfei Yang, Ja-
son Baldridge, and Zarana Parekh. 2023. A new
path: Scaling vision-and-language navigation with
synthetic instructions and imitation learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10813–10823.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi
Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C Berg, Wan-Yen Lo,
et al. 2023. Segment anything. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 4015–4026.

Jing Yu Koh, Honglak Lee, Yinfei Yang, Jason
Baldridge, and Peter Anderson. 2021. Pathdreamer:
A world model for indoor navigation. In Proceed-
ings of the IEEE/CVF International Conference on
Computer Vision, pages 14738–14748.

31301



Jacob Krantz, Aaron Gokaslan, Dhruv Batra, Stefan
Lee, and Oleksandr Maksymets. 2021. Waypoint
models for instruction-guided navigation in continu-
ous environments. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
15162–15171.

Jacob Krantz and Stefan Lee. 2022. Sim-2-sim transfer
for vision-and-language navigation in continuous en-
vironments. In European Conference on Computer
Vision, pages 588–603. Springer.

Jacob Krantz, Erik Wijmans, Arjun Majumdar, Dhruv
Batra, and Stefan Lee. 2020. Beyond the nav-graph:
Vision-and-language navigation in continuous envi-
ronments. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part XXVIII 16, pages 104–120.
Springer.

Alexander Ku, Peter Anderson, Roma Patel, Eugene
Ie, and Jason Baldridge. 2020. Room-across-room:
Multilingual vision-and-language navigation with
dense spatiotemporal grounding. arXiv preprint
arXiv:2010.07954.

Shuhei Kurita and Kyunghyun Cho. 2020. Gen-
erative language-grounded policy in vision-and-
language navigation with bayes’ rule. arXiv preprint
arXiv:2009.07783.

Jialu Li and Mohit Bansal. 2023. Improving vision-and-
language navigation by generating future-view image
semantics. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 10803–10812.

Xiangyang Li, Zihan Wang, Jiahao Yang, Yaowei Wang,
and Shuqiang Jiang. 2023. Kerm: Knowledge en-
hanced reasoning for vision-and-language naviga-
tion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
2583–2592.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang
Su, Jun Zhu, et al. 2023a. Grounding dino: Marrying
dino with grounded pre-training for open-set object
detection. arXiv preprint arXiv:2303.05499.

Shubo Liu, Hongsheng Zhang, Yuankai Qi, Peng Wang,
Yanning Zhang, and Qi Wu. 2023b. Aerialvln:
Vision-and-language navigation for uavs. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 15384–15394.

Yang Liu, Xinshuai Song, Kaixuan Jiang, Weixing
Chen, Jingzhou Luo, Guanbin Li, and Liang Lin.
2024. Multimodal embodied interactive agent for
cafe scene. arXiv preprint arXiv:2402.00290.

Hamid Menouar, Ismail Guvenc, Kemal Akkaya, A Sel-
cuk Uluagac, Abdullah Kadri, and Adem Tuncer.
2017. Uav-enabled intelligent transportation systems
for the smart city: Applications and challenges. IEEE
Communications Magazine, 55(3):22–28.

Dipendra Misra, Andrew Bennett, Valts Blukis, Eyvind
Niklasson, Max Shatkhin, and Yoav Artzi. 2018.
Mapping instructions to actions in 3d environ-
ments with visual goal prediction. arXiv preprint
arXiv:1809.00786.

Yuankai Qi, Zizheng Pan, Yicong Hong, Ming-Hsuan
Yang, Anton Van Den Hengel, and Qi Wu. 2021. The
road to know-where: An object-and-room informed
sequential bert for indoor vision-language naviga-
tion. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1655–1664.

Sonia Raychaudhuri, Saim Wani, Shivansh Patel, Un-
nat Jain, and Angel X Chang. 2021. Language-
aligned waypoint (law) supervision for vision-and-
language navigation in continuous environments.
arXiv preprint arXiv:2109.15207.

Raphael Schumann and Stefan Riezler. 2020. Gener-
ating landmark navigation instructions from maps
as a graph-to-text problem. arXiv preprint
arXiv:2012.15329.

Raphael Schumann, Wanrong Zhu, Weixi Feng, Tsu-Jui
Fu, Stefan Riezler, and William Yang Wang. 2024.
Velma: Verbalization embodiment of llm agents for
vision and language navigation in street view. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 18924–18933.

