
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 30866–30887
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Multi-Modality Expansion and Retention for LLMs through Parameter
Merging and Decoupling

Junlin Li1∗, Guodong Du1∗, Jing Li1#, Sim Kuan Goh2, Wenya Wang3,
Yequan Wang4, Fangming Liu5, Ho-Kin Tang1, Saleh Alharbi6, Daojing He1, Min Zhang1

1Harbin Institute of Technology, Shenzhen, China 2Xiamen University Malaysia
3Nanyang Technological University 4Beijing Academy of Artificial Intelligence, China

5Peng Cheng Laboratory, China 6Shaqra University, Saudi Arabia
leejunlin27@gmail.com jingli.phd@hotmail.com

Abstract

Fine-tuning Large Language Models (LLMs)
with multimodal encoders on modality-specific
data expands the modalities that LLMs can han-
dle, leading to the formation of Multimodal
LLMs (MLLMs). However, this paradigm
heavily relies on resource-intensive and in-
flexible fine-tuning from scratch with new
multimodal data. In this paper, we pro-
pose MMER (Multi-modality Expansion and
Retention), a training-free approach that in-
tegrates existing MLLMs for effective multi-
modal expansion while retaining their origi-
nal performance. Specifically, MMER reuses
MLLMs’ multimodal encoders while merging
their LLM parameters. By comparing origi-
nal and merged LLM parameters, MMER gen-
erates binary masks to approximately separate
LLM parameters for each modality. These de-
coupled parameters can independently process
modality-specific inputs, reducing parameter
conflicts and preserving original MLLMs’ fi-
delity. MMER can also mitigate catastrophic
forgetting by applying a similar process to
MLLMs fine-tuned on new tasks. Extensive ex-
periments show significant improvements over
baselines, proving that MMER effectively ex-
pands LLMs’ multimodal capabilities while re-
taining 99% of the original performance, and
also markedly mitigates catastrophic forgetting.

1 Introduction

Large Language Models (LLMs) (Guo et al., 2025;
Wang et al., 2025; Zhang et al., 2024) have re-
cently become a cornerstone in artificial intelli-
gence due to their exceptional performance. Build-
ing on LLMs, researchers (Li et al., 2023a; Liu
et al., 2023) integrate encoders for other modali-
ties and use extensive modality-text data for align-
ment. These synthesis are then fine-tuned to de-
velop Multimodal LLMs (MLLMs), which excel at
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Figure 1: The key ideas of MMER. Multi-Modality Ex-
pansion creates a versatile model from existing MLLMs
via a training-free, extensible process. Multi-Modality
Retention reconstructs original or new task MLLMs to
retain performance and mitigate catastrophic forgetting.

processing multimodal inputs. This paradigm has
led to the successful creation of numerous MLLMs
across various modalities (Wu et al., 2024; Jiang
et al., 2023).

Most MLLMs specialize in dual modalities, in-
cluding vision-oriented LLMs like LLaVA (Liu
et al., 2023) and InternVL (Chen et al., 2024b), as
well as video LLMs (Lin et al., 2023; Maaz et al.,
2024) and audio LLMs (Chu et al., 2023; Desh-
mukh et al., 2023). Despite these advancements,
there is a growing impetus to expand the modali-
ties MLLMs can handle for diverse applications. A
straightforward method involves adding multiple
new modality encoders (Chen et al., 2023a; Lyu
et al., 2023) or employing a unified multimodal
encoder (Han et al., 2024), followed by re-fine-
tuning the MLLMs with fresh modality-text data.
However, this method is resource-intensive and
lacks flexibility, as it requires generating or acquir-
ing high-quality multimodal instruction data (Zhao
et al., 2023, 2022) and fine-tuning from scratch.

To overcome the aforementioned limitations, re-
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searchers have explored model merging for multi-
modal expansion in MLLMs (Shukor et al., 2023;
Panagopoulou et al., 2024). For instance, Chen
et al. 2024a proposed NaiveMC, a basic, training-
free framework that merges the LLMs of multi-
ple MLLMs and combines their modality-specific
encoders into the merged LLM. They further in-
troduced the DAMC framework, which retrains
MLLMs by separating modality parameters from
language model parameters to mitigate parameter
conflicts in the merged LLM. However, these two
frameworks encounter a trade-off: NaiveMC is
train-free but delivers lower performance, whereas
DAMC requires training but yields better results.

In this paper, we propose a training-free ap-
proach named MMER (Multi-Modality Expansion
and Retention), which enables multimodal expan-
sion while bypassing the above trade-off and retains
the original performance (See Figure 1). First, we
merge the task vectors (Ilharco et al., 2023), which
represent the difference between the fine-tuned and
pre-train LLM parameters, into a merged task vec-
tor. Next, by comparing the Directional Congru-
ence and Dominant Significance between the origi-
nal and merged task vectors, we construct modality-
specific binary masks. These masks can approxi-
mately identify and decouple the original modality-
specific parameters retained in the merged task vec-
tor. This strategy allows the merged MLLM to inde-
pendently process non-textual modality data, using
its decoupled parameters, thereby significantly re-
ducing interference from other modalities.

Furthermore, by re-adding a decoupled modality
task vector into the base LLM parameters and in-
tegrating its corresponding encoder, we can recon-
struct the near-original MLLMs. This strategy can
retain the original modalities’ performance while
saving storage space. Remarkably, since our MMER
approach is scalable, applying it to MLLMs fine-
tuned on new tasks, along with multiple original
MLLMs, yields a novel effect: effectively miti-
gating catastrophic forgetting. This approach en-
hances performance on new tasks without compro-
mising previous ones by decoupling the new task’s
parameters from the original ones, thus preventing
damage to the original parameters.

We demonstrated the effectiveness of MMER by
composing four MLLMs (i.e., vision, audio, video,
and point cloud) and conducted extensive exper-
iments. In multimodal tasks like MCUB (Chen
et al., 2024a), MMER significantly outperforms var-
ious baselines, confirming its ability to expand

LLMs’ multimodal capabilities without additional
training. Moreover, we evaluated MLLMs recon-
structed by MMER on fourteen dual-modal tasks
spanning four modalities paired with text. The
results reveal that they retain 99% of their origi-
nal performance. Lastly, MMER proved resistant
to catastrophic forgetting in single-task and cross-
modal multi-tasks scenarios, effectively adapting
to new tasks without undermining previous ones.

Our work makes several contributions:

• We propose MMER, a training-free approach
for seamless multimodal expansion of LLMs
through parameter merging and decoupling.

• We demonstrate two additional practical appli-
cations of the MMER approach: retaining the
performance of original MLLMs and mitigat-
ing catastrophic forgetting in MLLMs.

• We conduct extensive and rigorous experi-
ments on various multimodal tasks across
three scenarios, with confirm the effectiveness
of the MMER approach.

2 Related Work

Multimodal Large Language Models. Substan-
tial researches (Dai et al., 2023; Achiam et al.,
2023; Lee et al., 2024) is dedicated to devel-
oping LLMs for multimodal inputs. Vision
LLMs (Alayrac et al., 2022; Li et al., 2023a) excel
in vision-language tasks by connecting visual en-
coders to LLMs, sparking a surge in dual-modality
MLLMs. Other modalities, like audio and video,
quickly followed suit (Rubenstein et al., 2023; Lin
et al., 2023). Meanwhile, researchers explored
unifying multiple modalities into a single LLM.
ImageBind-llm (Han et al., 2023) connects a mul-
timodal encoder like ImageBind (Girdhar et al.,
2023) to an LLM but relies solely on image-text
data. OneLLM (Han et al., 2024) improves this by
aligning all modalities with language. However,
these methods cannot expand modalities due to the
encoders have fixed input types. Other approaches
connect multiple modality-specific encoders to an
LLM, as seen in X-LLM (Chen et al., 2023a),
MACAW-LLM (Lyu et al., 2023), which integrate
encoders for vision, video, and audio. However,
these methods require high-quality multimodal data
for joint training and still struggle with modality
expansion. In contrast, MMER provides an efficient,
training-free solution for seamless multimodal ex-
pansion in LLMs.

30867



-

LLM of MLLMs Pre-train LLM Task Vectors Merged Task Vector Modality Masks

Sparsify

Directional Congruence

Dominant Significance

Decouple

Approximate Task Vectors

Multi-Modality Expansion

Multi-Modality Retention 

Mitigating Catastrophic Forgetting

Merge

≈

≈

Multimodal Parameter Merging and Decoupling

Point LLM

New Task LLM

Point LLM

New Task LLM

New Point   Task Fine-tuning

Vision 

Encoder

Point 

Encoder

Point 

Input

Point 

Input

Image 

Input

Text 

Input

Vision LLM 

Parameter

Point LLM 

Parameter

Vision LLM 

Task Vector

Point LLM 

Task Vector

Decoupled Vision

Task Vector

Decoupled Point

Task Vector
Decoupled New 

Point Task Vector

Merged Decoupled 

Task Vector

99%

99%

Vision LLM

Figure 2: The overview of MMER, considering only the Vision and Point Cloud modalities for clarity. Each block
corresponds to the same weight matrix, with empty blocks denoting zero value. “≈” signifies similar performance.

