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Abstract

Detecting deception in an increasingly digital
world is both a critical and challenging task. In
this study, we present a comprehensive eval-
uation of the automated deception detection
capabilities of Large Language Models (LLMs)
and Large Multimodal Models (LMMs) across
diverse domains. We assess the performance
of both open-source and proprietary LLMs
on three distinct datasets—real-life trial inter-
views (RLTD), instructed deception in inter-
personal scenarios (MU3D), and deceptive re-
views (OpSpam). We systematically analyze
the effectiveness of different experimental se-
tups for deception detection, including zero-
shot and few-shot approaches with random or
similarity-based in-context example selection.
Our findings indicate that fine-tuned LLMs
achieve state-of-the-art performance on textual
deception detection, whereas LMMs struggle
to fully leverage multimodal cues, particularly
in real-world settings. Additionally, we ana-
lyze the impact of auxiliary features, such as
non-verbal gestures, video summaries, and eval-
uate the effectiveness of different prompting
strategies, such as direct label generation and
post-hoc reasoning generation. Experiments
unfold that reasoning-based predictions do not
consistently improve performance over direct
classification, contrary to the expectations.

1 Introduction

Deception detection—the ability to identify inten-
tionally misleading statements or behaviors—plays
a critical role in safeguarding security, justice, and
societal trust. Traditionally, its primary applica-
tions have been in criminalistics, particularly in
interrogation and law enforcement settings such
as suspect interrogations and security screenings.
However, its relevance has expanded beyond these
domains to border security (Sánchez-Monedero
and Dencik, 2022), healthcare (Taylor et al., 2017),
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social media platforms (Qureshi et al., 2022), and
consumer protection (Ott et al., 2011).

Despite its significance, deception detection re-
mains inherently difficult, as human accuracy in
detecting deception is only slightly above chance,
∼ 54% (Charles F. Bond and DePaulo, 2006). Cog-
nitive Load Theory (Vrij et al., 2008) suggests that
lying demands greater mental effort, which can
lead to detectable inconsistencies, but deceivers
often mitigate this by rehearsing or simplifying
their fabrications (Vrij et al., 2017). Interpersonal
Deception Theory (Buller and Burgoon, 1996)
highlights deception as an adaptive process, where
deceivers adjust their behavior based on audience
reactions, reducing the reliability of static detection
methods. Levine (2014) further explains humans’
bias toward assuming truthfulness, making them
prone to overlooking deceptive cues. These chal-
lenges have driven the development of automated
deception detection systems that systematically an-
alyze linguistic, acoustic, and visual cues to im-
prove reliability and scalability.

Researchers have increasingly explored auto-
mated approaches that combine advances in com-
puter vision, natural language processing, and deep
learning for deception detection. Early computa-
tional models in deception detection often relied
on handcrafted features (Rill-Garcia et al., 2019;
Zhang et al., 2020; Thannoon et al., 2018; Fan et al.,
2015; Bai et al., 2019), drawing from facial micro-
expressions, acoustic descriptors, and linguistic
markers. With the emergence of deep learning, end-
to-end architectures can directly learn deception-
related patterns from raw multimodal data—text,
audio, and video—leading to improved deception
detection performance while reducing reliance on
laborious feature engineering (Guo et al., 2023;
Rani et al., 2023; Guo et al., 2024). Despite these
advances, existing deception detection systems still
face challenges related to generalization, as de-
ception cues vary across individuals, cultures, and
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contexts. Additionally, many deep learning models
operate as black-box systems, making it unclear
whether they genuinely capture deception-related
patterns or rely on statistical shortcuts.

Recently, Large Language Models (LLMs)
have demonstrated strong cognitive reasoning capa-
bilities, excelling in tasks, such as emotion recog-
nition (Cheng et al., 2024; Lei et al., 2024; Zhang
et al., 2024a), sentiment analysis (Zhang et al.,
2024b), and fact verification (Zhang and Gao,
2023). These models leverage large-scale pretrain-
ing and in-context learning to adapt to new tasks
with minimal labeled data. LLMs’ ability to iden-
tify subtle linguistic cues, integrate multimodal
inputs (Chu et al., 2023; Liu et al., 2023; Zhang
et al., 2023), and and generate step-by-step reason-
ing behind the judgment through chain-of-thought
prompting (Wei et al., 2022) makes them promis-
ing candidates for automated deception detection.
However, empirical evidence on LLM-driven de-
ception detection, particularly in real-world multi-
modal settings, remains limited.

In this work, we take a comprehensive step to-
ward filling this gap by challenging state-of-the-
art LLMs with multiple deception detection tasks
spanning three well-established datasets- Real-
life Trial Dataset, RLTD (Pérez-Rosas et al.,
2015), Miami University Deception Detection
Database, MU3D (Lloyd et al., 2018), and Opin-
ion Spam Dataset, OpSpam (Ott et al., 2011).
These datasets cover deception across online, con-
trolled, and real-world legal settings, collectively
capturing diverse deception strategies and manifes-
tations. The key contributions of this work are:

• We benchmark several state-of-the-art open-
source and proprietary LLMs for deception
detection on three datasets, providing a large-
scale comparison of these models on diverse
deception detection scenarios. Additionally,
We assess the performance of open-source
large multimodal models on the two multi-
modal (RLTD, MU3D) datasets, offering in-
sights into how visual and acoustic cues can
impact deception detection performance.

• We explore various fine-tuning and inference
setups, including zero-shot prompting, ran-
dom and similarity-based example selection
for few-shot learning. We further investigate
how different prompting strategies (direct la-
bel generation vs. post-hoc reasoning genera-
tion) affect deception detection results, shed-

ding light on the best strategies for designing
LLM-driven deception detection pipelines.

• We incorporate additional features, such as
non-verbal gestures for RLTD and video sum-
maries for RLTD and MU3D, to evaluate the
influence of auxiliary features on model per-
formance.

By presenting a thorough empirical study of
LLM-based deception detection across multiple
domains and modalities, we contribute a holistic
perspective on the efficacy and limitations of these
models.

2 Related Works

Early research on automated deception detection
leveraged handcrafted linguistic, syntactic, and
lexical features, including Linguistic Inquiry and
Word Count (LIWC) indicators, part-of-speech dis-
tributions, and n-gram features, to capture linguis-
tic, psychological and stylistic patterns indicative
of deception. These features were utilized in sta-
tistical models such as logistic regression, decision
trees, and support vector machines (SVM) to clas-
sify deceptive and truthful statements (Ott et al.,
2011; Pérez-Rosas et al., 2015; Levitan et al., 2018;
Rill-Garcia et al., 2019; Mathur and Matarić, 2020;
Kamboj et al., 2021). Audio-based deception de-
tection has relied on Mel-frequency cepstral coeffi-
cients (MFCCs) and prosodic cues, such as pitch
and speaking rate, to distinguish deceptive from
truthful speech (Hirschberg et al., 2005; Levitan
et al., 2018; Bai et al., 2019; Gupta et al., 2019;
Chebbi and Jebara, 2021). Additionally, research
in nonverbal deception detection has focused on fa-
cial Action Units (AUs) extracted from video data,
which capture microexpressions and facial mus-
cle movements associated with deceptive behav-
ior (Rill-Garcia et al., 2019; Belavadi et al., 2020;
Bai et al., 2019; Mathur and Matarić, 2020; Mathur
and Matarić, 2021). These approaches, though ef-
fective in constrained settings, often struggle with
generalization across datasets and speaker varia-
tions, necessitating the exploration of more robust
deep learning techniques.

Recent advances in deep learning have led to
an increasing adoption of CNNs and LSTMs for
deception detection tasks across both textual and
multimodal domains (Karimi et al., 2018; Ding
et al., 2019; Karnati et al., 2022; Sehrawat et al.,
2023; Prome et al., 2024). Transformer based
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models and attention mechanisms have also been
applied in recent deception detection research,
leveraging contextual embeddings to capture sub-
tle deception cues (Ilias et al., 2022; Hsiao and
Sun, 2022; Gao et al., 2024). Guo et al. (2023)
presents a novel method called Parameter-Efficient
Crossmodal Learning (PECL) that uses a temporal
adapter to capture temporal attention and a fusion
module to merge audio and visual cues for audio-
visual deception detection. Building on these de-
velopments, emerging research is now harnessing
the capabilities of LLMs—whose success across
diverse cognitive tasks underscores their poten-
tial—to capture intricate linguistic nuances and
further enhance deception detection. In their study,
Loconte et al. (2023) employ variants of the FLAN-
T5 model (Chung et al., 2022) to detect deception
across a range of textual contexts. Boumber et al.
(2024) investigates the effectiveness of LLMs in
deception detection using a Retrieval Augmented
Generation (RAG) framework for few-shot learn-
ing in various textual domains. Our work advances
this line of research by investigating the application
of LLMs in real-world multimodal scenarios.

