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Abstract

In this study, we provide constructive proof
that Transformers can recognize and generate
hierarchical language efficiently with respect
to model size, even without the need for a
specific positional encoding. Specifically, we
show that causal masking and a starting token
enable Transformers to compute positional in-
formation and depth within hierarchical struc-
tures. We demonstrate that Transformers with-
out positional encoding can generate hierarchi-
cal languages. Furthermore, we suggest that
explicit positional encoding might have a detri-
mental effect on generalization with respect to
sequence length.

1 Introduction

Transformer-based models have achieved signifi-
cant success in natural language processing. The
empirical success of Transformers has drawn atten-
tion to the theoretical understanding of the problem
classes that Transformers can solve. In particular,
the ability to understand the hierarchical structures
inherent in natural and programming languages is
essential for accurately grasping their meanings.
The empirical success of large language models
(LLMs) and the positive findings (Murty et al.,
2023), which empirically showed that the accuracy
on the tasks possessing hierarchical structures im-
proves through grokking, suggest that Transform-
ers may have the ability to understand hierarchical
structures. However, Tran et al. (2018), Petty and
Frank (2021), and Mueller et al. (2022) stated that
Transformers have different inductive biases than
humans and often face difficulties processing such
hierarchical languages, raising critical concerns
about whether Transformers possess the capability
to accurately capture hierarchical structures.

To investigate the expressive capacity of Trans-
formers, several studies (Hahn, 2020, Bhattamishra
et al., 2020, Ebrahimi et al., 2020, Yao et al.,
2021, Chiang and Cholak, 2022, and Wen et al.,

2023) have formulated such challenges as recog-
nition/generation tasks of formal languages such
as the parity language, the Dyckk language, and
the Shuffle-Dyckk language. The parity language
is a language over an alphabet consisting of only
two characters, 0 and 1. A string belongs to the
parity language if and only if it has an odd num-
ber of 1s. While the parity language is quite sim-
ple, it has a Kleene closure that characterizes reg-
ular languages. In contrast, the Dyckk language
is a language over an alphabet consisting of k
types of brackets. Intuitively, it includes prop-
erly balanced strings. The Shuffle-Dyckk lan-
guage is a shuffle of multiple Dyck1 languages
defined over different bracket-pairs. For exam-
ple, regarding Dyck2 and Shuffle-Dyck2 over
{“(”, “)”, “[”, “]”}, “[]()” and “([()])” be-
long to Dyck2, while “[(])” and “([(]))” belong
to Shuffle-Dyck2 not to Dyck2. Despite their sim-
plicity, these languages are important because they
provide a simplified framework for investigating
the ability to comprehend hierarchical structures,
which are found in both natural and programming
languages, as well as the capability to process these
structures in parallel.

Hahn (2020) pointed out that Lipschitz-bounded
Transformers cannot solve recognition and genera-
tion tasks of Dyck languages for arbitrary lengths,
implying that Transformers do not have the abil-
ity to grasp hierarchical structures. However, Yao
et al. (2021) provided a proof that Transformer with
specific absolute positional encoding can generate
Dyckk and recognize Dyckk,D, where Dyckk,D is a
subset of Dyckk but the maximum nesting depth is
bounded to D. Furthermore, Wen et al. (2023) pro-
vided an existence proof that a 2-layer O(k2D2)-
width Transformer can process Dyckk,D. These
theoretical results raise the question:

Why can Transformers with smaller
widths and without specific absolute posi-
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tional encoding experimentally perform
well on processing the Dyckk language?

In contrast to the approaches of Bhattamishra
et al. (2020), Yao et al. (2021), and Wen et al.
(2023), our theoretical analysis offers two advan-
tages: (i) it reduces the linear or super-linear de-
pendency of the number of bracket types k and
the maximum depth D on the network width, and
(ii) it does not rely on specific absolute positional
encoding. Table 1 outlines these differences and
highlights the strengths of our approach in compar-
ison.

Our contributions are summarized as follows.

1. We provide constructive proofs that with a
starting token, causal Transformers with a con-
stant number of layers and O(log k) width
have the ability to recognize the Dyckk and
Shuffle-Dyckk languages and to generate
the Dyckk language. Moreover, we also
present a proof that those with a constant num-
ber of layers and O(k) width have the abil-
ity to generate the Shuffle-Dyckk language.
Note that the network is followed by a fully-
connected layer whose output dimension is R
for a recognition task and K for a generation
task, where RK is the vocabulary size.

2. We give a constructive proof that Transform-
ers still have the ability to create a signal that
can serve similarly to a starting token by only
leveraging causal masking under an additional
assumption.

Our proofs include detailed descriptions of ma-
trix notations and transformations at each layer for
clarity, which makes our paper relatively lengthy.
Therefore, we provide high-level proof sketches
to allow readers to grasp the main ideas without
delving into the details.

2 Related Work

Since the emergence of Transformer (Vaswani
et al., 2017), a wide range of theoretical analy-
ses have been conducted on its expressive capacity.
Some of these analyses have focused on formal lan-
guage recognition and generation tasks, particularly
for the Dyckk language and the Shuffle-Dyckk
language.

Bhattamishra et al. (2020) theoretically showed
that a Transformer with a width of O(k) can rec-
ognize the Shuffle-Dyckk language. In addition,

Yao et al. (2021) provided a constructive proof that
by using specific absolute positional encoding i/n,
where n is the maximum length of the input string,
and i is the position of characters, a (D + 1)-layer
causal Transformer can recognize the Dyckk,D lan-
guage. Yao et al. (2021) also proved that using
absolute positional encoding i/n, i/n3, and i, a
2-layer causal Transformer can generate the Dyckk
language. Furthermore, Wen et al. (2023) proved
that a 2-layer Transformer network with a width of
O(k2D2) can generate Dyckk,D.

3 Preliminaries

3.1 Dyck Languages

The Dyckk language is a context-free language over
an alphabet consisting solely of k types of bracket
pairs {⟨t, ⟩t}kt=1 and includes strings with correctly
nested brackets.

Despite its simplicity, Chomsky and Schützen-
berger (1959) showed that any context-free lan-
guage can be expressed as a homomorphism of the
intersection of the Dyck language and a regular lan-
guage, suggesting that the Dyck language has an
essence of context-free languages; that is, the Dyck
langauge abstracts the hierarchical structures that
context-free languages have but regular languages
do not. Therefore, we aim to analyze the recogni-
tion and generation capacity of Transformers with
respect to Dyckk and its variant, Shuffle-Dyckk.

In this paper, we consider languages with two
special tokens, <bos> and <eos>, which stand for
“beginning-of-sentence” and “end-of-sentence” re-
spectively. In language models, <bos> is typically
inserted at the start, and <eos> is used as a signal
to stop generating output. Therefore, we define the
Dyckk and Shuffle-Dyckk languages for language
models as follows:

Definition 1 (Dyckk language for language mod-
els). The Dyckk language for language mod-
els is a context-free language over an alphabet
Σ = {⟨t, ⟩t}kt=1 ∪ {<bos>, <eos>}. The following
context-free grammar generates Dyckk language:

S → <bos>X <eos>, (1)

X → ε | ⟨1X ⟩1X | · · · | ⟨k X ⟩k X, (2)

where S and ε are the starting symbol and empty
string, respectively.

Definition 2 (Shuffle-Dyckk language for lan-
guage models (informal)). The Shuffle-Dyckk
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Method Language Width Positional Encoding
Recognition task
Bhattamishra et al. (2020) Shuffle-Dyckk O(k) None
Yao et al. (2021) Dyckk,D O(log k) i/n
Ours Dyckk O(log k) None

Shuffle-Dyckk O(log k) None
Generation task
Yao et al. (2021) Dyckk,D O(log k) i/n

Dyckk O(log k) i/n, i/n3, n
Wen et al. (2023) Dyckk,D O(k2D2) None
Ours Dyckk O(log k) None

Shuffle-Dyckk O(k) None

Table 1: Comparison of proposed method to previous studies. Note that Width represents the width of the
Transformer block, excluding the width of the heads for each task. Since a task-specific head is a mapping
from Rdmodel to R for a recognition task and to RK for a generation task, each has an Ω(dmodel)-width and an
Ω(max(dmodel,K))-width head, respectively. In all cases in this table, the width of a task-specific head is O(dmodel)
for a recognition task and O(max(dmodel,K)) for a generation task.

language for language models is defined as fol-
lows:

{<bos>w<eos>|w ∈ Shuffle-Dyckk} , (3)

where Shuffle-Dyckk is a language over an al-
phabet Σ = {⟨t, ⟩t}kt=1 and is defined as a shuf-
fle of k multiple Dyck1 — Dyck11, · · · , Dyckk1 —,
where Dyckt1 is the Dyck1 language over an alpha-
bet {⟨t, ⟩t}. A formal definition of Shuffle-Dyckk
is provided in Appendix B.1.

For example, “⟨1 ⟨2 ⟩1 ⟩2” does not belong to
Dyck2 but to Shuffle-Dyck2. Shuffle-Dyckk can
be recognized by k-counter machines; thus, this
language provides insights into the ability to pro-
cess k hierarchical structures in parallel.

We also define a prefix for languages and the
depth of a prefix in the Dyckk language as follows:
Definition 3 (Prefix for language). A string w ∈
Σ∗ is a prefix for language L if there exists u ∈ Σ∗

such that wu ∈ L. In addition, denote by w ∈
Pre(L) that w is a prefix for L.

Hereafter, denote an input string of length n+ 1
by w0:n and the prefix of length i+1 by w0:i. Note
that strings starting at index 0 implicitly include
<bos> at the beginning; that is, for instance, w0:i

represents <bos>w1:i.
Definition 4 (Depth of string). The depth of a prefix
w0:i(= <bos>w1:i) in Dyckk is defined as follows:

d(w0:i) = #⟨(w0:i)−#⟩(w0:i), (4)

where #⟨(w0:i) and #⟩(w0:i) represent the num-
ber of open brackets and closed brackets in w0:i,

respectively. Here, the differences in bracket types
are ignored.

Note that for any prefix w0:i for Dyckk, the fol-
lowing three statements hold: (i) w0:i ⟨ is always a
prefix, (ii) if d(w0:i) = 0, w0:i ⟩ cannot be a prefix,
and (iii) if d(w0:i) ≥ 1, there exists only one type
tvalid such that w0:i ⟩tvalid is a prefix. With respect
to (iii), although such a closed bracket depends
on w0:i, denote it by ⟩tvalid in an abusive manner.
In addition, there can be more than one ⟩tvalid in
Shuffle-Dyckk.

3.2 Transformer architecture
Let dmodel be the dimension of the embedding vec-
tors and hidden representations, Σ be the vocabu-
lary set. Transformer architecture takes an input
string of length n and converts each character into
a dmodel-dimensional vector. Then, by applying
Transformer blocks

(
Rn×dmodel → Rn×dmodel

)
for

multiple times, an output of dimension Rn×dmodel

is obtained. Since n is not fixed, we represent a
Transformer as T : Σ∗ → R∗×dmodel .

In this paper, we largely follow the Transformer
architecture adopted in Yao et al. (2021); namely,
we consider a Transformer architecture composed
of multiple single-head Transformer blocks, each
of which incorporates a self-attention layer and a
feed-forward network layer. The two major dif-
ferences of the architecture adopted in Yao et al.
(2021) from the model proposed by Vaswani et al.
(2017) are as follows: (i) using single-head atten-
tion instead of multi-head attention and (ii) incor-
porating the layer normalization (Ba et al., 2016)
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right after the first linear transformation in the feed-
forward network layer instead of after the attention
layer and feed-forward network layer. The latter
assumption is also incorporated in Merrill and Sab-
harwal (2024).

We adopt the architecture in Yao et al. (2021)
with a slight modification: we replace the stan-
dard layer normalization (Ba et al., 2016) with the
RMS layer normalization (Zhang and Sennrich,
2019). Zhang and Sennrich (2019) empirically
showed that the RMS layer normalization reduces
the training time compared to the conventional
layer normalization while maintaining the same
performance. The RMS layer normalization has
been adopted in recent models such as Llama (Tou-
vron et al., 2023a) and Llama 2 (Touvron et al.,
2023b). The details of the Transformer architecture
are provided in Appendix B.2.

3.3 Language recognition and generation
In this paper, we mainly focus on two tasks: lan-
guage recognition and generation. Here, we define
language recognition and generation by Transform-
ers. For each task, a fully-connected layer fol-
lows the network, and the output dimension is R
for recognition tasks and RK for generation tasks,
which we call the recognizer head and generator
head, respectively.

Definition 5 (Language recognition by Transform-
ers). A Transformer T : Σ∗ → R∗×dmodel recog-
nizes a language L ⊆ Σ∗ if there exists a fully-
connected layer frec : Rdmodel → R such that for
any w0:n ∈ Σ∗,

sgn(frec(T (w0:n)n)) =

{
1 if w0:n ∈ L
−1 if w0:n /∈ L

,

(5)
where sgn(·) is a sign function.

It is impossible to define language generation by
Transformers by simply setting a threshold on the
output probability of each string in a language be-
cause formal languages are typically infinite string
sets. Therefore, we first define language genera-
tion process and then define language generation
by Transformers. This approach is similar to the
methods in Yao et al. (2021), Wen et al. (2023) and
Svete and Cotterell (2024). Specifically, we define
language generation process using the conditional
categorical distribution as follows.

Definition 6 (Language generation process). A lan-
guage generation process over an alphabet Σ is a

categorical distribution over Σ conditioned by a
string w0:i. Specifically, denote the language gener-
ation process of a language L by pL(wi+1 | w0:i).

Note that language generation processes are well-
defined: the following proposition holds.

Proposition 1. For any language L ⊆ Σ∗ over a
finite alphabet Σ and any probability distribution p
over L, there exists a language generation process
that produces the given probability distribution p.
In other words, there exists a language generation
process pL(wi+1 | <bos>w1:i) such that for any
string w1:n ∈ L,

p(w1:n) = pL(<bos>w1:n<eos>), (6)

where

pL(<bos>w1:n<eos>)

= pL(<bos>)

·
(

n∏

i=1

pL(wi | <bos>w1:i−1)

)

· pL(<eos> | <bos>w1:n).

(7)

Proof. The proof is provided in Appendix E.

Then, we define the language generation by
Transformers. We largely follow the definition
in Yao et al. (2021), which defines it as whether
the probability p(wi | w1:i−1) exceeds a certain
threshold for any string w1:n ∈ L and i ∈ [n](=
{1, · · · , n}). However, we make this definition
more stringent: we assume the existence of a true
distribution and define it as the ability to output this
distribution. This is because one of the most im-
portant properties of language models is the ability
to generate diverse but natural sentences by assign-
ing appropriate probability to consistent sequences.
This approach is similar to Wen et al. (2023) and
Svete and Cotterell (2024).

In general, Transformer-based language mod-
els transform the last token output with a fully-
connected layer fgen : Rdmodel → RK . Then,
the vector is converted into a probability vector
with softmax function : RK → ∆K−1, where
∆K−1

(
⊂ RK

)
is a probability simplex. Here, the

softmax function transforms each element into a
value in the range of (0, 1), which makes it im-
possible to represent a probability of 0 or 1 exactly.
Therefore, we define the realization of the language
generation process by Transformers as the ability
to approximate the language generation process
with arbitrary precision as follows.
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Definition 7 (Realization of language generation
process by Transformers). A Transformer T :
Σ∗ → R∗×dmodel realizes a language generation
process pL(wi+1 | w0:i) if for any ϵ > 0 there ex-
ists a fully-connected layer fgen : Rdmodel → RK

such that if pL(w0:i) > 0 then

TV (pT (wi+1 |w0:i), pL(wi+1 |w0:i)) < ϵ, (8)

where pT (wi+1 |w0:i) is the categorical distri-
bution based on the output of Transformer and
TV(·, ·) is the total variation distance. Specifically,

pT (wi+1 |w0:i) = S(fgen(T (w0:i)i)), (9)

where S(·) is a softmax function and the total
variation distance between two K-dimensional
categorical distributions p = (p1, · · · , pK) and
p′ = (p′1, · · · , p′K) is expressed as follows:

TV(p, p′) =
1

2

K∑

l=1

∣∣pl − p′l
∣∣ (10)

Next, we define the language generation process
of Dyckk. Note that this definition generalizes the
definition in Hewitt et al. (2020) and Wen et al.
(2023): they treat all types of brackets in a symmet-
ric way, while we slightly generalize the approach
to be able to assign different probabilities.

Definition 8 (Dyckk language generation process).
A language generation process p(wi+1 | w0:i) over
an alphabet Σ = {⟨t, ⟩t}kt=1 ∪ {<bos>, <eos>} is
called the Dyckk language generation process if

p(w0 = “<bos>” | ε) = 1, (11)

p(wi+1 | w0:i)

=

{
p0(wi+1) if d(w0:i) = 0

p1(wi+1) if d(w0:i) ≥ 1
,

(12)

where

p0(wi+1) =





rπt if wi+1 = “⟨t”
1− r if wi+1 = “<eos>”

0 otherwise

,

p1(wi+1) =





qπt if wi+1 = “⟨t”
1− q if wi+1 = “⟩tvalid”
0 otherwise

,

(13)

q, r ∈ (0, 1), π ∈ ∆k−1.
Hereafter, we explicitly write the Dyck language

generation process parameterized by q, r,π as
pDyckk(·; q, r,π).

Note that the Dyckk language generation process
defined above corresponds appropriately with the
Dyckk language as described below.

Proposition 2. For any length n and Dyckk lan-
guage generation process pDyckk(·; q, r,π), there
exists ϵn such that if π > 0 then

pDyckk(<bos>w1:n<eos>; q, r,π){
≥ ϵn if w1:n ∈ Dyckk

= 0 if w1:n /∈ Dyckk

(14)

holds.

Proof. The Proof is provided in Appendix F.

We also define the language generation process
of Shuffle-Dyckk in a similar way. The details
are provided in Appendix B.1.

4 Theoretical Results

In this section, we show our theoretical results.

Theorem 1 (Transformers with starting token,
Dyckk recognition). For all k, there exists a 5-
layer O(log k)-width causal Transformer without
positional encoding that recognizes the Dyckk lan-
guage. Each layer incorporates both the residual
connection and the layer normalization. This net-
work is followed by a fully-connected layer and a
sign function to output an acceptance signal.

Proof sketch. A Transformer network that recog-
nizes the Dyckk language can be constructed by
performing the following operations in each layer.
Note that w0:i corresponds to <bos>w1:i. First,
we compute positional and depth information us-
ing <bos>. Then, using the information, we check
whether the following two conditions are simulta-
neously satisfied: (i) w1:i is a prefix of the Dyckk
language and (ii) the depth of w0:i is 0. Figure 1
provides the high-level understanding of this Trans-
former.

First layer creates pseudo positional encoding[
cosϕ(i) sinϕ(i)

]⊤ at position i, where
ϕ(i) = tan−1(i/ exp(a)) and a is an attention
score on <bos>.

Second and third layers count depth d(w0:i) and
d(w0:i) + 1, respectively. This is because the
depth of the closed bracket is smaller by 1 than
the corresponding open bracket. For instance,
the depths calculated for “⟨1⟩1” are 1 for “⟨1”
and 0 for “⟩1”. These computations are achieved
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by constructing a value matrix that outputs 1 for
open brackets and −1 for closed brackets in a
specific dimension.

Fourth layer calculates a value that corresponds
to a propositional variable Q(w0:i) that indicates
w1:i ∈ Dyckk but is guaranteed to return the ex-
pected value (w1:i ∈ Dyckk) only when i = 0 or
w1:i−1 is a prefix for Dyckk. Therefore, to check
whether w1:i ∈ Dyckk in the subsequent layers,
we have to check whether all propositional vari-
ables {Q(w0:j)}ij=0 return True or not.

Fifth layer calculates (i) whether w1:n is a prefix
for Dyckk with

∧n
i=1Q(w0:i) and (ii) whether

d(w0:i) = 0 or not.

The subsequent fully-connected layer deter-
mines whether the string w1:n belongs to Dyckk by
examining whether the two conditions calculated
in the fifth layer are simultaneously satisfied.

The full proof is provided in Appendix G.

Theorem 2 (Transformers with starting token,
Dyckk generation). For all k, there exists a 3-layer
O(log k)-width causal Transformer network with-
out positional encoding that generates the Dyckk
language. Each layer incorporates both the resid-
ual connection and the layer normalization. This
network is followed by a fully-connected layer and
softmax layer to output the probability distribution.

Proof sketch. A Transformer network that gener-
ates the Dyckk language can be constructed by per-
forming the following operations in each layer. The
first and second layers do the same operations as
those used in Theorem 1. Figure 2 provides the
high-level understanding of this Transformer.

First layer creates pseudo positional encoding[
cosϕ(i) sinϕ(i)

]⊤.

Second layer counts depth d(w0:i).

Third layer fetches a valid closed bracket if one
exists; otherwise, a zero vector is fetched. This
operation is achieved by placing attention on the
largest position among {0} ∪ {j | d(w0:j) =
d(w0:i)}.

Then, the subsequent fully-connected layer and
softmax operation output the next token distribu-
tion using the vector calculated in the third layer.

The full proof is provided in Appendix H.

Proposition 3 (Transformers with starting token,
Shuffle-Dyckk recognition). For all k, there ex-
ists a 3-layer O(log k)-width causal Transformer
without positional encoding that recognizes the
Shuffle-Dyckk language. Each layer incorpo-
rates both the residual connection and the layer
normalization. This network is followed by a fully-
connected layer and a sign function to output an
acceptance signal.

Proof. The proof is provided in Appendix I.

Proposition 4 (Transformers with starting token,
Shuffle-Dyckk generation). For all k, there ex-
ists a 3-layer O(k)-width causal Transformer
without positional encoding that generates the
Shuffle-Dyckk language. Each layer incorpo-
rates both the residual connection and the layer
normalization. This network is followed by a fully-
connected layer and softmax layer to output the
probability distribution.

