
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 30848–30865
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Benchmarking LLMs and LLM-based Agents
in Practical Vulnerability Detection for Code Repositories

Alperen Yildiz1, Sin G. Teo2, Yiling Lou3, Yebo Feng4, Chong Wang4*, Dinil Mon Divakaran2

1National University of Singapore, Singapore
2Institute for Infocomm Research (I2R), A*STAR, Singapore

3Fudan University, China
4Nanyang Technological University, Singapore

Abstract

Large Language Models (LLMs) have shown
promise in software vulnerability detection,
particularly on function-level benchmarks like
Devign and BigVul. However, real-world de-
tection requires interprocedural analysis, as
vulnerabilities often emerge through multi-
hop function calls rather than isolated func-
tions. While repository-level benchmarks like
ReposVul and VulEval introduce interproce-
dural context, they remain computationally ex-
pensive, lack pairwise evaluation of vulner-
ability fixes, and explore limited context re-
trieval, limiting their practicality.

We introduce JITVUL, a JIT vulnerability de-
tection benchmark linking each function to
its vulnerability-introducing and fixing com-
mits. Built from 879 CVEs spanning 91
vulnerability types, JITVUL enables compre-
hensive evaluation of detection capabilities.
Our results show that ReAct Agents, leverag-
ing thought-action-observation and interproce-
dural context, perform better than LLMs in
distinguishing vulnerable from benign code.
While prompting strategies like Chain-of-
Thought help LLMs, ReAct Agents require
further refinement. Both methods show in-
consistencies, either misidentifying vulnera-
bilities or over-analyzing security guards, in-
dicating significant room for improvement.

1 Introduction

Given the success of large language models
(LLMs) across various application domains, re-
searchers have begun exploring their effective-
ness in software vulnerability detection. On well-
known vulnerability detection benchmarks such
as Devign (Zhou et al., 2019) and BigVul (Fan
et al., 2020), LLMs—particularly those fine-tuned
on code—have shown promising results, suggest-
ing their potential for real-world applications.

*Chong Wang is the corresponding author.

Benchmark # CVEs # CWEs Pairwise Agents Eval
ReposVul 6,134 236 ✗ ✗

VulEval 4,196 5 ✗ ✗

Lomio et al. 27 11 ✓ ✗

JITVUL (ours) 879 91 ✓ ✓

Table 1: Comparison of JITVUL with existing bench-
marks for repository-level vulnerability detection.

However, a significant gap exists between these
widely used benchmarks and the requirements for
real-world vulnerability detection in code repos-
itories (Wang et al., 2024; Wen et al., 2024b).
These benchmarks primarily focus on function-
level vulnerability detection, where a single func-
tion is input to a detector for label prediction
without considering the broader repository con-
text. In contrast, real-world vulnerabilities—such
as null pointer dereference (NPD)—often arise
within multi-hop function call chains, and not in
isolated functions. Detecting such vulnerabilities
requires tracing interprocedural call relationships
and understanding the relevant code elements like
branch conditions (Risse and Böhme, 2024a).

To address these limitations, recent studies
have shifted towards repository-level detection
scenarios, enabling more realistic benchmark-
ing of LLMs for vulnerability detection. Re-
posVul (Wang et al., 2024) and VulEval (Wen
et al., 2024b) are two benchmarks that enhance the
detection process by extracting callers and callees
for a target function from the code repository,
providing interprocedural context. These callers
(functions that call the target function) and callees
(functions called by the target function) are selec-
tively fed into LLMs to assess the vulnerability of
the target function. Findings from these bench-
marks show that while LLMs benefit from the ad-
ditional interprocedural context, they still exhibit
low effectiveness in real-world scenarios, particu-
larly when fine-tuning is not applied.

Although existing works have provided valu-

30848

able insights into the effectiveness of LLMs
for repository-level vulnerability detection, sev-
eral key limitations remain in achieving more
comprehensive benchmarking. First, in exist-
ing repository-level vulnerability detection ap-
proaches, all functions within a code repository
are treated as target functions for vulnerability de-
tection. This approach becomes computationally
expensive and impractical, particularly for large
repositories like the Linux kernel. Second, the
benchmarks do not effectively assess the capabil-
ity of LLMs in distinguishing between vulnera-
ble functions and those where the vulnerability
has been patched. As highlighted by a recent
study (Risse and Böhme, 2024b), this is a critical
limitation of machine learning-based vulnerability
detection methods. Finally, the integration of in-
terprocedural context (i.e., callers and callees) has
mostly been limited to retrieval-based strategies,
leaving many potential approaches underexplored.
LLM-based agentic methods, such as ReAct (Yao
et al., 2022), offer the potential for on-demand, it-
erative acquisition of interprocedural context, en-
abling more adaptive analysis.

To bridge the gap, we target the task of just-in-
time (JIT) vulnerability detection (Lomio et al.,
2022), a more practical approach for identifying
vulnerabilities in code repositories. Unlike prior
methods that analyze all functions in a reposi-
tory, JIT vulnerability detection is triggered only
for functions modified in a commit, with inter-
procedural context provided. Inspired by prior re-
search (Risse and Böhme, 2024b), we construct a
pairwise benchmark called JITVUL for JIT vul-
nerability detection, where each target function
is linked to both a vulnerability-introducing com-
mit and a vulnerability-fixing commit. To achieve
this, we first select 879 Common Vulnerabili-
ties and Exposures (CVE) entries, each repre-
senting a unique vulnerability, from PrimeVul, a
high-quality function-level detection dataset (Ding
et al., 2024). We then extract target functions from
the vulnerability-fixing commits explicitly refer-
enced in the CVE entries, obtaining both their vul-
nerable and patched versions. Finally, we ana-
lyze the commit history of each vulnerable func-
tion to identify the corresponding vulnerability-
introducing commit. The resulting JITVUL com-
prises 1,758 paired commits spanning 91 Common
Weakness Enumerations (CWEs).

We implement LLMs and ReAct Agents with
various prompting strategies and foundation mod-

els to assess their effectiveness in JIT vulnerabil-
ity detection. Our evaluation on JITVUL uncovers
several key findings. A higher F1 score doesn’t
always reflect a method’s ability to capture vul-
nerability characteristics, highlighting the need for
pairwise evaluation. ReAct Agents, using their
thought-action-observation framework and inter-
procedural context, better differentiate between
vulnerable and benign versions. While strategies
like CoT and few-shot examples boost LLMs’ per-
formance, ReAct Agents need more tailored de-
signs. Both LLMs and ReAct Agents often ex-
hibit inconsistent analysis patterns between the
vulnerable and benign versions, indicating a lack
of robustness in vulnerability analysis. These find-
ings highlight key areas for future research in vul-
nerability detection: (i) developing more com-
prehensive evaluation guidelines for benchmark-
ing LLMs and LLM-based agents in JIT vulner-
ability detection, (ii) exploring advanced prompt-
ing strategies for improving LLM-based agents in
vulnerability detection, and (iii) designing robust
reasoning models tailored to vulnerability analy-
sis that capture the true essence of vulnerabilities,
rather than relying on speculation.

This paper makes the following contributions:

• We introduce JITVUL, a benchmark for just-
in-time (JIT) vulnerability detection in code
repositories, consisting of 1,758 pairwise com-
mits spanning 91 vulnerability types.

• We implement ReAct agents with various
prompting strategies and foundation models
and evaluate their effectiveness in leveraging
interprocedural context for JIT detection.

• Our experimental results provide valuable in-
sights into the application of LLMs and LLM-
based agents for real-world vulnerability de-
tection. We explore the necessity of pairwise
evaluation, the advantages and disadvantages
of LLMs and ReAct agents, and the impact of
prompting designs and foundation models.

• We release all code and data at this repository.