Model Merging and Model Composition.
Model merging (Yang et al., 2024; Du et al.,
2024b, 2025b,a) can improve single-task perfor-
mance (Gupta et al., 2020), out-of-distribution gen-
eralization (Arpit et al., 2022), or combine the ca-
pabilities of multiple models (Wan et al., 2024).
A basic method, TA (Ilharco et al., 2023) merges
models by applying arithmetic operations on delta
fine-tuned weights (i.e., task vectors), showing that
such operations can yield comparable functional
responses. Many subsequent methods have built
upon this foundation. TIES (Yadav et al., 2023)
mitigates interference during merging by pruning
redundant parameters and resolving sign conflicts,
while DARE (Yu et al., 2024) achieves the same
by randomly dropping and scaling parameters in a
preprocessing step. Moreover, Ortiz-Jimenez et al.
2023 established the theoretical foundation for TA,
showing that weight disentanglement is key to its
success. Model merging further applies to multi-
modal models. Sundar et al. 2024 explored mul-
timodal transformers merging for specific tasks.
Model Tailor (Zhu et al., 2024b) merges MLLMs to
mitigate catastrophic forgetting. However, they do
not explore the merging of MLLMs across modal-
ities. To address this, the NaiveMC and DAMC
frameworks (Chen et al., 2024a) merge models
to create a unified MLLM that inherits multiple
modality capabilities, enabling seamless expansion.

However, one requires additional training, while
the other delivers subpar performance. In contrast,
MMER enhances the multimodal expansion capa-
bilities of MLLMs without extra training while
retaining original performance and demonstrating
resistance to catastrophic forgetting. Detailed com-
parison with related methods is in Appendix A.

3 Methodology

In MMER, we first merge the LLM parameters
{θ1, θ2, . . . , θn} from multiple MLLMs, all fine-
tuned from the same LLM θpre, into a unified LLM.
However, such a merged model is prone to interfer-
ence between modality-specific parameters, which
can degrade the performance of representations. To
handle this, we adopt a training-free parameter de-
coupling method that enhances the multimodal per-
formance of the merged LLM while retaining the
original performance. This is achieved by approx-
imately decoupling modality-specific parameters
within the merged parameter, ensuring independent
processing of non-textual modality inputs. A visual
workflow of MMER is depicted in Figure 2.

3.1 Multimodal Parameter Merging and
Decoupling

Since TA (Ilharco et al., 2023) showed the effective-
ness of arithmetic operations on task vectors, which
is further theoretically supported by Ortiz-Jimenez
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et al. 2023, we apply these operations for parame-
ter merging and decoupling. Specifically, we com-
mence by employing the advanced model merg-
ing technique Ties (Yadav et al., 2023) to merge
{θ1, θ2, . . . , θn}. Ties first extracts the task vectors
for each MLLM as τi,pre = θi − θpre, then refines
them by selecting the TopK% absolute values to
filter out non-essential parameters. This results
in sparse task vectors τi, which are then merged
base on sign consistency to generate the merged
task vector τ∗ = merge(

∑n
i=1 τi). Finally, the fi-

nal merged LLM parameter is θ∗ = θpre + α · τ∗,
where α > 0 is a scaling factor calibrated by the
validation set from target tasks. If these sets are
unavailable, α is determined based on the model’s
general performance across tasks of each modality.

Previous studies (Panigrahi et al., 2023; Wang
et al., 2024) show that most of the information from
the task vectors is retained and embedded in the
merged task vector τ∗. By comparing the original
task vectors τi with the merged task vector τ∗, we
can identify relevant modality-specific parameter
subsets from τ∗. This enables the construction of
modality-specific binary masks mi to decouple and
approximate each original task vectors mi ◦ τ∗.
These masks filter out irrelevant parameters and
reconstruct the original model parameters θ̂i:

θ̂i = θpre +mi ◦ τ∗ ≈ θi (1)

We construct the masks mi by minimizing the
Manhattan distance ℓ∗1 between the reconstructed
model θ̂i and the LLM θi of original MLLMs:

argmin
mi∈{0,1}P

∣∣∣θ̂i − θi

∣∣∣ = argmin
mi∈{0,1}P

|mi ◦ τ∗ − τi|

= argmin
mi∈{0,1}P

P∑

p=1

∣∣∣m(p)
i ◦ τ (p)∗ − τ

(p)
i

∣∣∣ (2)

where P represents the total number of parame-
ters. The rationale for using the Manhattan distance
is analyzed in Appendix D.1. If the sign of τ (p)i

is inconsistent with that of τ (p)∗ , the masks m
(p)
i

is set to 0 to avoid directional conflict. This step
is referred to as Directional Congruence. Con-
versely, when the sign of τ (p)i aligns with τ

(p)
∗ and∣∣∣τ (p)i

∣∣∣ ≥
∣∣∣τ (p)∗ − τ

(p)
i

∣∣∣, i.e.,
∣∣∣τ (p)i

∣∣∣ ≥ 50%
∣∣∣τ (p)∗

∣∣∣,
this indicates that τ (p)i is a dominant component
of the merged parameter τ (p)∗ . Thus, τ (p)∗ can be
approximated as τ

(p)
i , so m

(p)
i is set to 1, which
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Figure 3: Details of MMER’s dynamic processing.
and represent the Hadamard product and addition.

we refer to as Dominant Significance. We further
introduce a scaling factor λi to refine this selection
process, accommodating the varying numbers and
modalities of original MLLMs, where a smaller λi

selects more parameters. The selection of λi fol-
lows the same principle as α, enabling the modality-
specific inputs to be processed in parallel and inde-
pendently. The final mask mi is constructed by the
following formula:

mi =





1 if |τ (p)i | ≥ λi · 50%|τ (p)∗ | and

sign(τ (p)i ) = sign(τ (p)∗ )

0 otherwise

(3)

3.2 The MMER Approach
We now comprehensively explain how the multi-
modal parameter merging and decoupling method
enables multi-modality expansion, retention and
addresses catastrophic forgetting in MLLMs.

3.2.1 Multi-Modality Expansion
Typical MLLMs consist of modality-specific com-
ponents (i.e., multimodal encoders and alignment
layers) and a base fine-tuned LLM. Our MMER ap-
proach disentangling these components, then ap-
plies the parameter merging and decoupling strat-
egy to the fine-tuned LLMs of multiple MLLMs,
producing a merged task vector τ∗, the pre-trained
LLM parameter θpre, and n modality-specific bi-
nary masks mi. The modality-specific components,
including their weights, are reused directly, en-
abling the merged MLLM to seamlessly process
all original modalities without losing functionality.

As depicted in Figure 3, upon receiving multi-
modal data, MMER respectively encodes them into
representation inputs X = [XM1 , . . . , XMn , Xt],
where XMi and Xt represent the modality-specific
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sequences and text sequences. MMER then dynami-
cally decouples the approximate modality-specific
parameters θpre +mi ◦ τ∗. This ensures that non-
textual modality representations are processed in-
dependently with their respective parameters. Text
representations, on the other hand, are processed
with the merged parameter θpre + m ◦ τ∗, where
m is the average of all masks mi. For exam-
ple, when representations progress to the attention
mechanism at the l-th layer, MMER decouples the
modality-specific parameter from WQ

∗,l, the queries
weights in the l-th layer from τ∗, then:

Ql =
[
XM1,l

(
mQ

1,l ◦W
Q
∗,l +WQ

pre,l

)
,

. . . , Xt,l

(
mQ

l ◦WQ
∗,l +WQ

pre,l

)]
(4)

where WQ
pre,l denotes the queries weights in the

l-th layer form θpre. Afterward, MMER sequentially
decouples the modality-specific parameters for the
keys and values in the l-th layer, and compute Kl

and Vl. Finally, we carry out attention operation:

Xa
l = Attention(Ql,Kl,Vl) (5)

[Xa
M1,l, . . . , X

a
Mn,l, X

a
t,l] = Split(Xa

l ) (6)

Please note that the output representation should
be partitioned by modality to match the input form.
Consequently, the final output of the attention
mechanism at the l-th layer is:

[Xo
M1,l, . . . , X

o
t,l] =

[
Xa

M1,l

(
mO

1,l ◦WO
∗,l +WO

pre,l

)

, . . . , Xa
t,l

(
mO

l ◦WO
∗,l +WO

pre,l

)]
(7)

This procedure alleviates parameter conflicts
across modalities, ensuring the merged MLLM re-
tains fidelity when processing multimodal data.