Proof. The proof is provided in Appendix J.

Proposition 5. There is no network whose width
grows strictly slower than k/ log k that generates
Shuffle-Dyckk; that is, if

lim
k→∞

dmodel(k)

k/ log k
= 0 (15)

holds, then there exists k0 such that for any k ≥
k0, networks with dmodel(k)-width cannot generate
Shuffle-Dyckk.

Proof. The proof is provided in Appendix K.

Next, we show that even without <bos>, Trans-
formers can recognize and generate Dyckk lan-
guages under certain conditions. The following
proposition states that under relatively weak con-
ditions, Transformers can generate a signal that
serves a similar role to <bos> in Theorems 1, 2.

Proposition 6. Assume that there exists a linear
mapping such that the transformed embeddings
are distinct from each other and have a constant
2-norm. Then, there exists a Transformer block
without a starting token that creates a pseudo start-
ing signal ŝi for any string w1:n whose first two
tokens are different, where

ŝi =

{
1 if i = 1

0 otherwise
. (16)
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Figure 1: Intuitive illustration of the Transformer that recognizes Dyckk. The specific implementation is described
in Section G.

Specifically, this block transforms the constants-
padded vector x̂i as follows:

x̂i =



xi
...
0


 7→



xi
...
ŝi


 . (17)

Proof. The proof is provided in Appendix L.

By leveraging Proposition 6, we also show that
Transformers without <bos> can recognize and
generate under the same assumption of Proposi-
tion 6.

Corollary 1 (Transformers without starting token,
Dyckk probabilistic recognition). Assume the same
assumption as in Proposition 6. There exists a 9-
layer causal Transformer without a starting token
that recognizes the Dyckk language with probabil-
ity at least 1− 1/k.

Proof. The proof is provided in Appendix M.

Corollary 2 (Transformers without starting token,
Dyckk subset generation). Assume the same as-
sumption as in Proposition 6. There exists a 7-layer
causal Transformer without a starting token that
can generate a subset of Dyckk where the first two
characters are different; that is, the Transformer
can generate all possible subsequent sequences
when there is an input string whose first two char-
acters are different.

Proof. The proof is provided in Appendix N.

5 Experiments

The constructive proofs in the previous section
show that even without the need for a specific po-
sitional encoding, single-head Transformers with
a starting token have the ability to recognize and
generate Dyckk and Shuffle-Dyckk, and that even
without a starting token, Transformers can rec-
ognize and generate Dyckk. In this section, we
examined the theoretical results by conducting
experiments on the generation ability for Dyckk
with/without a starting token (Theorem 2 and
Corollary 2). We also investigated the generation
ability on Shuffle-Dyckk (Proposition 4).

In addition, we empirically investigated the ef-
fect of the layer normalization position on model
performance using natural language datasets be-
cause the Transformer architecture used in this pa-
per differs from common architectures regarding
the layer normalization position.

5.1 Evaluation on Dyckk and Shuffle-Dyckk

Our constructive proofs show that Transformers
are capable of recognizing and generating Dyckk
and Shuffle-Dyckk. In this section, we experi-
mentally investigated whether such networks can
actually be learned. Here, we provide a brief ex-
planation of the experimental setup and the results
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Figure 2: Intuitive illustration of the Transformer that generates Dyckk. The specific implementation is described in
Section H.

for Dyck8 and Shuffle-Dyck8, while the detailed
explanation and other results are provided in Ap-
pendix R.

Setup Following Yao et al. (2021), we generated
training and validation sets with the maximum in-
put length of 700 according to a language genera-
tion process. We trained Transformers with causal
masking by having them solve a next-token predic-
tion task.

We compared four types of models: (i) with po-
sitional encoding and a starting token (PE+BOS),
(ii) with positional encoding but without a starting
token (PE+NoBOS), (iii) without positional encod-
ing but with a starting token (NoPE+BOS), and (iv)
without positional encoding and a starting token
(NoPE+NoBOS). We reported the average accuracy
of generating correct closed brackets, which is de-
scribed below, separately for in-distribution (ID)
data (n ≤ 700) and out-of-distribution (OOD) data
(700 < n ≤ 840).

Metric Following Hewitt et al. (2020), Yao et al.
(2021), we report the conditioned probability to
output the correct closed bracket(s):

Accclosed = E [p(⟩tvalid | ⟩·)] , (18)

where

p(⟩tvalid | ⟩·)

=





p(⟩tvalid)∑k
t=1 p(⟩t)

for Dyckk
∑

tvalid
p(⟩tvalid)∑k

t=1 p(⟩t)
for Shuffle-Dyckk

.

(19)
This metric indicates how accurately the models
can generate the sequence.

Figure 3 shows the test accuracy of gener-
ating the correct closed bracket on Dyck8 and
Shuffle-Dyck8, while the results for other values
of k are provided in Appendix R.

5.2 Evaluation on natural language datasets
In the previous section, we derived theoretical re-
sults using the architecture that differs from the
common ones with respect to the position of the
layer normalization. In this section, we investi-
gated the performance differences that arise from
the layer normalization positions because Wang
et al. (2019) and Xiong et al. (2020) empirically
showed that layer normalization position signifi-
cantly affects the model performance.

Specifically, we investigated whether the archi-
tecture used in our proofs, which we call FFN-LN,
could benefit from the layer normalization by com-
paring FFN-LN with the architectures with two
common layer normalization positions, Post-LN
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Figure 3: (Left) Test accuracy of generating the correct closed brackets on Dyck8. (Right) Test accuracy of generating
the correct closed bracket on Shuffle-Dyck8. The solid lines represent the results for in-distribution data (n ≤ 700),
while the dashed lines represent the results for out-of-distribution data (700 < n ≤ 840). In both experiments,
results are averaged over 5 runs with different random seeds.

Architecture WikiText-103 OpenWebText
Post-LN 19.11 20.82
Pre-LN 19.44 20.83
No-LN 21.25 22.72
FFN-LN 19.17 21.32

Table 2: Test perplexity on two natural language datasets
with different positions of the layer normalization.

and Pre-LN, and without the layer normalization,
No-LN. In Post-LN, the layer normalization is ap-
plied after the attention layer and the feed-forward
network layer, while in Pre-LN, the layer normal-
ization is applied before these layers.

We trained four 124M models (Post-LN,
Pre-LN, No-LN, and FFN-LN) once each from
scratch on two natural language datasets, WikiText-
103 (Merity et al., 2016) and OpenWebText
(Gokaslan et al., 2019). The test perplexities of
the models that achieve the best validation losses
are described in Table 2. The Appendix R provides
detailed information about the training process and
other results.

6 Discussion

6.1 Experiments on Dyck8 and Shuffle-Dyck8

From the results in Figure 3, PE lets models achieve
higher accuracy on ID data compared to NoPE.
However, the performance with PE on OOD data
drops significantly. On the other hand, for NoPE, the
performance on OOD data drops slightly compared
to that on ID data. This suggests that NoPE might let
models obtain a better inductive bias with respect
to capturing hierarchical structure and generalizing

with respect to sequence length. In addition, we did
not observe a noticeable difference between BOS
and NoBOS. This correlates with Corollary 2.

6.2 Experiments on natural language datasets
Here, we discuss the optimal position of the layer
normalization. Wang et al. (2019) and Xiong et al.
(2020) showed that Pre-LN leads to stable training
and training time reduction compared to Post-LN,
while Nguyen and Salazar (2019) and Mao et al.
(2023) demonstrated that under certain conditions,
such as machine translation, Post-LN outperforms
Pre-LN. Furthermore, Shleifer et al. (2021) demon-
strated that incorporating the layer normalization
before the second linear layer of the feed-forward
network layer can effectively mitigate gradient ex-
plosion and vanishing, which are commonly ob-
served issues in both Pre-LN and Post-LN setups.

In this way, although the optimal position re-
mains unclear, we conclude that our modified ar-
chitecture is competitive to Pre-LN and Post-LN
because the architecture used in our proof effec-
tively benefits from the layer normalization in the
experiments on WikiText-103 and OpenWebText.
Further discussion on the layer normalization posi-
tion is provided in Appendix S.

7 Conclusion

In this study, we theoretically showed that Trans-
formers can efficiently process hierarchical lan-
guages even without the need for a specific po-
sitional encoding. Our theoretical and empirical
results might alleviate the existing concern that
Transformers, unlike RNNs and LSTMs, often face
difficulties in capturing hierarchical structures.
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Limitations

We adopt the layer normalization position that dif-
fers from the commonly used positions, but it re-
mains unclear whether this specific position is es-
sential for our proofs. We also assume real num-
bers with infinite precision, occasionally involving
operations with large real values, which leads to
a question as to whether it is possible to realize
such operations with finite-bit floating point rep-
resentation. This issue is particularly important in
light of recent trends towards quantization for re-
ducing model sizes, where 16-bit or even 4 or 8-bit
floating-point representations are frequently used.

In addition, we trained 124M models using two
natural language datasets and empirically demon-
strated the validity of the architecture we adopted.
However, it remains unclear whether the adopted ar-
chitecture is competitive with Pre-LN and Post-LN
when applied to larger models or different datasets.

Ethics Statement

This paper consists solely of theoretical results and
supporting experiments. While we conducted ex-
periments using natural language datasets, we have
presented only sufficiently aggregated results. To
the best of our knowledge, there are no ethical con-
cerns or potential risks associated with this study.

Acknowledgements

This work was supported by JSPS KAKENHI
Grant Number 20H05703 Japan. We thank anony-
mous reviewers for insightful suggestions and com-
ments. We used a generative AI tool for language
refinement.

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E.

Hinton. 2016. Layer normalization. Preprint,
arXiv:1607.06450.

Armen Bagdasaryan. 2023. On the partition of space by
hyperplanes. European Journal of Pure and Applied
Mathematics, 16(2):893–898.

Pablo Barcelo, Alexander Kozachinskiy, Anthony Wid-
jaja Lin, and Vladimir Podolskii. 2024. Logical lan-
guages accepted by transformer encoders with hard
attention. In The Twelfth International Conference
on Learning Representations.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal.
2020. On the Ability and Limitations of Transform-
ers to Recognize Formal Languages. In Proceed-
ings of the 2020 Conference on Empirical Methods

in Natural Language Processing (EMNLP), pages
7096–7116, Online. Association for Computational
Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

David Chiang and Peter Cholak. 2022. Overcoming a
theoretical limitation of self-attention. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 7654–7664, Dublin, Ireland. Association
for Computational Linguistics.

N. Chomsky and M.P. Schützenberger. 1959. The al-
gebraic theory of context-free languages**this work
was supported in part by the u.s. army signal corps,
the air force office of scientific research, and the of-
fice of naval research; and in part by the national sci-
ence foundation; and in part by a grant from the com-
monwealth fund. In P. Braffort and D. Hirschberg,
editors, Computer Programming and Formal Systems,
volume 26 of Studies in Logic and the Foundations
of Mathematics, pages 118–161. Elsevier.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
pages 276–286, Florence, Italy. Association for Com-
putational Linguistics.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Pi-
otr Padlewski, Jonathan Heek, Justin Gilmer, An-
dreas Peter Steiner, Mathilde Caron, Robert Geirhos,
Ibrahim Alabdulmohsin, Rodolphe Jenatton, Lucas
Beyer, Michael Tschannen, Anurag Arnab, Xiao
Wang, Carlos Riquelme Ruiz, Matthias Minderer,
Joan Puigcerver, Utku Evci, Manoj Kumar, Sjo-
erd Van Steenkiste, Gamaleldin Fathy Elsayed, Ar-
avindh Mahendran, Fisher Yu, Avital Oliver, Fantine
Huot, Jasmijn Bastings, Mark Collier, Alexey A. Grit-
senko, Vighnesh Birodkar, Cristina Nader Vasconce-
los, Yi Tay, Thomas Mensink, Alexander Kolesnikov,
Filip Pavetic, Dustin Tran, Thomas Kipf, Mario Lu-
cic, Xiaohua Zhai, Daniel Keysers, Jeremiah J. Harm-
sen, and Neil Houlsby. 2023. Scaling vision trans-
formers to 22 billion parameters. In Proceedings of
the 40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learning
Research, pages 7480–7512. PMLR.

30786

https://arxiv.org/abs/1607.06450
https://doi.org/10.29020/nybg.ejpam.v16i2.4713
https://doi.org/10.29020/nybg.ejpam.v16i2.4713
https://openreview.net/forum?id=gbrHZq07mq
https://openreview.net/forum?id=gbrHZq07mq
https://openreview.net/forum?id=gbrHZq07mq
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2022.acl-long.527
https://doi.org/10.18653/v1/2022.acl-long.527
https://doi.org/10.1016/S0049-237X(09)70104-1
https://doi.org/10.1016/S0049-237X(09)70104-1
https://doi.org/10.1016/S0049-237X(09)70104-1
https://doi.org/10.1016/S0049-237X(09)70104-1
https://doi.org/10.1016/S0049-237X(09)70104-1
https://doi.org/10.1016/S0049-237X(09)70104-1
https://doi.org/10.1016/S0049-237X(09)70104-1
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://proceedings.mlr.press/v202/dehghani23a.html
https://proceedings.mlr.press/v202/dehghani23a.html


Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Javid Ebrahimi, Dhruv Gelda, and Wei Zhang. 2020.
How can self-attention networks recognize Dyck-n
languages? In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 4301–
4306, Online. Association for Computational Lin-
guistics.

Daniel Y Fu, Tri Dao, Khaled Kamal Saab, Armin W
Thomas, Atri Rudra, and Christopher Re. 2023. Hun-
gry hungry hippos: Towards language modeling with
state space models. In The Eleventh International
Conference on Learning Representations.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Ste-
fanie Tellex. 2019. Openwebtext corpus.

Michael Hahn. 2020. Theoretical limitations of self-
attention in neural sequence models. Transactions of
the Association for Computational Linguistics, 8:156–
171.

Yiding Hao, Dana Angluin, and Robert Frank. 2022.
Formal language recognition by hard attention
transformers: Perspectives from circuit complexity.
Transactions of the Association for Computational
Linguistics, 10:800–810.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Deep residual learning for image recogni-
tion. Preprint, arXiv:1512.03385.

John Hewitt, Michael Hahn, Surya Ganguli, Percy
Liang, and Christopher D. Manning. 2020. RNNs
can generate bounded hierarchical languages with
optimal memory. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1978–2010, Online. As-
sociation for Computational Linguistics.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan
Natesan Ramamurthy, Payel Das, and Siva Reddy.
2023. The impact of positional encoding on length
generalization in transformers. In Advances in Neu-
ral Information Processing Systems, volume 36,
pages 24892–24928. Curran Associates, Inc.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and
Anna Rumshisky. 2019. Revealing the dark secrets
of BERT. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4365–4374, Hong Kong, China. Association for Com-
putational Linguistics.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma.
2024. Chain of thought empowers transformers to
solve inherently serial problems. In The Twelfth In-
ternational Conference on Learning Representations.

Zhuoyuan Mao, Raj Dabre, Qianying Liu, Haiyue Song,
Chenhui Chu, and Sadao Kurohashi. 2023. Explor-
ing the impact of layer normalization for zero-shot
neural machine translation. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
1300–1316, Toronto, Canada. Association for Com-
putational Linguistics.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. Preprint, arXiv:1609.07843.

William Merrill and Ashish Sabharwal. 2023. The par-
allelism tradeoff: Limitations of log-precision trans-
formers. Transactions of the Association for Compu-
tational Linguistics, 11:531–545.

William Merrill and Ashish Sabharwal. 2024. The ex-
pressive power of transformers with chain of thought.
In The Twelfth International Conference on Learning
Representations.

William Merrill, Ashish Sabharwal, and Noah A. Smith.
2022. Saturated transformers are constant-depth
threshold circuits. Transactions of the Association
for Computational Linguistics, 10:843–856.

Aaron Mueller, Robert Frank, Tal Linzen, Luheng Wang,
and Sebastian Schuster. 2022. Coloring the blank
slate: Pre-training imparts a hierarchical inductive
bias to sequence-to-sequence models. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 1352–1368, Dublin, Ireland. Association
for Computational Linguistics.

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and
Christopher Manning. 2023. Grokking of hierarchi-
cal structure in vanilla transformers. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 439–448, Toronto, Canada. Association for
Computational Linguistics.

Toan Q. Nguyen and Julian Salazar. 2019. Transformers
without tears: Improving the normalization of self-
attention. In Proceedings of the 16th International
Conference on Spoken Language Translation, Hong
Kong. Association for Computational Linguistics.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, Charles Sutton, and Augustus Odena.
2021. Show your work: Scratchpads for interme-
diate computation with language models. Preprint,
arXiv:2112.00114.

Jackson Petty and Robert Frank. 2021. Transformers
generalize linearly. Preprint, arXiv:2109.12036.

30787

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.findings-emnlp.384
https://doi.org/10.18653/v1/2020.findings-emnlp.384
https://openreview.net/forum?id=COZDy0WYGg
https://openreview.net/forum?id=COZDy0WYGg
https://openreview.net/forum?id=COZDy0WYGg
https://doi.org/10.1162/tacl_a_00306
https://doi.org/10.1162/tacl_a_00306
https://doi.org/10.1162/tacl_a_00490
https://doi.org/10.1162/tacl_a_00490
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://doi.org/10.18653/v1/2020.emnlp-main.156
https://doi.org/10.18653/v1/2020.emnlp-main.156
https://doi.org/10.18653/v1/2020.emnlp-main.156
https://proceedings.neurips.cc/paper_files/paper/2023/file/4e85362c02172c0c6567ce593122d31c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/4e85362c02172c0c6567ce593122d31c-Paper-Conference.pdf
https://doi.org/10.18653/v1/D19-1445
https://doi.org/10.18653/v1/D19-1445
https://openreview.net/forum?id=3EWTEy9MTM
https://openreview.net/forum?id=3EWTEy9MTM
https://doi.org/10.18653/v1/2023.acl-short.112
https://doi.org/10.18653/v1/2023.acl-short.112
https://doi.org/10.18653/v1/2023.acl-short.112
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843
https://doi.org/10.1162/tacl_a_00562
https://doi.org/10.1162/tacl_a_00562
https://doi.org/10.1162/tacl_a_00562
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
https://doi.org/10.1162/tacl_a_00493
https://doi.org/10.1162/tacl_a_00493
https://doi.org/10.18653/v1/2022.findings-acl.106
https://doi.org/10.18653/v1/2022.findings-acl.106
https://doi.org/10.18653/v1/2022.findings-acl.106
https://doi.org/10.18653/v1/2023.acl-short.38
https://doi.org/10.18653/v1/2023.acl-short.38
https://aclanthology.org/2019.iwslt-1.17
https://aclanthology.org/2019.iwslt-1.17
https://aclanthology.org/2019.iwslt-1.17
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2112.00114
https://arxiv.org/abs/2109.12036
https://arxiv.org/abs/2109.12036


Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Herbert Robbins. 1955. A remark on stirling’s formula.
The American Mathematical Monthly, 62(1):26–29.

Sam Shleifer, Jason Weston, and Myle Ott. 2021. Norm-
former: Improved transformer pretraining with extra
normalization. Preprint, arXiv:2110.09456.

Lena Strobl. 2023. Average-hard attention transform-
ers are constant-depth uniform threshold circuits.
Preprint, arXiv:2308.03212.

Mirac Suzgun, Yonatan Belinkov, Stuart Shieber, and
Sebastian Gehrmann. 2019. LSTM networks can
perform dynamic counting. In Proceedings of the
Workshop on Deep Learning and Formal Languages:
Building Bridges, pages 44–54, Florence. Associa-
tion for Computational Linguistics.

Anej Svete and Ryan Cotterell. 2024. Transformers
can represent n-gram language models. In Proceed-
ings of the 2024 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume
1: Long Papers), pages 6845–6881, Mexico City,
Mexico. Association for Computational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models. Preprint, arXiv:2307.09288.

Ke Tran, Arianna Bisazza, and Christof Monz. 2018.
The importance of being recurrent for modeling hier-
archical structure. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 4731–4736, Brussels, Belgium.
Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, ¥L ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu,
Changliang Li, Derek F. Wong, and Lidia S. Chao.
2019. Learning deep transformer models for machine
translation. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1810–1822, Florence, Italy. Association for
Computational Linguistics.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2021.
Thinking like transformers.

Kaiyue Wen, Yuchen Li, Bingbin Liu, and Andrej Ris-
teski. 2023. Transformers are uninterpretable with
myopic methods: a case study with bounded dyck
grammars. In Advances in Neural Information Pro-
cessing Systems, volume 36, pages 38723–38766.
Curran Associates, Inc.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024. Efficient streaming lan-
guage models with attention sinks. In The Twelfth
International Conference on Learning Representa-
tions.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng,
Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan
Lan, Liwei Wang, and Tieyan Liu. 2020. On layer
normalization in the transformer architecture. In Pro-
ceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 10524–10533.
PMLR.

Shunyu Yao, Binghui Peng, Christos Papadimitriou,
and Karthik Narasimhan. 2021. Self-attention net-
works can process bounded hierarchical languages.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
3770–3785, Online. Association for Computational
Linguistics.

Biao Zhang and Rico Sennrich. 2019. Root mean square
layer normalization. In Advances in Neural Informa-
tion Processing Systems, volume 32. Curran Asso-
ciates, Inc.