3 Background

3.1 Problem Definition

Deception detection is the task of identifying
whether a statement or behavior is deliberately
misleading. We define this task as a binary clas-
sification problem, where the goal is to predict
y ∈ {Truthful, Deceptive} given an input pro-
cessed by a large language model. Formally, let
p denote a task-specific prompt that instructs the
model to process the input content and generate
the classification label as either truthful or decep-
tive, and let t represent the textual content under
analysis (for instance, a speech transcript or an on-
line review). In the simplest setting, the input is
x = p ⊙ t, where ⊙ denotes concatenation, and
the model generates the prediction via y = fθ(x),
where fθ represents the LLM parameterized by θ.

Although textual cues can be highly informa-
tive for detection deception, additional cues may
arise from non-verbal or multimodal sources. To
account for such signals, we allow the input to be
augmented by auxiliary features u, which could
include descriptive text of facial expressions and
body movements, or a textual summary of the ob-
served video content or speech characteristics. In
that case, the model processes x = p ⊙ t ⊙ u.

Furthermore, when employing large multimodal
models (LMMs) with the capacity of handling au-
dio or video, the input can incorporate raw audio
or video directly, denoted by a and v respectively,
such that x = p ⊙ t ⊙ [a, v]

3.2 Datasets
Real-life Trial Dataset (RLTD) Pérez-Rosas
et al. (2015) is constructed from publicly avail-
able courtroom trial recordings. Labels are as-
signed based on trial outcomes, with guilty ver-
dicts indicating deception and non-guilty verdicts
or exoneration indicating truthfulness. In some
cases, the same individual contributes both de-
ceptive and truthful statements, capturing within-
subject deception variations. The dataset includes
121 video clips (60 truthful and 61 deceptive) with
transcripts. The videos are also annotated for non-
verbal features using the MUMIN multimodal cod-
ing scheme (Allwood et al., 2007), focusing on fa-
cial expressions, gaze, head, and hand movements.

Miami University Deception Detection Database
(MU3D) Lloyd et al. (2018) is a controlled de-
ception dataset capturing instructed deception in
interpersonal scenarios. Participants were asked to
describe individuals they liked or disliked while al-
ternating between truthfulness and deception. The
dataset comprises 320 (160 truthful and 160 decep-
tive) videos with metadata, including trustworthi-
ness ratings, anxiety ratings, demographic details,
and full speech transcriptions.

Opinion Spam Dataset (OpSpam) Ott et al.
(2011) focuses on deception in online reviews and
consists of 1600 reviews evenly split between truth-
ful and deceptive opinions about hotels. Deceptive
reviews were artificially generated by paid partici-
pants instructed to write persuasive but fabricated
reviews, while truthful reviews were collected from
genuine user feedback on platforms like TripAd-
visor and Yelp. The dataset presents a linguistic
deception challenge where fabricated narratives
must be distinguished from authentic experiences.

Together, these datasets provide a rigorous
benchmark for evaluating LLMs and LMMs in de-
ception detection across legal, interpersonal, and
online domains, ensuring a comprehensive assess-
ment of their effectiveness.

3.3 Baselines
We evaluate the LLM based approaches against
several deep-learning and transformer based base-
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lines for text-only and multimodal deception de-
tection. For the baselines, we extract modality-
specific features using state-of-the-art pre-trained
encoders. We obtain textual features from the fi-
nal hidden states of the RoBERTa-base (Liu et al.,
2019) model. For acoustic features, we use the final
encoder hidden states of the Whisper-base (Rad-
ford et al., 2022) model, which has demonstrated
robust performance in various audio tasks (Miah
et al., 2023; Feng and Narayanan, 2023). For vi-
sual features, we sample the input video at 30 fps
and encode each frame using CLIP (Radford et al.,
2021).

We consider four baselines to compare against
LLM-based approaches. First, we implement a
text-only baseline by fine-tuning RoBERTa with a
two-layer MLP classification head. Second, we fol-
low Venkatesh et al. (2019) to employ a Bi-LSTM
with attention network on the multimodal features
described previously. We concatenate the result-
ing representations from each modality and use
linear layers for multimodal classification. In uni-
modal scenarios, we simply predict the label from
unimodal representations. Third, we follow Krish-
namurthy et al. (2023); Karnati et al. (2022) to use
CNN with global average pooling for feature en-
coding. Again, we concatenate the features across
all modalities for multimodal deception detection.
Finally, we replicate the Parameter-Efficient Cross-
modal Learning (PECL) model proposed in Guo
et al. (2023), which uses a 1D-convolution-based
temporal adapter to learn modality-specific tempo-
ral attention alongside pre-trained Wav2Vec2 and
ViT backbone models, supplemented by a Plug-
in Audio-Visual Fusion (PAVF) module for cross-
modal attention. This design enables PECL to
achieve strong performance in the audio-visual set-
ting. We conduct all experiments using stratified
4-fold cross-validation across all three datasets.

4 Experimental Setup

We evaluate three Large Language Models
(LLMs) for their deception detection capabili-
ties: LLaMA3.1-8B (Grattafiori et al., 2024),
Gemma2-9B (Team et al., 2024), and GPT-4o (Ope-
nAI et al., 2024). Additionally, we assess the
performance of various Large Multimodal Mod-
els (LMMs), categorized based on their modal-
ity specialization. For video-language models,
we consider LLaVA-NEXT-Video (Zhang et al.,
2024c) and Qwen2VL (Wang et al., 2024), while

MERaLiON-AudioLLM (He et al., 2025) and
Qwen2-Audio (Chu et al., 2024) serve as the audio-
language models. These models represent state-of-
the-art architectures in language and multimodal
understanding, offering a diverse perspective on de-
ception detection across textual, audio, and visual
modalities.

4.1 Experimental Configurations

We evaluate both zero-shot and few-shot inference
setups. In zero-shot evaluation, the model receives
only a task description prompt and input data with-
out labeled examples. In few-shot evaluation, the
model is provided with a set of labeled examples
for in-context learning. Specifically we have ex-
perimented with n = {2, 4, 6, 8, 10}, as number of
in-context examples. Under the zero-shot and few-
shot setups, we experiment with various strategies
and configurations, outlined below.

4.1.1 Response Generation Strategies
To systematically assess deception detection perfor-
mance, We investigate two different response gener-
ation strategies: direct label prediction, where the
model directly generates the label for the input as
either Truthful or Deceptive without additional
reasoning, and post-hoc reasoning generation,
where the model is prompted to first generate the
classification label y and then provide a justifica-
tion r, such that: (y, r) = fθ(x), where x is the in-
put and fθ represents the model parameterized by θ.
The generated reasoning r serves as a justification
for the classification decision, allowing for better
interpretability of deception detection outcomes.
We also evaluate the chain-of-thought prompting
for reasoning generation. However, post-hoc rea-
soning generation is eventually adapted for better
performance and interpretability, with further anal-
ysis provided in Appendix H.

4.1.2 In-Context Example Selection Strategies
For the few-shot prompting setup, we explore
different strategies for selecting in-context exam-
ples. Similar to the baselines, we employ a 4-
fold split for in-context example selection. The
random selection approach involves choosing an
equal number of truthful and deceptive exam-
ples randomly from the other 3 splits. In con-
trast, the similarity-based selection methods em-
ploy sentence-transformers to encode the target
input and dataset samples, allowing for similarity-
based retrieval. Within this method, we examine
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Model Config Modality RLTD MU3D OpSpam

Acc F1 Acc F1 Acc F1

Baselines

RoBERTa-ft - t 76.31 76.22 67.92 67.81 88.10 88.09

BiLSTM+Attention -

t 69.42 69.37 65.94 65.76 90.45 90.45
a 68.04 68.02 62.19 61.82 - -
v 75.48 75.38 55.21 55.11 - -

t, a, v 77.14 77.04 62.29 62.19 - -

CNN -

t 64.46 64.39 64.06 63.91 86.37 86.36
a 60.88 60.13 60.42 60.26 - -
v 82.09 82.09 54.06 53.95 - -

t, a, v 83.47 83.44 60.41 60.38 - -

PECL - a, v 80.17 80.13 56.56 56.56 - -

LLM Inference

LLaMA 3.1 Few shot t 71.69 77.11 57.03 56.84 62.93 62.47

Gemma 2 Few shot t 71.69 71.38 55.08 53.75 64.81 64.51

GPT-4o Few shot t 79.55 79.49 55.70 53.87 74.50 74.00

LLaVA-NEXT-Video Zero shot v 52.06 43.55 50.00 33.33 - -
t, v 64.46 61.79 50.31 50.31 - -

Qwen2VL Zero shot v 51.24 37.95 50.31 39.94 - -
t, v 63.64 60.32 52.50 52.35 - -

MERaLiON-AudioLLM Zero shot a 66.94 66.11 49.06 33.97 - -
t, a 66.12 63.57 49.38 34.12 - -

LLM Finetuning

LLaMA 3.1 - t 69.63 69.62 57.74 57.58 92.25 92.24
t, u 72.72 72.46 - - - -

Gemma 2 - t 75.21 75.19 66.56 66.55 90.25 90.18
t, u 75.21 75.17 - - - -

Qwen2VL - v 57.85 57.10 52.20 51.43 - -
t, v 71.90 71.90 56.25 53.51 - -

Table 1: Comparison of Baselines and LLM Results Across Modalities (t: text, a: audio, v: video, u: non-verbal features)

two variants: sim-top, which selects the most sim-
ilar examples irrespective of their label, and sim-
pair, which ensures a balanced selection of truthful
and deceptive examples based on similarity rank-
ing.