Dhruv Shah, Błażej Osiński, Sergey Levine, et al. 2023.
Lm-nav: Robotic navigation with large pre-trained
models of language, vision, and action. In Confer-
ence on robot learning, pages 492–504. PMLR.

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke
Zettlemoyer, and Dieter Fox. 2020. Alfred: A bench-
mark for interpreting grounded instructions for ev-
eryday tasks. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 10740–10749.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Sebastian Wandelt, Shuang Wang, Changhong Zheng,
and Xiaoqian Sun. 2023. Aerial: A meta review
and discussion of challenges toward unmanned aerial
vehicle operations in logistics, mobility, and monitor-
ing. IEEE Transactions on Intelligent Transportation
Systems, 25(7):6276–6289.

Hanqing Wang, Wei Liang, Luc Van Gool, and Wen-
guan Wang. 2023a. Dreamwalker: Mental planning
for continuous vision-language navigation. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 10873–10883.

Hu Wang, Qi Wu, and Chunhua Shen. 2020. Soft expert
reward learning for vision-and-language navigation.

31302



In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Pro-
ceedings, Part IX 16, pages 126–141. Springer.

Xin Wang, Wenhan Xiong, Hongmin Wang, and
William Yang Wang. 2018. Look before you leap:
Bridging model-free and model-based reinforcement
learning for planned-ahead vision-and-language nav-
igation. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 37–53.

Zihan Wang, Xiangyang Li, Jiahao Yang, Yeqi Liu,
Junjie Hu, Ming Jiang, and Shuqiang Jiang. 2024.
Lookahead exploration with neural radiance repre-
sentation for continuous vision-language navigation.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 13753–
13762.

Zihan Wang, Xiangyang Li, Jiahao Yang, Yeqi Liu, and
Shuqiang Jiang. 2023b. Gridmm: Grid memory map
for vision-and-language navigation. In Proceedings
of the IEEE/CVF International Conference on Com-
puter Vision, pages 15625–15636.

Yanggang Xu, Jirong Zha, Jiyuan Ren, Xintao Jiang,
Hongfei Zhang, and Xinlei Chen. 2024. Scalable
multi-agent reinforcement learning for effective uav
scheduling in multi-hop emergency networks. In
Proceedings of the 30th Annual International Confer-
ence on Mobile Computing and Networking, pages
2028–2033.

Weichen Zhan, Zile Zhou, Zhiheng Zheng, Chen Gao,
Jinqiang Cui, Yong Li, Xinlei Chen, and Xiao-Ping
Zhang. 2025. Open3dvqa: A benchmark for com-
prehensive spatial reasoning with multimodal large
language model in open space. arXiv preprint
arXiv:2503.11094.

Baining Zhao, Jianjie Fang, Zichao Dai, Ziyou Wang,
Jirong Zha, Weichen Zhang, Chen Gao, Yue Wang,
Jinqiang Cui, Xinlei Chen, et al. 2025a. Urbanvideo-
bench: benchmarking vision-language models on em-
bodied intelligence with video data in urban spaces.
arXiv preprint arXiv:2503.06157.

Baining Zhao, Ziyou Wang, Jianjie Fang, Chen Gao,
Fanhang Man, Jinqiang Cui, Xin Wang, Xinlei Chen,
Yong Li, and Wenwu Zhu. 2025b. Embodied-r: Col-
laborative framework for activating embodied spatial
reasoning in foundation models via reinforcement
learning. arXiv preprint arXiv:2504.12680.

Gengze Zhou, Yicong Hong, and Qi Wu. 2024. Navgpt:
Explicit reasoning in vision-and-language naviga-
tion with large language models. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 38, pages 7641–7649.

31303



A Appendix

A.1 Prompt Engineering
In this part, we discuss the prompt used in this
work. <> denotes the content needs to be filled in
the prompting process.