30788

http://www.jstor.org/stable/2308012
https://arxiv.org/abs/2110.09456
https://arxiv.org/abs/2110.09456
https://arxiv.org/abs/2110.09456
https://arxiv.org/abs/2308.03212
https://arxiv.org/abs/2308.03212
https://doi.org/10.18653/v1/W19-3905
https://doi.org/10.18653/v1/W19-3905
https://doi.org/10.18653/v1/2024.naacl-long.381
https://doi.org/10.18653/v1/2024.naacl-long.381
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/D18-1503
https://doi.org/10.18653/v1/D18-1503
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/P19-1176
https://doi.org/10.18653/v1/P19-1176
https://openreview.net/forum?id=TmkN9JmDJx1
https://proceedings.neurips.cc/paper_files/paper/2023/file/79ba1b827d3fc58e129d1cbfc8ff69f2-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/79ba1b827d3fc58e129d1cbfc8ff69f2-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/79ba1b827d3fc58e129d1cbfc8ff69f2-Paper-Conference.pdf
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://proceedings.mlr.press/v119/xiong20b.html
https://proceedings.mlr.press/v119/xiong20b.html
https://doi.org/10.18653/v1/2021.acl-long.292
https://doi.org/10.18653/v1/2021.acl-long.292
https://proceedings.neurips.cc/paper_files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf


A Additional Related Work

Since the emergence of Transformer (Vaswani
et al., 2017), a wide range of theoretical analy-
ses have been conducted on its expressive capacity.
Some of these analyses focus on language recogni-
tion and generation tasks. These analyses can be
broadly classified into two categories: (i) studies
on the expressive capacity using circuit complexity
and (ii) studies on the expressive power by examin-
ing specific languages.

A.1 Theoretical analyses based on circuit
complexity

There have been studies that try to identify the lan-
guage classes that Transformers can process from
the perspective of circuit complexity. Hao et al.
(2022) established the relationship between unique
hard attention Transformers (UHAT) and circuits,
showing that UHAT can only recognize languages
in the circuit class AC0, where AC0 is a circuit class
that circuits consisting of constant depth and poly-
nomial size AND and OR gates belong to. In addition,
Barcelo et al. (2024) showed that UHAT cannot rec-
ognize all languages in AC0. In contrast, Hao et al.
(2022), Merrill et al. (2022), Merrill and Sabharwal
(2023), Strobl (2023), and Barcelo et al. (2024)
provided theoretical results on saturated attention,
or average hard attention (AHAT), which extends
hardmax attention to be able to refer more than
one token. Hao et al. (2022) showed that AHAT
has strictly higher expressive power compared to
UHAT. Merrill et al. (2022) provided a proof that
AHAT can only recognize languages in the circuit
class TC0, where TC0 is an extended circuit class of
AC0 by adding majority gates to AND and OR gates.
Barcelo et al. (2024) showed that AHAT can rec-
ognize languages within the linear temporal logic
extended to require counting. Merrill and Sabhar-
wal (2023) showed that log-precision Transformers
can only recognize the languages within the class
of uniform TC0. Strobl (2023) showed that AHAT
can also recognize the languages within the class
of uniform TC0.

Moreover, Li et al. (2024) showed that even
with O(log n)-steps chain-of-thought, Transform-
ers with a poly(n)-size representation can only pro-
cess the languages within AC0 in case of constant-
precision, and TC0 in case of O(log n)-bit fixed
point numbers, where n is a sequence length and
poly(n) is a polynomial function of n. In con-
trast, Li et al. (2024) showed that polynomial

steps of chain-of-thought with respect to the se-
quence length enhance the expressive capacity of
log-precision Transformers, showing that the prob-
lem class that log-precision Transformers with
polynomial steps chain-of-thought can compute
is equivalent to P/poly. Here, P/poly refers to
the class of problems that can be solved by circuits
with polynomial-size gates and is a superclass of
the problem class P. In addition, Li et al. (2024)
showed that by allowing n-step chain-of-thought,
constant-precision Transformers with log n-size
representation can simulate any finite state au-
tomata, indicating that Transformers with chain-
of-thought can express any regular languages.

A.2 Theoretical analyses on specific languages

On the other hand, some studies have focused
on specific languages to examine the expressive
power of Transformers, particularly for the par-
ity language within regular languages, the Dyckk
language within context-free languages, and the
Shuffle-Dyckk language. Hahn (2020) pointed
out that Lipschitz-continuous Transformers cannot
solve the parity task, Dyck1, and Dyck2 for arbi-
trary lengths. This is because when one charac-
ter out of an input string of length n is changed,
the change in the output decays at O(1/n), indi-
cating that the performance of Transformers with
restricted a Lipschitz constant approaches random
guessing as the input length increases. Meanwhile,
Yao et al. (2021) and Chiang and Cholak (2022)
showed that the theoretical limitations presented by
Hahn (2020) can be overcome by incorporating the
layer normalization because the Lipschitz constant
of the layer normalization can be O(n). Chiang
and Cholak (2022) also showed that Transformers
with the layer normalization can solve the PARITY
task by incorporating task-specific positional en-
coding i/n and (−1)i. Furthermore, Bhattamishra
et al. (2020) theoretically showed that O(k)-width
Transformers can recognize the Shuffle-Dyckk
language 1, suggesting that O(k)-width Transform-
ers can process k hierarchical structures in parallel.

In addition, there have also been studies that
focus on how Transformers handle such hierarchi-
cal structures. Ebrahimi et al. (2020) focused on
the Dyck language and demonstrated that the stack
states appear in the attention patterns, suggesting

1Intuitively, the Shuffle-Dyckk language is a set of
strings composed of k types of brackets, where all of the
k types of substrings are well-balanced. For instance, “([)]"
belongs to Shuffle-Dyck2 not to Dyck2.
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that the self-attention networks learn hierarchical
structures within the attention layers. However,
Wen et al. (2023) indicated that such attention pat-
terns cannot be fully reliable. Moreover, Wen et al.
(2023) provided a proof that a two-layer Trans-
former network with a width of O(k2D2) can rec-
ognize Dyckk,D. Furthermore, Yao et al. (2021)
provided a constructive proof that by using specific
absolute positional encoding i/n, 3-layer causal
Transformers can recognize the Dyckk,D language.
Yao et al. (2021) also showed that 2-layer causal
Transformers with absolute positional encoding
i/n, i/n3, and n can generate the Dyckk language.

A.3 Analyses on the role of uninformative
tokens

Moreover, there have been studies focusing on the
importance of uninformative tokens — the BOS to-
ken in GPT (Radford et al., 2018) and the CLS and
SEP tokens in BERT (Devlin et al., 2019). Clark
et al. (2019), Devlin et al. (2019), and Kovaleva
et al. (2019) observed that BERTs place relatively
large attention on the CLS and SEP tokens. Clark
et al. (2019) speculated that this phenomenon is for
achieving “no-operations” within specific heads.
In addition, Nye et al. (2021) observed that in algo-
rithmic tasks, special tokens such as the CLS token
serve as scratchpads, contributing to performance
improvement.

In contrast, although the BOS token cannot refer
to other tokens under causal masking, Ebrahimi
et al. (2020) empirically showed that the presence
of a starting token significantly improves the per-
formance in recognizing the Dyck language. In
addition, Weiss et al. (2021) showed that with a
starting token, it is possible to determine how many
tokens each head focuses on. Moreover, Kazem-
nejad et al. (2023) showed that with the BOS to-
ken, Transformers can create specific absolute and
relative positional encoding. Furthermore, Xiao
et al. (2024) demonstrated that regarding the Trans-
former architecture whose attention layers have
restricted attention scope, by slightly modifying
the architecture so that every token can refer to
a starting token, the models perform significantly
better. In light of these theoretical and empirical
results, it has become evident that even tokens that
do not have meaning by themselves are significant
to enhance the performance of Transformers.

B Detailed Preliminaries

We provide preliminaries for the proofs in the fol-
lowing sections and detailed definitions that are
omitted due to the lack of space.

B.1 Shuffle-Dyckk

Following Suzgun et al. (2019), before defining
the Shuffle-Dyckk language, we first recursively
define the shuffling operation over two strings x :
Σ∗ × Σ∗ → 2Σ

∗
as follows:

u1xε = εxu1 = {u1}, (20)

β1u1xβ2u2 = {β1u | u ∈ (u1xβ2u2)}
∪ {β2u | u ∈ (β1u1xu2)}

(21)

for any β1, β2 ∈ Σ and u1, u2 ∈ Σ∗. For instance,

⟨1 ⟩1x⟨2 ⟩2
= {⟨1 ⟩1 ⟨2 ⟩2, ⟨1 ⟨2 ⟩1 ⟩2, ⟨1 ⟨2 ⟩2 ⟩1,

⟨2 ⟩2 ⟨1 ⟩1, ⟨2 ⟨1 ⟩2 ⟩1, ⟨2 ⟨1 ⟩1 ⟩2}.
(22)

Moreover, we define the shuffling operation over
k strings u1, · · · , uk ∈ Σ∗ and over k languages
L1, · · · ,Lk ⊂ Σ∗ as follows:

k
X
t=1

ut =
⋃

u∈Xk−1
t=1 ut

ukxu, (23)

k
X
t=1

Lt =
⋃

u1∈L1,··· ,uk∈Lk

k
X
t=1

ut, (24)

where
1
X
t=1

ut = {u1}.

Definition 9 (Shuffle-Dyckk language for lan-
guage models). The Shuffle-Dyckk language for
language models is a language over an alphabet
Σ = {⟨t, ⟩t}kt=1 ∪ {<bos>, <eos>}.

Given distinct k Dyck1 languages —
Dyck11, · · · , Dyckk1 , where Dyckt1 is the Dyck1
language over an alphabet {⟨t, ⟩t} —, the
Shuffle-Dyckk language for language models is
defined as follows:

{
<bos>w<eos>

∣∣∣∣w ∈
k
X
t=1

Dyckt1

}
(25)

Intuitively, the Shuffle-Dyckk language is a
mixture of the k Dyck1 languages, and the ability
to process the Shuffle-Dyckk language suggests
that k hierarchical structures can be processed in
parallel. Figure 4 shows an example string that
belongs to Shuffle-Dyck3.
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Figure 4: An example of string that belongs to
Shuffle-Dyck3 not to Dyck3. Each substring of type
t ∈ {1, 2, 3} is properly balanced.

Definition 10 (Shuffle-Dyckk language gener-
ation process). A language generation process
p(wi+1 | w0:i) over an alphabet Σ = {⟨t, ⟩t}kt=1 ∪
{<bos>, <eos>} is called the Shuffle-Dyckk lan-
guage generation process if

p(w0 = “<bos>” | ε) = 1, (26)

p(wi+1 | w0:i)

=

{
p0(wi+1) if ∀t ∈ [k].d(w0:i | t) = 0

p1(wi+1) otherwise
,

(27)

where d(w0:i|t) represents the depth of the
substring of type t extracted from w0:i, and
p0(wi+1), p1(wi+1) are defined as follows:

p0(wi+1) =





rπt if wi+1 = “⟨t”
1− r if wi+1 = “<eos>”

0 otherwise

, (28)

p1(wi+1) =





qπt

Z if wi+1 = “⟨t”
(1−q)πt

Z

if wi+1 = “⟩t”
∧ d(w0:i | t) > 0

0 otherwise

,

(29)

where π,π ∈ ∆k−1, and

Z =

k∑

t′=1

qπt′ +
∑

t′∈{t|d(w0:i|t)>0}
(1− q)πt′ . (30)

Hereafter, we explicitly write the
Shuffle-Dyckk language generation
process parameterized by q, r,π,π as
pShuffle-Dyckk(·; q, r,π,π).

B.2 Transformer Architecture
We largely follow the Transformer architecture
adopted in Yao et al. (2021); that is, we consider

Transformer architecture composed of multiple
Transformer blocks, each of which incorporates
a self-attention layer and a feed-forward network
layer.

Let L be the number of Transformer blocks,
dmodel be the dimension of the embedding vectors
and hidden representations, Σ be the vocabulary
set, and K be the vocabulary size.

Given an input string w0:n(= <bos>w1:n) ∈ Σ∗,
which we identify with the sequence of one-hot vec-
tors

[
ew0 · · · ewn

]
∈ RK×(n+1), the architecture

process the string as follows:

x
(1)
i = Wembewi + pi, (31)

h
(ℓ)
i = Att

(
W

(ℓ)
Q x

(ℓ)
i ,W

(ℓ)
K x

(ℓ)
0:i ,W

(ℓ)
V x

(ℓ)
0:i

)
,

(32)

x
(ℓ+1)
i = FFN

(
h
(ℓ)
i ;W

(ℓ)
1 ,W

(ℓ)
2 ,β(ℓ),γ(ℓ)

)
,

(33)

where

• x
(ℓ)
i ∈ Rdmodel is the i-th input representation

to the ℓ-th layer,

• Wemb ∈ Rdmodel×K is a linear embedding
function,

• pi ∈ Rdmodel is the positional encoding at the
position i,

• Att(·) is an attention layer, which is parame-
terized by three matrices W (ℓ)

Q ,W
(ℓ)
K ,W

(ℓ)
V ∈

Rdmodel×dmodel ,

• FFN(·) is a feed-forward network layer,
which is parameterized by two matri-
ces W

(ℓ)
1 ,W

(ℓ)
2 ∈ Rdmodel×dmodel and

β(ℓ),γ(ℓ) ∈ Rdmodel .

Next, we describe the details of the attention and
feed-forward network layers.

Attention layer

We consider attention layers with causal mask-
ing and the residual connection (He et al., 2015).
Specifically, for ℓ-th layer, the input sequence
of length n + 1 — x

(ℓ)
0 , · · · ,x(ℓ)

n — is first pro-
cessed with three token-wise linear transformations
W

(ℓ)
Q ,W

(ℓ)
K ,W

(ℓ)
V , which create 3(n + 1) vectors
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{
W

(ℓ)
Q x

(ℓ)
i ,W

(ℓ)
K x

(ℓ)
i ,W

(ℓ)
V x

(ℓ)
i

}n

i=0
. Then, the i-

th output h(ℓ)
i is calculated as follows:

α
(ℓ)
i = S

(〈
W

(ℓ)
Q x

(ℓ)
i ,W

(ℓ)
K x

(ℓ)
0

〉
,

· · · ,
〈
W

(ℓ)
Q x

(ℓ)
i ,W

(ℓ)
K x

(ℓ)
i

〉)
,

(34)

a
(ℓ)
i =

i∑

j=0

α
(ℓ)
i,jW

(ℓ)
V x

(ℓ)
j , (35)

h
(ℓ)
i = Att

(
W

(ℓ)
Q x

(ℓ)
i ,W

(ℓ)
K x

(ℓ)
0:i ,W

(ℓ)
V x

(ℓ))
0:i

)

= x
(ℓ)
i + a

(ℓ)
i ,

(36)

where ⟨·, ·⟩ is a dot-product and S(·) is a softmax
operation.

Feed-forward network layer
A feed-forward network layer is a token-wise trans-
formation that maps hi 7→ FFN(hi). In this paper,
we implement a feed-forward network as two lin-
ear transformations with the ReLU activations. We
adopt the residual connection (He et al., 2015) and
the RMS layer normalization (Zhang and Sennrich,
2019). This architecture largely follows that pro-
posed in Yao et al. (2021) with a slight modifica-
tion: we replace the standard layer normalization
(Ba et al., 2016) with the RMS layer normaliza-
tion (Zhang and Sennrich, 2019). Specifically, the
feed-forward network transforms the vector h(ℓ)

i as
follows:

FFN
(
h
(ℓ)
i ;W

(ℓ)
1 ,W

(ℓ)
2 ,β(ℓ),γ(ℓ)

)

= h
(ℓ)
i +W

(ℓ)
2

[(
LNRMS

(
W

(ℓ)
1 h

(ℓ)
i

))]
+
,

(37)
where [·]+ is a ReLU activation and LNRMS(·)
is the RMS layer normalization (Zhang and Sen-
nrich, 2019) parameterized by β(ℓ),γ(ℓ) ∈ Rdmodel .
Specifically,

LNRMS(y) = γ(ℓ) ⊙ y

RMS(y)
+ β(ℓ), (38)

where ⊙ is an element-wise multiplication and

RMS(y) =

√√√√ 1

dmodel

dmodel∑

d=1

y2d. (39)

Zhang and Sennrich (2019) empirically showed
that the RMS layer normalization reduces the train-
ing time compared to the conventional layer nor-
malization while maintaining their performances.

The RMS layer normalization has been adopted
in recent models such as Llama (Touvron et al.,
2023a) and Llama 2 (Touvron et al., 2023b).

C Notation

The notations used in this paper are summarized in
Table 3.

D Vector Representation

We define the vector representation that is used
in the following sections. Specifically, the vector
representation of the alphabet Σ = {⟨t, ⟩t}kt=1 ∪
{<bos>, <eos>} takes the following form:

x
(
∈ Rdmodel

)

=




t
o
s
1
0




}⌈log2 k⌉ dim.
}1 dim.
}1 dim.
}1 dim.
}(dmodel − ⌈log2 k⌉ − 3) dim.

,
(40)

where

• t ∈ {−1, 1}⌈log2 k⌉∪{0} represents a bracket-
type embedding and t(t) represents bracket-
type embedding of type-t. Here, bracket types
are encoded by ±1 binary encoding; for in-
stance, when k = 4, 4 types are encoded

into t(1) =

[
−1
−1

]
, t(2) =

[
−1
1

]
, t(3) =

[
1
−1

]
, t(4) =

[
1
1

]
. Note that the bracket-

type embedding t of the two special tokens
{“<bos>”, “<eos>”} are defined as 0.

• o ∈ {−1, 0, 1} represents the openness: o =
1 for open brackets, o = −1 for closed
brackets, and o = 0 for two special tokens
{“<bos>”, “<eos>”}.

• s ∈ {0, 1} is a starting signal that indicates
whether the token is the starting token “<bos>”
or not. This value is set to 1 for “<bos>” and
0 for the other tokens.

• 0 ∈ Rdmodel−⌈log2 k⌉−3 denotes a zero vector.
These dimensions are used as a memory and
a scratchpad.

These vector representations are implemented
with the following embedding matrix:
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Variable Definition
k Number of bracket types
Dyckk / Shuffle-Dyckk The Dyck / Shuffle-Dyck language with k types of bracket pairs
D Maximum depth of the Dyck language
Dyckk,D The Dyckk language with bounded depth D
Σ /K Vocaburary set / Vocaburary size
t Bracket type
“⟨t” / “⟩t” Open / Closed bracket of type t
“<bos>” / “<eos>” / ε BOS / EOS token / Empty string
x /X Shuffling operation over two strings / multiple strings or languages
n /nmax Length of input string / Maximum length of the training dataset
i, j Index of position
w0:i(= <bos>w1:i) Prefix of string w0:n with a length of i+ 1
L Language
d(·) Depth function
pL(·) Language generation process of language L (Definition 6)
q, r,π / q, r,π,π Parameters of the Dyckk / Shuffle-Dyckk language generation process
L Number of Transformer blocks
dmodel Dimension of token representation
Wemb Token embedding matrix
pi Positional encoding at position i

x
(ℓ)
i Input vector to the ℓ-th layer at position i

h
(ℓ)
i

(
= x

(ℓ)
i + a

(ℓ)
i

)
Output vector of the ℓ-th attention layer at position i

ti / oi / si Bracket-type embedding / Openness of bracket / Starting signal
ŝ Pseudo starting signal
Att(·) / FFN(·) Self-attention layer / Feed-forward network layer
W

(ℓ)
Q /W

(ℓ)
K /W

(ℓ)
V Query / key / value matrices that parameterize Att(·) in ℓ-th layer

W
(ℓ)
1 /W

(ℓ)
2 Weights of the first / second linear transformation in FFN(·) in ℓ-th layer

α
(ℓ)
i Attention weights of query at position i in ℓ-th attention layer

LN(·) / LNRMS(·) The layer normalization / The RMS layer normalization
RMS(·) Root mean square
β(ℓ),γ(ℓ) Parameters of the RMS layer normalization in ℓ-th attention layer
⟨·, ·⟩ / S(·) /∆K−1 Dot product / Softmax function / (K−1)-dimensional probability simplex
T Transformer Σ∗ → R∗×dmodel , where ∗ represents an arbitrary length.
frec / fgen Recognizer head Rdmodel → R / Generator head Rdmodel → RK

sgn(·) Sign function R → {1,−1}
p Probability distribution over strings
(Σ∗,F , P ) / (Σ∗,F ′, P ′) Probability space / Complete extension of (Σ∗,F ′, P ′)
{w1:n} Singleton set of a string w1:n

a attention score on a starting token <bos>
ϕ(·) / θ(·) Function that converts position / depth to the angle
Q(w0:i) Propositional variable that indicates w0:i is a prefix for the Dyckk language
q(w0:i) Variable associated with the propositional variable Q(w0:i)
ϵ Small value
I Identity matrix

Table 3: Table of notations.
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Wemb

(
∈ Rdmodel×K

)

=




t(1) · · · t(k) t(1) · · · t(k) 0 0

1 · · · 1 −1 · · · −1 0 0
0 · · · 0 0 · · · 0 1 0
1 · · · 1 1 · · · 1 1 1
0 · · · 0 0 · · · 0 0 0




↑ ↑ ↑ ↑ ↑ ↑
⟨1 · · · ⟨k ⟩1 · · · ⟩k <bos> <eos>

.

(41)
In addition, denote the vector representation at

position i by

xi =




ti
oi
si
1
0




(42)

in the subsequent sections.

E Proof of Proposition 1

Proposition 7 (Restatement of Proposition 1). For
any language L ⊂ Σ∗ over a finite alphabet Σ
and any probability distribution p over L, there
exists a language generation process that pro-
duces the given probability distribution p. In other
words, there exists a language generation process
pL(wi+1 | <bos>w1:i) such that for any string
w1:n ∈ L,

p(w1:n) = pL(<bos>w1:n<eos>), (43)

where

pL(<bos>w1:n<eos>)

= pL(<bos>)

·
(

n∏

i=1

pL(wi | <bos>w1:i−1)

)

· pL(<eos> | <bos>w1:n).