4.1.3 Auxiliary Features

We incorporate additional auxiliary features on top
of the textual contents in the multimodal datasets,
that provide valuable non-verbal and contextual in-
formation. As a first set of features for the RLTD
dataset, we include a curated selection of 16 non-
verbal features, capturing facial expressions and
body movements indicative of deceptive behav-
ior. The features names are listed in Appendix
B. These features allow the model to leverage fine-
grained behavioral cues that are often imperceptible
in textual analysis alone. In addition to non-verbal
gestures, we experiment with video and audio

summaries as auxiliary inputs. A video-language
model, LLaVA-NeXT-Video is employed to gener-
ate summaries of the visual content, extracting key
information regarding speaker posture, facial ex-
pressions, and body movements indicative of stress
or deception. Similarly, an audio-language model,
Qwen2-Audio is used to summarize the tonal and
acoustic features of the speech, identifying varia-
tions in pitch, intonation, and vocal stress patterns.
These summaries provide a higher-level contextual
representation of the non-verbal elements within
the dataset, aiding in deception detection by sup-
plying a multimodal understanding of deceptive
cues for the RLTD and MU3D datasets.

4.1.4 Fine-Tuning

To further enhance model performance, we
fine-tune open-source LLMs using the LLaMA-
Factory (Zheng et al., 2024) framework. We specif-

31017



ically fine-tune LLaMA3.1-8B, Gemma2-9B, and
Qwen2-VL-7B. This fine-tuning process allows the
models to better adapt to the nuances of deception
detection by learning from domain-specific patterns
and optimizing their ability to process multimodal
cues effectively.

5 Results & Analysis

In Table 1, we focus on the best configurations for
LLM inference across RLTD, MU3D, and OpSpam,
leaving a more detailed analysis to subsequent sec-
tions. While, the text-only LLMs, GPT-4o, LLaMA
3.1, and Gemma 2, manage to narrow some of
the gap with the baselines on RLTD and MU3D
datasets, their few-shot configurations do not con-
sistently outperform the strongest baselines. GPT-
4o reaches an F1 score of 79.49 on RLTD and
74.00 on OpSpam, signaling modest gains over
other LLMs in the few-shot setup. On the con-
trary, zero-shot variants of LLaVA-NEXT-Video
and Qwen2VL on RLTD and MU3D datasets re-
main less effective, especially when relying solely
on video features, indicating a limited capacity
to exploit visual cues without additional training.
Even in the multimodal setup, they fail to surpass
the CLIP-based video-only baselines. A similar pat-
tern emerges for MERaLION-AudioLLM, which
exhibits moderate zero-shot performance on RLTD
using audio or multimodal inputs, yet still lags
behind the Whisper-based audio-only baselines.
These results suggest that LMMs fail to extract
necessary cross-modal information for deception
detection, unlike their multimodal baseline coun-
terparts.

When fine-tuned, LLaMA 3.1 achieves state-of-
the-art performance on the OpSpam dataset. Ad-
ditionally, fine-tuning using non-verbal features
boosts performance over just using the transcripts
for RLTD. Gemma 2 raises its MU3D F1 score to
66.55 and achieves 90.18 F1 on OpSpam. Like-
wise, Qwen2VL experiences a performance boost
on RLTD once text and video features are fine-
tuned jointly. Nevertheless, even these tailored
LLMs do not consistently match or surpass the
strongest baselines for the multimodal datasets.

5.1 Comparison of CNN Baselines and vision
LLMs

Experimental results demonstrate that the CNN
baselines perform the best when video features are
used alone or fused with text and audio, under-

scoring the importance of visual information on
RLTD’s unrehearsed deception, where deception-
related micro-expressions and body movements
are depicted in the video. By contrast, MU3D
contains scripted deception, enabling actors to
mask deception-related acoustic and visual cues
while they are on record. As a result, fine-tuned
RoBERTa and Gemma-2 outperform CNNs on this
dataset. This observation also explains why text-
only LLMs underperform compared to multimodal
CNN baselines on RLTD, as they cannot utilize the
nuanced visual and acoustic cues.

During training, CNNs learn to align and fuse
temporal cues across modalities, allowing them to
attend to deception-relevant patterns like micro-
expressions and movement trajectories. By con-
trast, vision-language models like LLaVA-NEXT-
Video and Qwen2VL rely on zero-shot pre-training,
focused on captioning, object tracking, and OCR,
and thus lack inherent deception-specific cognitive
knowledge. Inspection of their generated video
summaries further reveals why they miss critical
deception cues. An example video summary from
LLaVA-NEXT-Video using the prompt presented
in Appendix C.3 - In the video, a woman is seated
at a table, wearing glasses and a red blouse, engag-
ing in a conversation or an interview. Her facial
expressions are calm and composed, with mini-
mal micro-expressions, and her eye movements are
steady, suggesting a controlled demeanor. Her
body language is relaxed, with minimal hand ges-
tures and head movements, indicating a composed
and collected demeanor. There are no visible stress
signs or fidgeting patterns, and her posture remains
consistent throughout the video...

It is evident from the generated summary that
the vision–language models such as LLaVA-NEXT-
Video describe the scenes and the objects well, yet
they consistently miss the fine-grained behavioural
cues annotated in the dataset, e.g. raised eyebrows,
gaze at interlocutor, downward lip movement, re-
peated nods, bilateral hand movement, complex
hand trajectories for this particular video. Con-
sequently, these LMMs often report contradictory
observations (e.g., ‘minimal hand gestures’) where,
in fact complex hand movements are present in the
video. They trail CNN baselines even after fine-
tuning on transcripts and video. A key reason is
their limited temporal resolution: Qwen2VL is pre-
trained at 2 fps, and LLaVA-NEXT recommends
16 frames per video, whereas our CNN baselines
operate on 10 fps streams, capturing and tracking
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Cues

LLM Dataset Details Vagueness Filler Words Justification

LLaMA 3.1 RLTD 86.20% (29) 78.87% (14) 84.00% (25) 43.37% (23)
MU3D 57.70% (52) 31.25% (16) 60.7% (28) 69.23% (13)
OpSpam 65.26% (1091) 63.25% (117) - 42.10% (27)

Gemma 2 RLTD 76% (25) 63.63% (22) 83.33% (12) 100% (7)
MU3D 75.0% (8) 66.67% (9) 50% (4) 62.5% (8)
OpSpam 68.88% (50) 70.83% (24) - -

GPT-4o RLTD 73.07% (26) 80.0% (20) 66.67% (3) 85.71% (7)
MU3D 61.90% (21) 100% (2) 100% (1) 100% (3)
OpSpam 58.75% (80) 77.77% (9) - -

Table 2: Accuracy percentages for different models and cues. The number of total data points is in paranthesis.

subtler micro-expressions. Raising the frame rate
for LMMs increases latency and GPU memory re-
quirements, curbing scalability. Taken together,
the performance gap of CNN baselines and large
vision-language models reflects domain-specific
temporal limitations, pre-training biases, and prac-
tical resource constraints of current LMMs.

5.2 Interpreting LLMs’ Reasoning

Table 6 in Appendix D shows that direct label pre-
diction and post-hoc reasoning generation often
lead to similar performance. In RLTD, generating
reasoning lowers performance across all models.
However, for MU3D and OpSpam, we occasion-
ally observe some improvements when reasoning
is generated. Considering marginal and occasional
gains from generating reasoning and associated ad-
ditional costs, we adopt direct label prediction for
further experiments. However, reasoning remains
valuable for understanding the LLM’s decision-
making, helping to identify biases and patterns in
deception detection. We analyze both correctly
classified and misclassified instances, examining
patterns based on linguistic cues to understand
LLMs strengths and limitations.

Specificity and Detail. To quantify the use of
specificity and detail as a cue for deception detec-
tion, we identified instances where the model ex-
plicitly referenced ‘specific detail’ in its reasoning
and assessed accuracy based on correctly classified
samples. As shown in Table 2, models consistently
used this cue, with accuracy ranging from 57%
to 86%. Notably, for the RLTD dataset, which
consists of courtroom trials, accuracy was higher
across all three models. This suggests that spe-
cific details are more informative in legal contexts,
where testimonies often contain detailed accounts
of events, locations, and actions, making specificity

a stronger indicator of truthfulness. Emotional de-
ception, as in MU3D, may not always involve fac-
tual inconsistencies, making reliance on details less
effective. Similarly, in the case of online reviews,
deceptive reviewers can fabricate highly detailed
experiences, while genuine reviewers may provide
concise feedback without elaborate narratives. To
further investigate this behavior, we analyzed 86
randomly selected OpSpam samples where the
LLaMA model referenced specificity in its rea-
soning. Of these, 67 lacked detail and were all
classified as deceptive, misclassifying 13 truthful
reviews. In contrast, 19 were classified as truthful
due to specific details, yet 7 were actually deceptive
(Figure 5 Example 12). This bias toward treating
specificity as a truth cue aligns with Reality Moni-
toring Theory (RMT), which links truthfulness to
sensory-rich statements (Vrij, 2008). However, in
online reviews, deceptive writers may create vivid
narratives, while truthful reviewers might be con-
cise. This over-reliance on specificity exposes a
key limitation of LLM’s reasoning process.