3.2.2 Multi-modality Retention
Model merging and NaiveMC exhibit performance
degradation (See Table 2) when handling modality-
specific original tasks due to discrepancies between
merged and original model parameters. However,
MMER circumvents this issue by approximately re-
constructing the original MLLMs. This process
involves decoupling the modality-specific task vec-
tor mi ◦ τ∗, adding it to the pre-trained LLM θpre

to obtain the restored LLM θ̂i = θpre + mi ◦ τ∗,
and then integrating the corresponding modality-
specific components to reconstruct the final MLLM.
This strategy effectively mitigates parameter inter-
ference and retains original performance.

3.2.3 Mitigating Catastrophic Forgetting
Typically, fine-tuning MLLMs on new data im-
proves performance on new tasks but often causes
catastrophic forgetting on previous ones (Good-
fellow et al., 2013). Drawing on the insight of
Multi-modality Retention, MMER can additionally
mitigate catastrophic forgetting. We first fine-tune
the corresponding original MLLM on the new tasks.
Next, we apply the parameter merging and decou-
pling method to the fine-tuned MLLM, alongside
all original MLLMs, generating a new merged task
vector and binary masks. Finally, we reconstruct
the corresponding MLLM in a targeted manner to
handle different tasks. This enables MMER to ef-
fectively adapt to new tasks without compromising
previous ones, mitigating catastrophic forgetting.

4 Experiments Setup

4.1 Implementation

We explored MMER across four MLLMs: Vision,
Audio, Video, and Point Cloud LLMs. To ensure
fairness and comparability, we fine-tuned these four
MLLMs in the same environment, each based on
Vicuna-7B-v1.5 (Zheng et al., 2023), following
previous works (Chen et al., 2024a; Panagopoulou
et al., 2024). Details on experimental hyperparame-
ters and fine-tuning can be found in Appendix B.2.
We evaluated performance based on evaluation
scores or accuracy and performance retention, the
latter as defined in Appendix B.1.

4.2 Baseline Methods

We compared MMER with training-free methods:
NaiveMC (Chen et al., 2024a), TA (Ilharco et al.,
2023), TIES (Yadav et al., 2023), and PCB-
Merging (Du et al., 2024a), where TA and TIES
can substitute the merging strategy of NaiveMC
for better performance. DARE (Yu et al., 2024)
was integrated with these methods as it can com-
plements them. For multi-modality expansion
experiments, we included training-based base-
lines: ImageBind-LLM (Han et al., 2023) and X-
InstructBLIP (Panagopoulou et al., 2024).

4.3 Datasets and Tasks

In multi-modality expansion experiments, we eval-
uated multimodal tasks, including MCUB (Chen
et al., 2024a), MUSIC-AVQA (Li et al., 2022),
and ModelNet40 (Wu et al., 2015) with images.
For multi-modality retention experiments, we as-
sessed fourteen dual-modal tasks spanning four
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Task (→) ModelNet40 MUSCI-AVQA MCUB
Method (↓) PI-T IA-T VI-T VA-T AVI-T AVI-T AVP-T AIP-T VIP-T AVIP-T

Avg.

–Training-based Multimodal Baselines

ImageBind-LLM(Han et al., 2023) 39.86 36.54 38.76 39.72 38.16 35.20 31.40 33.40 31.80 32.93 35.51

X-InstructBLIP[ECCV24] (Panagopoulou et al., 2024) 57.93 40.71 41.23 48.34 47.39 41.40 25.20 21.20 29.40 27.94 37.04

–Training-free Model Merging Methods

NaiveMC[ACL24] (Chen et al., 2024a) 60.53 39.31 47.65 47.40 49.64 53.64 56.28 60.53 54.60 59.16 53.23

TA[ICLR23] (Ilharco et al., 2023) 62.04 40.22 47.97 46.70 49.93 53.44 56.28 63.36 55.40 59.72 53.90

TIES[NeurIPS23] (Yadav et al., 2023) 61.74 43.27 49.27 48.60 51.19 53.64 55.47 61.74 54.60 58.55 54.10

PCB-Merging[NeurIPS24] (Du et al., 2024a) 62.15 44.32 50.24 49.67 51.54 54.54 56.68 63.97 55.60 60.48 54.92

NaiveMC (w/ DARE[ICML24] (Yu et al., 2024)) 60.32 39.78 47.98 47.67 49.89 53.64 56.68 60.73 54.80 59.53 53.46

TA (w/ DARE) 62.75 40.46 47.98 46.92 50.27 54.25 56.48 64.17 55.40 60.08 54.27

TIES (w/ DARE) 61.96 43.78 49.54 48.98 51.36 54.25 55.87 62.55 55.20 59.06 54.57

MMER (ours) 62.15 47.25 51.27 51.77 53.54 56.48 59.31 65.59 56.00 61.63 56.82

Table 1: Accuracy (%) on multimodal tasks with various combinations of video (V), image (I), audio (A), point
cloud (P), and text (T) inputs. Optimal results are in bold, while sub-optimal results are underlined.

Task (→) 2 Point Tasks 3 Audio Tasks 2 Video Tasks 7 Image Tasks Trimmed Avg.

Method (↓) Score (%) / Acc. (%) Score (%) / Acc. (%) Acc. (%) Acc. (%) Score (%) / Acc. (%)

Original MLLMs (Zero-shot) 23.15 / 21.27 25.30 / 24.71 39.79 62.23 24.23 / 51.01

NaiveMC [ACL2024] (Chen et al., 2024a) 22.65 (97.8) / 20.49 (96.3) 24.59 (97.2) / 30.65 (124.8) 36.92 (93.0) 52.56 (83.6) 23.62 (97.5) / 44.59 (88.3)

TA [ICLR23] (Ilharco et al., 2023) 22.96 (99.2) / 21.02 (98.8) 24.68 (97.5) / 31.88 (129.8) 37.57 (94.5) 54.89 (87.5) 23.82 (98.3) / 46.23 (91.0)

TIES [NeurIPS23] (Yadav et al., 2023) 22.82 (98.6) / 20.83 (97.9) 24.79 (98.0) / 32.15 (130.9) 37.81 (95.1) 54.10 (86.2) 23.80 (98.3) / 45.96 (90.6)

PCB-Merging [NeurIPS24] (Du et al., 2024a) 23.00 (99.4) / 21.16 (99.5) 25.03 (98.9) / 33.41 (135.2) 38.47 (96.7) 56.02 (90.0) 24.02 (99.1) / 47.24 (92.6)

NaiveMC (w/ DARE[ICML2024] (Yu et al., 2024)) 22.83 (98.6) / 20.77 (97.6) 24.72 (97.7) / 31.62 (128.8) 37.63 (94.4) 53.61 (85.3) 23.78 (98.1) / 45.62 (89.8)

TA (w/ DARE) 23.04 (99.5) / 21.25 (99.9) 24.82 (98.1) / 32.44 (132.0) 37.52 (94.4) 55.47 (88.4) 23.95 (98.8) / 46.50 (91.4)

TIES (w/ DARE) 22.76 (98.3) / 20.98 (98.6) 24.92 (98.5) / 33.02 (134.4) 38.00 (95.6) 54.73 (87.2) 23.84 (98.4) / 46.37 (91.4)

MMER (ours) 23.14 (99.9) / 22.49 (105.7) 25.20 (99.6) / 38.51 (155.6) 39.28 (98.5) 62.40 (100.3) 24.17 (99.8) / 50.84 (99.4)

Table 2: Results of multi-modality retention experiments. The performance retention is shown in parentheses.
“Trimmed Avg.” represents the average result obtained after excluding three point or audio classification tasks.

modalities paired with text. Vision tasks include
VQAv2 (Goyal et al., 2017), GQA (Hudson and
Manning, 2019), TextVQA (Singh et al., 2019),
VizWiz (Gurari et al., 2018), ScienceQA (Lu
et al., 2022), POPE (Li et al., 2023b), and OK-
VQA (Marino et al., 2019). Audio tasks cover
TUT (Mesaros et al., 2017), VocalSound (Gong
et al., 2022), and Clotho (Drossos et al., 2020).
Video tasks include MSRVTT (Xu et al., 2016) and
MSVD (Chen and Dolan, 2011), and point tasks
focus on ModelNet40 (Wu et al., 2015) and Obja-
verse (Deitke et al., 2023). We evaluated MMER’s
resilience to catastrophic forgetting on two new
tasks, vision task Flickr30k (Young et al., 2014)
and audio task Clotho-AQA (Lipping et al., 2022).