(44)

Proof. We introduce a probability space to han-
dle probabilities over the countably infinite set Σ∗.
Given a finite alphabet Σ and a probability space
(Σ∗,F , P ) over Σ∗, we can assume that for any
w1:n ∈ Σ∗ such that p(w1:n) > 0, the single-
ton set {w1:n} belongs to F . Here, there exists a
unique minimal complete extension of the prob-
ability space (Σ∗,F ′, P ′), where for any string
w1:n ∈ Σ∗, the singleton set {w1:n} ∈ F ′, indi-
cating that F ′ = 2Σ

∗
. Therefore, any subset in Σ∗

is F ′-measurable.

Next, we define Cyl(w1:n) for a string w1:n ∈
Σ∗ as follows:

Cyl(w1:n) = {w′
1:n′ | n′ ≥ n ∧ w′

1:n = w1:n}.
(45)

Intuitively, Cyl(w1:n) is a string set whose el-
ements have w1:n as a prefix. Since {w1:n}
and Cyl(w1:n) are F ′-measurable, we can cal-
culate the probability measure P ′({w1:n}) and
P ′(Cyl(w1:n)).

Then, the language generation process defined
below corresponds to the probability distribution p.

pL(<bos> | ε) = 1,

pL(wi+1 | <bos>w1:i)

=

{
pposL if P ′(Cyl(w1:i)) > 0

pnullL otherwise
,

(46)

where

pposL (wi+1 | <bos>w1:i)

=





P ′({w1:i})
P ′(Cyl(w1:i))

if wi+1 = <eos>

P ′(Cyl(w1:i+1))

P ′(Cyl(w1:i))
otherwise

,

(47)

pnullL (wi+1 | <bos>w1:i)

=

{
1 if wi+1 = <eos>

0 otherwise
.

(48)

This is because, for any w1:n ∈ Σ∗ such that
p(w1:n) > 0,

pL(<bos>w1:n<eos>)

= pL(<bos>) ·
n∏

i=1

pL(wi | <bos>w1:i−1)

· pL(<eos> | <bos>w1:n)

=
n∏

i=1

P ′(Cyl(w1:i))

P ′(Cyl(w1:i−1))
· P ′({w1:n})
P ′(Cyl(w1:n))

=
P ′({w1:n})
P ′(Cyl(ε))

= P ′({w1:n})
= P ({w1:n}) = p(w1:n).

(49)

F Proof of Proposition 2

Proposition 8 (Restatement of Proposition 2). For
any length n and Dyckk language generation pro-
cess pDyckk(·; q, r,π), there exists ϵn such that if
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π > 0 then

pDyckk(<bos>w1:n<eos>; q, r,π){
≥ ϵn if w1:n ∈ Dyckk

= 0 if w1:n /∈ Dyckk

(50)

holds.

Proof. When w1:n ∈ Dyckk,

pDyckk(<bos>w1:n<eos>)

= pDyckk(<eos> | <bos>w1:n)

· pDyckk(<bos>w1:n)

...

= pDyckk(<eos> | <bos>w1:n)

·




n∏

j=1

pDyckk(wj | <bos>w1:j−1)




· pDyckk(<bos>)
≥ (1− r) · (min{r, 1− q, qπmin})n (=: ϵn)

(51)
where πmin = min ({πt|1 ≤ t ≤ k}).

On the other hand, when w1:n /∈ Dyckk, either
d(w1:n) > 0 or w1:n has some invalid prefixes.
If d(w1:n) > 0, pDyckk(<eos> | <bos>w1:n) = 0,
indicating p(<bos>w0:n<eos>) = 0. If w1:n has
some incorrect prefixes, regarding the shortest pre-
fix w1:j , either wj is an invalid closed bracket
or a token other than brackets. In both cases,
pDyckk(wj | <bos>w1:j−1) = 0 holds, indicating
pDyckk(<bos>w1:n<eos>) = 0.

G Proof of Theorem 1

In this section, we present a constructive proof
that Transformers without positional encoding can
recognize the Dyckk language using <bos>. We
restate Theorem 1 for convenience.

Theorem 3 (Restatement of Theorem 1, Transform-
ers with a starting token, Dyckk recognition). For
all k, there exists a 5-layer O(log k)-width causal
Transformer without positional encoding that rec-
ognizes the Dyckk language. Each layer incorpo-
rates both the residual connection and the layer
normalization. This network is followed by a fully-
connected layer and a sign function to output an
acceptance signal.

Proof. As shown in the proof sketch of Theorem
1, each layer performs the following operations.
Figure 1 provides the high-level understanding of

this Transformer. Note that w0:i corresponds to
<bos>w1:i.

First layer creates pseudo positional encoding[
cosϕ(i) sinϕ(i)

]⊤ at position i, where ϕ(i) =
tan−1(i/ exp(a)) and a is an attention score on
<bos>. Figure 5 provides the illustration of this
layer.

Second and third layers count depth d(w0:i) and
d(w0:i) + 1, respectively. This is because the
depth of the closed bracket is smaller by 1 than
the corresponding open bracket. For instance,
the depths calculated for “⟨1⟩1” are 1 for “⟨1”
and 0 for “⟩1”. These computations are achieved
by constructing a value matrix that outputs 1 for
open brackets and −1 for closed brackets in a
specific dimension.

Fourth layer calculates a value that corresponds
to a propositional variable Q(w0:i) that indicates
w1:i ∈ Dyckk but is guaranteed to return the ex-
pected value (w1:i ∈ Dyckk) only when i = 0 or
w1:i−1 is a prefix for Dyckk. Therefore, to check
whether w1:i ∈ Dyckk in the subsequent layers,
we have to check whether all propositional vari-
ables {Q(w0:j)}ij=0 return True or not.

Fifth layer calculates (i) whether w1:n is a prefix
for Dyckk with

∧n
i=1Q(w0:i) and (ii) whether

d(w0:i) = 0 or not.

We show the specific implementations for each
layer in the subsequent subsections.

Note that we explicitly represent the layer num-
ber to which each variable or parameter belongs
as a superscript. For instance, W (2)

V represents
the value matrix that belongs to the second atten-
tion layer. In addition, we use concise notation
di instead of d(w0:i). Moreover, we frequently
use omitted representations for vectors or matrices,
where the omitted dimensions of the transformation
matrices are zero-padded. For instance, let

yi =




ai
bi

ci
0




}da dim.
}db dim.
}1 dim.
}d0 dim.

(52)

be an example of an input vector. In this case, if
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Figure 5: Intuitive illustration of the Transformer block that creates pseudo positional encoding
[
cosϕ(i) sinϕ(i)

]⊤
at position i.

we use omitted representations

yi =




ai
...
ci
...



, (53)

W =



w⊤

11 · · · w12 · · ·
W21 · · · w22 · · ·

...
...



}1 dim.
}dw dim., (54)

then, the matrix-vector product Wyi corresponds
to the following computation:

Wyi

=



w⊤

11 · · · w12 · · ·
W21 · · · w22 · · ·

...
...







ai
...
ci
...




=



w⊤

11 0⊤ w12 0⊤

W21 O w22 O
O O 0 O




︸︷︷︸
da dim.

︸︷︷︸
db dim.

︸︷︷︸
1 dim.

︸︷︷︸
d0 dim.




ai
bi

ci
0




}da dim.
}db dim.
}1 dim.
}d0 dim.

=



w⊤

11ai + w12ci
W21ai + ciw22

0



}1 dim.
}dw dim..

(55)

G.1 First layer

In the first layer, the following pseudo positional
encoding is created.

[
cosϕ(i)
sinϕ(i)

]
∈ R2, (56)

where ϕ(i) = tan−1
(

i
exp(a)

)
and a ∈ R is a con-

stant.

First layer —Attention layer

We omit the unnecessary dimensions of input vec-
tor x(1)

i in this layer as follows:

x
(1)
i =




...
si
1
...



. (57)

Set the parameters W
(1)
Q ,W

(1)
K ,W

(1)
V ∈

Rdmodel×dmodel as follows:

W
(1)
Q =

[
· · · 0 1 · · ·

...
...

]
, (58)

W
(1)
K =

[
· · · a 0 · · ·

...
...

]
, (59)

W
(1)
V =




...
...

· · · 1 0 · · ·
· · · −1 1 · · ·

...
...



. (60)

Then, we obtain

W
(1)
Q x

(1)
iq

=

[
1
...

]
, (61)

W
(1)
K x

(1)
ik

=

[
sik · a

...

]
, (62)

W
(1)
V x

(1)
ik

=




...
sik

1− sik
...



, (63)

〈
W

(1)
K x

(1)
ik

,W
(1)
Q x

(1)
iq

〉
= sik · a. (64)

Therefore, a(1)i becomes
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a
(1)
i =

exp(a)

exp(a) + i
W

(1)
V x

(1)
0

+
i∑

j=1

1

exp(a) + i
W

(1)
V x

(1)
j

=




...
exp(a)

exp(a)+i

0
...



+

i∑

j=1




...
0
1

exp(a)+i
...




=




...
exp(a)

exp(a)+i
i

exp(a)+i
...




(65)

Finally, considering the residual connection, we
obtain

h
(1)
i = x

(1)
i +




...
exp(a)

exp(a)+i
i

exp(a)+i
...




=




ti
oi
si
1

exp(a)
exp(a)+i

i
exp(a)+i

0




.

(66)

First layer — Feed-forward network layer

We omit the unnecessary dimensions of input vec-
tor h(1)

i in this layer as follows:

h
(1)
i =




...
exp(a)

exp(a)+i
i

exp(a)+i
...



. (67)

Set the parameters W
(1)
1 ,W

(1)
2 ∈ Rdmodel×dmodel

and β(1),γ(1) ∈ Rdmodel as follows:

W
(1)
1 =



· · · 1 0 · · ·
· · · 0 1 · · ·
· · · 0 0 · · ·


 , (68)

W
(1)
2 =




...
...

...
1 0 0⊤

0 1 0⊤
...

...
...



, (69)

β(1) = 0, (70)

γ(1) =

√
1

dmodel
1. (71)

Then, the output of the FFN becomes

W
(1)
2

[
LNRMS

(
W

(1)
1 h

(1)
i

)]
+

= W
(1)
2


LNRMS







exp(a)
exp(a)+i

i
exp(a)+i

0









+

= W
(1)
2




exp(a)√
exp(a)2+i2

i√
exp(a)2+i2

0



+

=




...
...

...
1 0 0⊤

0 1 0⊤
...

...
...






cosϕ(i)
sinϕ(i)

0




(
from

sinϕ(i)

cosϕ(i)
= tanϕ(i) =

i

exp(a)

)

=




...
cosϕ(i)
sinϕ(i)

...



.

(72)

Finally, considering the residual connection, we
obtain

x
(2)
i = h

(1)
i +




...
cosϕ(i)
sinϕ(i)

...




=




ti
oi
si
1

exp(a)
exp(a)+i

i
exp(a)+i

cosϕ(i)
sinϕ(i)

...




.

(73)
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G.2 Second layer

In the second layer, the following vector that indi-
cates the depth d(w0:i) is calculated:

[
cos θ(d(w0:i))
sin θ(d(w0:i))

]
, (74)

where θ(d) = tan−1
(

d
exp(a)

)
.

Second layer — Attention layer
Recall that oi ∈ {−1, 0, 1} represents the openness
of a bracket (1 for open brackets, −1 for closed
brackets, and 0 for other tokens); that is, d(w0:i) =∑i

j=0 oi holds.
We omit the unnecessary dimensions of input

vector x(2)
i in this layer as follows:

x
(2)
i =




...
oi
si
1
...



. (75)

Set the parameters W
(2)
Q ,W

(2)
K ,W

(2)
V ∈

Rdmodel×dmodel as follows:

W
(2)
Q =

[
· · · 0 0 1 · · ·

...
...

...

]
, (76)

W
(2)
K =

[
· · · 0 a 0 · · ·

...
...

...

]
, (77)

W
(2)
V =




...
...

...
· · · 0 1 0 · · ·
· · · 1 0 0 · · ·

...
...

...



. (78)

Then, we obtain

W
(2)
Q x

(2)
iq

=

[
1
...

]
, (79)

W
(2)
K x

(2)
ik

=

[
sik · a

...

]
, (80)

W
(2)
V x

(2)
ik

=




...
sik
oik
...



, (81)

〈
W

(2)
K x

(2)
ik

,W
(2)
Q x

(2)
iq

〉
= sik · a. (82)

Therefore, the output of the attention layer a(2)i

becomes

a
(2)
i =

exp(a)

exp(a) + i
W

(2)
V x

(2)
0

+

i∑

j=1

1

exp(a) + i
W

(2)
V x

(2)
j

=




...
exp(a)

exp(a)+i

0
...



+

i∑

j=1




...
0
oi

exp(a)+i
...




=




...
exp(a)

exp(a)+i
di

exp(a)+i
...




(83)

Finally, considering the residual connection, we
obtain

h
(2)
i = x

(2)
i +




...
exp(a)

exp(a)+i
di

exp(a)+i
...




=




ti
oi
si
1
...

cosϕ(i)
sinϕ(i)
exp(a)

exp(a)+i
di

exp(a)+i

0




(84)

Second layer — Feed-forward network layer
We omit the unnecessary dimensions of input vec-
tor h(2)

i in this layer as follows:

h
(2)
i =




...
exp(a)

exp(a)+i
di

exp(a)+i
...



. (85)

Set the parameters W
(2)
1 ,W

(2)
2 ∈

Rdmodel×dmodel and β(2),γ(2) ∈ Rdmodel as
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follows:

W
(2)
1 =




· · · 1 0 · · ·
· · · −1 0 · · ·
· · · 0 1 · · ·
· · · 0 −1 · · ·

...
...



, (86)

W
(2)
2 =




...
...

...
...

1 0 0 0 · · ·
0 0 1 −1 · · ·
...

...
...

...



, (87)

β(2) = 0, (88)

γ(2) =

√
2

dmodel
1. (89)

Then, the output of the feed-forward network be-
comes

W
(2)
2

[
LNRMS

(
W

(2)
1 h

(2)
i

)]
+

= W
(2)
2



LNRMS







exp(a)
exp(a)+i

− exp(a)
exp(a)+i

di
exp(a)+i

− di
exp(a)+i

...









+

=




...
...

...
...

1 0 0 0 · · ·
0 0 1 −1 · · ·
...

...
...

...







exp(a)√
d2i +exp(a)2

− exp(a)√
d2i +exp(a)2

di√
d2i +exp(a)2

− di√
d2i +exp(a)2

...



+

=




...
cos θ(di)

[sin θ(di)]+ − [− sin θ(di)]+
...




(
from

sin θ(di)

cos θ(di)
= tan θ(di) =

di
exp(a)

)

=




...
cos θ(di)
sin θ(di)

...




(90)

Finally, considering the residual connection, we

obtain

x
(3)
i = h

(2)
i +




...
cos θ(di)
sin θ(di)

...




=




ti
oi
si
1
...

cosϕ(i)
sinϕ(i)

...
cos θ(di)
sin θ(di)

0




.

(91)

G.3 Third layer

The third layer counts depth d(w0:i)+1 in addition
to d(w0:i) which is counted in the second layer.
This is because the depth of the closed bracket is
smaller by 1 than the corresponding open bracket.
For instance, the depths calculated for “⟨1⟩1” are 1
for “⟨1” and 0 for “⟩1”.

The way to construct parameters is largely the
same as that of the second layer. Specifically, we
slightly modify the value matrix: we use

W
(3)
V =




...
...

...
· · · 0 1 0 · · ·
· · · 1 exp(−a) 0 · · ·

...
...

...




(92)

instead of

W
(2)
V =




...
...

...
· · · 0 1 0 · · ·
· · · 1 0 0 · · ·

...
...

...



. (93)

Then, we obtain
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a
(3)
i =

exp(a)

exp(a) + i
W

(3)
V x

(3)
0

+
i∑

j=1

1

exp(a) + i
W

(3)
V x

(3)
j

=




...
exp(a)

exp(a)+i
1

exp(a)+i
...



+

i∑

j=1




...
0
oi

exp(a)+i
...




=




...
exp(a)

exp(a)+i
di +1

exp(a)+i
...



.

(94)

Therefore, using the subsequent feed-forward
network layer, we obtain

x
(4)
i =




ti
oi
si
1
...

cosϕ(i)
sinϕ(i)

...
cos θ(di)
sin θ(di)

...
cos θ(di+1)
sin θ(di+1)

0




. (95)

G.4 Fourth layer

The last two layers determine whether the input
string belongs to the Dyckk language, leveraging
the position vectors and depth vectors computed so
far. Note that the necessary and sufficient condition
for a string w1:n to belong to the Dyckk language
is that the following two conditions are simultane-
ously satisfied.

Condition (i) w1:n ∈ Pre(Dyckk).

Condition (ii) d(w1:n) = 0.

We then show how the two conditions above can
be checked.

Assessment of Condition (i) We can check
whether Condition (i) is satisfied by calculating∧n

i=0Q(w0:i), where Q(w0:i) is a propositional
variable that is guaranteed to return the expected
boolean value (w1:i ∈ Pre(Dyckk)) only if i = 0
or w1:i−1 ∈ Pre(Dyckk). Specifically,

Q(w0:0(= <bos>)) = True, (96)

Q(w0:i)

=





True or False if w1:i−1 /∈ Pre(Dyckk)

True else if w1:i ∈ Pre(Dyckk)

False else if w1:i /∈ Pre(Dyckk)

(97)

for i ≥ 1.
Then we can check whether w1:i is a prefix for

the Dyck language by calculating
∧n

i=0Q(w0:i).
We then explain that

∧n
i=0Q(w0:i) precisely corre-

sponds to whether w1:i ∈ Pre(Dyckk).

(i.1) If
∧n

i=0Q(w0:i) is True. In this case,
since Q(w0:i) = True holds for any i, it can be
inductively shown that every propositional vari-
able Q(w0:i) precisely corresponds to w1:i ∈
Pre(Dyckk); that is,

∧n
i=0Q(w0:i) = True indi-

cates w1:n is a prefix for Dyckk.

(i.2) If
∧n

i=0Q(w0:i) is False. In this case,
among the propositional variables that return
False, with respect to the propositional variable
at the smallest index j, all proposition variables
preceding Q(w0:j) return True; that is, it can be in-
ductively shown that w0:j−1 ∈ Pre(Dyckk). There-
fore, from the definition, Q(w0:j) = False means
w1:j /∈ Pre(Dyckk), indicating that w1:n is not a
prefix for Dyckk.

Assessment of Condition (ii) We can easily
check whether Condition (ii) is satisfied by check-
ing whether sin θ(di) = 0 or not.

As described above, it is possible to deter-
mine whether the input string w1:n is a prefix
for the Dyck language or not using {Q(w0:i)}ni=0.
Therefore, the fourth layer calculates the value
q(w0:i) that corresponds to the propositional vari-
able Q(w0:i).

Fourth layer — Attention layer
Recall that ti ∈ {−1, 1}⌈log2 k⌉ ∪ {0} represents
a bracket-type embedding. In the attention layer,
each closed bracket at position i fetches the bracket-
type embedding t at the largest index among {0}∪
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{j ≤ i | oj = 1 ∧ dj = di+1}, while each
open bracket fetches the bracket-type embedding
of <bos>.

In a nutshell, the token at position i fetches the
bracket-type embedding t̃i, where t̃i is the bracket-
type embedding ti of the nearest depth-matched
open bracket only if wi has depth-matched open
brackets; otherwise, t̃i = t0(= 0).

Before presenting the specific parameters, we
first outline the method for calculating the atten-
tion scores when the query is a closed bracket in
two steps: (i) assign high attention scores to the
indices {0} ∪ {j ≤ i | oj = 1 ∧ dj = di+1};
that is, extract a starting token and depth-matched
open brackets and (ii) within those tokens, assign
higher attention scores to tokens closer to the query,
thereby focusing on the token with the largest in-
dex. Figure 6 illustrates this calculation, where the
first step corresponds to the term Tdepth and the
second step corresponds to the term Tpos.

We then show the specific parameters that
achieve the desired operation. We omit the un-
necessary dimensions of input vector x(4)

i in this
layer as follows:

x
(4)
i =




ti
oi
si
1
...

cosϕ(i)
sinϕ(i)

...
cos θ(di)
sin θ(di)

...
cos θ(di+1)
sin θ(di+1)

...




. (98)

Set the parameters W
(4)
Q ,W

(4)
K ,W

(4)
V ∈

Rdmodel×dmodel as follows (Note that in some cases,
the transposed matrices are described to accommo-
date the limited space):

W
(4)
Q =




C
(4)
1 W depth

Q

W pos
Q

C
(4)
1 wopen⊤

Q
...



, (99)

W
(4)
K =




C
(4)
2 W depth

K

C
(4)
2 W pos

K

C
(4)
2 wopen⊤

K
...



, (100)

W
(4)⊤
V =




· · · I · · ·
· · · 0⊤ · · ·
· · · 0⊤ · · ·
· · · 0⊤ · · ·

...
· · · 0⊤ · · ·
· · · 0⊤ · · ·

...
· · · 0⊤ · · ·
· · · 0⊤ · · ·

...
· · · 0⊤ · · ·
· · · 0⊤ · · ·

...




, (101)

where C
(4)
1 and C

(4)
2 are positive constants,

W depth⊤
Q =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 1
...

...
...

...
0 0 0 0
0 0 0 0
...

...
...

...
0 0 0 0
0 0 0 0
...

...
...

...
1 0 −1 0
0 1 0 0
...

...
...

...




, (102)
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W pos⊤
Q =




0 0
0 0
0 0
0 0
...

...
0 1
−1 0

...
...

0 0
0 0
...

...
0 0
0 0
...

...




,wopen
Q =




0
1
−1
1
...
0
0
...
0
0
...
0
0
...




, (103)

W depth⊤
K =




0 0 0 0
0 0 0 1
0 0 1 1
0 0 0 −1
...

...
...

...
0 0 0 0
0 0 0 0
...

...
...

...
1 0 0 0
0 1 0 0
...

...
...

...
0 0 0 0
0 0 0 0
...

...
...

...




, (104)

W pos⊤
K =




0 0
0 0
0 0
0 0
...