Vagueness. We examine the models’ reliance on
vagueness as a deception cue. Table 2 shows
LLMs consistently use this cue, with GPT-4o
demonstrating the highest accuracy. Analyzing
LLaMA’s behavior, we found that in MU3D, all
16 vagueness-based classifications were deceptive,
misclassifying 11 truthful cases, suggesting that
the model struggles to distinguish between genuine
uncertainty and deceptive ambiguity in interper-
sonal communication. In RLTD, 14 instances were
flagged as deceptive, with 11 correctly classified,
indicating a slightly better alignment with decep-
tion patterns in courtroom testimonies. In OpSpam,
92 of 117 flagged cases were classified as deceptive
(63.25% accuracy). This bias toward associating
vagueness with deception often leads to overgen-
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eralization and misclassification as vagueness can
naturally occur in truthful statements due to mem-
ory recall limitations or subjective expression. For
instance, in MU3D example (Appendix, Figure 5
Example 7), the speaker expresses strong negative
emotions about a peer, saying, “He’s gotten my
friends in trouble,” and “we stopped hanging out
with him just because the, that whole reason,” with-
out clearly specifying what “that whole reason”
entails. This conversational vagueness i.e. the use
of non-specific phrases led the model to classify
the statement as deceptive. This misclassification
highlights how the model may over-rely on surface-
level ambiguity as a deception signal, failing to
account for the emotional and informal nature of
interpersonal speech. In emotionally charged dia-
logue, vague references can reflect genuine uncer-
tainty or conversational style rather than intent to
deceive.

Hesitation and Filler Words. We investigate
LLM’s reliance on hesitation and filler words as
deception cues. LLMs frequently associates ver-
bal disfluencies (e.g., ‘uh,’ ‘um’) with deception,
aligning with Cognitive Load Theory (Vrij, 2008),
which suggests that lying requires greater mental
effort, leading to pauses and hesitations. As shown
in Table 2, GPT-4o relies on filler words less com-
pared to LLaMa 3.1 and Gemma 2. Note, this cue
was not used in OpSpam, as it comprises written
reviews. We find that reliance on this cue some-
times leads to correct classifications—such as in
Figure 4 Example 1, 2, where hesitation appeared
alongside vagueness or contradictions. However,
misinterpretations also occur, as seen in Figure
4 Example 3, where hesitation in a truthful state-
ment resulted in a false deception label. Hesitation
paired with detailed responses is often assumed to
indicate truthfulness, correctly classified in Figure
4 Example 4 but misapplied in Example 5.

Justification. To assess the LLM’s use of jus-
tification as a cue, we identified instances where
‘justify,’ ‘justifies,’ or ‘justification’ appeared in its
reasoning and reported accuracy in Table 2. The
LLM often links justifications and indirect answers
to deception, aligning with Criteria-Based Content
Analysis (CBCA) (Vrij, 2008), which associates
evasiveness with deception. Gemma applied this
cue effectively in RLTD, correctly classifying 6
out of 7 cases. However, in MU3D, it consistently
associated justification with deception, predicting
all 8 instances as deceptive with 62.5% accuracy.

LLM Example RLTD MU3D OpSpam

selection Acc F1 Acc F1 Acc F1

LLaMA 3.1
random 68.87 68.14 51.72 51.18 59.62 59.19
sim-pair 71.69 71.11 54.76 54.14 58.04 57.78
sim-top 71.28 70.25 57.03 56.84 62.93 62.47

Gemma 2
random 69.63 69.52 54.22 52.34 57.70 57.59
sim-pair 71.69 71.38 54.92 53.69 60.14 59.98
sim-top 71.07 70.68 55.08 53.75 64.81 64.51

GPT-4o
random 71.69 71.39 53.20 46.86 68.40 67.58
sim-pair 79.55 79.49 55.08 50.35 71.87 71.23
sim-top 77.69 77.69 55.70 53.87 74.50 74.00

Table 3: Performance comparison of example-selection strategies across RLTD,
MU3D, and OpSpam. The best overall results are in bold, while model-specific
best performances are underlined.

This suggests the model struggles to differentiate
between genuine explanations and intentional de-
flection.

Emotions. We analyzed how LLMs interpret
emotions in deception detection, finding that they
often associate strong emotional reactions with
truthfulness. This aligns with Statement Validity
Analysis (SVA) (Vrij, 2008), which considers spon-
taneous emotions a sign of genuine experiences.
While this assumption sometimes led to correct
classifications (Figure 5 Example 10), it also re-
sulted in misclassifications. For instance, the model
mistakenly labeled a deceptive statement as truthful
when exaggerated emotions were used to appear
credible (Figure 4 Example 6) and failed to recog-
nize playful language, misinterpreting emotional
expression (Figure 5 Example 11). In MU3D, gen-
uine expressions of admiration and affection were
frequently misclassified as deception (Figure 5 Ex-
ample 8, 9). This indicate that LLM often lacks the
ability to accurately interpret emotions.

5.3 Impacts of In-context Examples
Table 3 presents a comparison of three in-context
example selection strategies—random, sim-top,
and sim-pair under a few-shot prompting setup.
In general, both similarity-based methods (sim-pair
and sim-top) surpass random selection, demonstrat-
ing the importance of carefully curating in-context
examples. The principal distinction between sim-
top and sim-pair lies in label balancing: sim-top
selects the most similar examples regardless of their
labels, whereas sim-pair enforces a balanced set of
truthful and deceptive instances among those most
similar. In terms of the LLMs, GPT-4o exhibits
the highest average improvement (7.18% F1 score)
when similarity-based few-shot examples are in-
troduced, demonstrating more robust in-context
learning capabilities relative to LLaMA3.1-8B and
Gemma2-9B.
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Figure 1: Average number of matching examples in 10-shot for sim-top strategy.

Looking closely at RLTD, the sim-pair approach
slightly outperforms sim-top. In contrast, on
MU3D and OpSpam, sim-top provides superior
results, particularly on OpSpam, where the average
F1 score improvement, ∼ 4%, is notably higher
than that observed on MU3D ∼ 2%. Figure 1 fur-
ther illuminates these findings by illustrating the
average number of ‘matching’ examples (i.e., truth-
ful examples for a truthful query and deceptive
examples for a deceptive query) retrieved in a 10-
shot setup using sim-top. For RLTD and MU3D,
this number hovers around five, effectively mir-
roring the label balance of sim-pair. However, in
OpSpam, especially for the deceptive queries, the
average number of retrieved deceptive examples
rises to about 7.1, enabling a substantial boost in
performance. Concretely, this increase in label-
specific examples elevates the deceptive-class F1
score from approximately 67% under sim-pair to
73% under sim-top. This finding also suggests that
deceptive reviews in the OpSpam dataset exhibit a
higher degree of semantic similarity compared to
the other datasets, hence easily identifiable by the
retriever. This OpSpam dataset specific bias and the
implications are further discussed in Appendix I.

5.4 Impacts of Auxiliary Features

In Table 4, we compare three types of auxiliary fea-
tures: non-verbal gestures, LLM-generated audio
and video summaries under both zero-shot and few-
shot settings. Each model uses randomly selected
in-context examples when operating in the few-
shot configuration. From these results, we observe
that including non-verbal gestures alongside the
transcript yields a modest improvement for GPT-
4o (∼ 1.4 points in F1 score on the RLTD dataset).
This gain is consistent with GPT-4o’s demonstrated
strengths in in-context learning. In contrast, the in-
clusion of non-verbal features negatively impacts
LLaMA 3.1 and Gemma 2: their tendency to over-

LLM Feats Config RLTD MU3D

Acc F1 Acc F1

LLaMA 3.1

nv zs 51.24 35.34 - -
fs 63.02 62.79 - -

vs zs 52.07 38.40 50.63 49.67
fs 62.60 61.72 51.88 49.44

as zs 57.85 57.56 49.06 49.00
fs 64.74 63.12 51.57 51.25

Gemma 2

nv zs 52.07 38.40 - -
fs 66.67 64.85 - -

vs zs 52.07 38.40 51.25 44.16
fs 66.94 66.92 53.44 51.56

as zs 66.94 66.28 49.38 45.82
fs 68.60 68.59 51.56 50.98

GPT-4o

nv zs 65.29 61.71 - -
fs 72.93 72.84 - -

vs zs 65.29 65.00 52.19 47.98
fs 69.42 69.00 54.69 52.48

as zs 66.12 64.73 49.38 42.31
fs 67.69 66.85 51.63 45.21

Table 4: Comparison of auxiliary features for the multimodal datasets. zs: zero
shot; fs: few shot; nv: non-verbal; vs: video summaries, as: audio summaries.

predict the Deceptive label suggests that limited
in-context examples are insufficient for these mod-
els to learn patterns of non-verbal gestures across
truthful and deceptive scenarios. Turning to video
summaries, GPT-4o again exhibits relative gains
on MU3D, although the improvements for other
models and datasets remain negligible or even de-
grade performance. A similar pattern holds for au-
dio summaries: while certain configurations see a
slight boost, many are on par with or slightly below
the corresponding transcript-only results. Over-
all, additional features do not universally enhance
predictive accuracy without fine-tuning.