5 Main results

Results on Multi-Modality Expansion. As shown
in Table 1 , we observe the following: (i) Ad-
vanced training-free model merging methods im-
prove the NaiveMC framework’s performance, sug-
gesting their effective application to the merging of
MLLMs–a previously unexplored area. This also

suggests considerable parameter conflicts in the
merged MLLM, as these methods primarily focus
on mitigating conflicts among merging parameters.
(ii) Our MMER approach significantly outperforms
NaiveMC across all input combinations and tasks,
demonstrating its effectiveness in extending multi-
modal capabilities and enhancing merged MLLMs’
ability to manage modality combinations without
additional training. (iii) Furthermore, MMER out-
performs various baselines on nearly all tasks. This
indicates that directly decoupling parameters after
merging is more effective than merely reducing
conflicts during the merging process. Lastly, the
results for the original MLLMs are included in Ap-
pendix E.2.

Results on Multi-Modality Retention. The
results in Table 2, reveal the following: (i) Interest-
ingly, all methods show notable improvements on
specific audio and point tasks. This likely due to
these tasks are classification-based, whereas others
involve captioning or QA tasks. The original audio
and point LLMs, not fine-tuned for classification
tasks, fail to follow instructions leading to poorer
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Previous Tasks New Tasks
Task (→)

2 Point tasks 3 Audio tasks 2 Video tasks 7 Image tasks 3 Multimodal tasks Clotho-AQA Flickr30k

Baseline (↓) Score / Acc. Score / Acc. Acc. Acc. Acc. Acc. Score

Original MLLMs 23.15 / 21.27 25.30 / 24.71 39.79 62.23 - 49.40 51.26

Fine-tune on Clotho-AQA - 19.82 / 12.31 (↓) - - - 57.80 (↑) -

Fine-tune on Flickr30k - - - 57.25 (↓) - - 57.71 (↑)

MMER 23.14 / 22.49 25.20 / 38.51 39.28 62.40 56.82 49.28 51.00

MMER-Clotho-AQA 22.95 / 21.87 25.12 / 38.23 (∼) 39.17 62.20 56.53 57.71 (↑) 50.94

MMER-Flickr30k 23.05 / 22.03 24.96 / 37.68 38.90 62.27 (∼) 56.44 48.94 57.08 (↑)

MMER-Clotho-AQA+Flickr30k 22.82 / 21.56 24.88 / 37.69 (∼) 38.53 61.94 (∼) 55.89 57.52 (↑) 56.72 (↑)

Table 3: Results on previous and new tasks in both single-task and cross-modal multi-task scenario. MMER-xx
refers to merging the MLLM fine-tuned on the new task xx into MMER. MMER-Clotho-AQA+Flickr30k denotes the
merging of both the audio LLM fine-tuned on Clotho-AQA and the vision LLM fine-tuned on Flickr30k into MMER.
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Figure 4: Performance retention vs. MLLMs quantity.

performance. However, parameter merging may
unlock their instruction-following ability, as the
training data for other MLLMs included similar in-
structions. A detailed analysis is in Appendix D.3.
For fairer comparison, we also provide average
performance trimming these tasks. (ii) Although
NaiveMC enables multimodal expansion for han-
dling multimodal tasks, its performance on original
tasks substantially lags behind the original MLLMs.
While varied model merging methods can some-
what alleviate this decline, the gap remains notable.
In contrast, MMER nearly retains the original perfor-
mance. For instance, MMER achieves 99% perfor-
mance retention in the trimmed average. Detailed
performance for each task is in Appendix E.3.

Results on Mitigating Catastrophic Forgetting.
The results for both single-task and cross-modal
multi-tasks scenarios are shown in Table 3. (i)
Fine-tuning MLLMs boosts performance on new
tasks but often compromises on previous ones. In
contrast, MMER, which additionally incorporates
a fine-tuned MLLM (i.e., MMER-Clotho-AQA or
MMER-Flickr30k), demonstrates strong robustness.
It maintains nearly original performance on pre-
vious tasks and adapts effectively to new ones,
achieving results comparable to fine-tuned MLLMs.

6.73%

Audio Point

Vision Video

0.58% 8.24%

6.27% 2.41%

4.65% 9.27%
10.19%

2.55% 11.88%

6.88% 11.12%

6.76%6.21%

6.07%

Figure 5: Parameters overlap across modalities.

(ii) We further integrated both fine-tuned MLLMs
into MMER to showcase its performance in a cross-
modal multi-tasks scenario. As more MLLMs are
integrated, MMER continues to retain performance
across new and previous tasks, though its ability to
preserve performance slightly diminishes. Lastly,
we compared MMER with LoRA in Appendix E.1.
Detailed results for each task are provided in Ap-
pendix E.3.

6 Additional Results and Analysis

Performance & Storag vs. MLLM Quantity.
Figure 4 presents the performance retention of
merging different numbers of MLLMs in retention
experiments. We can see that performance declines
across all methods as more MLLMs are merged, in-
dicating intensified parameter conflicts. Neverthe-
less, MMER consistently outperforms other methods
with only minor degradation, while other methods
exhibit a noticeable drop when dealing with mul-
tiple MLLMs. This highlights the robustness of
parameter decoupling in mitigating conflicts. In
terms of storage, MMER significantly reduces costs
compared to maintaining individual MLLMs while
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preserving similar performance and enabling multi-
modal expansion. Although it requires about twice
the storage of model merging methods, it does not
increase inference parameters and delivers notable
performance improvements, striking an effective
balance between the two approaches. Storage com-
parison details are in Appendix C.

Parameters Overlap in Merged Task Vector.
Specifically, 40.43%, 55.36%, 64.49%, and 66.28%
of audio, video, vision, and point parameters, are
integrated into the merged task vector. The over-
lap between them shown in Figure 5, reveals a se-
vere conflict between parameters across modalities.
This underscores the need for MMER to decouple
key parameters and effectively mitigate conflicts.

Modality-Specific Masks Analysis. Figure 6
(left) illustrates the percentage of parameters se-
lected by different modality masks and compares
the performance retention of MMER with NaiveMC.
MMER achieves performance close to or even ex-
ceeding the original levels, indicating that cru-
cial modality-specific information is preserved af-
ter merging. Surprisingly, we find that the au-
dio mask, retaining only 2.2% of the parameters,
still contributes to performance retention. This
phenomenon aligns with previous research (Yu
et al., 2024), which noted that “Supervised fine-
tuned language models tend to acquire excessively
redundant delta parameters (i.e., task vectors).”
Our results further confirm that this holds true for
MLLMs as well. A detailed analysis and explana-
tion are provided in Appendix D.2.

Hyperparameters Analysis. Figure 6 (right) ex-
amines the effects of the TopK% hyperparameters
and the scaling factor λ. TopK% controls the spar-
sity of the original task vectors. Excessive sparsity

Expansion Retention
Method

ACC. Score (%) / ACC. (%)
MMER 56.82 24.17 (99.8) / 50.84 (99.4)

− Directional Congruence 7.20 10.05 (41.6) / 8.34 (16.7)

− Dominant Significance 33.87 14.71 (60.5) / 28.93 (57.1)

− Scaling Factor λ 54.02 23.14 (95.6) / 47.78 (93.9)

Table 4: Ablation study on parameter decoupling steps.

leads to marked performance degradation due to
insufficient information in the sparse parameters.
Conversely, insufficient sparsity fails to mitigate
parameter conflicts, thereby hindering the decou-
pling of parameters. The effect of the scaling factor
λ is akin to TopK%. The scaling factor λ regu-
lates the extent of information the mask extracts
from the merged task vector. If λ is too high, the
decoupled parameters lack effective information,
leading to performance collapse. Conversely, if λ
is too low, irrelevant parameters persist, resulting
in poor performance. In summary, TopK% and λ
work in tandem to regulate the amount of effective
information in the decoupled parameters.

Ablation Study. In Table 4, we begin with the
original parameter decoupling strategy and system-
atically remove components to evaluate their effec-
tiveness. Removing Directional Congruence means
selecting parameters based solely on Dominant Sig-
nificance, i.e., mi = 1{ |τi| ≥ 50% · λi|τ∗|}. Re-
moving Dominant Significance retains parameters
based only on the consistency of their signs, i.e.,
mi = 1{sign(τi) = sign(τ∗)}. Table 4 shows
these components are crucial for optimizing perfor-
mance. Specifically, Directional Congruence is the
most critical. Without it, the decoupled parameters
lose all original modality information and become
nearly meaningless. Next in importance is Dom-
inant Significance. Without filtering out crucial
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One New Task Two New Tasks
Method

Previous tasks New task Previous tasks New tasks
Storage

Model Tailor[ICML24] (Zhu et al., 2024b) 96.47 % 91.69 % 99.28 % 87.50 % 32(P + P ′)
MMER (ours) 99.86 % 99.67 % 99.63 % 99.42 % 64P + 32P ′ + NP

Table 5: Performance retention & Storage vs. Mitigating MLLMs’ catastrophic forgetting methods in the same
modality. Let N , P , and P ′ represent the number of new tasks, the total LLM parameters, and the modality-specific
component parameters, assuming each float parameter occupies 32 bits.

parameters, irrelevant ones persist and disrupt the
original parameters. Finally, the scaling factor λ
also plays a role in further enhancing performance.