2 Related Work

2.1 Vulnerability Detection Benchmarks

Several benchmarks have been proposed
for function-level vulnerability detection.
BigVul (Fan et al., 2020) collects C/C++
vulnerabilities from the CVE database, filtering
out entries without public Git repositories, and
labels functions as vulnerable or non-vulnerable

30849

https://anonymous.4open.science/r/JitVul-C6C7/

based on commit fixes. MegaVul (Ni et al., 2024)
improves upon existing benchmarks by using code
parsing tools for accurate function extraction and
de-duplicating functions referenced by multiple
CVEs. DiverseVul (Chen et al., 2023) ensures
data quality by filtering vulnerability-introducing
commits with specific keywords and dedupli-
cating function bodies with hash functions.
PrimeVul (Ding et al., 2024) addresses data
quality challenges by proposing filtering rules to
handle noise labels and duplicated functions.

For repository-level vulnerability detection, Re-
posVul (Wang et al., 2024) addresses issues with
tangled and outdated patches, using trace-based
filtering to ensure data quality and integrating
repository-level features to provide richer con-
text for detection. VulEval (Wen et al., 2024b)
provides a framework that collects high-quality
data from sources like Mend.io Vulnerability
Database (Mend.io, 2025) and National Vulnera-
bility Database (NIST, 2025), including contex-
tual information like caller-callee relationships.

2.2 LLM-based Vulnerability Detection
Recent studies have explored the use of LLMs for
vulnerability detection, highlighting their ability
to enhance both the identification and explanation
of software vulnerabilities. InferROI (Wang et al.,
2025) enhances static resource leak detection with
LLM-inferred resource operation oriented inten-
tions. LLM4SA (Wen et al., 2024a) integrates lan-
guage models with SAST tools, leveraging LLMs
to inspect static analysis warnings and signifi-
cantly reduce false positives. LLM4Vuln (Sun
et al., 2024) enhances LLM execution by incorpo-
rating more context through a retrieval-augmented
generation (RAG) pipeline and static analysis.
LSAST (Keltek et al., 2024) further explores
context augmentation, comparing multiple RAG
pipelines using static analysis outputs, vulnera-
bility reports, and code abstraction. Similarly,
Vul-RAG (Du et al., 2024) constructs a vector
database of vulnerability reports alongside an lan-
guage model engine. (Zhou et al., 2024b) intro-
duce a voting mechanism that combines SAST
tools and LLMs for vulnerability detection.

2.3 LLMs and LLM-based Agents
Various methods have been explored to enhance
LLM performance, with prompt augmentation be-
ing a key approach that enriches prompts to im-
prove the model’s reasoning process. Chain-of-

thought (CoT) prompting (Wei et al., 2022) is one
of the most widely used techniques, where in-
structions like “Let’s think step by step” guide the
model to break problems into sub-problems. Few-
shot prompting (Brown et al., 2020) is another
common method, providing example traces to en-
able in-context learning without modifying model
weights. Both CoT and few-shot prompting are
frequently employed in LLM-based vulnerability
detection (Zhou et al., 2024b; Wen et al., 2024a).

Agentic architectures are among the most
promising state-of-the-art technologies but remain
underexplored in vulnerability detection (Zhou
et al., 2024a). (Yao et al., 2022) introduce Rea-
soning and Acting (ReAct) agents, which gener-
ate reasoning and action traces in an interleaved
manner to interact with their environment and an-
alyze resulting observations. This iterative pro-
cess continues until the agent determines a final
answer. Reflexion agents (Shinn et al., 2023)
are similar to ReAct agents however they focus
on self-reflection and dynamic memory updates
alongside with reinforcement learning. Self-refine
agents (Madaan et al.) are another type of agents
where the same language model is instructed to
provide feedback based on the output. There have
also been several multi-agent systems, such as
Alpha-Codium (Ridnik et al.), where the agents
are represented as nodes on graphs.

3 JITVUL: Just-in-Time Vulnerability
Detection for Code Repositories

In this section, we outline the requirements for
just-in-time (JIT) vulnerability detection in the
context of benchmarking LLMs and LLM-based
agents, and introduce a benchmark derived from
real-world vulnerabilities.

3.1 Problem Statement

Benchmarking vulnerability detection in real-
world code repositories requires considering three
key practicality requirements:

• Interprocedural Context. Many vulnerabil-
ities originate from interprocedural interac-
tions, even though their manifestation and re-
quired fixes often occur within individual func-
tions (Wang et al., 2024). For instance, a
null pointer dereference (NPD) vulnerability
may arise when a pointer initialized as null in
one function is improperly dereferenced in an-
other function along the execution path. Identi-

30850

fying such vulnerabilities necessitates analyz-
ing interprocedural dependencies, as examin-
ing functions in isolation is insufficient. A re-
cent study (Li et al., 2024) reports that approx-
imately 24.3% of vulnerabilities in real-world
C/C++ projects are interprocedural, typically
requiring an average of 2.8 levels of call rela-
tionships.

• Scalability. A straightforward application of
learning-based methods to vulnerability de-
tection for code repositories entails scanning
each function individually and predicting a
binary label. However, in the context of
LLMs and LLM-based agents, this approach
becomes computationally infeasible for large-
scale repositories due to the high processing
costs and resource constraints associated with
analyzing extensive codebases. A more practi-
cal strategy is to focus on a limited set of can-
didate functions. Just-in-time vulnerability de-
tection (Lomio et al., 2022) exemplify this by
prioritizing functions that have been newly in-
troduced or modified in commits.

• Pairwise Comparison. Traditional evalua-
tion methods for machine learning-based vul-
nerability detection present models with la-
beled vulnerable code alongside other func-
tions in the repository. However, recent find-
ings (Risse and Böhme, 2024b) suggest that
models struggle to distinguish between vul-
nerable code and its patched, benign version,
indicating an over-reliance on superficial pat-
terns rather than meaningful vulnerability in-
dicators. This highlights the necessity of pair-
wise benchmarking to ensure reliable evalua-
tion of vulnerability detection methods.

Although recent works address some of these
requirements, to the best of our knowledge, no
study fully satisfies all three. For example, Prime-
Vul (Ding et al., 2024) is a high-quality pairwise
dataset, but it focuses on function-level detection.
On the other hand, VulEval (Wen et al., 2024b) is a
repository-level detection benchmark, but it lacks
pairwise evaluation and considers only callers and
callees modified in the same commit when extract-
ing interprocedural dependencies.

3.2 Task Definition

We define the task of just-in-time vulnerability de-
tection as follows. Given a code repository R and
a target function f modified in a commit, the task

CVE Entry

Fix Commit

Repository

Step 1:
Vulnerability Entry

Selection

Vulnerable
Version

Benign
Version

Step 2:
Target Function

Extraction

Commit History

Vul-intro Vul-fix

Step 3:
Pairwise Commits

Identification

JITVul

A Pairwise
Benchmark for
JIT Detection

(879 CVEs)

Figure 1: Construction process of JITVUL.

is formulated as:
JITDETECT : (R, f) → {vul,ben},

where f is classified as either vulnerable (vul) or
benign (ben) based on the (interprocedural) con-
text within R. Building on this, we propose a
pairwise benchmark to evaluate LLMs and LLM-
based agents.

3.3 Benchmark Construction
We construct a benchmark called JITVUL for
practical Just-In-Time (JIT) vulnerability de-
tection for code repositories, building on the
function-level detection dataset PrimeVul (Ding
et al., 2024). As presented in Figure 1, the con-
struction process involves three key steps: Vul-
nerability Entry Selection, Target Function Extrac-
tion, and Pairwise Commit Identification. Note
that we did not use the JIT detection dataset cu-
rated by (Lomio et al., 2022) for the following
reasons. First, it includes only 27 CVE entries
across 11 CWEs in 9 Java projects, which is rela-
tively small for effectively benchmarking the per-
formance of LLMs and LLM-based agents. Sec-
ond, as discussed in (Ding et al., 2024), the quality
of the dataset should be ensured to avoid introduc-
ing noise into the evaluation.