6 Conclusion

Our comprehensive evaluation reveals that LLMs
and LMMs exhibit promising capabilities for de-
ception detection across diverse contexts. While
fine-tuning significantly enhanced performance,
improvements on multimodal datasets are still lag-
ging, highlighting persistent challenges in captur-
ing nuanced cross-modal deception cues in LMMs.
Moreover, incorporating reasoning generation to
explain predictions did not consistently improve
overall accuracy over straightforward label predic-
tion, emphasizing that the inherently ambiguous
nature of deception cues makes it harder for the
models to reason successfully. These findings un-
derscore the importance of careful prompt design
and in-context example selection while pointing to
the need for further methodological refinements in
practical deception detection applications.
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Limitations

While our study shows promising results, it has
several limitations that pave the way for future
research. First, our experiments are limited to
English-language datasets, which may not fully
capture the linguistic diversity or cultural nuances
necessary for broader applicability. Second, we
focus exclusively on human deception, leaving the
detection of AI-generated deceptive behaviors as
an area for further exploration. Third, the reliance
on a limited range of publicly available datasets and
controlled scenarios may affect the generalizability
of our findings to more varied, real-world contexts.
Additionally, the deployment of deception detec-
tion systems involves ethical, privacy, and inter-
pretability challenges that must be carefully man-
aged, especially in legal or interpersonal settings.
Finally, the computational cost—approximately
300 USD for experiments with GPT-based mod-
els—and the significant GPU resources required
for open-source models highlight practical consid-
erations for real-world implementation.

Acknowledgements

We would like to thank the anonymous reviewers
for their valuable feedback and input. We gratefully
acknowledge support from National Science Foun-
dation via the award IIS-1942918 as well as support
from the Texas A&M Institute of Data Science via
an internal grant. Portions of this research were
conducted with the advanced computing resources
provided by Texas A&M High-Performance Re-
search Computing.

References
Jens Allwood, Loredana Cerrato, Kristiina Jokinen,

Costanza Navarretta, and Patrizia Paggio. 2007. The
mumin coding scheme for the annotation of feedback,
turn management and sequencing phenomena. Lan-
guage Resources and Evaluation, 41(3/4):273–287.

Chongyang Bai, Maksim Bolonkin, Judee K. Burgoon,
Chao Chen, Norah E. Dunbar, Bharat Singh, V. S.
Subrahmanian, and Zhe Wu. 2019. Automatic long-
term deception detection in group interaction videos.
2019 IEEE International Conference on Multimedia
and Expo (ICME), pages 1600–1605.

Vibha Belavadi, Yan Zhou, Jonathan Z. Bakdash, Murat
Kantarcioglu, Daniel C. Krawczyk, Linda Nguyen,
Jelena Rakic, and Bhavani Thuriasingham. 2020.
Multimodal deception detection: Accuracy, appli-
cability and generalizability. In 2020 Second IEEE

International Conference on Trust, Privacy and Se-
curity in Intelligent Systems and Applications (TPS-
ISA), pages 99–106.

Dainis Boumber, Bryan E. Tuck, Rakesh M. Verma,
and Fatima Zahra Qachfar. 2024. Llms for explain-
able few-shot deception detection. In Proceedings
of the 10th ACM International Workshop on Secu-
rity and Privacy Analytics, IWSPA ’24, page 37–47,
New York, NY, USA. Association for Computing
Machinery.

David B. Buller and Judee K. Burgoon. 1996. Inter-
personal deception theory. Communication Theory,
6(3):203–242.

Jr. Charles F. Bond and Bella M. DePaulo. 2006. Ac-
curacy of deception judgments. Personality and
Social Psychology Review, 10(3):214–234. PMID:
16859438.

Safa Chebbi and Sofia Ben Jebara. 2021. Deception
detection using multimodal fusion approaches. Mul-
timedia Tools and Applications, 82:13073–13102.

Zebang Cheng, Zhi-Qi Cheng, Jun-Yan He, Kai Wang,
Yuxiang Lin, Zheng Lian, Xiaojiang Peng, and
Alexander Hauptmann. 2024. Emotion-llama: Mul-
timodal emotion recognition and reasoning with in-
struction tuning. In Advances in Neural Informa-
tion Processing Systems, volume 37, pages 110805–
110853. Curran Associates, Inc.

Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei,
Zhifang Guo, Yichong Leng, Yuanjun Lv, Jinzheng
He, Junyang Lin, Chang Zhou, and Jingren Zhou.
2024. Qwen2-audio technical report. Preprint,
arXiv:2407.10759.

Yunfei Chu, Jin Xu, Xiaohuan Zhou, Qian Yang, Shil-
iang Zhang, Zhijie Yan, Chang Zhou, and Jingren
Zhou. 2023. Qwen-audio: Advancing universal
audio understanding via unified large-scale audio-
language models. ArXiv, abs/2311.07919.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2022. Scaling instruction-finetuned
language models. Preprint, arXiv:2210.11416.

Mingyu Ding, An Zhao, Zhiwu Lu, Tao Xiang, and
Ji-Rong Wen. 2019. Face-focused cross-stream net-
work for deception detection in videos. In 2019
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 7794–7803.

Cheng Fan, Heming Zhao, Xueqin Chen, Xiaohe Fan,
and Shuxi Chen. 2015. Distinguishing deception
from non-deception in chinese speech.

31022

http://www.jstor.org/stable/30204706
http://www.jstor.org/stable/30204706
http://www.jstor.org/stable/30204706
https://api.semanticscholar.org/CorpusID:160009724
https://api.semanticscholar.org/CorpusID:160009724
https://doi.org/10.1109/TPS-ISA50397.2020.00023
https://doi.org/10.1109/TPS-ISA50397.2020.00023
https://doi.org/10.1145/3643651.3659898
https://doi.org/10.1145/3643651.3659898
https://doi.org/10.1111/j.1468-2885.1996.tb00127.x
https://doi.org/10.1111/j.1468-2885.1996.tb00127.x
https://doi.org/10.1207/s15327957pspr1003_2
https://doi.org/10.1207/s15327957pspr1003_2
https://api.semanticscholar.org/CorpusID:237792741
https://api.semanticscholar.org/CorpusID:237792741
https://proceedings.neurips.cc/paper_files/paper/2024/file/c7f43ada17acc234f568dc66da527418-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/c7f43ada17acc234f568dc66da527418-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/c7f43ada17acc234f568dc66da527418-Paper-Conference.pdf
https://arxiv.org/abs/2407.10759
https://api.semanticscholar.org/CorpusID:265157993
https://api.semanticscholar.org/CorpusID:265157993
https://api.semanticscholar.org/CorpusID:265157993
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2210.11416
https://doi.org/10.1109/CVPR.2019.00799
https://doi.org/10.1109/CVPR.2019.00799
https://doi.org/10.1109/ICICIP.2015.7388181
https://doi.org/10.1109/ICICIP.2015.7388181


Tiantian Feng and Shrikanth Narayanan. 2023. PEFT-
SER: On the Use of Parameter Efficient Transfer
Learning Approaches For Speech Emotion Recog-
nition Using Pre-trained Speech Models . In 2023
11th International Conference on Affective Comput-
ing and Intelligent Interaction (ACII), pages 1–8, Los
Alamitos, CA, USA. IEEE Computer Society.

Tommaso Fornaciari, Leticia Cagnina, Paolo Rosso,
and Massimo Poesio. 2020. Fake opinion detection:
how similar are crowdsourced datasets to real data?
Language Resources and Evaluation, 54.