MMER vs. Model Tailor. In Table 5, we com-
pare our MMER approach with the latest method
for mitigating catastrophic forgetting in MLLMs
within the same modality, since Model Tailor (Zhu
et al., 2024b) is unable to accommodate new tasks
across different modalities. The results show that
MMER consistently outperforms Model Tailor in
both single-task and multi-tasks scenarios, high-
lighting its effectiveness. Furthermore, as the num-
ber of new tasks increases, MMER maintains rela-
tively stable performance, whereas Model Tailor
exhibits a significant decline in performance on
new tasks (i.e., from 91.69% to 87.50%), despite
some improvement on previous tasks. However, a
minor drawback of MMER is that its storage cost is
approximately twice that of Model Tailor. Nonethe-
less, as the number of new tasks grows, MMER’s
practicality becomes more pronounced, making it a
more viable solution in scenarios where balancing
performance and storage efficiency is crucial.

7 Conclusion

In this paper, we propose MMER, a training-free
method that resolves the dilemma of multimodal
expansion for LLMs: costly retraining or subopti-
mal performance. MMER retains the multimodal en-
coders of existing MLLMs, merges their LLM pa-
rameters, and constructs binary masks to decouple
modality-specific parameters. This mechanism en-
ables independent handling of modality-specific in-
puts, reducing parameter conflicts. Besides, MMER
can reconstruct original MLLMs, effectively retain-
ing their performance and mitigating catastrophic
forgetting. We conducted extensive experiments
and analyses to validate the effectiveness and ro-
bustness of our MMER approach. We hope this work
inspires further exploration of training-free multi-
modal expansion for LLMs.
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We have focused exclusively on four commonly
used modalities, leaving out a thorough analysis
of the full range of potential modalities. Addition-
ally, finding multiple existing MLLMs with the
same architecture across modalities is currently
challenging, and due to limited computational re-
sources, experiments on larger-scale MLLMs are
constrained. Finally, although our MMER approach
does not increase inference parameters, the storage
cost is twice that of the base model.
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high-risk scenarios. Furthermore, the generalizabil-
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A Novelty and Contributions

Our research aims to achieve training-free multi-
modality expansion and retention for LLMs
through parameter merging and decoupling. We
conduct a comparative analysis with existing rele-
vant methods to demonstrate the innovation of our
MMER approach.

Comparison with NaiveMC and DAMC frame-
works. Our MMER approach is based on the
NaiveMC framework (Chen et al., 2024a) and em-
ploys a parameter dynamic decoupling strategy
similar to that of the DAMC framework (Chen
et al., 2024a) to mitigate parameter conflicts in
the merged MLLM. However, there are several key
differences:

1. Compared to the NaiveMC framework, our
MMER approach effectively enhances the mul-
timodal performance of the merged MLLM.

2. Compared to the DAMC framework, our
MMER approach employs a training-free pa-
rameter decoupling strategy instead of sep-
arating parameters during the initialization
training of the MLLMs and achieves sim-
ilar results. Additionally, MMER is addi-
tional compatible with full-parameter fine-
tuned MLLMs, whereas DAMC is restricted
to parameter-efficient fine-tuned MLLMs.

3. Compared to the NaiveMC and DAMC frame-
works, our MMER approach retains the per-
formance of the original MLLMs while also
providing additional capabilities to mitigate
catastrophic forgetting.

Our MMER approach integrates the strengths of the
NaiveMC and DAMC frameworks, while addition-
ally providing original performance retention capa-
bilities.

Comparison with training-free model merging
methods. Training-free model merging methods,
such as TA (Ilharco et al., 2023), TIES (Yadav
et al., 2023), PCB-Merging (Du et al., 2024a), and
DARE (Yu et al., 2024), are primarily designed
for merging models with identical architectures.
Consequently, they must be combined with the
NaiveMC framework to achieve multi-modality ex-
pansion for LLMs. These methods alleviate param-
eter conflicts in merged MLLMs to some extent,
leading to performance enhancement. However,

their overall effectiveness, both in terms of multi-
modal performance and retention of original per-
formance, falls significantly short compared to our
MMER approach.

Comparison with alignment and fine-tuning
methods. Compared to methods (Chen et al.,
2023a; Lyu et al., 2023; Han et al., 2024) that
achieve multimodal expansion for LLMs by adding
multiple new modality encoders or employing a
unified multimodal encoder followed by alignment
and fine-tuning, the advantages of our MMER ap-
proach are clear. MMER can effectively reuse a
large number of MLLMs from the open-source
community and merge them enabling multimodal
expansion without the need for extensive resources
and time spent on training models and constructing
high-quality modality instruction data.

Comparison with TALL-masks. TALL-
masks (Wang et al., 2024) is an information
localization algorithm that, similar to our approach,
compresses original parameters and subsequently
approximates their restoration. However, there are
several key differences:

1. From an algorithmic perspective, TALL-
masks overlooks the Consistency of original
and merged parameter signs. In contrast, we
have addressed this aspect and demonstrated
its effectiveness in our ablation experiments
(See Table 4).

2. In terms of application scenarios, our MMER
applies parameter merging and decoupling to
the multimodal expansion for LLMs, enhanc-
ing their multimodal capabilities. Addition-
ally, we utilize MMER to mitigate catastrophic
forgetting. These aspects are not considered
by TALL-masks.

3. Regarding the models utilized, the mod-
els used in our MMER approach are the 7B
MLLMs across various modalities, while
TALL-masks is applied to relatively smaller
models within the same modality, such as
T5 (Raffel et al., 2020) and ViT (Dosovitskiy
et al., 2021).

B Implementation and Experimental
Details

All our experiments are conducted on an NVIDIA
8×A800-SXM4-80GB machine.
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Modality Modality Encoder Connector Alignment Data Fine-tuneing Data Referenced Work
Image CLIP-ViT-L-336px

(Dosovitskiy et al.,
2021)

MLP LCS 558K (Xu et al.,
2024)

LLaVA-mixed 665K (Xu et al.,
2024)

LLaVA-1.5 (Liu
et al., 2024)

Audio BEATs-Iter3+ (Chen
et al., 2023b)

Q-Former WaveCaps 400K (Mei
et al., 2024)

OpenAQA filtered 350K (Gong
et al., 2024)

X-InstructBLIP
(Panagopoulou et al.,
2024)

Video LanguageBind (Zhu
et al., 2024a)

MLP LCS 558K,
Valley 702K (Luo et al.,
2023)

Video-ChatGPT 100K (Maaz
et al., 2024), LLaVA-mixed
sampled 140K

Video-LLaVA (Lin
et al., 2023)

Point
Cloud

Point Encoder (Xu
et al., 2024)

MLP PointLLM brief
description 660K (Xu
et al., 2024)

Point complex instruction 70K
(Xu et al., 2024)

PointLLM (Xu et al.,
2024)

Table 6: Training data and components of MLLMs for different modalities.

Stage Hyperparameter Image Audio Video Point Cloud

Alignment-State

Batch size 256 256 256 128
LR 1e-3 1e-3 1e-3 2e-3
LR Schedule cosine decay
Warmup Ratio 0.03
Epoch 1 1 1 3

Fine-tuning-Stage

Batch size 128 64 128 64
LR 2e-5 1e-5 2e-5 2e-5
LR Schedule cosine decay
Warmup Ratio 0.03
Epoch 1 3 1 3

Table 7: Hyperparameters of different MLLMs.

B.1 Performance Retention

Considering the varying modalities of each original
MLLM and the different evaluation metrics for
distinct tasks, we provide performance retention
in our results to validate the method’s capacity to
retain original performance. The definition is as
follows:

PR =
1

T

T∑

t=1

metric
x∼µt

[fmethod(x)]

metric
x∼µt

[
foriginal(x)

] (8)

where PR stands for performance retention and
the “metric” refers to various evaluation metrics,
such as accuracy and captioning scores(e.g., BLEU,
ROUGE) (Ren et al., 2022, 2021; Shi and Zhou,
2023).