...
1 0
0 1
...

...
0 0
0 0
...

...
0 0
0 0
...

...




,wopen
K =




0
0
1
0
...
0
0
...
0
0
...
0
0
...




. (105)

Then, we obtain

W
(4)
Q x

(4)
iq

=




C
(4)
1 W depth

Q x
(4)
iq

W pos
Q x

(4)
iq

C
(4)
1 wopen⊤

Q x
(4)
iq

...



, (106)

W
(4)
K x

(4)
ik

=




C
(4)
2 W depth

K x
(4)
ik

C
(4)
2 W pos

K x
(4)
ik

C
(4)
2 wopen⊤

K x
(4)
ik

...



, (107)

W
(4)
V x

(4)
ik

=




...
tik
...


 , (108)

〈
W

(4)
K x

(4)
ik

,W
(4)
Q x

(4)
iq

〉

= C
(4)
2 C

(4)
1

〈
W depth

K x
(4)
ik

,W depth
Q x

(4)
iq

〉

+ C
(4)
2

〈
W pos

K x
(4)
ik

,W pos
Q x

(4)
iq

〉

+ C
(4)
2 C

(4)
1 wopen⊤

K x
(4)
ik

·wopen⊤
Q x

(4)
iq

= C
(4)
2

(
C

(4)
1 Tdepth

iq ,ik
+Tpos

iq ,ik
+C

(4)
1 Topen

iq ,ik

)
,

(109)

where

Tdepth
iq ,ik

=
〈
W depth

K x
(4)
ik

,W depth
Q x

(4)
iq

〉

= cos(θ(diq +1)− θ(dik))

+
(
1− cos θ(diq +1))

)
· sik

+ (oik + sik − 1)



= 1 if wik = “<bos>”

= 1
if wik = “⟨·”

∧ diq + 1 = dik
< 1 otherwise

,

(110)

Tpos
iq ,ik

=
〈
W pos

K x
(4)
ik

,W pos
Q x

(4)
iq

〉

= − sin(ϕ(iq)− ϕ(ik)),
(111)

Topen
iq ,ik

= wopen⊤
K x

(4)
ik

·wopen⊤
Q x

(4)
iq

= (oiq − siq + 1) · sik

=




2

if wiq = “⟩·”
∧ wik = “<bos>”

0 otherwise
.

(112)

Intuitively, Tdepth
iq ,ik

is a term that allows closed
brackets to extract the depth-matched open brackets
and <bos>, and Tpos

iq ,ik
is a term that allows closed
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brackets to extract the nearest token among them.
Moreover, Topen

iq ,ik
is a term that makes the query

focus on the starting token only when the query
is an open bracket. For example, the query “⟩3”
in the input string “<bos>⟨2⟨1⟩1⟩2⟨3⟩3” fetches the
nearest depth-matched open bracket “⟨3” as shown
in Figure 6.

Figure 6: Illustration of the process where the query
“⟩3” in the input string “<bos>⟨2⟨1⟩1⟩2⟨3⟩3” fetches the
nearest depth-matched open bracket “⟨3”. At first, us-
ing Tdepth, only the depth-matched open brackets and
<bos> are extracted, and then, using Tpos, the nearest
one among them is extracted.

Therefore, when the query is a closed bracket,
given a sufficiently large constant C(4)

1 that satisfies
C

(4)
1 (1−cos(θ(diq +1)−θ(dik))) > 1 if diq +1 ̸=

dik ,

1

C
(4)
2

〈
W

(4)
K x

(4)
ik

,W
(4)
Q x

(4)
iq

〉

= C
(4)
1 Tdepth

iq ,ik
+Tpos

iq ,ik



= C
(4)
1 − sin(ϕ(iq)− ϕ(ik))

if wik = “<bos>”

∨(wik = “⟨·” ∧ diq +1 = dik)

< C
(4)
1 − 1

otherwise
(113)

holds, indicating that given a sufficiently large con-
stant C(4)

2 , the query can focus on the nearest token
among <bos> and depth-matched open brackets.

On the other hand, when the query is an open

bracket,

1

C
(4)
2

〈
W

(4)
K x

(4)
ik

,W
(4)
Q x

(4)
iq

〉

=





C
(4)
1 Tdepth

iq ,ik
+Tpos

iq ,ik
+2C

(4)
1

if wik = “<bos>”

C
(4)
1 Tdepth

iq ,ik
+Tpos

iq ,ik

otherwise
{
≥ 3C

(4)
1 − 1 if wik = “<bos>”

≤ C
(4)
1 otherwise

(114)

holds, indicating that given a sufficiently large con-
stant C(4)

1 , the query can focus on <bos>.

From the above, it is confirmed that the desired
operations are performed correctly.

Thus, the output of the attention layer a(4)i be-
comes

a
(4)
i =

i∑

j=0

1

i+ 1
W

(4)
V x

(4)
j

=




...
t̃i
...


 ,

(115)

where t̃i is the bracket-type embedding ti of the
nearest depth-matched open bracket when oi = −1
and wi has one or more such brackets; otherwise,
it is set to the zero vector 0. Here, we treat soft-
max attention as hardmax attention for simplicity.
However, as in Appendix O, it is sufficient if the
attention allocated to the target token exceeds 2

3 in
practice.

Note that since we do not assume di ≥ 0, t̃i is
guaranteed to satisfy t̃i ∈ {−1, 1}⌈log2 k⌉ ∪ {0}
even for strings that are not the prefixes for the
Dyck language.

Finally, considering the residual connection, we
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obtain

h
(4)
i = x

(4)
i +




...
t̃i
...




=




ti
oi
si
1
...

cosϕ(i)
sinϕ(i)

...
cos θ(di)
sin θ(di)

...
cos θ(di+1)
sin θ(di+1)

t̃i
0




.

(116)

Fourth layer — Feed-forward network layer
In this layer, the objective is to compute q(w0:i),
where q(w0:i) is positive when Q(w0:i) is True and
negative when Q(w0:i) is False. Specifically,

q(w0:i)





> 1 if oi ̸= −1

> 1 if oi = −1 ∧ ti = t̃i

< −1 if oi = −1 ∧ ti ̸= t̃i

. (117)

In the following proof, we use concise notation
qi instead of q(w0:i) and we omit the unnecessary
dimensions of input vector h

(4)
i in this layer as

follows:

h
(4)
i =




ti
oi
...
1
...
t̃i
...




. (118)

Set the parameters W
(4)
1 ,W

(4)
2 ∈

Rdmodel×dmodel and β(4),γ(4) ∈ Rdmodel as
follows:

W
(4)
1 =




I 0 · · · 0 · · · −I · · ·
−I 0 · · · 0 · · · I · · ·
0⊤ 1 · · · 1 · · · 0⊤ · · ·
0⊤ 0 · · · 1 · · · 0⊤ · · ·
...

...
...

...



, (119)

W
(4)
2 =




...
...

...
...

−21⊤ −21⊤ C
(4)
3 1 · · ·

...
...

...
...


 , (120)

β(4) = 0, (121)

γ(4) = 8

√
⌈log2 k⌉
dmodel

1, (122)

where C
(4)
3 = 4(⌈log2 k⌉+ 1). Then, we obtain

W
(4)
2

[
LNRMS

(
W

(4)
1 h

(4)
i

)]
+

= W
(4)
2



LNRMS







ti − t̃i
−(ti − t̃i)
oi + 1

1
...









+

=




...
qi
...


 ,

(123)

where

qi = 8

√
⌈log2 k⌉
dmodel

· 1

RMS
(
W

(4)
1 h

(4)
i

)

·
(
−2
∥∥ti − t̃i

∥∥
1
+ C

(4)
3 (oi + 1) + 1

)

= 4

√
⌈log2 k⌉

2∥ti − t̃i∥22 + (oi + 1)2 + 1
· q′i,

(124)

q′i = −4
∥∥ti − t̃i

∥∥
1
+ 2C

(4)
3 (oi + 1) + 2. (125)

Here

4

√
⌈log2 k⌉

2∥ti − t̃i∥22 + (oi + 1)2 + 1

≥ 4

√
⌈log2 k⌉

2 · 22⌈log2 k⌉+ 22 + 1

≥ 4

√
⌈log2 k⌉

8⌈log2 k⌉+ 8⌈log2 k⌉
≥ 1

(126)

holds, indicating that it is sufficient to check q′i
satisfies the conditions instead of qi. We confirm
the conditions by checking three patterns (i) oi ̸=
−1; that is, wi is an open bracket or <bos>, (ii)
oi = −1 ∧ ti = t̃i; that is, wi is a closed bracket
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and has a depth- and type-matched open bracket,
and (iii) oi = −1 ∧ ti ̸= t̃i; that is, wi does not
have the depth-matched brackets or has the depth-
matchced brackets but faces type conflict regarding
the closed bracket among them.

(i) wi is an open bracket or <bos>. In this case,
since oi + 1 ≥ 1,

q′i = −4
∥∥ti − t̃i

∥∥
1
+ 2C

(4)
3 (oi + 1) + 2

≥ −8⌈log2 k⌉+ 2C
(4)
3 + 2

= 10 > 1.

(127)

(ii) wi is a closed bracket and has a depth- and
type-matched open bracket. In this case, since
t̃i = ti and oi + 1 = 0,

q′i = −4
∥∥ti − t̃i

∥∥
1
+ 2C

(4)
3 (oi + 1) + 2

= 2 > 1.
(128)

(iii) wi is a closed bracket and faces a type con-
flict. In this case, there are two exclusive sub-
cases: (i) wi has no depth-matched open bracket;
that is, t̃i = 0 holds and (ii) wi has depth-matched
open brackets but faces type conflict; that is, t̃i =
ti ̸= ti. In both subcases, ∥t̃i − ti∥1 ≥ 1 and
oi = −1 hold; thus, we obtain

q′i = −4
∥∥ti − t̃i

∥∥
1
+ 2C

(4)
3 (oi + 1) + 2

≤ −4 + 2 < −1.
(129)

From the above, it is confirmed that the inequal-
ity (117) holds.

Finally, considering the residual connection, we

obtain the following vectors:

x
(5)
i = h

(4)
i +




...
qi
...




=




ti
oi
si
1
...

cosϕ(i)
sinϕ(i)

...
cos θ(di)
sin θ(di)

...
cos θ(di+1)
sin θ(di+1)

t̃i
qi
0




.

(130)

G.5 Fifth layer

The fifth layer check the two conditions:∧n
i=0(qi > 0) and d(w0:n) = 0.

Fifth layer — Attention layer

We omit the unnecessary dimensions of input vec-
tor x(5)

i in this layer as follows:

x
(5)
i =




...
si
1
...
qi
...




. (131)

Set the parameters W
(5)
Q ,W

(5)
K ,W

(5)
V ∈

Rdmodel×dmodel as follows:

W
(5)
Q =



· · · 0 C

(5)
1 · · · 0 · · ·

· · · 0 C
(5)
1 · · · 0 · · ·

...
...

...


 , (132)

W
(5)
K =



· · · 0 0 · · · −1 · · ·
· · · q0 0 · · · 0 · · ·

...
...

...


 , (133)

30805



W
(5)
V =




...
...

...
· · · −1 1 · · · 0 · · ·

...
...

...


 , (134)

where C
(5)
1 is a positive constant. Note that q0 can

be treated as a constant because q0(= q(<bos>))
does not depend on the input string.

Then, we obtain

W
(5)
Q x

(5)
iq

=



C

(5)
1

C
(5)
1

0


 , (135)

W
(5)
K x

(5)
ik

=



− qik
q0 ·sik

0


 , (136)

W
(5)
V x

(5)
ik

=




0
1− sik

0


 , (137)

〈
W

(5)
K x

(5)
ik

,W
(5)
Q x

(5)
iq

〉

= C
(5)
1

(
− qik +q0 ·sik

)




= 0 if ik = 0

< −C
(5)
1 if ik ̸= 0 ∧ qik > 0

> C
(5)
1 if ik ̸= 0 ∧ qik < 0

.

(138)

Intuitively, if {qik}
iq
ik=1 are all positive, atten-

tion scores on all tokens except on <bos> are much
smaller than 0, making the query xiq focus on
<bos>. In other words, the query xiq can focus
on <bos> if and only if w1:iq is a prefix for the
Dyckk language. Therefore, given a sufficiently
large constant C(5)

1 , the output of attention layer
a
(5)
i becomes

a
(5)
i =




0
q≤i

0


 , (139)

where

q≤i =

{
0 if ∀j ∈ [i]. qj > 0

1 if ∃j ∈ [i]. qj < 0
(140)

Finally, considering the residual connection, we

obtain the following vectors:

h
(5)
i = x

(5)
i +




...
q≤i

...




=




ti
oi
si
1
...

cosϕ(i)
sinϕ(i)

...
cos θ(di)
sin θ(di)

...
cos θ(di+1)
sin θ(di+1)

t̃i
qi
q≤i

0




.

(141)

Although we treat softmax attention as hardmax
attention, it is sufficient that there exists a con-
stant such that max{q≤i | ∀j ∈ [i]. qj > 0} <
min{q≤i | ∃j ∈ [i]. qj < 0}, similar to the fourth
layer.

Fifth layer — Feed-forward network layer
We omit the unnecessary dimensions of input vec-
tor h(5)

i in this layer as follows:

h
(5)
i =




...
cos θ(di)
sin θ(di)

...
q≤i

...




. (142)

Set the parameters W
(5)
1 ,W

(5)
2 ∈

Rdmodel×dmodel and β(5),γ(5) ∈ Rdmodel as
follows:

W
(5)
1 =




· · · 0 0 · · · 1 · · ·
· · · 1 0 · · · 0 · · ·
· · · 0 1 · · · 0 · · ·

...
...

...


 , (143)
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W
(5)
2 =




...
...

...
1 0 1 · · ·
...

...
...


 , (144)

β(5) = 0, (145)

γ(5) =

√
1

dmodel
1. (146)

Then, the output of the feed-forward network
layer becomes

W
(5)
2

[
LNRMS

(
W

(5)
1 h

(5)
i

)]
+

= W
(5)
2


LNRMS







q≤i

cos θ(di)
sin θ(di)

...









+

= W
(5)
2




[q≤i]+√
1+q2≤i

[cos θ(di)]+√
1+q2≤i

[sin θ(di)]+√
1+q2≤i

...




=




...
[q≤i]++[sin θ(di)]+√

1+q2≤i

...




(147)

Finally, considering the residual connection, we

obtain the following vectors:

x
(6)
i = h

(5)
i +




...
[q≤i]++[sin θ(di)]+√

1+q2≤i

...




=




ti
oi
si
1
...

cosϕ(i)
sinϕ(i)

...
cos θ(di)
sin θ(di)

...
cos θ(di+1)
sin θ(di+1)

t̃i
qi
q≤i

[q≤i]++[sin θ(di)]+√
1+q2≤i

0




.

(148)

G.6 Classifier
Finally, the classifier head can determine whether
the input sequence belongs to the Dyck language
based on the value calculated in the fifth layer; that

is,
[q≤i]++[sin θ(di)]+√

1+q2≤i

is non-negative and is zero if

and only if the input sequence belongs to the Dyck
language. The lower bound of the value when the
input does not belong to the Dyckk language is
calculated as follows:

[
q≤i

]
+
+ [sin θ(di)]+√
1 + q2≤i




≥ 1√
1+12

if q≤i > 0

≥ sin θ(1)√
1+12

if di > 0

0 otherwise
{
≥ sin θ(1)√

2
if q≤i > 0 ∨ di > 0

0 otherwise

(149)

Therefore, by subtracting a positive value less than
this value as a bias, sgn(·) can correctly classify
whether the sequence belongs to Dyckk.
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For instance, We omit the unnecessary dimen-
sions of input vector x(6)

i in this layer as follows:

x
(6)
i =




...
[q≤i]++[sin θ(di)]+√

1+q2≤i

...



. (150)

Then, by setting

wcls⊤ =
[
· · · −1 · · ·

]
, (151)

bcls =
sin θ(1)

2
√
2

, (152)

we obtain

wcls⊤x(6)
i + bcls

= −
[
q≤i

]
+
+ [sin θ(di)]+√
1 + q2≤i

+
sin θ(1)

2
√
2

{
= sin θ(1)

2
√
2

if w0:i ∈ Dyckk

≤ − sin θ(1)

2
√
2

if w0:i /∈ Dyckk
.

(153)

H Proof of Theorem 2

We restate Theorem 2 for convenience.

Theorem 4 (Restatement of Theorem 2, Transform-
ers with a starting token, Dyckk generation). For
all k, there exists a 3-layer O(log k)-width causal
Transformer network without positional encoding
that generates the Dyckk language. Each layer in-
corporates both the residual connection and the
layer normalization. This network is followed by a
fully-connected layer and softmax layer to output
the probability distribution.

Proof. Here, we present a method to construct a
Transformer that realizes the Dyckk language gen-
eration process pDyckk(·; q, r,π). We assume that
the output probabilities take the following form:




p⟨1
...

p⟨k
p⟩1
...

p⟩k
p<bos>
p<eos>




. (154)

As shown in the proof sketch of Theorem 2, each
layer performs the following operations. Figure 2
provides the high-level understanding of this Trans-
former.

First layer creates pseudo positional encoding[
cosϕ(i) sinϕ(i)

]⊤.

Second layer counts depth d(w0:i).

Third layer fetches a valid closed bracket if one
exists; otherwise, a zero vector is fetched. This
operation is achieved by placing attention on the
largest position among {0} ∪ {j | d(w0:j) =
d(w0:i)}.

H.1 First and second layer

We use the first two layers to create pseudo po-
sitional encoding

[
cosϕ(i) sinϕ(i)

]⊤ and depth[
cos θ(di) sin θ(di))

]⊤, following the same pro-
cedure as described in Appendix G.1 and G.2.

Therefore, the output from the second layer is as
follows:

x
(3)
i =




...
cosϕ(i)
sinϕ(i)

...
cos θ(di)
sin θ(di)

...




(155)

H.2 Third layer

Moreover, in the third layer, we leverage the atten-
tion layer to fetch the nearest open bracket with the
same depth as the query, in almost the same manner
as described in Appendix G.4. The difference from
the construction in the previous section is that we
replace the query depth di+1 with di. Therefore,
the output from the attention layer is as follows:




...
cosϕ(i)
sinϕ(i)

...
cos θ(di)
sin θ(di)

t̃i
...




(156)
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Then, in the feed-forward network layer, set the
parameters as follows:

W
(3)
1 =




· · · 0 0 · · · 0 1 0⊤ · · ·
· · · 0 0 · · · 0 1 0⊤ · · ·
· · · 0 0 · · · 0 −1 0⊤ · · ·
· · · 0 0 · · · 0 −1 0⊤ · · ·
· · · 0 0 · · · 2 0 0⊤ · · ·

...
...

...
...

...



,

(157)

W
(3)
2 =




1 0 0 0 0 · · ·
0 1 0 0 0 · · ·
0 0 1 0 0 · · ·
0 0 0 1 0 · · ·
...

...
...

...
...



, (158)

β(3) =




0

−ϵ(3)

0

ϵ(3)

0
0



, (159)

γ(3) =

√
4

dmodel
1, (160)

where ϵ(3) is a positive constant. Then

LNRMS

(
W

(3)
1 h

(3)
i

)

= γ(3) ⊙ 1

RMS
(
W

(3)
1 h

(3)
i

)W (3)
1 h

(3)
i + β(3)

=

√
4

dmodel

1√
4

dmodel

W
(3)
1 h

(3)
i + β(3)

=




sin θ(di)
sin θ(di)
− sin θ(di)
− sin θ(di)
2 cos θ(di)

...



+




0

−ϵ(3)

0

ϵ(3)

0
0




=




sin θ(di)

sin θ(di)− ϵ(3)

− sin θ(di)

− sin θ(di) + ϵ(3)

2 cos θ(di)
...



.

(161)

because

RMS
(
W

(3)
1 h

(3)
i

)

=

√
4 sin2 θ(di) + 4 cos2 θ(di)

dmodel

=

√
4

dmodel
.

(162)

Therefore, we obtain

W
(3)
2

[
LNRMS

(
W

(3)
1 h

(3)
i

)]
+

=




...
[sin θ(di)]+

[sin θ(di)− ϵ(3)]+
[− sin θ(di)]+

[−(sin θ(di)− ϵ(3))]+
...




(163)

Finally, we obtain the input vector to the subse-
quent generator head as follows:

x
(4)
i =




...
1
...
t̃i

[sin θ(di)]+[
sin θ(di)− ϵ(3)

]
+

[− sin θ(di)]+[
−(sin θ(di)− ϵ(3))

]
+

...




(164)

H.3 Generator head
For clarity, we implement W gen as a compo-
sition of two linear transformations W gen

1 ∈
R(k+4)×dmodel ,W gen

2 ∈ R(2k+2)×(k+4) as follows
(the transposed matrices are described to accom-
modate the limited space):

W gen⊤
1 =




...
...

...
...

...
...

⌈log2 k⌉ · · · ⌈log2 k⌉ 0 0 0 0
...

...
...

...
...

...
−t(1) · · · −t(k) 0 0 0 0

0 · · · 0 1 0 0 0
0 · · · 0 0 1 0 0
0 · · · 0 0 0 1 0
0 · · · 0 0 0 0 1
...

...
...

...
...

...




,

(165)
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W gen⊤
2 =




O −Cgen
0 I 0 0

0⊤ Cgen
1

ϵ(3)
1⊤ 0 0

0⊤ Cgen
1

ϵ(3)
1⊤ 0 0

0⊤ 0⊤ 0
−Cgen

2

ϵ(3)

0⊤ 0⊤ 0
−Cgen

2

ϵ(3)




︸︷︷︸
k dim.

︸ ︷︷ ︸
k dim.

︸ ︷︷ ︸
2 dim.

, (166)

bgen =




Cgen
0 + log π1

...
Cgen
0 + log πk

0
...
0
0
0






k dim.



k dim.