Shuai Gao, Lin Chen, Yuancheng Fang, Shengbing
Xiao, Hui Li, Xuezhi Yang, and Rencheng Song.
2024. Video-based deception detection via capsule
network with channel-wise attention and supervised
contrastive learning. IEEE Open Journal of the Com-
puter Society, 5:660–670.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, Arun Rao, Aston Zhang, Aurelien Ro-
driguez, Austen Gregerson, Ava Spataru, Baptiste
Roziere, Bethany Biron, Binh Tang, Bobbie Chern,
Charlotte Caucheteux, Chaya Nayak, Chloe Bi,
Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy,
Elina Lobanova, Emily Dinan, Eric Michael Smith,
Filip Radenovic, Francisco Guzmán, Frank Zhang,
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis An-
derson, Govind Thattai, Graeme Nail, Gregoire Mi-
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen,
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Is-
han Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park,
Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang,
Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Jun-
teng Jia, Kalyan Vasuden Alwala, Karthik Prasad,
Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth
Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer,
Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal
Lakhotia, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins,
Louis Martin, Lovish Madaan, Lubo Malo, Lukas
Blecher, Lukas Landzaat, Luke de Oliveira, Madeline
Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar
Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kam-
badur, Mike Lewis, Min Si, Mitesh Kumar Singh,
Mona Hassan, Naman Goyal, Narjes Torabi, Niko-
lay Bashlykov, Nikolay Bogoychev, Niladri Chatterji,

Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick
Alrassy, Pengchuan Zhang, Pengwei Li, Petar Va-
sic, Peter Weng, Prajjwal Bhargava, Pratik Dubal,
Praveen Krishnan, Punit Singh Koura, Puxin Xu,
Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj
Ganapathy, Ramon Calderer, Ricardo Silveira Cabral,
Robert Stojnic, Roberta Raileanu, Rohan Maheswari,
Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ron-
nie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sa-
hana Chennabasappa, Sanjay Singh, Sean Bell, Seo-
hyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sha-
ran Narang, Sharath Raparthy, Sheng Shen, Shengye
Wan, Shruti Bhosale, Shun Zhang, Simon Van-
denhende, Soumya Batra, Spencer Whitman, Sten
Sootla, Stephane Collot, Suchin Gururangan, Syd-
ney Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias
Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh
Ramanathan, Viktor Kerkez, Vincent Gonguet, Vir-
ginie Do, Vish Vogeti, Vítor Albiero, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit-
ney Meers, Xavier Martinet, Xiaodong Wang, Xi-
aofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xin-
feng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen,
Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao,
Zacharie Delpierre Coudert, Zheng Yan, Zhengxing
Chen, Zoe Papakipos, Aaditya Singh, Aayushi Sri-
vastava, Abha Jain, Adam Kelsey, Adam Shajnfeld,
Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand,
Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei
Baevski, Allie Feinstein, Amanda Kallet, Amit San-
gani, Amos Teo, Anam Yunus, Andrei Lupu, An-
dres Alvarado, Andrew Caples, Andrew Gu, Andrew
Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchan-
dani, Annie Dong, Annie Franco, Anuj Goyal, Apara-
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz-
dan, Beau James, Ben Maurer, Benjamin Leonhardi,
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han-
cock, Bram Wasti, Brandon Spence, Brani Stojkovic,
Brian Gamido, Britt Montalvo, Carl Parker, Carly
Burton, Catalina Mejia, Ce Liu, Changhan Wang,
Changkyu Kim, Chao Zhou, Chester Hu, Ching-
Hsiang Chu, Chris Cai, Chris Tindal, Christoph Fe-
ichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty,
Daniel Kreymer, Daniel Li, David Adkins, David
Xu, Davide Testuggine, Delia David, Devi Parikh,
Diana Liskovich, Didem Foss, Dingkang Wang, Duc
Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn,
Emily Wood, Eric-Tuan Le, Erik Brinkman, Este-
ban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun,
Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat
Ozgenel, Francesco Caggioni, Frank Kanayet, Frank
Seide, Gabriela Medina Florez, Gabriella Schwarz,
Gada Badeer, Georgia Swee, Gil Halpern, Grant
Herman, Grigory Sizov, Guangyi, Zhang, Guna
Lakshminarayanan, Hakan Inan, Hamid Shojanaz-
eri, Han Zou, Hannah Wang, Hanwen Zha, Haroun
Habeeb, Harrison Rudolph, Helen Suk, Henry As-

31023

https://doi.org/10.1109/ACII59096.2023.10388152
https://doi.org/10.1109/ACII59096.2023.10388152
https://doi.org/10.1109/ACII59096.2023.10388152
https://doi.org/10.1109/ACII59096.2023.10388152
https://doi.org/10.1007/s10579-020-09486-5
https://doi.org/10.1007/s10579-020-09486-5
https://doi.org/10.1109/OJCS.2024.3485688
https://doi.org/10.1109/OJCS.2024.3485688
https://doi.org/10.1109/OJCS.2024.3485688


pegren, Hunter Goldman, Hongyuan Zhan, Ibrahim
Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis,
Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher,
Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy
Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan Mc-
Phie, Jonathan Torres, Josh Ginsburg, Junjie Wang,
Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khan-
delwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Ki-
ran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
Huang, Lailin Chen, Lakshya Garg, Lavender A,
Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrst-
edt, Madian Khabsa, Manav Avalani, Manish Bhatt,
Martynas Mankus, Matan Hasson, Matthew Lennie,
Matthias Reso, Maxim Groshev, Maxim Naumov,
Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Pa-
tel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark,
Mike Macey, Mike Wang, Miquel Jubert Hermoso,
Mo Metanat, Mohammad Rastegari, Munish Bansal,
Nandhini Santhanam, Natascha Parks, Natasha
White, Navyata Bawa, Nayan Singhal, Nick Egebo,
Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich
Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz,
Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin
Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pe-
dro Rittner, Philip Bontrager, Pierre Roux, Piotr
Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel
Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu
Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky
Wang, Russ Howes, Ruty Rinott, Sachin Mehta,
Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara
Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov,
Satadru Pan, Saurabh Mahajan, Saurabh Verma,
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-
say, Shaun Lindsay, Sheng Feng, Shenghao Lin,
Shengxin Cindy Zha, Shishir Patil, Shiva Shankar,
Shuqiang Zhang, Shuqiang Zhang, Sinong Wang,
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala,
Stephanie Max, Stephen Chen, Steve Kehoe, Steve
Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal
Remez, Tamar Glaser, Tamara Best, Thilo Koehler,
Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim
Matthews, Timothy Chou, Tzook Shaked, Varun
Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai
Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad
Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu,
Vladimir Ivanov, Wei Li, Wenchen Wang, Wen-
wen Jiang, Wes Bouaziz, Will Constable, Xiaocheng
Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo
Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao,
Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary
DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang,
Zhiwei Zhao, and Zhiyu Ma. 2024. The llama 3 herd

of models. Preprint, arXiv:2407.21783.

Xiaobao Guo, Nithish Muthuchamy Selvaraj, Zitong
Yu, Adams Wai-Kin Kong, Bingquan Shen, and
Alex Chichung Kot. 2023. Audio-visual decep-
tion detection: Dolos dataset and parameter-efficient
crossmodal learning. 2023 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages
22078–22088.

Xiaobao Guo, Zitong Yu, Nithish Muthuchamy Selvaraj,
Bingquan Shen, Adams Wai-Kin Kong, and Alex C.
Kot. 2024. Benchmarking cross-domain audio-visual
deception detection. Preprint, arXiv:2405.06995.

Viresh Gupta, Mohit Agarwal, Manik Arora, Tanmoy
Chakraborty, Richa Singh, and Mayank Vatsa. 2019.
Bag-of-lies: A multimodal dataset for deception de-
tection. In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW),
pages 83–90.

Yingxu He, Zhuohan Liu, Shuo Sun, Bin Wang, Wenyu
Zhang, Xunlong Zou, Nancy F. Chen, and Ai Ti
Aw. 2025. Meralion-audiollm: Bridging audio and
language with large language models. Preprint,
arXiv:2412.09818.

Julia Hirschberg, Stefan Benus, Jason M. Brenier,
Fiona Enos, Sarah Friedman, Susan Gilman, Cynthia
Girand, Marc Graciarena, Andreas Kathol, Laura
Michaelis, Blanton L. Pellom, Elizabeth Shriberg,
and Andreas Stolcke. 2005. Distinguishing decep-
tive from non-deceptive speech. In Proceedings of
Interspeech 2005, pages 1833–1836.

Shun-Wen Hsiao and Cheng-Yuan Sun. 2022. Attention-
aware multi-modal rnn for deception detection. In
2022 IEEE International Conference on Big Data
(Big Data), pages 3593–3596.

Loukas Ilias, Felix Soldner, and Bennett Kleinberg.
2022. Explainable verbal deception detection using
transformers. Preprint, arXiv:2210.03080.

Manvi Kamboj, Christian Hessler, Priyanka Asnani,
Kais Riani, and Mohamed Abouelenien. 2021. Mul-
timodal political deception detection. IEEE MultiMe-
dia, 28(1):94–102.

Hamid Karimi, Jiliang Tang, and Yanen Li. 2018. To-
ward end-to-end deception detection in videos. In
2018 IEEE International Conference on Big Data
(Big Data), pages 1278–1283.

Mohan Karnati, Ayan Seal, Anis Yazidi, and Ondrej
Krejcar. 2022. Lienet: A deep convolution neural
network framework for detecting deception. IEEE
Transactions on Cognitive and Developmental Sys-
tems, 14(3):971–984.

Gangeshwar Krishnamurthy, Navonil Majumder, Sou-
janya Poria, and Erik Cambria. 2023. A deep learn-
ing approach for multimodal deception detection.
In Computational Linguistics and Intelligent Text
Processing, pages 87–96, Cham. Springer Nature
Switzerland.