B.2 Implementation Details of Parameter
Merging and Decoupling Process and
Original Fine-tuned MLLMs

For the parameter merging and decoupling process,
we set TopK to 80%, while λ was calibrated ac-
cording to the modality. We did not set the value of
α as we did not use the merged MLLM merging by
TIES in MMER. For fine-tuning the original MLLM,

we used the same training data and components of
each MLLM across the four modalities following
NaiveMC (Chen et al., 2024a). More details are
presented in Table 6. We adopted similar hyper-
parameters following previous works (Chen et al.,
2024a; Liu et al., 2024; Panagopoulou et al., 2024;
Lin et al., 2023; Xu et al., 2024). During the align-
ment stage, only the parameters in the connectors
were trainable. In the fine-tuning stage, we tuned
all connector parameters and base LLM parameters.
For training efficiency, we utilized DeepSpeed Zero
Optimization Stage 3. Detailed data are presented
in the Table 7.

B.3 Baseline Details

In this section, we provide a detailed overview of
the six baselines included in our experiments:

• Original MLLMs means that each MLLM is
evaluated on its corresponding modality tasks
to demonstrate its original performance, but
they cannot perform cross-modal tasks simul-
taneously.

• NaiveMC framework (Chen et al., 2024a)
combines modality-specific encoders from
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multiple MLLMs into the merged LLM,
which is obtained by averaging the parameters
of multiple LLMs from these MLLMs. The
averaging merging strategy can be replaced
by other model merging methods.

• TA (Ilharco et al., 2023) initially defines the
concept of task vector and employs arithmetic
operations for model merging, model forget-
ting, and support multi-tasks learning, etc.
The final model is formed by scaling and
adding task vectors to the initial model, rep-
resented mathematically as θm = θinit + λ ·∑n

t=1 τt.

• TIES (Yadav et al., 2023) improves upon
TA (Ilharco et al., 2023) by further mitigating
parameter interference. It first prunes redun-
dant parameters to retain the most important
ones. When encountering conflicts in parame-
ter signs during merging, it selects and merges
parameters with the majority sign while ignor-
ing those with minority signs.

• DARE (Yu et al., 2024) proposes a preprocess-
ing step to address parameters conflict. This
method randomly discards the majority of the
delta parameters while scaling the remaining
ones by θ′ = θ · (1/(1 − p)) where p is the
proportion of dropped delta parameters.

• Model Tailor (Zhu et al., 2024b) identifies the
key parameters fine-tuned on the new tasks
within the MLLM and integrates them into
the original MLLM, thereby retaining the per-
formance on previous tasks while adapting to
new tasks.

C Storage Cost Calculation

As shown in Figure 7, although model merging
methods maintain low storage costs that remain
constant regardless of the number of merging
MLLMs, their lower performance may constrain
their practical applicability. In contrast, main-
taining individual MLLMs preserves strong per-
formance for their respective modalities but fails
to achieve multimodal expansion and results in
linear growth in storage costs. Our MMER ap-
proach strikes an effective balance between these
approaches. It enables multimodal expansion while
retaining nearly 100% of the original MLLMs’
modality capabilities and provides additional re-
silience against catastrophic forgetting.

MMER (ours)

TIESNaiveMC

2 4 8

S
to

ra
g
e 

(G
b
)

Number of MLLMs

28

56

6

84

112

Fine-tuned TA

TIES (w/ DARE) TA (w/ DARE)

Figure 7: Storage cost vs. Number of MLLMs.

Additionally, we provide the calculation of stor-
age costs for MMER approach and the relevant meth-
ods mentioned above. Let N , P , P ′, and P ∗ repre-
sent the number of original MLLMs, the total pa-
rameters of the LLMs, the number of the modality-
specific component parameters, and the number
of additional trainable parameters of parameter-
efficient fine-tuning methods, respectively. As-
suming each float parameter occupies 32 bits, the
storage cost for these methods across N original
MLLMs is calculated as follows:

• Original fine-tuned models: 32N(P + P ′).
32(P + P ′) represents the number of parame-
ters contained in a single MLLM.

• NaiveMC framework: 32P + 32NP ′. Stores
a merged LLM and N modality-specific com-
ponents.

• DAMC framework: 32P + 32NP ′ +
2N(32P ∗). Stores a merged LLM and N
modality-specific components. 2N(32P ∗)
represents the need to store an additional 2N
trainable parameters of parameter-efficient
fine-tuning methods for parameter separation.

• NaiveMC wit TA / TIES / DARE: 32P +
32NP ′. Same as the NaiveMC framework.

• MMER: 64P + 32NP ′ + NP . 64P is for
storing the parameters of a base LLM and a
merged task vector, while 32NP ′ indicates N
modality-specific components. Additionally,
NP denotes the storage for N binary masks.
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Expansion Retention
ACC. Score / ACC.

MMER (Manhattan) 56.82 24.17 / 50.84
MMER (Euclidean) 56.05 23.89 / 50.41

Table 8: Results of MMER with Manhattan distance or
Euclidean distance

D More Analysis

D.1 Rationale for Using The Manhattan
Distance

Firstly, we do not adopt methods like
Fisher (Matena and Raffel, 2022) or Reg-
mean (Jin et al., 2023), which require additional
gradient-based computations to obtain the in-
formation matrix, as they demand substantial
computational resources or data. Inspired by
TIES (Yadav et al., 2023) and DARE (Yu et al.,
2024), which propose that “Supervised fine-tuned
language models tend to acquire excessively
redundant delta parameter”, we aim to decouple
the most critical parameter of each modality from
the merged task vector so that the decoupled
parameters are as close as possible to the original
task vectors.

Based on the aforementioned concept, we de-
cided to use a binary mask matrix to directly mask
out irrelevant parameters in the merged task vec-
tor, retaining only the key information related to
each modality. We chose to use the Manhattan
distance to optimize the mask mainly due to its
mathematical properties and its promotion of spar-
sity in high-dimensional parameter spaces.

In particular, since most of the delta parameters
are redundant, this implies that most elements in
the mask should be zero, with only a few elements
set to 1. By minimizing the Manhattan distance,
we can easily achieve this goal because the gradient
of parameter updates with respect to the Manhat-
tan distance is constant. This makes it more likely
to penalize smaller non-zero parameters and drive
them to zero, thus encouraging the sparsity of the
mask. Moreover, these smaller non-zero parame-
ters are often redundant (Yadav et al., 2023), which
are the ones we wish to mask out.

Furthermore, Manhattan distance directly mea-
sures the element-wise difference between the
merged task vector and the original task vectors.
This comparison can precisely capture which pa-
rameters have undergone significant changes dur-
ing fine-tuning and which parameters are irrelevant

Directional Alignment Average Magnitude
Vision 69.20% 5e-4
Audio 50.62% 8e-5
Video 57.58% 2e-4
Point 70.09% 5e-4

Table 9: Percentage of parameters whose directions
align with those in the merged task vector and the aver-
age magnitude of the parameters across the task vectors
of the four modalities

noise. Finally, We conducted both multi-modality
expansion and retention experiments by replacing
the Manhattan distance with the Euclidean distance.
The results presented in the Table 8 validated the
effectiveness of using Manhattan distance.

D.2 Modality-Specific Masks Further
Analysis

We construct the audio mask by comparing the
merged task vector with the original audio MLLM
task vector. Thus, the audio mask selecting only
2.2% of the parameters reflects the significant dif-
ference between these two task vectors. Next, we
analyze why the remaining 97.8% of parameters
were not selected. There are two possible reasons
for the unselected parameters:

1. The signs of τ (p)∗ and τ
(p)
audio are opposite.

2. The signs of τ (p)∗ and τ
(p)
audio are the same, but

the magnitude of τ (p)audio is too small.

We examined the percentage of τ (p)i whose signs
align with those in the merged task vector and the
average magnitude of τ (p)i across four modalities,
the results are shown in Table 9.

It is evident that the direction mismatch is not
the primary cause, as the percentage differences in
directional alignment across the four modalities are
relatively small. However, we found that the magni-
tude of the audio task vector is significantly smaller
than those of the other modalities. This indicates
that the original audio MLLM is highly similar to
the pre-trained LLM. As a result, the merged model
(97.8% of the parameters from the pre-trained LLM
with 2.2% of the parameters activated by the audio
mask from the merged task vector) only needs to
activate 2.2% of the key parameters to retain its
audio performance.
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7 Original Image Tasks New Tasks
Task (→)

VQAv2 GQA TextVQA VizWiz ScienceQA POPE OK-VQA Avg. Flickr30k
Method (↓) Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc. Score

Original MLLMs 78.11 61.52 55.89 51.51 71.12 86.17 31.33 62.23 51.26
Fine-tune on Flickr30k 72.27 54.19 46.10 52.88 70.22 76.28 28.31 57.25 57.71
Lora 75.72 58.24 52.87 52.64 70.63 85.08 29.21 60.63 54.85
MMER-Flickr30k (ours) 77.75 61.43 55.41 52.72 71.75 85.72 31.07 62.27 57.08

Table 10: The results of MMER and LoRA fine-tuning on original vision LLM for Flickr30k.