Step 1: Vulnerability Entry Selection. We
begin by selecting CVE entries that meet three
key criteria: (i) the selected CVEs should cover a
broad range of CWEs, representing different cat-
egories of vulnerabilities, (ii) each CVE should
have an associated GitHub repository with a com-
plete commit history, and (iii) each CVE should
correspond to a commit that fixes the vulnerability.
To satisfy these criteria, we leverage the Prime-
Vul dataset as our foundation. PrimeVul ensures
high data quality by including only CVEs that
were fixed in a single commit modifying a single
function. From PrimeVul, we randomly select 879
CVE entries, ensuring coverage across 91 CWEs,
with a maximum of ten CVEs per CWE.

Step 2: Target Function Extraction. For each
selected CVE, we retrieve the target function and
the commit that fixes the vulnerability directly
from the PrimeVul dataset. The versions before

30851

and after the fix correspond to the vulnerable and
benign versions of the target function, denoted as
fvul and fben, respectively.

Step 3: Pairwise Commits Identification. Un-
like function-level vulnerability detection studies
like PrimeVul, our JIT detection requires identi-
fying the commits that trigger vulnerability detec-
tion for both fvul and fben, and obtaining the cor-
responding repository versions to provide neces-
sary context like callers and callees. To achieve
this, we extract the two commits responsible for
introducing and fixing the vulnerability, referred to
as the vul-intro and vul-fix commits, respectively.

The vul-fix commit can be directly obtained
from the data retrieved in the previous step, and
the repository version corresponding to it is de-
noted as Rfix. Identifying the precise vul-intro
commit is more challenging, as pinpointing the ex-
act code change that introduces the vulnerability
requires considering the complex interactions be-
tween functions. Following the methodology from
prior JIT detection work (Lomio et al., 2022), we
trace the change history of the target function to
approximate the vul-intro commit. Specifically,
we traverse the commit history backward, exam-
ining each commit until we identify the commit
where the target function was last modified to be-
come the fvul version. This commit is then desig-
nated as the vul-intro commit, and the correspond-
ing repository is denoted as Rintro.

In the vul-intro and vul-fix commits, the target
function is modified into the fvul and fben ver-
sions, respectively, thereby triggering the JIT de-
tection process.

Resulting Benchmark. After completing the
above steps, JITVUL includes 1,758 pairwise data
samples, with 879 labeled as vulnerable and 879
as benign. Each sample consists of a specific code
repository version, a target function, and a ground-
truth label (i.e., vul or ben). These samples
are derived from 879 CVE entries, spanning 91
CWEs. Regarding the code repositories, the aver-
age number of code files per repository is 2,955.9.
Approximately 9% of the repositories primarily
use C++, while 91% utilize C. The mean number
of thousands of lines of code (KLoC) per reposi-
tory is 988.8, with a median of 297.6 and a stan-
dard deviation of 1,991.2. For the target function,
the average number of lines of code is 696.4.

4 Experimental Setup

4.1 Studied Methods

We investigate three categories of detection meth-
ods: Plain LLM, Dependency-Augmented (Dep-
Aug) LLM, and ReAct Agent. We choose the Re-
Act agent over alternatives because its thought-
action-observation workflow aligns well with the
need for on-demand interprocedural analysis in
JIT vulnerability detection.

• Plain LLM employs a single LLM with a
prompt for vulnerability detection, resembling
a function-level detection approach. The LLM
is given only the target function to determine
whether it is vulnerable. The detailed prompts
can be found in Appendix A.1.

• Dep-Aug LLM extends the Plain LLM by in-
corporating Top-5 similar callers and callees of
the target function into the prompt through a
lexical retrieval approach, such as Jaccard Sim-
ilarity. This method, proposed and evaluated in
VulEval (Wen et al., 2024b), is reproduced in
our work based on the original paper. We use
it as a baseline that integrates interprocedural
context into LLMs in a deterministic manner.

• ReAct Agent performs an iterative thought-
action-observation process as illustrated in Ap-
pendix Figure 4, which is equipped with three
tools for on-demand interprocedural context
acquisition: (i) get callers returns the function
names and line numbers of callers for the in-
put function; (ii) get callees returns the func-
tion names and line numbers of callees for the
input function; (iii) get definition retrieves the
complete function definition based on the input
function name and line number. Using these
three tools, our ReAct agent for JIT detection
follows the workflow outlined below. In each
iteration, the agent first reasons based on the
current context and the observations from the
previous iteration. It then decides whether to
call the tools for interprocedural context or to
stop the iteration and make a prediction. After
observing the tool outputs, the agent proceeds
to the next iteration.

For each category, besides the vanilla version
with a basic prompt, we also design three variants
based on different prompting strategies: chain-of-
thought (CoT), few-shot examples (FS), and com-
bination of both CoT and FS.

• CoT: We use a basic CoT approach by adding

30852

the instruction “Solve this problem step by
step...” to prompt the LLM and ReAct agent
to break down the reasoning tasks. We avoid
more complex CoT instructions, as summa-
rizing reasoning patterns for vulnerabilities in
advance is challenging, particularly given the
wide variety of vulnerability types (CWEs).

• FS: We provide several pairwise examples,
each consisting of a vulnerable code snippet
with a detailed explanation of the vulnerability
and its patched benign version with an explana-
tion of the applied safeguard. These few-shot
examples are expected to offer context for the
LLM and ReAct agent to distinguish between
vulnerable and benign code, helping them fo-
cus on the actual vulnerability features.

For each variant, we further employ two differ-
ent foundation models: GPT-4o-mini and GPT-4o.

4.2 Metrics
For each vul-intro and vul-fix commit pair, we ap-
ply detection methods to the corresponding repos-
itory (Rintro or Rfix) and target function (fvul
or fben), then compare predictions with ground
truth. In addition to the commonly used F1

score, we also assess effectiveness using pairwise
accuracy (pAcc), inspired by PrimeVul (Ding
et al., 2024). This metric reflects the proportion
of pairs where both functions are correctly la-
beled, i.e., JITDETECT(Rintro, fvul) = vul and
JITDETECT(Rfix, fben) = ben.

F1 =
2× TP

2× TP + FP + FN
,

pAcc =
of Correctly Labeled Pairs

of Total Pairs
,

where TP is the number of true positives, FN is the
number of false negatives, and FP is the number of
false positives.

4.3 Implementation
Few-shot Example Creation. To support few-
shot variants, we manually create ten example
pairs for both the LLM and the agent. Each pair
consists of a vulnerable example and a benign ex-
ample, sourced from the 2024 CWE Top 25 Most
Dangerous Software Weaknesses list1 on the CWE
website. For each weakness in the Top 25 list, we
review its corresponding web page to identify a
relevant C/C++ code snippet. These snippets typ-
ically serve as illustrative examples of how the

1https://cwe.mitre.org/top25/index.html

Method GPT-4o-mini GPT-4o
F1 pAcc F1 pAcc

Plain LLM
- vanilla 56.00 3.36 65.96 1.02
- w/ CoT 65.10 3.36 62.22 15.02
- w/ FS 48.74 7.56 62.77 4.44
- w/ CoT+FS 64.65 11.76 64.44 17.63

Dep-Aug LLM
- vanilla 52.68 2.05 63.30 1.03
- w/ CoT 66.05 4.86 62.60 18.66
- w/ FS 48.23 7.27 62.03 2.39
- w/ CoT+FS 65.01 4.68 61.12 18.79

ReAct Agent
- vanilla 56.63 12.61 57.77 17.63
- w/ CoT 56.93 16.81 58.07 19.13
- w/ FS 56.81 20.17 56.42 18.91
- w/ CoT+FS 51.06 14.29 52.61 18.89

Table 2: Results of studied methods on JITVUL. The
best and second-best results are highlighted.

vulnerability manifests, often accompanied by de-
tailed explanations. We use the original example
as the vulnerable code, making minor edits to the
explanation for normalization (e.g., merging two
paragraphs before and after the code into a single
cohesive text). Subsequently, we manually mod-
ify the code snippet to address the vulnerability,
drafting an explanation of why the modified code
is benign, referencing the original explanation of
the vulnerable code. In this manner, we create
ten pairs of vulnerable and benign examples, each
accompanied by its respective explanation. Ap-
pendix Figure 6 provides an illustrative example.