LLM Prompt for High-level Planner The com-
plete prompt is:

Task Planning Prompt

You are a navigation aircraft, and now
you need to navigate to a specified loca-
tion according to a natural language in-
struction. You need to extract a land-
mark sequence from the instruction. The
sequence order should be consistent with
their appearance on the path. Your out-
put should be in JSON format and must
contain two fields: "Landmark sequence"
and "Thought." "Landmark sequence" is
your thinking result comprised of landmark
phrases in the instruction. "Thought" is your
thinking process. The instruction is < "First,
you need to find a stop sign. Then take left
and right and continue until you reach a
square with a tree. Continue first straight,
then right, until you find a white truck. The
final destination is a white building." >

The example output is:

"Landmark sequence": [
"stop sign",
"square with a tree",
"white truck",
"white building",
]
"Thought": "The instruction outlines a se-
ries of landmarks that need to be followed
in order. The first landmark is a ’stop sign,’
which I need to locate first. After finding the
stop sign, I will navigate to a ’square with
a tree’ by taking left and right turns. Then,
I will continue straight and turn right until
I encounter a ’white truck.’ Finally, my des-
tination is a ’white building.’ I have listed
these landmarks in the order they appear in
the navigation process."

The Prompt for Low-level Planner The com-
plete prompt for the LLM commonsense reasoning
in the low-level planner is:

Commonsense Reasoning Prompt

You are a drone and your task is navigating
to the described target location!

Navigation instruction: Start from the
’open’ logo, fly forward and pass the yellow
’restaurant’ logo in the front road. Then fly
forward to the left, pass the circle grassland,
and turn right. Finally, stop in front of the
glass door with the trash bin and bench.

Your next navigation subgoal: yellow
’restaurant’ logo

Objects or areas you observed: build-
ing with stairs, road, street lamp, street
lamp, ’open’ logo, building with stairs
Based on the instruction, next navigation
subgoal, and observation, list 3 objects
you will probably go next from your
OBSERVED OBJECTS in descending order
of probability.

A.2 Global Memory Module

A.2.1 Memory Graph Search Algorithm
The graph search problem is formulated as follows:
given a memory graph G(N,E), where N denotes
the set of nodes (typically representing physical
locations or semantic states) and E represents the
set of edges (possible transitions or paths), and a
sequence of landmark phrases L = (ℓ1, ℓ2, . . . , ℓn)
extracted from natural language instructions, the
objective is to determine an optimal sequence of
waypoints W = (w0, w1, . . . , wm). This sequence
should maximize the probability that the agent
successfully traverses the specified landmarks in
the correct order, formally denoted as maximizing
P (rL = 1|W,L), where rL = 1 indicates success-
ful traversal of all the landmarks in L.

To facilitate this optimization, a scoring func-
tion Q(i, wk) is defined, which captures the max-
imum probability of reaching node wk while hav-
ing visited the first i landmarks (l1, l2, ..., li) in
the correct sequence. This function is used to
recursively compute the best paths through the
graph that incrementally satisfy the landmark con-
straints. The final probability of successfully ac-
complishing the full instruction is therefore given
by P (rL = 1|W,L) = Q(n,W ), where n is the
total number of landmarks and W is the resulting

31304



Table 5: Comparision of fine-grained dataset with AirVLN.

Dataset Routes Vocab Instr. Len. # of Landmark Traj. Len. Traj. Len. (easy) Traj. Len. (normal) Traj. Len. (Hard)
AirVLN 3,916 2.8k 82 - 321.3 - - -
Refined 101 0.4k 39 4.1 156.1 104.3 147.9 235.8

waypoint sequence.
To compute the optimal waypoint sequence W ∗,

a graph search algorithm is proposed that integrates
a modified version of the classic Dijkstra algorithm
(Dijkstra, 2022). This search strategy is adapted
to not only find the shortest (or lowest-cost) paths,
but also to incorporate landmark-dependent proba-
bilities during the traversal process, ensuring that
the resulting path sequence adheres to both spatial
and semantic constraints derived from the language
instructions.

Algorithm 1 Graph Search (Shah et al., 2023)

1: Input: Landmarks (ℓ1, ℓ2, . . . , ℓn).
2: Input: Graph G(N,E).
3: Input: Starting node S.
4: ∀i = 0, . . . , n, ∀w ∈ N,Q[i, w]← −∞
5: Q[0, S]← 0
6: DIJKSTRA_ALGORITHM(G,Q[0, ∗])
7:

8: for i ∈ 1, 2, . . . , n do
9: ∀w ∈ W,Q[i, w] ← Q[i − 1, w] +

LLM(w, ℓi)
10: DIJKSTRA_ALGORITHM(G,Q[i, ∗])
11: end for
12: destination← argmax(Q[n, ∗])
13: return BACKTRACK(destination,Q[n, ∗])

A.2.2 Graph Pruning for Efficient Navigation
When the agent executes a new navigation task, it
does not navigate through the entire global mem-
ory graph but instead on a subgraph selected from
the global memory to improve the efficiency and
accuracy of the graph searching algorithm.