D.3 Analysis of Performance Improvement in
Multi-Modality Retention Experiment

Firstly, the performance gain is not due to the re-
moval of redundant parameters. In general, as more
parameters are removed, performance tends to de-
grade (Yadav et al., 2023; Yu et al., 2024). This
trend was also evident in our analysis (see Figure 6
(right)), where increasing the Dominant Signifi-
cance λ·50% resulted in a reduction of selected
parameters for each modality, leading to a gradual
decline in performance.

So, what accounts for the performance improve-
ment? We hypothesize that the parameters selected
by the mask overlap with parameters from other
modalities. To explore this further, we analyzed
the overlap of the parameters selected by the au-
dio mask with those from other modalities. We
found that 41.7% of these parameters do not over-
lap with any other modality, while 23.2%, 21.1%,
and 22.1% overlap with the video, vision, and point
modalities, respectively.

It is possible that the model benefits from addi-
tional knowledge embedded in these overlapping
parameters, such as prior knowledge or instruction-
following capabilities. To validate this hypothesis,
we replaced the overlapping parameters with the
original audio task vector and conducted experi-
ments on three audio tasks, yielding results of 24.71
(97.6%) / 24.32 (98.4%). Notably, the performance
improvement was lost, which confirms the validity
of our analysis.

E Detailed Results and Extended
Experiments

E.1 Mitigating Catastrophic Forgetting
Experiments

MMER vs. LoRA. We fine-tuned a LoRA adapter
on original vision MLLM for Flickr30k, with the
detailed results presented in Table 10. The results
show that LoRA improves performance on target
tasks but inevitably leads to a decline in perfor-

Task (→)
Model (↓)

ModelNet40 MUSCI-AVQA

Vision MLLM 51.94 44.06
Audio MLLM - 30.63
Video MLLM - 47.72
Point MLLM 21.27 -
MMER (ours) 62.15 53.54

Table 11: Accuracy (%) results of four original uni-
modal models on the multimodal tasks.

mance on previous tasks, although this decline is
less severe compared to full-parameter fine-tuning.
In contrast, our MMER approach outperforms LoRA
on target tasks, while causing almost no degrada-
tion in previous tasks. However, this comes at
the cost of increased storage overhead. Both ap-
proaches have distinct advantages and disadvan-
tages, enabling users to select the most suitable
method based on their specific requirements.

More importantly, our approach addresses an
additional application scenario. In the open-
source community, models are typically catego-
rized into adapter-based models and full-parameter
fine-tuned models. While the former can be eas-
ily integrated into existing models, the latter lacks
such adaptability. Our approach bridges this gap
by providing a solution to seamlessly incorporate
full-parameter fine-tuned models.

E.2 Further Results of Multi-Modality
Expansion Experiments

We supplemented the results of four original uni-
modal models on the multimodal tasks for a fairer
comparison. Since MCUB cannot be evaluated
using unimodal models, we excluded it from the
analysis. As shown in Table 11, we observe
that MMER consistently outperforms the unimodal
models. This advantage arises from MMER’s in-
tegration of additional modal information. This
demonstrates MMER’s ability to effectively decou-
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7 Image Tasks
Task (→)

VQAv2 GQA TextVQA VizWiz ScienceQA POPE OK-VQA
Method (↓) Acc. Acc. Acc. Acc. Acc. Acc. Acc.

Original MLLMs 78.11 61.52 55.89 51.51 71.12 86.17 31.33
MMER (ours) 77.95 61.85 55.74 52.26 71.16 86.58 31.27

–Multi-Modality Retention

NaiveMC [ACL2024] (Chen et al., 2024a) 59.73 45.83 42.29 47.87 68.52 79.41 24.28
TA [ICLR23] (Ilharco et al., 2023) 62.71 48.86 45.20 49.47 70.04 82.38 25.56
TIES [NeurIPS23] (Yadav et al., 2023) 61.78 48.23 44.60 48.67 69.05 81.21 25.13
NaiveMC (w/ DARE[ICML2024] (Yu et al., 2024)) 60.91 46.62 42.88 49.04 70.09 81.08 24.62
TA (w/ DARE) 63.65 49.25 45.74 49.82 70.87 83.12 25.82
TIES (w/ DARE) 62.54 48.73 45.38 49.15 69.78 82.17 25.39

–Mitigating Catastrophic Forgetting

Fine-tune on Flickr30k 72.27 54.19 46.10 52.88 70.22 76.78 28.31
MMER-Clotho-AQA 77.87 61.59 55.51 51.88 71.16 86.24 31.14
MMER-Flickr30k 77.75 61.43 55.41 52.72 71.75 85.72 31.07
MMER-Clotho-AQA+Flickr30k 77.32 61.33 55.23 52.33 71.02 85.43 30.94

Table 12: Results for each method on seven image tasks. All tasks are Question-Answering tasks.

2 Point Tasks
Task (→)

ModelNet40 Objavers-captioning
Method (↓) Acc. BLEU-1 ROUGE-L METEOR Sentence-BERT SimCSE

Original MLLMs 21.27 4.73 8.51 12.02 44.18 46.31
MMER (ours) 22.49 5.06 8.53 11.90 43.72 46.51

–Multi-Modality Retention

NaiveMC [ACL2024] (Chen et al., 2024a) 20.49 4.43 8.24 11.37 43.22 45.97
TA [ICLR23] (Ilharco et al., 2023) 21.02 4.69 8.46 11.73 43.55 46.38
TIES [NeurIPS23] (Yadav et al., 2023) 20.83 4.55 8.39 11.60 43.29 46.27
NaiveMC (w/ DARE[ICML2024] (Yu et al., 2024)) 20.77 4.41 8.38 11.59 43.47 46.28
TA (w/ DARE) 21.25 4.81 8.49 11.82 43.67 46.42
TIES (w/ DARE) 20.98 4.62 8.31 11.47 43.14 46.28

–Mitigating Catastrophic Forgetting

MMER-Clotho-AQA 21.87 4.92 8.46 11.52 43.55 46.28
MMER-Flickr30k 22.03 5.08 8.55 11.63 43.61 46.36
MMER-Clotho-AQA+Flickr30k 21.56 4.98 8.39 11.38 43.34 46.02

Table 13: Results for each method on two point cloud tasks. Among them, ModelNet40 is a classification task,
while Objavers is a captioning task.

ple modality parameters, enabling it to handle in-
puts from different modalities more efficiently, and
highlights its strength in enhancing multimodal un-
derstanding.

E.3 Detailed Results

In this section, we present detailed results from
the multi-modality retention and mitigating catas-
trophic forgetting experiments. The results of vari-
ous baselines for seven vision tasks are shown in
Table 12, two point cloud tasks in Table 13, three
audio tasks and two video tasks in Table 14, three
multimodal tasks in Table 15, and the last two new
tasks in Table 16.

F Qualitative Results

We provide qualitative results in Figure 8. These
results demonstrate the capability of the merged
MLLM constructed by our MMER approach to un-
derstand and reason with multimodal inputs.

G Prompt for Evaluation

We present the evaluation prompts for each bench-
mark in Table 17. To denote the inputs for var-
ious modalities, we use “<image>”, “<audio>”,
“<video>”, and “<point>” to represent vision, au-
dio, video, and point cloud modalities, respectively.
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3 Audio Tasks 2 Video Tasks
Task (→)

TUT VocalSound Clotho MSVD MSRVTT
Method (↓) Acc. Acc. CIDEr SPICE SPIDEr Acc. Acc.
Original MLLMs 22.23 27.19 38.63 11.98 25.29 48.40 31.18
MMER (ours) 34.14 42.88 38.49 11.93 25.18 48.12 30.43
–Multi-Modality Retention

NaiveMC [ACL2024] (Chen et al., 2024a) 29.50 31.80 37.56 11.61 24.61 44.53 29.31
TA [ICLR23] (Ilharco et al., 2023) 30.64 33.12 37.69 11.67 24.69 45.61 29.54
TIES [NeurIPS23] (Yadav et al., 2023) 30.87 33.42 37.89 11.72 24.78 45.88 29.74
NaiveMC (w/ DARE[ICML2024] (Yu et al., 2024)) 30.50 32.75 37.75 11.66 24.74 45.69 29.58
TA (w/ DARE) 30.98 33.90 37.87 11.69 24.89 45.51 29.54
TIES (w/ DARE) 31.59 34.45 37.96 11.87 24.92 46.07 29.93
–Mitigating Catastrophic Forgetting

Fine-tune on Clotho-AQA 6.98 17.65 30.02 9.40 20.04 - -
MMER-Clotho-AQA 34.01 42.45 38.37 11.89 25.11 48.04 30.29
MMER-Flickr30k 33.41 41.94 38.10 11.81 24.98 47.74 30.05
MMER-Clotho-AQA+Flickr30k 33.54 41.83 37.97 11.76 24.92 47.38 29.67

Table 14: Results for each method on three audio tasks and two video tasks. Among them, TUT, VocalSound,
MSVD, and MSRVTT are the classification tasks, while Clotho is a captioning task.