Caller and Callee Extraction. Given a code
repository and a function, we extract its callers
and callees using CFlow (GNU, 2025), a widely
used tool for on-demand call graph construction.
For each caller or callee identified by CFlow, we
then use CTags (universal ctags, 2025) to extract
its complete function body from its definition in
the code repository. These are implemented as
Python functions using LangChain’s tool decora-
tor for integration into the ReAct workflow.

LLMs and Agents. We use two commercial,
general-purpose LLMs, GPT-4o-mini and GPT-
4o with the temperature set to 0. The pipeline
is constructed using Transformers (v4.52.0) and
LangChain (v0.3.14).

5 Results and Analyses

Table 2 presents the results of the studied detection
methods on JITVUL.

30853

5.1 Detection Method Comparison

We compare the three categories of detection
methods based on both F1 and pAcc scores.

Results. The results indicate that ReAct Agents
achieve higher pAcc scores than other LLM-
based methods across all prompting strategies,
with improvements ranging from 0.1% to 16.61%,
with the largest gain occurring with GPT-4o and
the vanilla prompting. However, Plain LLMs
and Dep-Aug LLMs generally achieve higher F1

scores than ReAct under most settings, with im-
provements of 4.15%-13.95%, except when using
GPT-4o-mini with the CoT and CoT+FS prompt-
ing strategies. Additionally, Dep-Aug LLMs
do not show consistent improvements over Plain
LLMs and even exhibit performance degradation
with certain prompting strategies.

The LLM-based vulnerability detection meth-
ods often over-classify both vulnerable and be-
nign instances as vulnerable, leading to pairwise
accuracy that can fall below the level of random
guessing, a well-documented issue. For example,
GPT-4 achieves only 5.14% accuracy with two-
shot prompting and 12.94% with chain-of-thought
reasoning, compared to 22.70% for random guess-
ing (Ding et al., 2024). Interestingly, larger mod-
els tend to perform worse than smaller ones, as
they are more susceptible to over-predicting vul-
nerabilities (Ding et al., 2024; Zhou et al., 2024b).
These challenges highlight the intrinsic difficulty
of vulnerability detection, which demands deep
comprehension of function semantics, interproce-
dural relationships, execution logic, vulnerability
patterns, and complex reasoning. Although our
evaluation shows that agent-based methods offer
measurable improvements, substantial progress is
still needed. We share several insights to guide fu-
ture development of more effective approaches.

Findings. Two findings emerge from results.
A higher F1 score does not necessarily indicate

a detection method’s superior ability to capture
vulnerability characteristics. Vulnerability detec-
tion methods exhibit an inconsistent relationship
between pAcc (pairwise accuracy) and F1 (iso-
lated metric). LLM-based methods predict signif-
icantly more vul labels—exceeding 90% in cer-
tain settings—compared to ReAct Agents, leading
to higher recall. However, precision remains sim-
ilar across methods, around 50%, as observed on
our label-balanced benchmark.. These factors ex-
plain the higher F1 scores of LLM-based methods

Prompting Method F1

- vanilla 9.20
- w/ CoT 5.41
- w/ FS 12.21
- w/ CoT+FS 5.86

Table 3: F1 Score of GPT-4o-mini on a non-pair dataset
with 695 vulnerable and 25,216 benign functions.

on JITVUL. This also highlights F1’s sensitivity
to the data distribution, emphasizing the need for
pairwise evaluation to better capture core vulner-
ability characteristics (Risse and Böhme, 2024b).
We include an additional non-paired dataset to
further demonstrate F1’s sensitivity. Specifically,
we evaluate the performance of GPT-4o-mini us-
ing the original PrimeVul (Ding et al., 2024) test
set, which contains 695 vulnerable and 25,216 be-
nign functions. As shown in Table 3, the shift
in data distribution significantly impacts the F1

score, underscoring the importance of pairwise de-
tection for more reliable benchmarking of LLMs
and LLM-based agents in vulnerability analysis.

The thought-action-observation framework of
ReAct Agents, combined with their effective use
of interprocedural context, enhances their abil-
ity to capture vulnerability characteristics. Re-
Act Agents conduct in-depth, fine-grained analy-
sis by iteratively and adaptively retrieving addi-
tional context, such as callers and callees, rather
than relying on superficial analysis or speculation.
This allows them to differentiate between code
versions before and after vulnerability fix, lead-
ing to consistent improvements in pAcc. In con-
trast, while Dep-Aug LLMs incorporate interpro-
cedural context, they rely on mechanical retrieval
based on similarity metrics (e.g., Jaccard Similar-
ity), feeding retrieved Top-5 callers and callees all
at once, which may introduce noise. This could
explain why Dep-Aug LLMs sometimes show a
lower pAcc than Plain LLMs. In comparison, Re-
Act agents demonstrate average improvements in
pAcc of 9.46% over Dep-Aug LLMs with GPT-
4o-mini and 8.42% with GPT-4o, across various
prompting strategies. To demonstrate the adaptive
use of interprocedural context of ReAct Agent, we
present the distribution of tool invocations for Re-
Act with GPT-4o and vanilla prompting in Ap-
pendix 2. It shows that ReAct Agent dynamically
invokes the tools one to three times to retrieve the
necessary callers or callees for most cases, in con-
trast to Dep-Aug LLM, which feeds a fixed num-
ber of callers and callees.

30854

0 1 2 3 4 5 6 7 8 9

Figure 2: Distribution of tool invocations for ReAct
Agent with GPT-4o and vanilla prompting.

5.2 Prompting Strategy Comparison
We also compare the three prompting strategies
and perform a detailed analysis.

Results. When applying different prompting
strategies, such as CoT and FS, detection meth-
ods show varying degrees of improvement in pAcc
scores, ranging from 1.26% to 17.76%. However,
these prompting strategies do not consistently lead
to F1 improvements in the pairwise evaluation.

Findings. We find two key findings.
Popular prompting strategies like CoT and FS

examples can enhance LLMs’ performance in
pairwise JIT evaluation. While these strategies
sometimes reduce F1 scores, the pairwise metric
pAcc shows that LLMs can significantly benefit
from CoT instructions (even something as sim-
ple as “Solve this problem step by step...”) and
pairwise FS examples. This improvement is often
overlooked when focusing solely on F1 and should
be considered when designing methods.

ReAct Agents require further design improve-
ments when using prompting strategies. The cur-
rent prompts are straightforward and align bet-
ter with the inference process of LLMs, meaning
the improvements from these strategies for ReAct
Agents are relatively smaller than for LLM-based
methods. For instance, the FS examples con-
sist of singleton code snippets that do not require
interprocedural analysis, which limits the bene-
fit for ReAct Agents that rely on interprocedu-
ral context. This suggests a research opportunity
in developing agent-oriented prompting strategies
specifically for vulnerability detection.

5.3 Foundation Model Comparison
To evaluate the effectiveness of different foun-
dation models across various detection methods,
we conduct a comparative analysis. Additionally,
we include two open-source models, LLaMA 3.1-

8B and DeepSeek-Coder-V2-16B (a code specific
model), for further comparison. Their results pre-
sented in Appendix B.

Results. GPT-4o outperforms GPT-4o-mini on
average, while Llama-3.1-8B frequently fails to
complete the analysis process and defaults to the
ben label when integrated into ReAct Agents.