31024

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://api.semanticscholar.org/CorpusID:257663960
https://api.semanticscholar.org/CorpusID:257663960
https://api.semanticscholar.org/CorpusID:257663960
https://arxiv.org/abs/2405.06995
https://arxiv.org/abs/2405.06995
https://doi.org/10.1109/CVPRW.2019.00016
https://doi.org/10.1109/CVPRW.2019.00016
https://arxiv.org/abs/2412.09818
https://arxiv.org/abs/2412.09818
https://doi.org/10.21437/Interspeech.2005-580
https://doi.org/10.21437/Interspeech.2005-580
https://doi.org/10.1109/BigData55660.2022.10020331
https://doi.org/10.1109/BigData55660.2022.10020331
https://arxiv.org/abs/2210.03080
https://arxiv.org/abs/2210.03080
https://doi.org/10.1109/MMUL.2020.3048044
https://doi.org/10.1109/MMUL.2020.3048044
https://doi.org/10.1109/BigData.2018.8621909
https://doi.org/10.1109/BigData.2018.8621909
https://doi.org/10.1109/TCDS.2021.3086011
https://doi.org/10.1109/TCDS.2021.3086011


Shanglin Lei, Guanting Dong, Xiaoping Wang, Keheng
Wang, Runqi Qiao, and Sirui Wang. 2024. Instruc-
terc: Reforming emotion recognition in conversation
with multi-task retrieval-augmented large language
models. Preprint, arXiv:2309.11911.

Timothy R. Levine. 2014. Truth-default theory (tdt):
A theory of human deception and deception detec-
tion. Journal of Language and Social Psychology,
33(4):378–392.

Sarah Ita Levitan, Angel Maredia, and Julia Hirschberg.
2018. Linguistic cues to deception and perceived
deception in interview dialogues. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1941–1950, New Orleans, Louisiana.
Association for Computational Linguistics.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023. Visual instruction tuning.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

E. Paige Lloyd, Jason Deska, Kurt Hugenberg, Allen
McConnell, Brandon Humphrey, and Jonathan Kun-
stman. 2018. Miami university deception detection
database. Behavior Research Methods, 51.

Riccardo Loconte, Roberto Russo, Pasquale Capuozzo,
Pietro Pietrini, and Giuseppe Sartori. 2023. Verbal
lie detection using large language models. Scientific
Reports, 13(1):22849. Published on 2023/12/21.

Leena Mathur and Maja J. Matarić. 2020. Introducing
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A Models

All the models except GPT-4o are hosted on hug-
gingface. GPT-4o model is used via OpenAI API.

B List of Non-verbal Features

RLTD dataset comes with a set of 40 manually
annotated non-verbal features. These features are
broadly categorized into facial displays and hand
movements. The original annotation provides a bi-
nary value for each of these features with respect to
whether these attributes were demonstrated by the
primary speaker in the video. We filter the most rel-
evant 16 features and use the feature names directly
for generating LLM predictions. A list of these
features is - Both Hands Movement, Complex
Hands Trajactory, Downwards Lip Movement,
Eyes Closing Repeatedly, Frown, Gaze Down,
Gaze Side, Gaze at Interlocutor, Head
Down, Mouth Closed, Mouth Opened, Raise
Eyebrows, Repeated Nods, Scowl, Single
Hand Movement, Upwards Lip Movement.

C Prompts

C.1 Prompt for Direct Label Prediction
You are an expert judge, specializing
in deception detection. Your task is

to evaluate transcripts from courtroom
trials or interviews with exceptional
accuracy. Based on the provided
transcript, assess whether the speaker’s
statements are ’Truthful’ or ’Deceptive’.
Utilize linguistic cues, contextual
clues, and logical consistency in the
transcript to make your judgment. Respond
with only one word: either ’Truthful’ or
’Deceptive’. Do not provide additional
explanation, reasoning, or commentary in
your response.
Below are some reference examples: <few

shot examples>
Carefully analyze the transcript below,

paying close attention to the content and
context, and provide your judgment.

C.2 Prompt for Reasoning Generation
You are an expert judge, specializing
in deception detection. Your task is
to evaluate transcripts from courtroom
trials or interviews with exceptional
accuracy. Based on the provided
transcript, assess whether the speaker’s
statements are ’Truthful’ or ’Deceptive’.
Utilize linguistic cues, contextual
clues, and logical consistency in the
transcript to make your judgment. Respond
with both your judgment and the reasoning
behind your judgment. Provide your
response in the format- Judgment: <your
judgment in one word ’Truthful’ or
’Deceptive’>, Reasoning: <your reasoning
for the judgment based on the transcript
and your analysis>.
Below are some reference examples: <few

shot examples>
Carefully analyze the transcript below,

paying close attention to the content and
context, and provide your answer in the
desired format.

C.3 Prompt for Video Summary Generation
Analyze this video and provide a
comprehensive and detailed summary based
on: - Speaker details (appearance,
positioning); if there are more than one
person, focus only on the person being
interviewed or who is answering questions.
- Facial expressions (micro-expressions,
eye movements, eye-brow movements, lip
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Model Name Model ID License
LLaMA 3.1 meta-llama/Llama-3.1-8B-Instruct llama 3.1
Gemma 2 google/gemma-2-9b-it gemma
GPT-4o gpt-4o-2024-08-06 proprietary
LLaVA-NEXT-Video llava-hf/LLaVA-NeXT-Video-7B-hf llama2
Qwen2VL Qwen/Qwen2-VL-7B-Instruct apache-2.0
MERaLiON-AudioLLM MERaLiON/MERaLiON-AudioLLM-Whisper-SEA-LION meralion-public-license
Qwen2-Audio Qwen/Qwen2-Audio-7B-Instruct apache-2.0

Table 5: Model Information

and mouth movements etc.) - Body language
(hand gestures, head movements, posture
changes etc.) - Physical indicators
(visible stress signs, fidgeting patterns
etc.) - Key scene descriptions
(describing the most crucial moments
from the video) Describe any notable
behavioral patterns or changes over time.
Focus on any observable visual cues.
The final summary should be a paragraph
containing all the important information
extracted from the input video according
to the instructions provided.

C.4 Prompt for Audio Summary Generation

Analyze the input audio and provide a
summary of the pitch and tone of the
speaker in the audio recording. Describe
any notable acoustic patterns briefly.

D Response Generation Strategies

The results in Table 6 offer a comparative analysis
between direct label prediction and post-hoc rea-
soning generation across the three datasets. We sys-
tematically evaluate whether generating reasoning
after the label contributes positively to the model’s
predictive performance, under both zero-shot and
few-shot prompting settings. Across most of the
settings, particularly on RLTD dataset, direct label
prediction tends to yield higher accuracy and F1
scores. For example, GPT-4o achieves an F1 score
of 71.39 on RLTD with few-shot direct label predic-
tion, outperforming its label+reasoning counterpart
(69.63 F1 score). However, this trend does not
hold universally. In the MU3D dataset, which in-
volves scripted deception, post-hoc reasoning occa-
sionally matches or slightly improves performance.
LLaMA 3.1, for instance, reaches its best F1 score
of 56.15 on MU3D using few-shot post-hoc reason-
ing. In the OpSpam dataset, dominated by textual
content, the advantage again leans toward direct la-
bel prediction. GPT-4o in particular shows a notice-

able drop in F1 score from 67.58 (few-shot label)
to 61.04 (few-shot label + reasoning), suggesting
that the inclusion of generated explanations may
introduce noise or ambiguity, especially when no
visual or behavioral cues are available to ground the
reasoning. While post-hoc reasoning generation
provides interpretability of model predictions, it
does not consistently improve classification perfor-
mance, and in many cases, leads to modest degra-
dation.

E Performance Trends in Few-Shot
Learning

In our study, we examined how large language mod-
els (LLMs) perform across various datasets using
few-shot prompting. We calculated the F1 score by
averaging results across all seeds to ensure consis-
tent measurement as illustrated in Figure 3. Our
findings reveal that models like GPT-4o initially
improve with more few-shot examples, demonstrat-
ing their ability to use additional data effectively.
However, this improvement subsequently declined
when too many examples were provided, likely due
to the increased complexity of the prompts com-
plicating the model’s reasoning ability. LLaMA
3.1 consistently showed significant gains with an
increased number of examples for OpSpam and
MU3D, indicating strong adaptability to more ex-
tensive data inputs. Gemma 2’s performance im-
proved on the OpSpam dataset with more examples
but declined on the MU3D and RLTD datasets af-
ter a certain point. This pattern suggests a possible
optimization ceiling, where additional examples
no longer contribute to performance enhancements
and may instead hinder the model’s effectiveness
due to prompt saturation.