Task (→) ModelNet40 MUSCI-AVQA MCUB
Method (↓) PI-T IA-T VI-T VA-T AVI-T AVP-T AIP-T VIP-T AVIP-T

MMER-Clotho-AQA 61.98 47.01 51.22 51.43 56.08 59.11 65.08 55.80 61.08

MMER-Flickr30k 61.84 46.92 51.05 51.56 56.28 58.90 65.08 55.40 60.93

MMER-Clotho-AQA+Flickr30k 61.33 46.48 50.61 51.17 55.68 57.93 64.17 55.20 60.42

Table 15: Results of the mitigating catastrophic forgetting experiments for three MMER variants on multimodal tasks
with different combinations of video (V), image (I), audio (A), point cloud (P), and text (T) inputs.

Task (→) Clotho-AQA Flickr30k
Method (↓) Acc. CIDEr METEOR BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE

Original MLLMs 49.40 80.27 25.62 73.29 55.81 41.11 29.66 53.11
Fine-tune on Clotho-AQA 57.80 - - - - - - -
Fine-tune on Flickr30k - 94.25 27.74 78.27 62.24 47.99 36.50 57.04

MMER (ours) 49.28 79.56 25.56 73.11 55.62 40.83 29.49 52.82
MMER-Clotho-AQA 57.71 79.72 25.51 73.04 55.48 40.72 29.33 52.77
MMER-Flickr30k 48.94 92.74 27.58 77.93 61.69 47.36 36.02 56.27
MMER-Clotho-AQA+Flickr30k 57.52 92.09 27.29 77.22 61.11 46.86 35.62 55.72

Table 16: Results of the mitigating catastrophic forgetting experiments for each method on two new tasks. Among
them, Clotho-AQA is a Question-Answering task, while Flickr30k is a captioning task.

30885



The image features a cat wearing a hat that is made of a 

pattern of orange and black stripes. The cat is looking 

directly at the camera with its green eyes, and its fur is a mix 

of orange and black. The cat's ears are perked up and its 

whiskers are visible. The hat is pulled down slightly over the 

cat's eyes, giving it a playful and mischievous look. The 

background is blurry, suggesting that the cat is the main 

focus of the image.

Describe this image in detail.

The audio clip features a man speaking, followed by a car 

engine revving and tires screeching. The man's speech is 

difficult to understand due to the loud car noise. The car is 

accelerating and the engine is revving at a high RPM, 

creating a loud and intense sound. The tires screech as the 

car takes off, adding to the overall excitement of the scene.

Describe this audio in detail.

[Car Rev and Screech]

There are two people in this video. 

How many people are in this 

video?  

What are they doing?

The man is holding a baby in his arms and smiling while the 

baby is sleeping.

This species is a blue shark.

What is this species?

Tell me more about this shark.

The shark in the image is a blue shark, which is a species of 

open ocean pelagic shark. It is a large shark, with a length of 

up to 21 feet and a weight of up to 1,100 pounds. The blue 

shark is known for its distinctive blue coloration, which is 

caused by a layer of reflective cells that help it blend into the 

surrounding water. It is a fast swimmer and can reach speeds 

of up to 35 miles per hour. 

Yes, the object in the point cloud, which is a car, can produce 

the sound in the audio. The sound is likely a car horn or a 

police siren.

Can the object in the point cloud produce the sound in the audio?

[Car horn sound]

No, the animal in the image is a dog and the point cloud is a 

Squirrel.

Are the specie of the animal in the image the same as that in 

the point cloud?

[Baby Laughs 

and Man Singing ]

The theme of this image, video, and audio is the bond 

between the parent and their child. The woman in the image 

is seen holding and caring for her baby, while the video and 

audio feature a man singing to his child, showcasing the love 

and affection he has for the baby. The theme of family and 

parenthood is prevalent in all three pieces of media, 

emphasizing the importance of nurturing and caring for 

one's child.

Describe the theme this image has in common with this video 

and this audio in detail.

Yes, the object in the image is a motorcycle, and the sound in 

the audio is a motorcycle engine.

Can the object in the image produces the sound in the audio?

[Motorcycle engine]

The audio is a recording of a group of people on a boat, with 

some of them speaking and others making noise.  There are 

also sounds of water and wind.  The audio seems to be from 

a different source than the image, which shows a boat with 

people on it, but it is possible that the audio was recorded at 

the same time as the image.  The people on the boat are 

laughing and having a good time.  The audio is not clear 

enough to make out what is being said, but it seems to be a 

group of people having a good time on a boat.

Describe this audio in detail.  Can 

this image produce this audio?
[Crowd Chatter]

The image depicts a small boat, likely a gondola, carrying a 

large group of people on a river. The boat is covered in a 

canopy, and the passengers are holding umbrellas of various 

colors to protect themselves from the rain. The passengers 

appear to be mostly tourists, as they are dressed in casual 

clothing and some are taking photographs. The boat is being 

rowed by a man wearing a hat and a striped shirt. The river 

is lined with buildings on either side, including a bridge with 

a red roof in the background. The scene is peaceful and 

serene.

Describe this image in detail.

The object in the video is a goldfish. It can be in the river of 

the image.

What is the object in the video? 

Could it be in the image?

The object in the point is a car. It is possible that the car is in 

the image, but it is not explicitly shown.

What is the object in the point? 

Could it be in the image?

Figure 8: Qualitative results.
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Benchmark Modality Prompt Template

AVI-T Based on four input entities:\nimage <image>\naudio
<audio>\nvideo <video>\n {Question} {Options} Answer with
the option’s letter from the given choices directly.

AVP-T Based on four input entities:\naudio <audio>\nvideo
<video>\npoint <point>\n {Question} {Options} Answer with
the option’s letter from the given choices directly.

MCUB VIP-T Based on four input entities:\nimage <image>\nvideo
<video>\npoint <point>\n {Question} {Options} Answer with
the option’s letter from the given choices directly.

AIP-T Based on three input entities:\nimage <image>\naudio
<audio>\npoint <point>\n {Question} {Options} Answer with
the option’s letter from the given choices directly.

AVIP-T Based on four input entities:\nimage <image>\naudio
<audio>\nvideo <video>\npoint <point>\n {Question} {Options}
Answer with the option’s letter from the given choices directly.

VI-T Based on the video <video> and image <image>\n{Question}
\nAnswer the question using a single word.

MUSIC-AVQA VA-T Based on the video <video> and audio <audio>\n{Question}
\nAnswer the question using a single word.

IA-T Based on the image <image> and audio <audio>\n{Question}
\nAnswer the question using a single word.

ModelNet40 PI-T Based on rendered image <image> and point cloud
<point>\nWhat is this? Select from these objects: {Options}
Answer the question using a single word.

I-T <point>\nWhat is this? Select from these objects: {Options}
Answer the question using a single word.

Objaverse I-T <point>\nOffer a clear and concise description of this point cloud
object.

VocalSound & TUT A-T <audio>\nWhich of the following categories does this audio
belong to? {Options} Answer the question using a single word.

Clotho A-T <audio>\nDescribe this audio in detail.
Clotho-AQA A-T <audio>\n{Question}\nAnswer the question using a single word

or phrase.

MSRVTT & MSVD V-T <video>\n{Question}\nAnswer the question using a single word
or phrase.

VQAv2 & GQA &
POPE & OK-VQA

I-T <image>\n{Question}\nAnswer the question using a single word
or phrase.

Textvqa I-T <image>\n{Question}\nReference OCR token:
{Options}\nAnswer the question using a single word or phrase.

VizWiz I-T <image>\n{Question}\nWhen the provided information is
insufficient, respond with ’Unanswerable’.\nAnswer the question
using a single word or phrase.

ScienceQA I-T <image>\n{Context}\n{Question}\nChoose the most likely ratio.
{Options}

Flickr30k I-T <image>\nDescribe this image using one or more simple
sentences.

Table 17: Prompt Template for different evaluation benchmarks.
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