Findings. Two key findings are identified.
Different foundation models are sensitive to dif-

ferent prompting strategies. The results show
that GPT-4o-mini and GPT-4o exhibit distinct im-
provement patterns with CoT and FS examples.
This highlights the need to customize prompting
strategies based on the selected foundation mod-
els. Moreover, larger models do not always out-
perform smaller models, emphasizing the impor-
tance of carefully designing methods that consider
the characteristics of specific foundation models.

The execution of ReAct Agents depends on
the instruction-following capability of foundation
models. Inspection of the outputs reveals that the
failures of Llama-3.1-8B in ReAct Agents are due
to the model’s frequent inability to follow out-
put format requirements. This prevents the agents
from linking outputs and inputs across compo-
nents, thus failing to perform the thought-action-
observation iterative framework. This is a known
issue with some foundation models, which strug-
gle to follow instructions effectively (Verma et al.,
2024), reducing their effectiveness when used in
agentic architectures.

5.4 Pairwise Comparison
The failures in pairwise evaluation can be cate-
gorized into three types: pairwise vulnerable,
where both versions are labeled as vulnerable;
pairwise benign, where both versions are labeled
as benign; and pairwise reversed, where both ver-
sions are mislabeled. We conduct a more detailed
pairwise comparison based on these types.

Results. The most prevalent pairwise inaccu-
racy is pairwise vulnerable, ranging from approx-
imately 40% to 95% for LLMs and from around
35% to 50% for ReAct Agents (except those with
Llama-3.1-8B). Typically, the occurrence of pair-
wise reversed increases as pAcc improves.

Findings. We identify the following insights.
ReAct Agents are more effective at distinguish-

ing between pairwise target functions. ReAct
Agents demonstrate a stronger ability to differen-
tiate between a vulnerable function and its patched
benign version. This is because they leverage

30855

the thought-action-observation framework to iter-
atively and adaptively retrieve additional context,
such as callers and callees, which allows them to
capture differences between the two versions. A
related case study can be found in Appendix C.1.

LLMs and ReAct Agents sometimes fail to iden-
tify the causes in the vulnerable version, while
tending to over-analyze the benign version after
the vulnerability fix. LLMs and ReAct Agents
often struggle to pinpoint the root causes (e.g.,
insufficient input sanitization) of vulnerabilities
in the vulnerable version. After the vulnerabil-
ity is fixed, however, the detection methods tend
to over-analyze the patched guards (e.g., newly
added sanitization statements) in the benign ver-
sion, speculating about results and often misiden-
tifying non-issues. This discrepancy arises be-
cause LLMs rely on broad, general patterns with-
out the accurate reasoning capability needed for
complex contexts. This highlights the need for
more fine-grained analysis capabilities, such as re-
liable constraint solving, which should be inte-
grated with LLMs or enhanced through program
analysis techniques. A detailed case study can be
found in Appendix C.2.

LLMs and ReAct Agents often exhibit incon-
sistent analysis patterns when analyzing pairwise
target functions. When analyzing pairwise target
functions (vulnerable and benign version) LLMs
display significant inconsistencies in their evalua-
tion patterns. For some pairs, they may provide
thorough analysis for the vulnerable version but
neglect important details in the benign version, or
vice versa. In other cases, they may exhibit con-
trasting reasoning or focus on irrelevant aspects,
leading to discrepancies in how they interpret the
two versions. A clear example of this inconsis-
tency is the significant difference in the average
number of tool invocations by the ReAct Agent
for the vulnerable and benign versions (e.g., 5.85
vs. 1.79 when using GPT-4o-mini with vanilla
prompting). These inconsistencies highlight the
challenges LLMs face in handling the complex-
ities of code analysis, where the differences be-
tween a vulnerable and benign version can be sub-
tle and require more nuanced evaluation. A de-
tailed case study can be found in Appendix C.1.

6 Conclusion

In this work, we introduced JITVUL, a benchmark
for just-in-time (JIT) vulnerability detection that

enables a comprehensive, pairwise evaluation of
LLMs and LLM-based agents. Our results show
that ReAct Agents, leveraging thought-action-
observation and interprocedural context, demon-
strate better reasoning but require further refine-
ment, particularly in utilizing advanced prompting
strategies. Additionally, LLMs and ReAct agents
often misinterpret flaws by either overlooking crit-
ical issues or over-analyzing benign fixes. These
findings highlight the need for improving agentic
architectures, prompting techniques, dynamic in-
terprocedural analysis, and robust reasoning mod-
els tailored to vulnerability analysis to enhance au-
tomated vulnerability detection.

7 Limitations

As the early work benchmarking LLM-based
agents for JIT vulnerability detection in code
repositories, we acknowledge several limitations.
First, the construction of JITVUL may not per-
fectly trace the vul-intro commit due to the com-
plexity of code evolution and function interac-
tions. To mitigate this, we followed existing
methodologies (Lomio et al., 2022) and manually
inspected selected instances to ensure reliability.
Second, while we emphasize pairwise evaluation
for JIT detection, the label-balanced dataset may
introduce bias in F1 comparisons. In the future,
we plan to incorporate more benign commits to
improve the evaluation in F1 metric. Third, some
important statistics, such as the ratio of interpro-
cedural vulnerabilities, are missing. Although we
attempted manual annotation, it is labor-intensive
and difficult to scale. We plan to leverage com-
mercial annotation platforms to achieve the anno-
tation and provide more fine-grained evaluations
in future work.

Acknowledgment

This research/project is supported by the Na-
tional Research Foundation, Singapore, and the
Cyber Security Agency of Singapore under the
National Cybersecurity R&D Programme and the
CyberSG R&D Programme Office (Award CRPO-
GC2-ASTAR-001). Any opinions, findings, con-
clusions, or recommendations expressed in these
materials are those of the author(s) and do not
reflect the views of the National Research Foun-
dation, Singapore, the Cyber Security Agency of
Singapore, or the CyberSG R&D Programme Of-
fice.

30856

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Yizheng Chen, Zhoujie Ding, Lamya Alowain, Xinyun
Chen, and David Wagner. 2023. DiverseVul: A New
Vulnerable Source Code Dataset for Deep Learn-
ing Based Vulnerability Detection. In Proceed-
ings of the 26th International Symposium on Re-
search in Attacks, Intrusions and Defenses, RAID
’23, pages 654–668, New York, NY, USA. Associa-
tion for Computing Machinery.

Yangruibo Ding, Yanjun Fu, Omniyyah Ibrahim,
Chawin Sitawarin, Xinyun Chen, Basel Alomair,
David Wagner, Baishakhi Ray, and Yizheng Chen.
2024. Vulnerability detection with code language
models: How far are we? arXiv preprint
arXiv:2403.18624.

Xueying Du, Geng Zheng, Kaixin Wang, Jiayi Feng,
Wentai Deng, Mingwei Liu, Bihuan Chen, Xin
Peng, Tao Ma, and Yiling Lou. 2024. Vul-
rag: Enhancing llm-based vulnerability detec-
tion via knowledge-level rag. arXiv preprint
arXiv:2406.11147.

Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen.
2020. Ac/c++ code vulnerability dataset with code
changes and cve summaries. In Proceedings of the
17th International Conference on Mining Software
Repositories, pages 508–512.

GNU. 2025. Gnu cflow: analyzing a collection of c
source files, charting control flow within the pro-
gram.

Mete Keltek, Rong Hu, Mohammadreza Fani Sani,
and Ziyue Li. 2024. Lsast–enhancing cybersecu-
rity through llm-supported static application security
testing. arXiv preprint arXiv:2409.15735.

Zhen Li, Ning Wang, Deqing Zou, Yating Li, Ruqian
Zhang, Shouhuai Xu, Chao Zhang, and Hai Jin.
2024. On the effectiveness of function-level vulner-
ability detectors for inter-procedural vulnerabilities.

Francesco Lomio, Emanuele Iannone, Andrea De Lu-
cia, Fabio Palomba, and Valentina Lenarduzzi. 2022.
Just-in-time software vulnerability detection: Are
we there yet? Journal of Systems and Software,
188:111283.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. SELF-REFINE: Iterative
Refinement with Self-Feedback.