}
2 dim.

, (167)

where Cgen
0 is a positive constant and

Cgen
1 = log

(
1− q

q

)
+ Cgen

0 , (168)

Cgen
2 = log

(
1− r

r

)
+ Cgen

0 . (169)

Then, given a sufficiently small constant ϵ(3),

W genx
(4)
i + bgen

= W gen
2 W gen

1 x
(4)
i + bgen

= W gen
2




−t⊤(1)t̃+ ⌈log2 k⌉
...

−t⊤(k)t̃+ ⌈log2 k⌉
[sin θ(di)]+[

sin θ(di)− ϵ(3)
]
+

[− sin θ(di)]+[
−(sin θ(di)− ϵ(3))

]
+




+ bgen

=




Cgen
0 + log π1

...
Cgen
0 + log πk(

− Cgen
0

(
⌈log2 k⌉ − t⊤(1)t̃

)

+ Cgen
1 I [di ≥ 1]

)

...(
− Cgen

0

(
⌈log2 k⌉ − t⊤(k)t̃

)

+ Cgen
1 I [di ≥ 1]

)

0
Cgen
2 I [di ≤ 0]




,

(170)

where

I [di ≥ 1]

=
[sin θ(di)]+ −

[
sin θ(di)− ϵ(3)

]
+

ϵ(3)

=

{
1 if di ≥ 1

0 otherwise
,

(171)

I [di ≤ 0]

=

[
−(sin θ(di)− ϵ(3))

]
+
− [− sin θ(di)]+

ϵ(3)

=

{
1 if di ≤ 0

0 otherwise
.

(172)

H.4 Softmax

We compute the logit vector separately for the cases
where (i) di = 0 and (ii) di ≥ 1. Let logit be the
output logit vector. Note that we identify logit
vectors that become identical through translation
because they are projected to the same probability
vector by the softmax operation. Let ≡ be the
equivalence relation on logits.

(i) In the case of di = 0.

logit

=




Cgen
0 + log π1

...
Cgen
0 + log πk(

− Cgen
0

(
⌈log2 k⌉ − t⊤(1)t̃

)

+ Cgen
1 I [di ≥ 1]

)

...(
− Cgen

0

(
⌈log2 k⌉ − t⊤(k)t̃

)

+ Cgen
1 I [di ≥ 1]

)

0
Cgen
2 I [di ≤ 0]




≡




log rπ1
...

log rπk

−Cgen
0

(
⌈log2 k⌉ − t⊤(1)t̃+ 1

)
+ log r

...

−Cgen
0

(
⌈log2 k⌉ − t⊤(k)t̃+ 1

)
+ log r

−Cgen
0 + log r

log (1− r)




=: logit′

(173)
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To establish the upper bound of the total variation
distance, we first derive an upper bound and lower
bound for the softmax denominator:

K∑

l=1

exp(logit′l)

=
k∑

t=1

rπt

+

k∑

t=1

r exp
(
−Cgen

0

(
⌈log2 k⌉ − t⊤(t)t+ 1

))

+ r exp(−Cgen
0 ) + 1− r

≤ r + k exp(−Cgen
0 ) + exp(−Cgen

0 ) + 1− r

= 1 + (k + 1) exp(−Cgen
0 ),

(174)
K∑

l=1

exp(logit′l)

≥
k∑

t=1

rπt + k · 0 + 0 + 1− r = 1

(175)

Therefore, the lower bound of the total variation
distance from the true probability distribution is
given by:

2 · TV(S(logit), pDyckk(q, r,π))

= 2 · TV(S(logit′), pDyckk(q, r,π))

≤
k∑

t=1

(k + 1) exp(−Cgen
0 )

1 + (k + 1) exp(−Cgen
0 )

rπt

+

k∑

t=1

exp(−Cgen
0 )

+ exp(−Cgen
0 )

+
(k + 1) exp(−Cgen

0 )

1 + (k + 1) exp(−Cgen
0 )

(1− r)

=
(k + 1) exp(−Cgen

0 )

1 + (k + 1) exp(−Cgen
0 )

+ (k + 1) exp(−Cgen
0 )

≤ 2(k + 1) exp(−Cgen
0 ).

(176)

(ii) In the case of di ≥ 1. Similar to the case (i),
the upper bound of TV distance can be calculated
as follows:

TV(S(logit), pDyckk(q, r,π))

≤ (k + 1) exp(−Cgen
0 ).

(177)

Therefore, for any ϵ > 0, by choosing a constant
Cgen
0 to satisfy

(k + 1) exp(−Cgen
0 ) < ϵ (178)

⇔ Cgen
0 > log

k + 1

ϵ
, (179)

then

TV(S([logit]), pDyckk(q, r,π)) < ϵ (180)

is satisfied.
Based on the above, the Transformer re-

alizes the Dyckk language generation process
pDyckk(·; q, r,π).

I Proof of Proposition 3

In this section, we show that Transformers are capa-
ble of recognizing the Shuffle-Dyck language effi-
ciently with respect to network width, even without
the need for a specific positional encoding.

Proposition 9 (Restatement of Proposi-
tion 3, Transformers with a starting token,
Shuffle-Dyckk recognition). For all k, there ex-
ists a 3-layer O(log k)-width causal Transformer
without positional encoding that recognizes the
Shuffle-Dyckk language. Each layer incorpo-
rates both the residual connection and the layer
normalization. This network is followed by a
fully-connected layer and a sign function to output
an acceptance signal.

Proof. We assume the same vector representation
as defined in Appendix D:

xi =




ti
oi
si
1
0



∈ Rdmodel . (181)

The first layer creates pseudo positional encod-
ing, and the second layer calculates the depth in
almost the same manner as in Theorem 1. How-
ever, in the second layer, the feed-forward network
layer calculates [sin θ(d(w0:i))]+, instead of cal-
culating cos θ(d(w0:i)) and sin θ(d(w0:i)); that is,
the output from the second layer becomes:

x
(3)
i =




ti
oi
si
1

cosϕ(i)
sinϕ(i)

[sin θ(d(w0:i))]+
0




(182)
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I.1 Third layer
The third layer calculates the depth of the substring
that matches the same type as the query; that is,
this layer computes

[sin(−θ(d(w0:i | ti)))]+ , (183)

where d(w0:i | ti) represents the depth when fo-
cusing on the substring corresponding to type ti.
For instance, for the input sequence “([({})])”,
this layer outputs the depth vectors corresponding
to [1, 1, 2, 1, 0, 1, 0, 0]. This is realized in a simi-
lar way to Appendix G.2 with slight modification.
Specifically, by replacing the query and key matrix
with the matrices as follows:

W
(3)
Q =



C(3)I 0 0 0 · · ·
0⊤ 0 0 C ′(3) · · ·
...

...
...

...


 , (184)

W
(3)
K =




I 0 0 0 · · ·
0⊤ 0 1 0 · · ·
...

...
...

...


 , (185)

where C(3) is a positive constant and C ′(3) =
C(3)⌈log2 k⌉+ a.

Then, we obtain
〈
W

(3)
K x

(3)
ik

,W
(3)
Q x

(3)
iq

〉

= C(3)⟨tiq , tik⟩+ C ′(3)sik



= C(3)⌈log2 k⌉ if tik = tiq
= C(3)⌈log2 k⌉+ a if wik = <bos>

≤ C(3)(⌈log2 k⌉ − 2) otherwise
(186)

for iq ≥ 1.
Therefore, for a sufficiently large constant C(3),

we obtain

x
(4)
i = h

(3)
i +




...
[sin(−θ(d(w0:i | ti)))]+

...




=




...
[sin θ(d(w0:i))]+

...
[sin(−θ(d(w0:i | ti)))]+

...



.

(187)

I.2 Fourth layer

The fourth layer computes a necessary and suf-
ficient condition for the string w0:n to belong to
Shuffle-Dyckk, which is described in the follow-
ing lemma.

Lemma 1. The simultaneous satisfaction of the
following two conditions constitutes a necessary
and sufficient condition for w0:n to belong to
Shuffle-Dyckk:

Condition (i) d(w0:n) ≤ 0.

Condition (ii) ∀i ∈ [n]. d(w0:i | ti) ≥ 0 .

Proof. It is sufficient to show that

(d(w0:n) = 0) ∧ (∀i ∈ [n]. d(w0:i | ti) ≥ 0)

⇐⇒ w0:n ∈ Shuffle-Dyckk,
(188)

because

(d(w0:n) ≤ 0) ∧ (∀i ∈ [n]. d(w0:i | ti) ≥ 0)

=⇒ (d(w0:n) ≤ 0) ∧ (d(w0:n) ≥ 0)

=⇒ d(w0:n) = 0.
(189)

Proof of necessity. Since it is evident that

w0:n ∈ Shuffle-Dyckk

=⇒ d(w0:n) = 0,
(190)

it is sufficient to show that

w0:n ∈ Shuffle-Dyckk

=⇒ ∀i ∈ [n]. d(w0:i | ti) ≥ 0.
(191)

Here, when ∃i ∈ [n]. d(w0:i | ti) < 0 is satis-
fied, the substring of type-ti is not correctly nested,
indicating that ∀i ∈ [n]. d(w0:i | ti) ≥ 0 for
w0:n ∈ Shuffle-Dyckk.

Proof of sufficiency. For any t ∈ [k], there is no
i ∈ [n] such that d(w0:i | t) < 0, indicating that
for any t ∈ [k], the substring of type-t is a correct
prefix for Dyck1. In addition, if there exists t ∈ [k]
such that d(w0:n | t) > 0, since d(w0:n) = 0,
there exists t ∈ [k] such that d(w0:n | t) < 0. This
contradicts to the fact that the substring of type-t
is a correct prefix for Dyck1, indicating that for any
t ∈ [k], d(w0:n | t) = 0 holds.
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To check whether the two conditions specified
in Lemma 1, it is sufficient to calculate

qShuffle-Dyck(w0:i)

= [sin θ(d(w0:i))]+

+
1

i+ 1

i∑

j=0

[sin θ(−d(w0:j | tj))]+ ,

(192)

because qShuffle-Dyck(w0:i) is always non-negative
and becomes 0 if and only if the two conditions
above are simultaneously satisfied.

We then show how to implement a Trans-
former block that computes qShuffle-Dyck(w0:i) in
the fourth layer.

Fourth layer — Attention layer
We omit the unnecessary dimensions of input vec-
tor x(4)

i in this layer as follows:

x
(4)
i =




...
[sin(−θ(d(w0:i | ti)))]+

...


 . (193)

By setting the parameters W
(4)
Q = O,W

(4)
K =

O,W
(4)
V =




...
· · · 1 · · ·

...


, we obtain the mean vec-

tor 1
i+1

∑i
j=0 [sin θ(−d(w0:j | tj))]+. Therefore,

by adding the mean vector to the dimension corre-
sponding to [sin(θ(d(w0:i)))]+, we obtain

h
(4)
i =




...
qShuffle-Dyck(w0:i)

...


 . (194)

Fourth layer — Feed-forward network layer
The feed-forward network has nothing to do. By
setting W

(4)
1 = O,W

(4)
2 = O, we obtain x

(5)
i =

h
(4)
i .

I.3 Classifier
The classifier head can simply determine the string
as positive if qShuffle-Dyck(w0:i) is 0 and as nega-
tive if it is strictly greater than 0.

Specifically, we omit the unnecessary dimen-
sions of input vector x(5)

i in this layer as follows:

x
(5)
i =




...
qShuffle-Dyck(w0:i)

...


 . (195)

Set the parameter wcls ∈ Rdmodel and bcls ∈ R as
follows:

wcls =




...
−1

...


 , (196)

bcls = ϵ. (197)

Then, the desired computation can be achieved
because

wcls⊤x(5)
i + bcls

{
= ϵ if w1:i ∈ Shuffle-Dyckk

< 0 if w1:i /∈ Shuffle-Dyckk
.

(198)

J Proof of Proposition 4

Proposition 10 (Restatement of Proposi-
tion 4, Transformers with a starting token,
Shuffle-Dyckk generation). For all k, there
exists a 3-layer O(k)-width causal Transformer
without positional encoding that generates the
Shuffle-Dyckk language. Each layer incorpo-
rates both the residual connection and the layer
normalization. This network is followed by a
fully-connected layer and softmax layer to output
the probability distribution.

Proof. Here, unlike the other sections, we assume
one-hot vectors as the bracket-type embeddings,
where we multiply by +1 for open brackets and
by −1 for closed brackets. For instance, “⟨2” is
mapped into

[
0 1 · · · 0

]⊤ and “⟩1” is mapped

into
[
−1 0 · · · 0

]⊤. In addition, we prepare an
O(k)-dimensional zero vector that acts as a mem-
ory. Therefore, the input vector without positional
encoding x

(1)
i becomes as follows:

x
(1)
i =

[
ti
0

]
}k dim.
}(dmodel − k) dim.

∈ Rdmodel .

(199)

J.1 First layer
First layer — Attention layer
In the first layer, using uniform attention, the query
at position i computes the mean vector of {tj}ij=0;
that is, the output of the attention layer becomes:

h
(1)
i =




ti
1

i+1

∑i
j=0 tj
0


 . (200)
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First layer — Feed-forward network layer
We omit the unnecessary dimensions of input vec-
tor h(1)

i in this layer as follows:

h
(1)
i =




ti
1

i+1

∑i
j=0 tj

...


 . (201)

Set the parameters W
(1)
1 ,W

(1)
2 ∈ Rdmodel×dmodel

and β(1),γ(1) ∈ Rdmodel as follows:

W
(1)
1 =




O −I · · ·
O −I · · ·
I O · · ·
...

...


 , (202)

W
(1)
2 =




...
...

...
−I I O · · ·

...
...

...


 , (203)

β(1) =




0
1
0
...


 , (204)

γ(1) =
1

ϵ
√
dmodel

1. (205)

Then, we obtain

W
(1)
2

[
LNRMS

(
W

(1)
1 h

(1)
i

)]
+

= W
(1)
2


LNRMS







− 1
i+1

∑i
j=0 tj

− 1
i+1

∑i
j=0 tj

ti
...










+

= W
(1)
2




−
∑i

j=0 tj

ϵ
√

(i+1)2+2∥∑i
j=0 tj∥22

1−
∑i

j=0 tj

ϵ
√

(i+1)2+2∥∑i
j=0 tj∥22

(i+1)ti

ϵ
√

(i+1)2+2∥∑i
j=0 tj∥22

...



+

=




...
I[d(w0:i | t = 1) ≤ 0]

...
I[d(w0:i | t = k) ≤ 0]

...



,

(206)

where

I[d(w0:i | t = t′) ≤ 0]

= −


−

∑i
j=0 tj,t′

ϵ
√
(i+ 1)2 + 2∥∑i

j=0 tj∥22




+

+


1−

∑i
j=0 tj,t′

ϵ
√
(i+ 1)2 + 2∥∑i

j=0 tj∥22




+

=

{
1 if d(w0:i | t = t′) ≤ 0

0 otherwise
.

(207)
Finally, considering the residual connection, we

obtain

x
(2)
i = h

(1)
i +




...
I[d(w0:i | t = 1) ≤ 0]

...
I[d(w0:i | t = k) ≤ 0]

...




=




ti
1

i+1

∑i
j=0 tj

I[d(w0:i | t = 1) ≤ 0]
...

I[d(w0:i | t = k) ≤ 0]
...




.

(208)

J.2 Generator head

We omit the unnecessary dimensions of input vec-
tor x(2)

i in this layer as follows:

x
(2)
i =




...
m(w0:i)

...


 , (209)

where

m(w0:i) =



I[d(w0:i | t = 1) ≤ 0]

...
I[d(w0:i | t = k) ≤ 0]


 . (210)

Set the parameters W gen ∈
R(2k+2)×dmodel ,bgen ∈ R(2k+2) as follows:

W gen =




· · · O · · ·
· · · −CgenI · · ·
· · · 0⊤ · · ·
· · · Cgen1⊤ · · ·




}k dim.
}k dim.
}1 dim.
}1 dim.

, (211)
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bgen =




logπ

log
(
1−q
q

)
π

−Cgen

log
(
1−r
r

)
− kCgen




}k dim.}
k dim.

}1 dim.}
1 dim.

. (212)

Then, we obtain

logit

= W genx
(2)
i + bgen

=




logπ

log
(
1−q
q

)
π − Cgenm(w0:i)

−Cgen

log
(
1−r
r

)
− Cgen(k − 1⊤m(w0:i))


 .

(213)

Softmax
Similar to the Appendix H, it is possible to show
that the Shuffle-Dyckk language generation pro-
cess can be approximated with arbitrary precision.
Here, for clarity, we treat −Cgen as a masking op-
eration in the softmax function and show how it
realizes the language generation process.

(i) in case that ∀t′.d(w0:i | t = t′) = 0. Since
m(w0:i) = 1,

logit =




logπ

log
(
1−q
q

)
π − Cgen1

−Cgen

log
(
1−r
r

)


 . (214)

Therefore,

S(logit) ≃ S







logπ
masked
masked
log
(
1−r
r

)







= S







log rπ
masked
masked

log (1− r)





 ,

(215)

indicating that the Shuffle-Dyckk language gen-
eration process is realized.

(i) in case that ∃t′.d(w0:i | t = t′) > 0. Since
1⊤m(w0:i) ≤ k − 1,

logit

=




logπ

log
(
1−q
q

)
π − Cgenm(w0:i)

−Cgen

log
(
1−r
r

)
− Cgen(k − 1⊤m(w0:i))


 .

(216)

Therefore, we obtain

S(logit)

≃ S







logπ

log
(
1−q
q

)
π − Cgenm(w0:i)

masked
masked







= S







log qπ
log(1− q)π − Cgenm(w0:i)

masked
masked





 .

(217)
In addition, the t-th element of
logπ − Cgenm(w0:i) is masked if and only
if the depth of type t is 0 or less than 0, indicating
that the Shuffle-Dyckk language generation
process is also realized in this case.

K Proof of Proposition 5

Proposition 11 (Restatement of Proposition
5). There is no network whose width grows
strictly slower than k/ log k that generates
Shuffle-Dyckk; that is, if

lim
k→∞

dmodel(k)

k/ log k
= 0 (218)

holds, then there exists k0 such that for any k ≥
k0, networks with dmodel(k)-width cannot generate
Shuffle-Dyckk.

We provide the proof sketch first. Then, we show
some lemmas in Section K.1 and give a proof of
Proposition 5 in Section K.2.

Proof sketch. We give a proof by contradiction.
Consider the 2k different input strings: concern-
ing the l ∈ [2k]-th input, when the t-th bit of the
binary representation of l is 1, we add an open
bracket of type t. For example, when k = 2, we
consider the following 22 inputs:

00 7→ <bos>,

01 7→ <bos>⟨1,
10 7→ <bos>⟨2,
11 7→ <bos>⟨1⟨2.

(219)

Then, it is necessary to satisfy the following 2k

constraints to generate Shuffle-Dyckk correctly:
concerning the l-th constraint, if the t0 and t1-th
bit of the binary representation of l are 0 and 1,
respectively, the t1-th logit is strictly greater than
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the t0-th logit. However, there is no linear transfor-
mation Rdmodel → Rk that satisfies the constraints
above.

In this section, we explicitly express the depen-
dence of dmodel on k, denoting it by d(k) for clarity.
Additionally, we occasionally use the concise nota-
tion e instead of exp to conserve space.

K.1 Preliminary Lemmas
Definition 11 (Subspace). Given a vector set
{wt}kt=1 ⊂ Rd(k). Let bin(l) = l1 · · · lk be the
binary representation of an integer l ∈ [2k] and
bint(l) = lt be the t-th bit of bin(l). Then, we
define subspace R(l)(⊂ Rd(k)) as follows:

R(l) =

{
x

∣∣∣∣∣
(wt1 −wt0)

⊤x > 0

∀t0 ∈ id0(l), t1 ∈ id1(l)

}
, (220)

where

id0(l) = {t | bint(l) = 0}, (221)

id1(l) = {t | bint(l) = 1}. (222)

In addition, we say R(l) and R(l′) are distinct if
R(l) ∩R(l′) = ∅. Moreover, we say the subspace
set {R(·)} is distinct if for any two subspaces are
distinct.

Intuitively, for x ∈ R(l), w⊤
t1x > w⊤

t0x holds,
indicating the logit for type-t1 is greater than that
for type-t0.

Lemma 2. R(l) and R(l′) are distinct if there ex-
ists t ̸= t′ such that t ∈ id0(l) ∧ t′ ∈ id1(l) ∧ t ∈
id1(l

′) ∧ t′ ∈ id0(l
′).

Proof. Since t ∈ id0(l) ∧ t′ ∈ id1(l),

R(l) ⊂
{
x
∣∣∣(wt′ −wt)

⊤x > 0
}

(223)

holds. In contrast, since t ∈ id1(l
′) ∧ t′ ∈ id0(l

′),

R(l′) ⊂
{
x
∣∣∣(wt −wt′)

⊤x > 0
}

(224)

holds, indicating R(l) ∩R(l′) = ∅.

Lemma 3. R(l) and R(l′) are distinct if l ̸= l′ ∧
#1(l) = #1(l

′) holds, where #1(l) is the number
of ones in bin(l).

Proof. Since l ̸= l′, there exists a digit t such that
lt ̸= l′t. Without loss of generality, we can assume
that lt = 1 ∧ l′t = 0. In addition, since l and l′

have same number of ones, there exists t′ such that
lt′ = 0∧ l′t′ = 1, indicating that R(l) and R(l′) are
distinct from Lemma 2.

Lemma 4. For any integer m ≥ 1,

e
11
12mm+ 1

2 e−m ≤ m! ≤ e
13
12mm+ 1

2 e−m (225)

holds.