F Evaluating the Efficacy of Beam Search
in Reasoning

We performed beam search to evaluate its poten-
tial to enhance performance in label generation
with reasoning for the LLaMA and Gemma models
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LLM Config Response RLTD MU3D OpSpam

Generation Acc F1 Acc F1 Acc F1

LLaMA 3.1
zero shot label 54.67 51.00 49.61 48.51 52.35 52.33

label + reasoning 52.07 50.27 48.44 47.95 51.18 51.17

few shot label 68.87 68.14 51.72 51.18 59.62 59.19
label + reasoning 65.71 65.61 56.49 56.15 61.43 60.83

Gemma 2
zero shot label 67.77 66.67 52.35 48.20 49.28 48.45

label + reasoning 66.12 64.20 55.63 54.42 50.28 47.00

few shot label 69.63 69.52 54.22 52.34 57.70 57.59
label + reasoning 68.18 68.00 53.91 50.73 59.68 57.75

GPT-4o
zero shot label 67.63 67.62 52.42 43.98 58.53 53.72

label + reasoning 64.46 64.31 51.41 41.89 59.04 53.63

few shot label 71.69 71.39 53.20 46.86 68.40 67.58
label + reasoning 69.63 69.07 52.17 42.67 64.20 61.04

Table 6: Comparison of different response generation strategies (direct label prediction vs. post-hoc reasoning generation) under
zero-shot and few-shot settings. The few-shot examples are randomly selected. The best and second best results are indicated by
bold and underline respectively.

Figure 2: F1 score across different beam sizes on RLTD dataset

on the RLTD dataset. We calculated the average
F1 scores for 10-shot experiment across all seeds
for varying beam sizes, specifically [1, 3, 5, 10,
15], with the results detailed in Figure 2. Our
analysis reveals that as the number of beams in-
creases, the performance generally increases. How-
ever, even the best outcomes obtained through the
beam search failed to surpass the performance lev-
els achieved via direct label generation for the
RLTD dataset.

G LLM Reasoning Analysis Examples

We have illustrated several examples on the basis
of deception cues across three datasets in Figure 4,
Figure 5.

H Post-hoc Reasoning Generation vs
Chain-of-Thought Reasoning

While generating additional reasoning for predicted
labels, we adopt a post-hoc reasoning generation

LLM Order RLTD MU3D OpSpam

Acc F1 Acc F1 Acc F1

LLaMA 3.1 l → r 65.71 65.61 56.49 56.15 61.43 60.83
r → l 58.13 55.31 52.08 49.50 58.60 57.62

Gemma 2 l → r 68.18 68.00 53.91 50.73 59.68 57.75
r → l 58.68 54.39 50.63 50.39 61.62 59.36

Table 7: Comparison of LLM performances under different reasoning generation
orderings across datasets. l → r: label → reasoning; r → l: reasoning → label.

strategy, where the model first outputs the clas-
sification label, followed by a justification. An
alternative is chain-of-thought reasoning, where
the model first reasons over the input before pre-
dicting the final label. We chose the post-hoc
approach based on empirical evidence. Specifi-
cally, we conducted a controlled comparison of the
two prompting strategies — (a) label → reasoning
(post-hoc) and (b) reasoning → label (chain-of-
thought)—under a few-shot setting across three
datasets. As shown in Table 7, the post-hoc rea-
soning generation strategy generally outperforms
chain-of-thought.

In addition to the performance improvements,
the post-hoc reasoning reasoning strategy offers
better interpretability for analyzing LLM’s deci-
sion making process. When reasoning is generated
prior to the label, LLMs often produce explanations
that weigh cues supporting both possible classes.
This makes it difficult to use the generated reason-
ing to interpret the model’s decision, as it lacks a
clear alignment with the predicted label. An exam-
ple of LLM prediction through chain-of-thought -
Reasoning: 1. The speaker starts with
"Ah, I don’t remember," which is a
common phrase used when someone is unsure
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Figure 3: F1 score across n-shots in few shot learning

Figure 4: Examples of LLM Reasoning on RLTD Dataset
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Figure 5: Examples of LLM Reasoning on MU3D and OpSpam Dataset
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Model Type Model Config Accuracy F1

Baselines
RoBERTa-ft - 73.16 72.88
BiLSTM+Attention - 71.44 71.19
CNN - 69.92 69.70

LLM Inference

LLaMA 3.1 zero shot 59.76 59.72
LLaMA 3.1 few shot 64.32 64.16
Gemma 2 zero shot 57.31 55.95
Gemma 2 few shot 62.36 61.95
Gpt-4o zero shot 64.19 64.10
Gpt-4o few shot 64.41 64.17

LLM Finetuning LLaMA 3.1 - 73.40 73.31
Gemma 2 - 73.55 73.54

Table 8: LLM and baseline model performances Comparison on Prolific dataset.

or trying to downplay their memory of
an event. This could be a sign of
deception, but it’s not conclusive on
its own. 2. The speaker then says
"evidently I, I – I tried to call Hemy,"
which is a vague statement. The use of
"evidently" suggests that the speaker is
not entirely sure about their actions,
and the repetition of "I" creates a sense
of hesitation. [...] 6. Overall, the
speaker’s statements seem inconsistent
and vague, which could be a sign of
deception. However, the timeline could
suggest truthfulness.
Judgment: Deceptive

In this case, the reasoning incorporates both pro-
truthful and pro-deceptive cues before arriving at a
final judgment. Hence, it becomes challenging to
systematically identify which cues LLMs rely on
most frequently for decision-making at scale. In
contrast, the post-hoc reasoning generation strategy
leads to more focused, label-aligned justifications
that are easier to interpret and trace back to specific
cues -
Judgment: Deceptive
Reasoning: The speaker claims they tried
to call Hemy (presumably their boss)
to inform them that they had left the
office and something had happened to their
husband. However, the speaker immediately
follows this statement with "Which seemed
– was a very normal thing for me to have
done." This phrase suggests an attempt
to justify or rationalize their actions,
which is a common linguistic cue for
deception. Additionally, the speaker’s
initial claim "I don’t remember" followed
by a detailed account raises a red flag,
indicating they may be filling in memory

gaps with plausible details.
Based on both empirical evidence and inter-

pretability advantages, we adopt the post-hoc rea-
soning generation approach over chain-of-thought
prompting.

I Data-Origin Confound in OpSpam
Dataset

OpSpam is one of the most widely used bench-
marks in textual deception detection and thus pro-
vides a relevant testbed within the scope of our
study. However, contrasting Mechanical Turk-
generated deceptive reviews with scraped genuine
ones introduces a data-origin confound, potentially
inflating model performance by encouraging re-
liance on stylistic artifacts rather than true decep-
tion cues, as discussed in Fornaciari et al. (2020);
Soldner et al. (2022). Our primary goal is to eval-
uate the behavior of LLMs and LMMs under zero
and few-shot settings with limited in-domain super-
vision. As shown in Table 6, LLMs don’t appear
to exploit OpSpam dataset bias in the zero-shot
setup because they cannot infer such confounding
factors from single input data points. In the case of
few-shot results with randomly selected examples,
we do observe a performance improvement from
zero-shot to few-shot for OpSpam but that is con-
sistent with other datasets. For instance, LLaMA
3.1 on RLTD experiences a 17.14% improvement,
whereas the imrpovement on the OpSpam dataset
is 6.86%. However, Table 3 reveals that when us-
ing semantically similar (sim-top) few-shot exam-
ples, the average performance improvement across
3 models is 5.54% over random example selection
in the OpSpam dataset. This gain is higher than
that of RLTD (3.19%) and MU3D (4.69%), which
suggests that with as few as 10 carefully curated in-
context examples, LLMs may begin to pick up on
underlying dataset-specific patterns, including po-
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tential biases. Understanding how LLMs leverage
these biases offers valuable insights for designing
more robust deception detection systems. To ex-
pand our evaluation beyond crowdsourced reviews,
we have conducted additional experiments with
the dataset from Confounds and Overestimations
in Fake Review Detection (Soldner et al., 2022),
specifically under its “Pure Veracity” setting. this
setting is particularly challenging since both the
truthful and deceptive reviews are coming from
real-world owners of the smartphones gathered via
the Prolific platform. This setting is particularly
challenging since both the truthful and deceptive
reviews are coming from real-world owners of the
smartphones gathered via the Prolific platform. The
results on Prolific dataset using our text-based base-
lines and the same LLM approaches as discussed in
the paper, are presented in Table 8. Experimental
results indicate that fine-tuned model performance
drops notably compared to OpSpam, but the overall
comparative trend remains similar, with fine-tuned
LLaMA 3.1 and Gemma 2 models outperforming
the baselines. In zero and few-shot setups, we ob-
serve similar performance on both OpSpam and the
Prolific dataset, further confirming, LLMs cannot
pick up the nuanced platform-specific biases very
well with limited in-domain examples.

J Hyper-parameters and Budgeting

J.1 Baselines
We use a learning rate of 4e-5 for training the base-
lines and the models are trained for 20 epochs. The
models are trained on 1 A6000 GPU.

J.2 LLMs
For few-shot examples, we explore 2, 4, 6, 8, 10
examples and report the best results for few shot
performance. All the results reported are an aver-
age of 3 seeds.

K AI Assistance

We have used ChatGPT for writing assistance in
the paper writing.
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