Mend.io. 2025. Mend.io vulnerability database: The
largest open source vulnerability database.

Chao Ni, Liyu Shen, Xiaohu Yang, Yan Zhu, and Shao-
hua Wang. 2024. MegaVul: A C/C++ Vulnerability
Dataset with Comprehensive Code Representations.
In 2024 IEEE/ACM 21st International Conference
on Mining Software Repositories (MSR), pages 738–
742. ISSN: 2574-3864.

NIST. 2025. National vulnerability database: Dash-
board.

Ted Ridnik, Dedy Kredo, and Itamar Friedman. Code
Generation with AlphaCodium: From Prompt Engi-
neering to Flow Engineering.

Niklas Risse and Marcel Böhme. 2024a. Top score
on the wrong exam: On benchmarking in machine
learning for vulnerability detection. arXiv preprint
arXiv:2408.12986.

Niklas Risse and Marcel Böhme. 2024b. Uncovering
the limits of machine learning for automatic vulner-
ability detection. In 33rd USENIX Security Sympo-
sium (USENIX Security 24), pages 4247–4264.

Noah Shinn, Federico Cassano, Edward Berman, Ash-
win Gopinath, Karthik Narasimhan, and Shunyu
Yao. 2023. Reflexion: Language Agents with
Verbal Reinforcement Learning. arXiv preprint.
ArXiv:2303.11366 [cs].

Yuqiang Sun, Daoyuan Wu, Yue Xue, Han Liu, Wei
Ma, Lyuye Zhang, Yang Liu, and Yingjiu Li. 2024.
LLM4Vuln: A Unified Evaluation Framework for
Decoupling and Enhancing LLMs’ Vulnerability
Reasoning. arXiv preprint. ArXiv:2401.16185.

universal ctags. 2025. Universal ctags: A maintained
ctags implementation.

Mudit Verma, Siddhant Bhambri, and Subbarao Kamb-
hampati. 2024. On the brittle foundations of re-
act prompting for agentic large language models.
Preprint, arXiv:2405.13966.

Chong Wang, Jianan Liu, Xin Peng, Yang Liu, and Yil-
ing Lou. 2025. Boosting static resource leak detec-
tion via llm-based resource-oriented intention infer-
ence. In 2025 IEEE/ACM 47th International Con-
ference on Software Engineering (ICSE), pages 668–
668. IEEE Computer Society.

Xinchen Wang, Ruida Hu, Cuiyun Gao, Xin-Cheng
Wen, Yujia Chen, and Qing Liao. 2024. Reposvul:
A repository-level high-quality vulnerability dataset.
In Proceedings of the 2024 IEEE/ACM 46th Interna-
tional Conference on Software Engineering: Com-
panion Proceedings, pages 472–483.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits
reasoning in large language models. Advances in
neural information processing systems, 35:24824–
24837.

30857

https://doi.org/10.1145/3607199.3607242
https://doi.org/10.1145/3607199.3607242
https://doi.org/10.1145/3607199.3607242
https://www.gnu.org/software/cflow/
https://www.gnu.org/software/cflow/
https://www.gnu.org/software/cflow/
https://arxiv.org/abs/2401.09767
https://arxiv.org/abs/2401.09767
https://arxiv.org/pdf/2303.17651
https://arxiv.org/pdf/2303.17651
https://www.mend.io/vulnerability-database/
https://www.mend.io/vulnerability-database/
https://ieeexplore.ieee.org/abstract/document/10555623
https://ieeexplore.ieee.org/abstract/document/10555623
https://nvd.nist.gov/general/nvd-dashboard
https://nvd.nist.gov/general/nvd-dashboard
https://doi.org/10.48550/arXiv.2303.11366
https://doi.org/10.48550/arXiv.2303.11366
http://arxiv.org/abs/2401.16185
http://arxiv.org/abs/2401.16185
http://arxiv.org/abs/2401.16185
https://ctags.io/
https://ctags.io/
https://arxiv.org/abs/2405.13966
https://arxiv.org/abs/2405.13966

Cheng Wen, Yuandao Cai, Bin Zhang, Jie Su, Zhiwu
Xu, Dugang Liu, Shengchao Qin, Zhong Ming, and
Tian Cong. 2024a. Automatically inspecting thou-
sands of static bug warnings with large language
model: How far are we? ACM Transactions on
Knowledge Discovery from Data, 18(7):1–34.

Xin-Cheng Wen, Xinchen Wang, Yujia Chen, Ruida
Hu, David Lo, and Cuiyun Gao. 2024b. Vule-
val: Towards repository-level evaluation of soft-
ware vulnerability detection. arXiv preprint
arXiv:2404.15596.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Xin Zhou, Sicong Cao, Xiaobing Sun, and David Lo.

2024a. Large language model for vulnerability de-
tection and repair: Literature review and the road
ahead. ACM Transactions on Software Engineering
and Methodology.

Xin Zhou, Duc-Manh Tran, Thanh Le-Cong, Ting
Zhang, Ivana Clairine Irsan, Joshua Sumarlin, Bach
Le, and David Lo. 2024b. Comparison of static ap-
plication security testing tools and large language
models for repo-level vulnerability detection. arXiv
preprint arXiv:2407.16235.

Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning
Du, and Yang Liu. 2019. Devign: Effective vul-
nerability identification by learning comprehensive
program semantics via graph neural networks. Ad-
vances in neural information processing systems, 32.

30858

A Studied Methods

A.1 Prompt Templates in Plain LLM
Figure 3 illustrates the various prompting strategies used with Plain LLM. The Vanilla Prompt serves as
the base prompt included in all variants, while FS Examples and CoT Instruction are selectively applied
according to the specific strategies. In the template, “{target function}” acts as a placeholder for the
target function to be detected.

You are a security researcher tasked with identifying vulnerabilities in a codebase. You have been given a function to analyze.
The function may or may not be vulnerable.

If you think it is vulnerable reply with @@VULNERABLE@@, otherwise reply with @@NOT VULNERABLE@@

If you think the function is vulnerable, please provide the CWE number that you think is most relevant to the vulnerability in
the form of @@CWE: <CWE_NUMBER>@@
For example:
@@VULNERABLE@@
@@CWE: CWE-1234@@

Here is the function:
```c
{target_function}
```

Example Detections:
- Vulnerable Example 1
- Benign Example 1
…
- Vulnerable Example 10
- Benign Example 10

Solve this problem step by step. Carefully break down the reasoning process to arrive at the correct solution. Explain your
reasoning at each step before providing the final answer.

Vanilla Prompt

FS Examples

CoT Instruction

Figure 3: Prompt templates used with Plain LLM.

30859

A.2 ReAct Agent
Figure 4 illustrates the overall workflow of the ReAct Agent for JIT vulnerability detection. Figure 5 dis-
plays the prompt used with the ReAct Agent, implemented with the default LangChain framework. The
“{agent scratchpad}” is a one-time execution memory that holds tool descriptions, along with previous
observations and reasoning traces. The “{input}” variable is used for the user prompt and can be further
enhanced using prompt augmentation techniques.

Observation

ActionThoughtTarget Function

get_callers
get_callees
get_definition
Action Tools

“I need to look into callers” “Invoke get_callers(X)”

“The callers of X are Y”

Code Repository

Prediction

Figure 4: Workflow of ReAct Agent for JIT vulnerability detection.

Answer the following questions as best you can. You have access to the following tools:
- get_callers: Get callers for a function, function names are returned
- get_callees: Get callees for a function, function names are returned
- get_definition: Get definition code of a function based on the function name.

Use the following format:
- Question: the input question you must answer.
- Thought: you should always think about what to do
- Action: the action to take, should be one of get_callers, get_callees, and get_definition

- Action Input: the input to the action
- Observation: the result of the action

... (this Thought/Action/Action Input/Observation can repeat N times)
- Thought: I now know the final answer
- Final Answer: the final answer to the original input question

Begin!