The subgraph is constructed in two stages. In
the first stage, the agent samples all nodes and
edges within a radius R near the starting point on
the global memory graph G to form a subgraph
Gs. R is a hyperparameter, which is set to the
average distance from the start point to the target
in the training set in the experiment. Since Gs

still contains a significant amount of redundant
nodes and edges, we further downsample it by a
3D non-maximum suppression (NMS) method in
the second stage. First, we use CLIP to compute the
matching score of each node Gs with the landmarks
in the instruction. Then, based on these matching

scores, we apply NMS on Gs to remove the nodes
near local maxima and update the edges between
the remaining nodes. Finally, we obtain a sparse
memory subgraph Gs for efficient and accurate
navigation. Table 6 illustrates the node and edge
counts of the global graphs and subgraphs. After
graph pruning, the node counts of final subgraphs
across all environments are reduced to less than
150, approximately half of the global map, thereby
significantly improving the planning efficiency.

A.2.3 Visualization of Memory Graph

The memory graph in different scenes is shown in
Figure 6.

A.3 Point Clould Construction

As shown in Fig.2, with the camera intrinsic matrix
K and agent’s pose (p, α), pixels po of the depth
image of observation view can be projected to a
3D point cloud in the world coordinate system as
Pα′
w = Rα′ · Z · K−1 · po + p, where Rα′ is the

rotation matrix of observation view and Z denotes
depth values of pixels. The final point cloudMs

is given by Ms = Pα−90◦
w ⊙ Pα−45◦

w ⊙ Pα
w ⊙

Pα+45◦
w ⊙ Pα+90◦

w . Note that RGB-D images in
each observation view are well-aligned, meaning
that the extracted semantic masks of RGB images
have their counterparts in depth images as well
as in the point cloud. To this end, a local map
containing both semantic and spatial information
is constructed.

A.4 Details on Perception Module

For all experiments, we employ GPT-4V (Achiam
et al., 2023) for object reasoning and landmark
phase extraction. During the image grounding,
a target is considered successfully detected if
the bounding box’s confidence score exceeds the
threshold θ = 0.4. The agent is equipped with an
aligned RGB-D camera with 512x512 resolution
and 90◦ field of view (FOV), capturing panoramic
observations by rotating itself. The panoramic view
directions are set at p− 90◦, p− 45◦, p◦, p+ 45◦,
and p + 90◦ where p represents the agent’s head-
ing direction. The agent’s low-level action space
is ("move forward", "turn left", "turn right", "go
up", "go down", and "stop"). The moving step is

31305



Historical 
Trajectory Graph

Current Trajectory 
Graph

Close to historical node?

Graph Fusion Updated Graph

Graph Search

This is a picture of <phone booth>

0.7 0.2

Waypoint Sequence

Y

Figure 5: The illustration of the memory module. The agent stores its visual observation in the current trajectory
graph. Once it reaches the node in the historical trajectory graph, the agent fuses these two graphs and searches
for a path with the highest probability to the target. The probability is measured by a similarity score between the
landmark phase in the instruction and visual observation stored in the node.

Figure 6: The memory graphs in different scenes. Each node in graphs stores the node’s location and the agent’s observation.
The long distance between different historical trajectories results in the disconnection of memory graphs. Blue dot lines and
red dot lines are ground truth and planned trajectories, respectively. The planned trajectories in the first row fail to follow the
ground-truth trajectories while the last row have better instruction following the performance.

5 meters and each rotation turns the agent by 15◦.
The agent will receive its GPS location at each step.

A.5 Fine-grained AirVLN Dataset

We follow a similar idea of (Hong et al., 2020) to
enhance the clarity and grounding of navigation
instructions by incorporating detailed descriptions
of visual landmarks encountered along the path, as
well as explicit annotations of the agent’s actions at
each step. Figure 7 presents an example of such a
fine-grained instruction, illustrating how visual ref-
erences (e.g., “the crossroad with traffic light”) and
action-level granularity (e.g., “turn right”) are inte-
grated into the instruction format. The following
are a comparison between a fine-grained instruction
and an original AirVLN instruction:

Instruction in AirVLN: "turning left and
going straight to the buildings and slight
right turn. coming near the lake and turning
right and going up to the building. coming
down to the building and again going up and
going straight. going top of the building and
turning left and coming down to the building.
roaming around a tower and searching each
floor of apartment."
Fine-grained instruction:Start from the blue
billboard with ’leartes bank’, fly forward,
pass the ’GAS’ sign, and turn left. Continue
flying forward, passing the yellow billboard
and the ’Americar’ billboard ahead. Con-
tinue flying forward and left until you reach
the blue billboard with ’leartes bank’ and
stop."