Proof. From the results in Robbins (1955),

m!em

mm+ 1
2

= Cerm , (226)

holds for m ≥ 1, where C ∈
(
e

11
12 , e

12
13

)
and rm ∈

(
1

12m+1 ,
1

12m

)
. Therefore

m!em

mm+ 1
2

∈
(
e(

11
12

+ 1
12m+1), e(

12
13

+ 1
12m)

)

⊆
(
e

11
12 , e

13
12

)
,

(227)

indicating that the inequality holds for m ≥ 1.

Lemma 5. For k > 2 and an integer set
[
2k
]
=

{0, · · · , 2k−1}. Then, at least
⌊√

2
k
⌋

-size distinct

subspace set is necessary to make R(l) ⊂ Rdmodel

non-empty for any l ∈
[
2k
]
.

Proof. In case that k is an even number,
∣∣∣∣
{
l

∣∣∣∣#1(l) =
k

2

}∣∣∣∣ =
(

k

k/2

)
, (228)

On the other hand, in case that k is an odd number,
∣∣∣∣
{
l

∣∣∣∣#1(l) =
k − 1

2

}∣∣∣∣ =
(

k

(k − 1)/2

)
. (229)

When k is even, at least
(

k
k/2

)
-size distinct sub-

space set is necessary because from Lemma 3,
{R(l)}l∈{l′|#1(l′)= k

2 } is distinct. Here,

(
k

k/2

)

=
k!

(k/2)!(k/2)!

≥ e
11
12kk+

1
2 e−k

(
e

13
12 (k2 )

k
2
+ 1

2 e−
k
2

)2 (Lemma 4)

= 2e−
37
144

2k√
k

≥
√
2
k
√
2
k

√
k

≥
√
2
k

(230)
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holds, indicating that
⌊√

2
k
⌋

-size distinct subspace
set is necessary. Similarly, when k is odd,

(
k

(k − 1)/2

)

≥
√
2
k

√
2
k

(k + 1)/
√
k
≥

√
2
k

(231)

holds, leading to the same result.

Lemma 6. For any real number x > 1,

x
1
x < 1 +

log x+ 1

x
(232)

holds.

Proof.

x
1
x = exp

(
1

x
log x

)

=

∞∑

p=0

(
1
x log x

)p

p!

= 1 +
1

x
log x+

∞∑

p=2

(
1
x log x

)p

p!

≤ 1 +
1

x
log x+

(
1

x
log x

)2

·
∞∑

p=2

1

p!

= 1 +
1

x
log x+

1

x
· (log x)

2

x
·




∞∑

p=0

1

p!
− 2




< 1 +
1

x
log x+

1

x
· 1 · (e− 2)

< 1 +
log x+ 1

x
.

(233)

We cite Lemma 7 stated in Bagdasaryan (2023).
Note that we modify the statement to align with
this paper.

Lemma 7 (Bagdasaryan (2023)). Let G(d(k),m)
be the maximum number of regions that are sepa-
rated by m hyperplanes in Rd(k). Then,

G(d(k),m) =

d(k)∑

d=0

(
m

d

)
, (234)

where

(
m

d

)
=

{
m!

d!(m−d)! if d ≤ m

0 if d > m
. (235)

Lemma 8. For any function d(k) : N → N that
satisfies d(k) = o(k/ log k), logG

(
d(k),

(
k
2

))
is

a sub-linear function; that is, when

lim
k→∞

d(k)

k/ log k
= 0 (236)

holds, the following equation holds:

logG
(
d(k),

(
k
2

))

k
−→
k→∞

0. (237)

Proof. Since d(k) grows strictly slower than
k/ log k, there exists k0 such that for any k > k0,
d(k) < k2

2 holds. We assume k > k0 for the re-
mainder.

G

(
d(k),

(
k

2

))

=

d(k)∑

d=0

((k
2

)

d

)
(from Lemma 7)

≤
d(k)∑

d=0

(
k2

d

)

≤
d(k)∑

d=0

(
k2

d(k)

)(
because d(k) <

k2

2

)

≤ 2d(k)
k2(k2 − 1) · · · (k2 − d(k) + 1)

d(k)!

≤ 2d(k)k2d(k)

e
11
12d(k)d(k)+

1
2 e−d(k)

(from Lemma 4)

≤ 2
√

d(k)ed(k)
(

k2

d(k)

) d(k)

k2
k2

≤ 2
√

d(k)ed(k)


1 +

log
(

k2

d(k)

)
+ 1

k2

d(k)




k2

(from Lemma 6)

≤ 2
√
d(k)ed(k)

(
1 +

d̃(k)

k2

) k2

d̃(k)
d̃(k)

< 2
√
d(k)ed(k)+d̃(k),

(238)
where

d̃(k) = d(k)

(
log

(
k2

d(k)

)
+ 1

)
. (239)
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Therefore,

logG
(
d(k),

(
k
2

))

k

≤
log
(
2
√

d(k)ed(k)+d̃(k)
)

k

≤ log 2
√
d(k) + d̃(k) + d̃(k)

k

=
log 2

√
d(k) + 2d(k)

(
log
(

k2

d(k)

)
+ 1
)

k

≤ log 2
√
d(k) + d(k) · 6 log k

k

≤ log 2
√
d(k)

k
+ 6

d(k)

k/ log k

−→
k→∞

0,

(240)
indicating logG

(
d(k),

(
k
2

))
is a sub-linear func-

tion.

Lemma 9. For any function d(k) : N → N that
satisfies d(k) = o(k/ log k) and ν > 0,

lim
k→∞

G
(
d(k),

(
k
2

))

exp(νk)
= 0 (241)

holds.

Proof. From Lemma 8, since d(k) grows strictly
slower than k/ log k, logG

(
d(k),

(
k
2

))
grows sub-

linearly. Therefore, for any ν > 0, there exists k0
such that for any k > k0,

logG
(
d(k),

(
k
2

))

k
<

ν

2
(242)

holds; thus, for any ν and k > k0,

lim
k→∞

G
(
d(k),

(
k
2

))

exp(νk)

= lim
k→∞

exp

(
logG

(
d(k),

(
k

2

))
− νk

)

= lim
k→∞

exp





logG

(
d(k),

(
k
2

))

k
− ν


 k




≤ lim
k→∞

exp
(
−ν

2
k
)

= 0.
(243)

K.2 Main proof
Proof. We derive a contradiction by assuming the
existence of a d(k)-width network and a genera-
tor head fgen : Rd(k) → R2k+2 that generates
Shuffle-Dyckk. Denote the matrix of the genera-
tor head by

W gen =




...
w⊤

1
...

w⊤
k
...




}k dim.


k dim.

}2 dim.

∈ R(2k+2)×d(k).

(244)
Take into account the 2k vectors {xl}l∈[2k] cor-

responding to the input strings described in the
proof sketch; that is, bint(l) = 0 means the type
t is closed, while bint(l) = 1 means the type t is
unclosed. Here, the generator head satisfies

w⊤
t0xl > w⊤

t1xl, (245)

for any l ∈
[
2k
]

and for any t1 ∈ id1(l), t0 ∈
id0(l). This is because the logit for the unclosed
type must be greater than that for the closed type.

Consider the subspace set defined by {wt}kt=1,
since xl ∈ R(l), from Lemma 5, there exists at
least

⌊√
2
k
⌋

-size distinct subspace set.
However, the generator head can create at most

G
(
d(k),

(
k
2

))
-size separated regions in Rd(k),

leading a contradiction: the number of separable
regions increases strictly slower than the necessary
size of distinct subspace set from Lemma 9.

L Proof of Proposition 6

Proposition 12 (Restatement of Proposition 6). As-
sume that there exists a linear mapping such that
the transformed embeddings are distinct from each
other and have a constant 2-norm. Then, there
exists a Transformer block without a starting to-
ken that creates a pseudo starting signal ŝi for
any string w1:n whose first two tokens are different,
where

ŝi =

{
1 if i = 1

0 otherwise
. (246)

Specifically, this block transforms the constants-
padded vector x̂i as follows:

x̂i =



xi
...
0


 7→



xi
...
ŝi


 . (247)
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Proof. Assume the extended input representation
x̂i ∈ Rd′model , where d′model = 2dmodel + 2, in-
stead of the original representation xi ∈ Rdmodel as
follows:

x̂i =




xi

0
1
0




}dmodel dim.
}dmodel dim.
}1 dim.
}1 dim.

. (248)

The attention layer, leveraging the uniform atten-
tion, transforms the vector into




xi
1
i

∑i
j=1 xj

1
0


 . (249)

Then, in the feed-forward network layer, the first
linear transformation calculates xi − 1

i

∑i
j=1 xj .

The 2-norm of this vector is 0 if and only if
xi =

1
i

∑i
j=1 xj . Thanks to the subsequent layer

normalization, the larger the 2-norm of the vector
xi − 1

i

∑i
j=1 xj becomes, the smaller the trans-

formed value of the constant 1 becomes. This
allows the subsequent ReLU activations and the
linear transformation to implement the conditional
branch. We then show the specific implementation.

Set the parameters W1,W2 ∈ Rd′model×d′model

and β,γ ∈ Rd′model as follows:

W1 =




I −I 0 0
O O 0 0
0⊤ 0⊤ 1 0
0⊤ 0⊤ 0 0


 , (250)

W2 =




O O 0 0
O O 0 0
0⊤ 0⊤ 0 0
0⊤ 0⊤ 1

ϵ 0


 , (251)

β =




0
0

−1 + ϵ
0


 , (252)

γ =

√
1

d′model

1, (253)

where ϵ is a positive constant.
Then, the output of the RMS layer normalization

is given by

LNRMS (W1hi)

= LNRMS







xi − 1
i

∑i
j=1 xj

0
1
0







=
1

∥W1hi∥2




xi − 1
i

∑i
j=1 xj

0
1
0


+




0
0

−1 + ϵ
0




=
1

∥W1hi∥2




xi − 1
i

∑i
j=1 xj

0
1− ∥W1hi∥2 (1− ϵ)

0


 .

(254)
Therefore, the output of the feed-forward net-

work layer is given by

W2




1

∥W1hi∥2




xi − 1
i

∑i
j=1 xj

0
1− ∥W1hi∥2 (1− ϵ)

0







+

=




0
0
0

1
ϵ

[
1

∥W1hi∥2 − 1 + ϵ
]
+




=




0
0
0

I
[
xi =

1
i

∑i
j=1 xj

]




(255)
The reason why the last equality holds is ex-

plained below: since

∥W1hi∥22 =

∥∥∥∥∥∥
xi −

1

i

i∑

j=1

xj

∥∥∥∥∥∥

2

2

+ 12

{
= 1 if xi =

1
i

∑i
j=1 xj

> 1 if xi ̸= 1
i

∑i
j=1 xj

,

(256)

the entry 1 is transformed to 1 if xi =
1
i

∑i
j=1 xj ;

otherwise, the entry becomes less than 1. There-
fore, given a sufficiently small constant ϵ,

1

∥W1hi∥2
− 1 + ϵ

{
= ϵ if xi =

1
i

∑i
j=1 xj

< 0 otherwise

(257)
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holds, indicating

1

ϵ

[
1

∥W1hi∥2
− 1 + ϵ

]

+

= I


xi =

1

i

i∑

j=1

xj


 .

(258)
Finally, we give a proof of the following propo-

sition: x1 ̸= x2 ⇔ xi ̸= 1
i

∑i
j=1 xj (for i ≥ 2).

Let C2 be the constant 2-norm of the embeddings.
Then,

xi =
1

i

i∑

j=1

xj =⇒
〈
xi,

1

i

i∑

j=1

xj

〉
= C2

2

=⇒ 1

i

i∑

j=1

⟨xi,xj⟩ = C2
2

=⇒ ∀j ∈ [i].xi = xj .
(259)

This is because

1

i

i∑

j=1

⟨xi,xj⟩ ≤
1

i

i∑

j=1

∥xi∥∥xj∥ = C2
2 (260)

holds for any i, and the equality holds if and only
if ∀j ∈ [i].xi = xj holds. On the other hand, the
converse is straightforward. Therefore,

∀i ≥ 2.x ̸= 1

i

i∑

j=1

xj (261)

⇐⇒ ∀i ≥ 2.∃j ∈ [i].xi ̸= xj (262)

⇐⇒ x1 ̸= x2, (263)

indicating that when x1 ̸= x2, A Transformer
block can create a pseudo starting signal ŝi by it-
self.

M Proof of Corollary 1

Here, we present a method to construct a Trans-
former without positional encoding and <bos> that
recognizes the Dyckk language for an input string
whose first two characters are different.

Corollary 3 (Restatement of Corollary 1, Trans-
formers without a starting token, Dyckk probabilis-
tic recognition). Assume the same assumption as in
Proposition 6. There exists a 9-layer causal Trans-
former without a starting token that recognizes the
Dyckk language with probability at least 1− 1/k.

Proof. Here, for clarity, we omit the specific imple-
mentation except that of the fourth layer. Instead,
we outline the construction.

Firstly, using the starting token created by Propo-
sition 6, create pseudo positional encoding, which
allows the Transformer to compute the same rep-
resentation xi−1 as used in Theorem 1. The proof
of Theorem 1 does not require the query to assign
an attention score on itself; thus, it is possible to
calculate q(w0:i) by making the query matrix focus
on x

(ℓ)
i and the key/value matrices focus on x

(ℓ)
i−1.

Moreover, by focusing solely on x
(ℓ)
i−1, it is possible

to compute
∧i−1

j=0Q(w0:j−1) in the same manner as
described in Appendix G. Finally, to check whether
the input string is a prefix for Dyckk, it is sufficient
to compute Q(w0:i) ∧

∧i−1
j=0Q(w0:j−1).

Specifically, the following nine layers can recog-
nize the Dyckk language.

First layer creates a pseudo starting signal ŝi us-
ing Proposition 6.

Second and third layers create vectors corre-
sponding ϕ(i− 1) and ϕ(i), respectively.

Fourth layer computes the same representation
xi−1 as in Appendix D.

Fifth and sixth layers create vectors correspond-
ing d(w0:i−1) and d(w0:i) + 1, respectively.

Seventh and eighth layers compute qi−1 and qi,
which correspond to the propositional variables
Q(w0:i−1) and Q(w0:i), respectively.

Ninth layer computes Q(w0:i)∧
∧i−1

j=0Q(w0:j)∧
d(w0:i) + 1 = 1.

M.1 How to compute xi−1

The attention layer in the fourth layer, leveraging
the pseudo positional encoding, computes

h
(4)
i =




...
ŝi
...

tiprev
oiprev

...




, (264)

where

tiprev =

{
t1 if i = 1

ti−1 if i > 1
, (265)

oiprev =

{
o1 if i = 1

oi−1 if i > 1
. (266)
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In the subsequent feed-forward network layer, set
the parameters W

(4)
1 ,W

(4)
2 ∈ Rdmodel×dmodel and

β(4),γ(4) ∈ Rdmodel as follows:

W
(4)
1 =




· · · 0 · · · I 0 · · ·
· · · 0 · · · −I 0 · · ·
· · · 0 · · · 0⊤ 1 · · ·
· · · 0 · · · 0⊤ −1 · · ·
· · · C(4) · · · 0⊤ 0 · · ·

...
...

...



, (267)

W
(4)
2 =




...
...

...
...

...
I −I 0 0 0 · · ·
0⊤ 0⊤ 1 −1 0 · · ·
0⊤ 0⊤ 0 0 1 · · ·
...

...
...

...
...



, (268)

β(4) = 0, (269)

γ(4) =
1√

dmodel




√
2 (⌈log2 k⌉+ 1)1√
2 (⌈log2 k⌉+ 1)1√
2 (⌈log2 k⌉+ 1)√
2 (⌈log2 k⌉+ 1)

1
...



.

(270)

Given a sufficiently large constant C(4), since
we obtain

LNRMS







tiprev
−tiprev
oiprev
−oiprev
C(4)ŝi

...







=








0

0

0

0

1
...




if i = 1




tiprev
−tiprev
oiprev
−oiprev

0
...




otherwise

,

(271)

the output of the RMS layer normalization is given

by:

LNRMS

(
W

(4)
1 h

(4)
i

)
=




ti−1

−ti−1

oi−1

−oi−1

si−1
...



. (272)

Here, it should be noted that although the left-
hand and the right-hand side of Equation (271) are
not exactly the same, they can be regarded equiva-
lent based on a similar discussion to that in Section
O.

Therefore, the output of the feed-forward net-
work layer is given by:

W
(4)
2

[
LNRMS

(
W

(4)
1 h

(4)
i

)]
+

= W
(4)
2




[ti−1]+
[−ti−1]+
[oi−1]+
[−oi−1]+
si−1

...



=




...
ti−1

oi−1

si−1
...



,

(273)

indicating that xi−1 can be computed correctly.
Finally, since the probability of outputting the

same type of open bracket as the first one is r
k ,

the first two characters are different with at least
a probability of 1− 1

k , which completes the proof.

N Proof of Corollary 2

Here, we present a method to construct a Trans-
former without positional encoding and <bos> that
realizes the Dyckk language generation process
pDyckk(·; q, r,π).
Corollary 4 (Restatement of Corollary 2, Trans-
formers without a starting token, Dyckk subset gen-
eration). Assume the same assumption as in Propo-
sition 6. There exists a 7-layer causal Transformer
without a starting token that can generate a subset
of Dyckk where the first two characters are differ-
ent; that is, the Transformer can generate all pos-
sible subsequent sequences when there is an input
string whose first two characters are different.

Proof. We assume that the output probabilities take
the following form, which is the same as Section
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H: 


p⟨1
...

p⟨k
p⟩1
...

p⟩k
p<bos>
p<eos>




. (274)

We omit the specific implementation. Instead,
we outline the construction for clarity as in Ap-
pendix M. Similar to the Transformer without
<bos> that recognizes the Dyckk language, the
query vector does not need to assign attention to
itself; thus, by making the query matrix focus on
x
(ℓ)
i and the key/value matrices focus on x

(ℓ)
i−1, the

desired behavior can be realized.
Specifically, the five layers described below gen-

erate the Dyckk language when the first two char-
acters of the input string are different.

First layer creates a pseudo starting signal ŝi us-
ing Proposition 6.

Second and third layers create vectors corre-
sponding ϕ(i− 1) and ϕ(i), respectively.

Fourth layer computes the same representation
xi−1 as in Appendix D, in the same way as in
Section M.1.

Fifth and sixth layers create vectors correspond-
ing d(w0:i−1) and d(w0:i), respectively.

Seventh layer enables each closed bracket to
fetch the nearest depth-matched open bracket.

O Validity of Treating Softmax Attention
as Hardmax Attention

In our constructive proofs, we occasionally treat
softmax attention as hardmax attention. In this sec-
tion, we validate these theoretical results; that is,
we show that if the vector fetched by hardmax atten-
tion is included in the finite set of candidates, the
subsequent feed-forward network layer can trans-
form the vector obtained by softmax attention into
that obtained by hardmax attention when the as-
signed attention weight exceeds a certain thresh-
old. Here, we discuss the fourth attention layer
described in Appendix G.4 as an example.

O.1 Threshold of attention strength
Lemma 10. Assume a vector set {yi}ni=1 ⊂
{1, 0,−1}d. Let ỹi,H and ỹi,S be the vectors ob-
tained by hardmax attention and softmax atten-
tion among {yi}ni=1, respectively. Then, regarding
softmax attention, if a query assigns the attention
greater than 2

3 on the target token, the vector ob-
tained by hardmax attention ỹi,H can be identified
by referencing ỹi,S.

Proof. When a query assigns greater than 2
3 on the

target token, there exists ρ > 2
3 and yCH in the

convex hull of {yi} such that

ỹi,S = ρỹi,H + (1− ρ)yCH. (275)

Since absolute value of each elements in yCH is at
most 1, regarding the l-th element (ỹi,S)l of ỹi,S,

ρ(ỹi,H)l − (1− ρ) ≤ (ỹi,S)l, (276)

(ỹi,S)l ≤ ρ(ỹi,H)l + (1− ρ) (277)

hold. Here,
{
ρ · (−1) + (1− ρ) < ρ · 0− (1− ρ)

ρ · 0 + (1− ρ) < ρ · 1− (1− ρ)
(278)

⇐⇒ ρ >
2

3
(279)

is satisfied, indicating that the original values are
identifiable.

O.2 Recovering the original value with
feed-forward network layer

Here, we show how to implement the feed-forward
network layer that recovers the vectors obtained by
hardmax attention and realizes the computation in
the fourth layer. Since this recovery is feasible if
the attention weight is greater than 2

3 from Lemma
10, we set this threshold to 4

5 as an example.
Intuitively, we implement a function similar to a

step function using the ReLU activations to recover
vectors that include errors produced by the prior
softmax attention. Specifically, since the element
of the

[
ti − t̃i

]
+

and oi + 1 take values of 0, 1, 2,
we implement the recovering function Recov(y) as
follows:

Recov(y)

=

[
y

ϵ
− 9

20ϵ

]

+

+

[
y

ϵ
−
(
1 +

9

20ϵ

)]

+

+

[
y

ϵ
− 19

15ϵ

]

+

−
[
y

ϵ
−
(
1 +

19

15ϵ

)]

+

.

(280)
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Figure 7: Illustration of the behavior of the recovering
function defined in Equation (280).

The behavior of the recovering function is illus-
trated in Figure 7.

Then, we show the specific implementation that
realizes the recovering function. Let t̃′ be a bracket-
type embedding fetched by softmax attention and
t̃i be that fetched by hardmax attention. We omit
the unnecessary dimensions of input vector h(4)

i in
this layer as follows:

h
(4)
i =




ti
oi
...
1
...
t̃′i
...