Question: {input}
Thought:{agent_scratchpad}

Figure 5: Prompt template used with ReAct Agent.

30860

A.3 Few-shot Example
Figure 6 presents a few-shot example based on the webpage for “CWE-787: Out-of-bounds Write”. It
highlights the key differences between the vulnerable and benign versions.

Code
char* trimTrailingWhitespace(char *strMessage, int length) {

char *retMessage;
char *message = malloc(sizeof(char)*(length+1));
// copy input string to a temporary string
char message[length+1];
int index;
for (index = 0; index < length; index++) {

message[index] = strMessage[index];
}
message[index] = '\\0’;
// trim trailing whitespace
int len = index-1;
while (isspace(message[len])) {

message[len] = '\\0’;
len--;

}
// return string without trailing whitespace
retMessage = message;
return retMessage;

}

Explanation
In the code, a utility function is used to trim trailing whitespace from a
character string. The function copies the input string to a local character
string and uses a while statement to remove the trailing whitespace by
moving backward through the string and overwriting whitespace with a
NULL character. However, this function can cause a buffer underwrite
if the input character string contains all whitespace. On some systems
the while statement will move backwards past the beginning of a
character string and will call the `isspace()` function on an address
outside of the bounds of the local buffer.

(a) Vulnerable Version

Code
char* trimTrailingWhitespace(char *strMessage, int length) {

char *retMessage;
char *message = malloc(sizeof(char)*(length+1));
// copy input string to a temporary string
char message[length+1];
int index;
for (index = 0; index < length; index++) {

message[index] = strMessage[index];
}
message[index] = '\\0’;
// trim trailing whitespace
int len = index-1;
while (len >= 0 && isspace(message[len])) {

message[len] = '\\0’;
len--;

}
// return string without trailing whitespace
retMessage = message;
return retMessage;

}

Explanation
In the code, a utility function is used to trim trailing whitespace from a
character string. The function copies the input string to a local character
string and uses a while statement to remove the trailing whitespace by
moving backward through the string and overwriting whitespace with a
NULL character. This function avoids a buffer underwrite by
incorporating the boundary check `len >= 0` in the while loop
condition. This ensures that the loop does not move past the beginning
of the character string or call the `isspace()` function on an address
outside the bounds of the buffer.

(b) Benign Version

Figure 6: A FS example of “CWE-787: Out-of-bounds Write”, including both vulnerable version and benign
version.

30861

B Results of Llama-3.1 and DeepSeek-Coder-V2

Table 4 shows the results of LLaMA 3.1-8B and DeepSeek-Coder-V2-16B on JITVUL. ReAct Agents
using these models exhibit significantly lower performance, with execution frequently failing due to for-
matting and parsing issues. As a result, the agents often default to the ben label. Notably, the results with
DeepSeek-Coder suggest that code-specific fine-tuning enhances vulnerability detection performance,
particularly in capturing inter-procedural context in Dep-Aug settings. This highlights a promising di-
rection for future work: developing code-specific LLMs optimized for agent-based architectures.

Method Llama-3.1 DeepSeek-Coder-V2
F1 pAcc F1 pAcc

Plain LLM
- vanilla 58.05 0.84 60.04 15.94
- w/ CoT 49.79 10.92 59.74 12.41
- w/ FS 54.48 1.68 48.26 8.30
- w/ CoT+FS 29.55 14.29 50.46 10.93

Dep-Aug LLM
- vanilla 40.48 15.17 46.41 29.05
- w/ CoT 21.18 8.39 70.61 52.16
- w/ FS 27.37 10.88 59.06 41.72
- w/ CoT+FS 16.46 7.42 82.09 69.24

ReAct Agent
- vanilla 9.09 4.20 19.40 8.39
- w/ CoT 14.67 3.36 30.00 16.81
- w/ FS 3.28 0.84 1.96 1.00
- w/ CoT+FS 3.28 1.68 31.97 21.39

Table 4: Results of studied methods on JITVUL with Llama3.1-8B and DeepSeek-Coder-V2-16B. The best and
second-best results are highlighted.

30862

C Case Study

We provide several examples to illustrate the inputs and outputs of the detection methods for a better
understanding of the analysis.

C.1 CVE-2019-15164
Figure 7 illustrates the case study derived from CVE-2019-15164 (details at
https://nvd.nist.gov/vuln/detail/CVE-2019-15164), with the left side showing the vulnerable code
and the detection methods’ responses, and the right side depicting the benign version and its corre-
sponding responses. The vulnerable version of the function daemon msg open req is susceptible
to a “CWE-918: Server-Side Request Forgery (SSRF)” vulnerability due to the lack of validation
for source before opening the device, which is read from the network socket. The benign version
addresses this vulnerability by adding an if-condition to validate whether source is a valid URL, as
highlighted in the figure.

Label Predictions. When using Plain LLM with GPT-4o and vanilla prompting, the analyses of
both the vulnerable and benign versions focus on buffer operations and misclassify the benign as
vulnerable. In contrast, when using the ReAct Agent, the predictions for both versions are correct.
The agent is able to retrieve and analyze additional context, such as understanding its caller function
daemon serviceloop and surrounding function bodies. This contextual information enables the
agent to better comprehend how the daemon msg open req function is used within the broader code-
base and recognize the risk introduced by the unvalidated URL input. Key points in the analysis process
are highlighted to show the improved detection capability provided by the ReAct Agent.

CWE Predictions. However, upon examining the specific vulnerability categories predicted by Plain
LLM and ReAct Agent, some fine-grained issues emerge. Plain LLM incorrectly predicts “CWE-120:
Buffer Copy without Checking Size of Input” for both the vulnerable and benign versions, which is
entirely inaccurate. On the other hand, ReAct Agent predicts “CWE-20: Improper Input Validation”
for the vulnerable version. While this is not the correct classification, it is somewhat related to the
ground-truth vulnerability of Server-Side Request Forgery (SSRF). The SSRF vulnerability arises from
the improper validation of the source parameter before opening device, which the ReAct Agent’s
prediction partially captures, indicating a closer alignment to the actual issue.

Analysis Patterns. When delving into the detailed analysis processes, we observe that the ReAct
Agent does not maintain consistent analysis patterns across both versions. For the vulnerable version,
the agent focuses on buffer operation and input validation, while for the benign version, it conducts a
more comprehensive check. However, in this case, the analysis patterns should be more similar, suggest-
ing that the LLM behind the ReAct Agent lacks sufficient robustness to capture the actual vulnerability
characteristics. This indicates a deficiency in its reasoning capabilities for accurate vulnerability reason-
ing.

C.2 CVE-2019-3877
Figure 8 illustrates the case study derived from CVE-2019-3877 (details at
https://nvd.nist.gov/vuln/detail/CVE-2019-3877), with the left side showing the vulnerable code
and the detection methods’ responses, and the right side depicting the benign version and its correspond-
ing responses. The vulnerable version of the function am check url is susceptible to a “CWE-601:
URL Redirection to Untrusted Site” vulnerability due to the insufficient validation for url. The benign
version addresses this vulnerability by adding an if-condition to validate whether backslash exists in
url.

Label Predictions. Plain LLM with GPT-4o and vanilla prompting produces incorrect predictions,
often reversing the labels.

Analysis Patterns. A closer look at the analysis process reveals that Plain LLM fails to identify the
insufficient validation for the url in the vulnerable version, where an assert is highlighted. In contrast,
it over-analyzes the validation requirements for the benign version. These lead to incorrect predictions
for both versions.