31306



Instruction: “Start from the road blocks, turn right at the crossroad with traffic light ahead, turn left when you reach 

the bridge with red stop sign, fly across the bridge, and stop at the white house ahead.”

turn right at the crossroad with traffic light turn left, bridge with red stop sign

fly across the bridge fly across the bridge stop at the white house

Instruction: "Start from the white statue, pass the yellow drink billboard, then turn left and fly forward, turn right at 

the dark building in front, then fly forward and stop at the coke bottle cap sign."

start from the white statue fly pass from the yellow drink billboard turn left

fly forward, turn left at the dark building stop at the coke bottle cap sign

Instruction: "Starting at the blue and red oil barrels near the white building, turn right into the small alley. Turn 

right after exiting the alley, pass the 'restaurant' logo, fly forward to the right and pass the obelisk. Then continue 

forward and finally stop at 3 ATMs in the corner."

turn right into the small alley turn right after exiting the alley

pass the ‘restaurant’ logo fly forward to the right pass the ‘restaurant’ logo stop at 3 ATMs in the corner

Figure 7: The fine-grained AirVLN instruction and trajectory. The instructions and trajectories are well-aligned.

31307



Table 6: Node and edge counts of different graphs. Env
ID is the scene ID in AirVLN-s validation set.

Env ID Global Graph (Node/Edge) Spherical Subgraph Final Subgraph
2 177/587 110/353 71/135
3 44/242 30/150 25/91
5 395/2529 285/1821 130/413
8 48/203 29/116 24/70
10 142/704 124/610 74/201
12 76/285 56/206 40/94
14 139/728 81/412 46/133
17 39/126 21/61 18/41

Table 7: The distribution of failure cases.

Datasets Instruction Ambiguity Perception Failure Reasoning Failure
AirVLN-S 45.4 34.1 20.5
AirVLN-E 5.8 76.8 17.4

Dataset statistics The fine-grained samples are
collected in 10 scenes from AirVLN. In each scene,
10 samples are collected. We further divide the fine-
grained samples into three difficulty levels based
on their trajectory length: easy tasks traverse two
landmarks, normal tasks pass through three to four
landmarks, and hard tasks involve navigating past
five or more landmarks. The ratio of these three
types of tasks is 1:3:1. The detailed statics are
shown in Tab. 5.

A.6 More Experiment Results
A.6.1 Result on AirVLN-E of different

difficulties
In Table 8, we compare the overall performance of
CityNavGPT with SOTA navigation methods, from
which we make the following observations.
• The vast action space exhibits great challenge

for baselines. Both the SR and SPL of statistical-
based and learning-based methods are close to 0,
and the NE of these two methods are significantly
high. This result illustrates that the long-term
outdoor VLN involves an extremely large action
space and even learning-based methods failed to
traverse the whole space to find optimal paths.

• LLM fails to be a low-level action planner in
continuous space. Zero-shot LLM-based meth-
ods that leverage LLM for scene understand-
ing and motion planning also have 0 SR and
high NE. We attribute this result to the fact that
general-purpose LLMs like GPTs fail to reason
for the low-level action due to the lack of domain-
specific knowledge. Besides, directly predicting
a long-term action sequence without intermediate
checks will cause errors that accumulate along
the path, leading to great deviation from the tar-
get.

• Our CityNavGPT method significantly outper-

forms previous SOTAs on all metrics. Specif-
ically, CityNavGPT improves SR by approxi-
mately 28.3% and 4.7% over VELMA and LM-
Nav, respectively. This demonstrates the critical
importance and navigation efficiency of semantic
map-based waypoint planning for continuous out-
door navigation. Furthermore, in terms of SPL,
our approach achieves improvements of 23.5%
and 2.5% compared to VELMA and LM-Nav, re-
spectively, indicating that CityNavGPT predicts
navigation paths that are closer to the ground
truth. The lowest error rate shows that even for
those failed cases, our method still stops rela-
tively close to the target. For easy and normal
tasks, our method consistently surpasses the base-
line by at least 5% in SR and SPL. For hard tasks,
our method still has a similar performance to the
best method.