30863

static int daemon_msg_open_req(uint8 ver, struct daemon_slpars *pars, uint32
plen, char *source, size_t sourcelen) {

…
nread = sock_recv(pars->sockctrl, source, plen,…);
…
source[nread] = '\0’;
plen -= nread;
…
// Open the selected device
…

}

static int daemon_msg_open_req(uint8 ver, …, char *source, size_t sourcelen) {
…
nread = sock_recv(pars->sockctrl, source, plen,…);
…
source[nread] = '\0’;
plen -= nread;
…

 if (is_url(source)){
 pcap_snprintf(errmsgbuf, PCAP_ERRBUF_SIZE, "Source …");
 goto error;
 }

// Open the selected device
…

}

@@VULNERABLE@@
CWE-120: Buffer Copy without Checking Size of Input

The function daemon_msg_open_req is vulnerable to a buffer overflow due to
improper handling of the source buffer. The issue arises because the function reads
data into source using sock_recv without ensuring that the buffer is large enough to
accommodate the incoming data. Although the function includes a check at the
beginning to ensure that plen is not greater than sourcelen - 1, this does not fully
prevent an overflow when sock_recv writes to source.
…

@@VULNERABLE@@
CWE-120: Buffer Copy without Checking Size of Input

The function daemon_msg_open_req has a buffer overflow vulnerability due to
improper handling of the source buffer. The issue arises because the function reads
data into source using sock_recv without ensuring that the buffer is large enough to
store the incoming data. While there is a check to ensure that plen is not greater than
sourcelen - 1, this does not fully prevent an overflow when sock_recv writes to source.
If plen exceeds sourcelen, the function could still write beyond the buffer’s limits,
causing a buffer overflow.
…

Benign Version

Plain LLM Response

The function daemon_msg_open_req is given, and I need to determine if it is
vulnerable. I should first analyze the function body to identify any potential
vulnerabilities. Then, I can use the tools to get more context by examining the callers
and callees of this function.

Let’s start by examining the function body for potential vulnerabilities.

Buffer Overflow Risk: …
Source Length Check: …
Socket Operations: …
Device Opening: …
Error Handling: …

Now, let’s use the tools to get more context by examining the callers and callees of this
function.

Action: get_callers
Action Input: daemon_msg_open_req
Observation: {‘callers’: [‘daemon_serviceloop’]}

Thought: The function daemon_msg_open_req is called by the function
daemon_serviceloop. …

Action: get_definition
Action Input: daemon_serviceloop
Observation: <-function body->

Thought: The daemon_msg_open_req function is called by daemon_serviceloop. By
examining the daemon_serviceloop function, ...

The daemon_serviceloop function appears to perform several checks and handles
different message types, including authentication and error handling. However, the key
point of concern is how the source string is handled in daemon_msg_open_req.

Potential Vulnerabilities:
- Buffer Overflow: ... This is a good practice.
- URL Injection: The function checks if source is a URL using is_url(source) and
rejects it if true. This is a security measure to prevent URL injection.
- Error Handling: …, which helps prevent buffer overflow.
- Use of External Functions: ...

Conclusion: The function daemon_msg_open_req seems to handle input validation and
error handling appropriately. The primary concerns would be the security of the
external functions it calls and ensuring that the buffers are always managed correctly.

Given the information available, the function does not exhibit any obvious
vulnerabilities directly in its implementation. Therefore, based on the current analysis:

Final Answer: @@NOT VULNERABLE@@

…
To determine if daemon_msg_open_req is vulnerable, I need to analyze its behavior
and interactions with other functions in the codebase. Specifically, I should check for
common vulnerabilities such as buffer overflows, improper input validation, and
misuse of functions. Since the function body is already available, I will examine the
functions that call daemon_msg_open_req and those that it calls. This will help me
understand its execution context and identify potential vulnerabilities.

Action: get_callers
Action Input: “daemon_msg_open_req”
Observation: {‘callers’: [‘daemon_serviceloop’]}

Thought: The function daemon_msg_open_req is called by the function
daemon_serviceloop. …

Action: get_definition
Action Input: “daemon_serviceloop”
Observation: <-Function Body->

Thought: The daemon_msg_open_req function is called within the
daemon_serviceloop function. …
…
To further analyze potential vulnerabilities, I will check the functions that
daemon_msg_open_req calls. This will help me identify if any of those functions
might introduce vulnerabilities.

Action: get_callees
Action Input: “daemon_msg_open_req”
Observation: {‘callees’: [‘pcap_snprintf’, ‘sock_recv’, ‘rpcapd_log’,
‘pcap_open_live’, ‘sock_bufferize’, ‘rpcap_createhdr’, ‘memset’, ‘htonl’,
‘pcap_datalink’, ‘pcap_close’, ‘sock_send’, ‘rpcap_senderror’, ‘rpcapd_discard’]}

Thought: The daemon_msg_open_req function calls several functions, including
pcap_snprintf, .

pcap_snprintf: …
…
rpcapd_discard: …

The main concern in daemon_msg_open_req is the handling of network data and
ensuring that all inputs are properly validated. The function does perform some bounds
checking, but it is crucial to ensure that all external data is sanitized and validated to
prevent vulnerabilities such as buffer overflows or improper resource access.

Given the analysis, the function appears to have potential vulnerabilities related to
improper input validation and buffer management, particularly with network data.
Therefore, I would classify this function as potentially vulnerable.

Final Answer: @@VULNERABLE@@
CWE-20: Improper Input Validation

CWE-918: Server-Side Request Forgery (SSRF)

Plain LLM Response

ReAct Agent ResponseReAct Agent Response

Vulnerable Version

Figure 7: Case study for CVE-2019-15164.

30864

int am_check_url(request_rec *r, const char *url) {
const char *i;
for (i = url; *i; i++) {

if (*i >= 0 && *i < ' ') {
/* Deny all control-characters. */
AM_LOG_RERROR(APLOG_MARK, APLOG_ERR, HTTP_BAD_REQUEST, r,

"Control character detected in URL.");
return HTTP_BAD_REQUEST;

}
}

return OK;
}

int am_check_url(request_rec *r, const char *url) {
const char *i;
for (i = url; *i; i++) {

…
 if (*i == '\\') {
 /* Reject backslash character, as it can be used to bypass
 * redirect URL validation. */
 …
 return HTTP_BAD_REQUEST;
 }

}

return OK;
}

@@NOT VULNERABLE@@

The function am_check_url is designed to check a URL for control characters, which
are generally considered invalid in URLs. The function iterates through each character
in the provided URL and checks if it falls within the range of control characters
(ASCII values 0 to 31). If it detects any control character, it logs an error and returns
an HTTP_BAD_REQUEST status.

The function appears to be handling input validation correctly by explicitly denying
control characters, which is a good practice for security. It does not seem to have any
obvious vulnerabilities such as buffer overflows, injection flaws, or improper input
validation that would lead to security issues.

While there are always potential edge cases in any code, based on the provided
implementation, it does not exhibit any vulnerabilities that would warrant a
classification as vulnerable. Therefore, I conclude that the function is not vulnerable.

@@VULNERABLE@@
CWE-20: Improper Input Validation

The function am_check_url is designed to validate a URL by checking for control
characters and backslashes. However, it does not adequately validate the URL against
other potential vulnerabilities, such as:
- Injection Attacks: The function does not check for other potentially dangerous
characters or patterns that could lead to injection attacks (e.g., SQL injection,
command injection, etc.). While it checks for control characters and backslashes, it
does not account for other characters that could be harmful.
- Improper Input Validation: The function only checks for control characters and
backslashes, which may not be sufficient for a robust URL validation. There are
many other characters and patterns that could be problematic in a URL context.
- Lack of Comprehensive Validation: The function does not implement a
comprehensive validation mechanism for URLs, which could lead to various security
issues, including but not limited to open redirects or other forms of URL
manipulation.

Given these points, the function is vulnerable due to insufficient input validation,
which aligns with CWE-20 (Improper Input Validation).

Benign Version

Plain LLM Response

CWE-601: URL Redirection to Untrusted Site

Plain LLM Response

Vulnerable Version

Figure 8: Case study for CVE-2019-3877.

30865