A.6.2 More Results of Reasoning Process
We illustrate the qualitative navigation process of
CityNavAgent to further illustrate how the com-
monsense reasoning and memory graph work. As
depicted in Figure 8, the agent is spawned at a ran-
dom location with a navigation instruction. The
agent has to explore the ordered landmarks in the
instruction based on its visual observation. Thanks
to its reasoning capabilities, the agent infers ob-
jects in its FOV that are semantically related to
landmarks, even when those landmarks are not vi-
sually observed. In the given example, the agent
tries to find the obelisk in the park which is cur-
rently invisible. Hinted by the instruction that the
obelisk is in the park, CityNavAgent reasons that
the trees probably appear in the park and decides
to explore the areas near the trees while LM-Nav is
gradually lost due to its lack of exploration ability
(first three columns of Figure 8). Once the agent
reaches a place visited before, CityNavAgent lever-
ages the memory graph to search for a path to the
target while VELMA only relies on LLM for action
planning and is trapped in an unfamiliar place (see
the last columns of Figure 8).

A.6.3 Failure Case Distribution
As shown in Table 7, the failure distribution indi-
cates that for AirVLN-S, the most failure cases
come from the instruction ambiguity, while for
AirVLN-E with fine-grained landmarks, the most
failure cases come from the perception failure.

31308



Table 8: Overall performance comparisons AirVLN-E.

Method
Easy Normal Hard Mean

SR↑ SPL↑ NE↓ SR↑ SPL↑ NE↓ SR↑ SPL↑ NE↓ SR↑ SPL↑ NE↓
Statistical-based Methods
RS 0.0 0.0 85.6 0.0 0.0 127.9 0.0 0.0 164.9 0.0 0.0 129.6
AC 0.0 0.0 242.2 0.0 0.0 315.6 0.0 0.0 263.2 0.0 0.0 290.4
Learning-based Methods
Seq2seq 0.0 0.0 201.1 0.0 0.0 359.4 0.0 0.0 713.3 0.0 0.0 398.5
CMA 0.0 0.0 152.1 0.0 0.0 317.6 0.0 0.0 286.8 0.0 0.0 278.3
LLM-based Methods
NavGPT 0.0 0.0 79.8 0.0 0.0 126.1 0.0 0.0 177.6 0.0 0.0 127.2
MapGPT 0.0 0.0 97.5 5.6 2.9 135.2 0.0 0.0 165.5 3.3 1.5 133.7
VELMA 0.0 0.0 76.5 0.0 0.0 141.7 0.0 0.0 192.4 0.0 0.0 138.0
LM-Nav 15.4 13.7 123.1 22.2 18.1 124.3 33.3 28.1 114.2 23.6 19.2 119.4

CityNavAgent 25.0 21.3 74.7 27.8 23.3 93.4 33.3 26.3 121.5 28.3 23.5 95.1

LM
-N
av

Instruction:“Flying over the telephone 

booth, then passing the obelisk in the 

center of the park, and finally stopping at 

the 'interwold bank' ATM.”in the front.”

Scene perception: telephone booth 
is found, find next landmark--obelisk

Scene perception: Obelisk not found, 
trees are found.

Commonsense Reasoning: Obelisk is 
in the park, park has trees

Action:  go to the trees

Scene perception: Obelisk is found

Memory: memory graph reached. 
Search the rest landmark – 'interwold 

bank' ATM in memory graph

Scene perception: 'interwold bank' 

ATM is found

Action:  follow the path in memory 
and stop.

Step=0 Step=1 Step=6 Step=22

Step=0 Step=11 Step=19 Step=44

C
it
yN

av
(O
u
rs
)

Step=0 Step=16 Step=22 Step=32

V
EL
M
A

Figure 8: Qualitative result of the navigation process. The first three rows are the first-person view of VELMA, LM-Nav and
CityNavAgent during the navigation. The last row is the reasoning process of CityNavAgent. Orange and blue represents the
navigable landmarks in the instruction and common objects that semantically relevant to the landmarks, respectively.

31309