. (281)

Set the parameter W
(4)
1 ∈ Rdmodel×dmodel and

β(4),γ(4) ∈ Rdmodel as follows:

W
(4)
1 =




I 0 · · · 0 · · · −I · · ·
I 0 · · · 0 · · · −I · · ·
I 0 · · · 0 · · · −I · · ·
I 0 · · · 0 · · · −I · · ·
−I 0 · · · 0 · · · I · · ·
−I 0 · · · 0 · · · I · · ·
−I 0 · · · 0 · · · I · · ·
−I 0 · · · 0 · · · I · · ·
0⊤ 1 · · · 1 · · · 0⊤ · · ·
0⊤ 1 · · · 1 · · · 0⊤ · · ·
0⊤ 1 · · · 1 · · · 0⊤ · · ·
0⊤ 1 · · · 1 · · · 0⊤ · · ·
0⊤ 0 · · · C · · · 0⊤ · · ·
0⊤ 0 · · · C · · · 0⊤ · · ·
...

...
...

...




, (282)

β(4) =




− 9
20ϵ1

−(1 + 9
20ϵ)1

− 19
15ϵ1

−(1 + 19
15ϵ)1

− 9
20ϵ1

−(1 + 9
20ϵ)1

− 19
15ϵ1

−(1 + 19
15ϵ)1

− 9
20ϵ

−(1 + 9
20ϵ)

− 19
15ϵ

−(1 + 19
15ϵ)

− 9
20ϵ

−(1 + 9
20ϵ)

0




, (283)

γ(4) =
1

ϵ

√
2C2

dmodel




1
1
1
1
1
1
1
1
1
1
1
1
1
C
1
C
0




, (284)

where ϵ is a positive constant that satisfies ϵ < 1
10 .

Then, we obtain

LNRMS

(
W

(4)
1 h

(4)
i

)

= LNRMS







ti − t̃′i
ti − t̃′i
ti − t̃′i
ti − t̃′i

−(ti − t̃′i)
−(ti − t̃′i)
−(ti − t̃′i)
−(ti − t̃′i)
oi + 1
oi + 1
oi + 1
oi + 1
C
C
...







(285)
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Here,

sup
1

RMS
(
W

(4)
1 h

(4)
i

) =

√
dmodel

2C2
, (286)

inf
1

RMS
(
W

(4)
1 h

(4)
i

)

=

√
dmodel

8 · 22⌈log2 k⌉+ 4 · 22 + 2 · C2

=

√
dmodel

2C2

(
1 +

16⌈log2 k⌉+ 8

C2

)− 1
2

≥
√

dmodel

2C2
(1− δC) ,

(287)

where δC = 8⌈log2 k⌉+4
C2 .

Moreover, when ρ = 4
5 , since

t̃′i,l ∈





[
3
5 , 1
]

if t̃i,l = 1[
−1

5 ,
1
5

]
if t̃i,l = 0[

−1,−3
5

]
if t̃i,l = −1

, (288)

ti,l − t̃′i,l

∈





[
8
5 , 2
]

if ti,l − t̃i,l = 2[
3
5 ,

6
5

]
if ti,l − t̃i,l = 1[

−2
5 ,

2
5

]
if ti,l − t̃i,l = 0[

−6
5 ,−3

5

]
if ti,l − t̃i,l = −1[

−2,−8
5

]
if ti,l − t̃i,l = −2

.
(289)

Therefore,
√

2C2

dmodel
·

ti,l − t̃′i,l

RMS
(
W

(4)
1 h

(4)
i

)

∈





[
8(1−δC)

5 , 2
]

if ti,l − t̃i,l = 2[
3(1−δC)

5 , 65

]
if ti,l − t̃i,l = 1

[
−2

5 ,
2
5

]
if ti,l − t̃i,l = 0[

−6
5 ,−

3(1−δC)
5

]
if ti,l − t̃i,l = −1[

−2,−8(1−δC)
5

]
if ti,l − t̃i,l = −2

.

(290)
By setting C to satisfy

{
6
5 < 8(1−δC)

5
2
5 < 3(1−δC)

5

⇔ δC <
1

4

⇔ C > 4
√
2⌈log2 k⌉+ 1,

(291)

these five intervals become disjoint. We proceed
with our discussion under the assumption C >
2
√
6 ·
√

2⌈log2 k⌉+ 1 ⇔ δC < 1
6 as an example.

In this case,

√
2C2

dmodel
·

ti,l − t̃′i,l

RMS
(
W

(4)
1 h

(4)
i

)

∈





[
4
3 , 2
]

if ti,l − t̃i,l = 2[
1
2 ,

6
5

]
if ti,l − t̃i,l = 1[

−2
5 ,

2
5

]
if ti,l − t̃i,l = 0[

−6
5 ,−1

2

]
if ti,l − t̃i,l = −1[

−2,−4
3

]
if ti,l − t̃i,l = −2

.

(292)

Similarly,

√
2C2

dmodel
· oi + 1

RMS
(
W

(4)
1 h

(4)
i

)





= 0 if oi + 1 = 0

∈
[
5
6 , 1
]

if oi + 1 = 1

∈
[
5
3 , 2
]

if oi + 1 = 2

,

(293)



√

2C2

dmodel
· 1

C


 · C

RMS
(
W

(4)
1 h

(4)
i

)

∈
[
5

6
, 1

] (294)

hold. Therefore, by implementing the recovering
function Recov(·) defined in Equation (280), the
vectors obtained by hardmax attention are recov-
ered. Finally, by setting W

(4)
2 ∈ Rdmodel×dmodel

W
(4)
2 =




...
w

(4)⊤
2
...


 , (295)
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where

w
(4)
2 =




−4 · 1
4 · 1
−4 · 1
4 · 1
−4 · 1
4 · 1
−4 · 1
4 · 1

8(⌈log2 k⌉+ 1)
−8(⌈log2 k⌉+ 1)
8(⌈log2 k⌉+ 1)
−8(⌈log2 k⌉+ 1)

2
−2
0




, (296)

the desired vector is obtained; that is, the feed-
forward network layer computes




...
q̃(w0:i)

...


 , (297)

where

q̃(w0:i) =− 4∥ti − t̃i∥1
+ 8(⌈log2 k⌉+ 1)(oi + 1) + 2,

(298)

which the same expression as q′(w0:i) in Equation
(125); that is, q̃(w0:i) satisfies the conditions de-
scribed in (117). This indicates that the hardmax
attention is dispensable for our constructive proof.

P Extension to Architecture with The QK
Normalization

The QK normalization (Dehghani et al., 2023) ap-
plies the layer normalization (Ba et al., 2016) indi-
vidually to both the query and key vectors to stabi-
lize training. Specifically, concerning calculating
attention scores, the QK normalization uses

⟨LN(WQxiq),LN(WKxik)⟩ (299)

instead of
⟨WQxiq ,WKxik⟩, (300)

where LN(·) is the layer normalization (Ba et al.,
2016). Specifically, the layer normalization pa-
rameterized by β,γ ∈ Rdmodel applies an affine
transformation to y ∈ Rdmodel as follows:

LN(y) = γ ⊙ y − µ(y)1

σ(y)
+ β, (301)

where

µ(y) =
1

dmodel

dmodel∑

d=1

yd, (302)

σ(y) =

√√√√ 1

dmodel

dmodel∑

d=1

(yd − µ(y))2. (303)

In this section, we show in two steps that the QK
normalization can be incorporated into our con-
structive proof:

1. We give a proof that the layer normalization
and the RMS layer normalization are equiva-
lent when they are incorporated into the QK
normalization with respect to their expressive
power.

2. We show that our theoretical results also hold
even when the QK normalization with the
RMS layer normalization is incorporated into
the architecture.

For clarity, denote the QK normalization with
the layer normalization by QK-LN and the QK nor-
malization with the RMS layer normalization by
QK-RMSLN.

P.1 Equivalence of the layer normalization
and the RMS layer normalization under
the QK normalization

We give a proof that for any attention layer
with QK-LN, there exists an attention layer with
QK-RMSLN that produces the same output (Lemma
11). Similarly, we also show that the converse
holds: for any attention layer with QK-RMSLN, there
exists an attention layer with QK-LN that produces
the same output (Lemma 12). Note that it is suffi-
cient to show the existence of a network that out-
puts the same attention scores.

Lemma 11. For any attention layer with QK-LN,
there exists an attention layer with QK-RMSLN that
produces the same output for any given input.

Proof. Assume the attention layer with QK-LN pa-
rameterized by βQ,γQ, βK ,γK ,

WQ =




w⊤
Q,1
...

w⊤
Q,dmodel


 ,WK =




w⊤
K,1
...

w⊤
K,dmodel


 .

(304)
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Then, the attention layer with QK-RMSLN parameter-
ized by β′

Q = βQ,γ
′
Q = γQ,β

′
K = βK ,γ ′

K =
γK ,

W ′
Q =




w⊤
Q,1 −

(
1

dmodel

∑dmodel
d=1 w⊤

Q,d

)

...

w⊤
Q,dmodel

−
(

1
dmodel

∑dmodel
d=1 w⊤

Q,d

)


 ,

(305)

W ′
K =




w⊤
K,1 −

(
1

dmodel

∑dmodel
d=1 w⊤

K,d

)

...

w⊤
K,dmodel

−
(

1
dmodel

∑dmodel
d=1 w⊤

K,d

)




(306)

produces the same attention scores. The reasons
are detailed below: we obtain the query vector

W ′
Qxiq

=




w⊤
Q,1 −

(
1

dmodel

∑dmodel
d=1 w⊤

Q,d

)

...

w⊤
Q,dmodel

−
(

1
dmodel

∑dmodel
d=1 w⊤

Q,d

)


xiq

=




w⊤
Q,1xiq

...
w⊤

Q,dmodel
xiq


−




1
dmodel

∑dmodel
d=1 w⊤

Q,dxiq
...

1
dmodel

∑dmodel
d=1 w⊤

Q,dxiq




=




w⊤
Q,1xiq

...
w⊤

Q,dmodel
xiq


− 1µ







w⊤
Q,1xiq

...
w⊤

Q,dmodel
xiq





 .

(307)
Here, since RMS (y − 1µ(y)) = σ(y) holds,

LNRMS(y − 1µ(y)) = LN(y) (308)

holds for any y ∈ Rdmodel . Therefore,

LNRMS(W
′
Qxiq) = LN(WQxiq) (309)

holds. Similarly,

LNRMS(W
′
Kxik) = LN(WKxik) (310)

also holds, indicating that

⟨LNRMS(W
′
Qxiq),LNRMS(W

′
Kxik)⟩

= ⟨LN(WQxiq),LN(WKxik)⟩.
(311)

Lemma 12. For any attention layer with QK-RMSLN,
there exists an attention layer with QK-LN that pro-
duces the same output for any given input.

Proof. Assume an attention layer with QK-RMSLN
parameterized by βQ,γQ, βK ,γK ,

WQ =




w⊤
Q,1
...

w⊤
Q,dmodel


 , WK =




w⊤
K,1
...

w⊤
K,dmodel


 .

(312)

Then, QK-LN parameterized by

β′′
Q =




βQ

−βQ

0


 ,γ ′′

Q =

√
2

3



γQ

γQ

1


 , (313)

β′′
K =




βK

0
−βK


 ,γ ′′

K =

√
2

3



γK

1
γK


 , (314)

W ′′
Q =




w⊤
Q,1
...

w⊤
Q,dmodel

−w⊤
Q,1

...
−w⊤

Q,dmodel

0⊤
...
0⊤




,W ′′
K =




w⊤
K,1
...

w⊤
K,dmodel

0⊤
...
0⊤

−w⊤
K,1

...
−w⊤

K,dmodel




(315)

produces the same attention scores. The reasons
are detailed below: we obtain the query vector

W ′′
Qxiq =




w⊤
Q,1xiq

...
w⊤

Q,dmodel
xiq

−w⊤
Q,1xiq
...

−w⊤
Q,dmodel

xiq

0
...
0




. (316)

Here, since µ(W ′′
Qxiq) = 0, the results of applying

the layer normalization and the RMS layer normal-
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ization to this vector are identical; that is,

LN(W ′′
Qxiq)

= LNRMS(W
′′
Qxiq)

= γ ′′
Q ⊙ 1√

2∥WQxiq∥22
3dmodel




w⊤
Q,1xiq

...
w⊤

Q,dmodel
xiq

−w⊤
Q,1xiq
...

−w⊤
Q,dmodel

xiq

0
...
0




+ β′′
Q

=




γQ ⊙ 1√
∥WQxiq ∥22

dmodel




w⊤
Q,1xiq

...
w⊤

Q,dmodel
xiq


+ βQ

−γQ ⊙ 1√
∥WQxiq ∥22

dmodel




w⊤
Q,1xiq

...
w⊤

Q,dmodel
xiq


− βQ



0
...
0







=




LNRMS(WQxiq)
−LNRMS(WQxiq)

0


 .

(317)

Similarly,

LN(W ′′
Kxik) =




LNRMS(WKxik)
0

−LNRMS(WKxik)


 ,

(318)

indicating

⟨LN(W ′′
Qxiq),LN(W

′′
Kxik)⟩

= ⟨LNRMS(WQxiq),LNRMS(WKxik)⟩.
(319)

P.2 Incorporating the QK normalization with
the RMS layer normalization to our
constructive proof

We use the attention layers for two purposes in our
constructive proofs: (i) used to create pseudo po-
sitional encoding

[
cosϕ(i) sinϕ(i)

]⊤ and depth

vectors
[
cos θ(d) sin θ(d)

]⊤ and (ii) used as an
approximation of hardmax attention to focus on a

single token. In the following sections, we show
how to incorporate QK normalization into our con-
structive proofs.

(i) When used to create positional and depth
vectors
When the attention layers are used to create posi-
tional vectors or depth vectors, an attention score
of a is assigned to <bos> and 0 to other tokens. We
then show that this operation can be implemented
also in the architecture with the QK normalization.

We omit the unnecessary dimensions of input
vector x(ℓ)

i in this layer as follows:

x
(ℓ)
i =




...
si
1
...



. (320)

Then, the attention layer with QK-RMSLN parameter-
ized by

β
(ℓ)
Q = 0,γ

(ℓ)
Q =

√
1

dmodel
1, (321)

β
(ℓ)
K = 0,γ

(ℓ)
K = a

√
1

dmodel
1, (322)

W
(ℓ)
Q =

[
· · · 0 1 · · ·

...
...

]
, (323)

W
(ℓ)
K =

[
· · · 1 0 · · ·

...
...

]
(324)

produces the desired attention scores. This is be-
cause

LNRMS

(
W

(ℓ)
Q x

(ℓ)
iq

)

= LNRMS

([
1
0

])

=

√
1

dmodel
1⊙

[√
dmodel

0

]
+ 0

=

[
1
0

]
,

(325)

LNRMS

(
W

(ℓ)
K x

(ℓ)
ik

)

= LNRMS

([
sik
0

])

= a

√
1

dmodel
1⊙

[√
dmodel · sik

0

]
+ 0

=

[
sik · a
0

]
,

(326)
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indicating

〈
LNRMS

(
W

(ℓ)
K x

(ℓ)
ik

)
,LNRMS

(
W

(ℓ)
Q x

(ℓ)
iq

)〉

= sik · a

=

{
a if wik = <bos>

0 otherwise
.

(327)

(ii) When used as an approximation of hardmax
attention
Here, we show that even when the QK normal-
ization with the RMS layer normalization is in-
corporated, any changes to the attention scores
can be avoided: that is, we can fix the 2-norm
of the query/key vectors to prevent changes in the
attention scores. In our proofs, we only use the
following values: oi, si, 1, cos(·), sin(·), qi. Ex-
cept for qi, by assigning the complementary val-
ues described below to the new dimensions of the
query/key vector, we can fix the 2-norm. Here,
we refer to y and ȳ as the complementary val-
ues if and only if y2 + ȳ2 is a constant. Here,
oi and si are complementary values, so are cos(·)
and sin(·). This is because o2i + s2i = 1 and
cos2(·) + sin2(·) = 1 hold. For example, if we
set the attention parameters WQ,WK to satisfy

WQxiq =




oiq
cosϕ(iq)

0


 ,WKxik =



sik
1
0


 ,

(328)

by modifying them into

W ′
Qxiq =




oiq
cosϕ(iq)

siq
sinϕ(iq)

0
0



,W ′

Kxik =




sik
1
0
0
oik
0



,

(329)

we can fix the 2-norm of the query/key vectors.
This is because

∥W ′
Qxiq∥22

= o2iq + s2iq + cos2 ϕ(iq) + sin2 ϕ(iq) = 2,

(330)

∥W ′
Kxik∥22

= s2ik + o2ik + 12 = 2.
(331)

Therefore, by setting βQ = βK = 0,γQ =
∥W ′

Qxiq∥2√
dmodel

1 and γK =
∥W ′

Kxik
∥2√

dmodel
1, we obtain

LNRMS

(
W ′

Qxiq

)

= γQ ⊙
√
dmodel

∥W ′
Qxiq∥2

(
W ′

Qxiq

)

= W ′
Qxiq ,

(332)

LNRMS

(
W ′

Kxik

)

= γK ⊙
√
dmodel

∥W ′
Kxik∥2

(
W ′

Kxik

)

= W ′
Kxik ,

(333)

indicating that the attention scores generated by
the attention layer with the QK normalization are
identical to those generated without the QK nor-
malization.

In contrast, qi is used in the key vector defined
in Appendix G.5, and it is hard to fix the 2-norm.
However, by setting βK = 0,γK = 1√

dmodel
1, we

obtain

LNRMS

(
W

(5)
K x

(5)
ik

)

= LNRMS





− qik
q0 ·sik

0






=








− 1√
2

1√
2

0


 if ik = 0



−1

0

0


 if qik > 0



1

0

0


 if qik < 0

,

(334)

which leads to the same result.

Q Rationale behind Architectural
Modification

Although the architecture adopted in Yao et al.
(2021) uses the conventional layer normalization,
we adopt an architecture with the RMS layer nor-
malization. This is not only because recent models
such as LLama (Touvron et al., 2023a) and Llama
2 (Touvron et al., 2023b) adopt the RMS layer nor-
malization but also because we try to make our
constructive proofs more concise. In this section,
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we show that this change does not affect the critical
aspects of our proofs; in other words, we give a
proof that any transformation achievable with the
RMS layer normalization can be achieved with the
conventional layer normalization.

Lemma 13. For any feed-forward network with
the RMS layer normalization and a hidden size of
dmodel, there exists a feed-forward network with the
layer normalization and a hidden size of 2dmodel

such that their outputs are identical.

Proof. Consider the feed-forward network layer
with the RMS layer normalization parameterized
by W1,W2,β and γ, the output becomes

W2[LNRMS(W1x)]+

=
1

RMS (W1x)
W2[γ ⊙ (W1x) + β]+.

(335)

This output is realized by the feed-forward net-
work layer with the layer normalization parame-

terized by W ′
1 =

[
W1

−W1

]
,W ′

2 =
[
W2 O

]
,β′ =

[
β
0

]
and γ ′ =

[
γ
1

]
. This is because

W ′
2

[
LN
(
W ′

1x
)]

+

=
1

σ (W ′
1x)

[
W2 O

] [[γ ⊙ (W1x) + β]+
[(−W1x)]+

]
.

=
1

RMS (W ′
1x)

W2[γ ⊙ (W1x) + β]+.

(because µ
(
W ′

1x
)
= 0)

(336)
Here,

RMS
(
W ′

1x
)

=

√
1

2dmodel
(∥W1x∥22 + ∥−W1x∥22)

=

√
1

dmodel
∥W1x∥2

= RMS (W1x) ,

(337)

indicating that the two transformations produce the
same outputs.

R Details of Experiments

R.1 Full evaluation on Dyckk

Setup
The Dyckk and Shuffle-Dyckk language datasets
are generated by pDyckk (·; q, r,π) parameter-
ized with q = 0.5, r = 0.9,π = 1

k1

and pShuffle-Dyckk (·; q, r,π,π) parameterized with
q = 0.3, r = 0.97,π = 1

k1,π = 1
k1, respec-

tively. Compared to Dyckk, we set the smaller
value for q and the larger value for r in the case of
Shuffle-Dyckk for two reasons: (i) to avoid the
situation where all types remain unclosed in the
later positions, making the task trivial and (ii) to
prevent the generation of an excessive number of
short sequences due to the small q.

Following Yao et al. (2021), we set nmax = 700
and dmodel = 30, and we truncated the sequences
longer than nmax. We generated 100, 000 se-
quences as training data, with an additional 10, 000
sequences (equivalent to 10% of the training data)
used for both validation and test datasets. Note
that for the test data, we create out-of-distribution
(OOD) sequences with respect to length, generating
sequences up to a maximum length of 1.2× nmax.

We conducted experiments by varying the pres-
ence of <bos> ({BOS, NoBOS}), the presence of
positional encoding ({PE, NoPE}), the number
of brackets types ({1, 2, 4, 8, 16} for Dyckk and
{2, 4, 8, 16} for Shuffle-Dyckk), and the number
of layers ({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}). Here, each
10-layer model has a size of 0.05M parameters.

We set the learning rate candidates to
{3e−3, 3e−4} and evaluated the performance of
the model that achieved the lowest validation loss.
We report the average performance over 5 runs with
different random seeds.

Metric

Following Hewitt et al. (2020), Yao et al. (2021),
we evaluated the model performance using the con-
ditional probability of outputting the correct clos-
ing brackets on test data. In addition, we also re-
ported the TV distance from the true language gen-
eration process.

The test data contains sequences whose length
is up to 1.2 × nmax. We regard tokens at posi-
tion i ≤ nmax as in-distribution (ID) data and to-
kens at position nmax < i ≤ 1.2 × nmax as out-
of-distribution (OOD) data, thereby we evaluate
the generalization ability with respect to sequence
length.

Figure 8 and 9 show the average test accuracy of
generating the correct closed bracket on Dyckk and
Shuffle-Dyckk, respectively. Moreover, Figure
10 and 11 show the average test TV distance on
Dyckk and Shuffle-Dyckk, respectively.
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Figure 8: Test accuracy over 5 runs of generating the correct closed brackets on Dyckk(k ∈ {1, 2, 4, 8, 16}). The
solid lines represent the results for in-distribution data (n ≤ 700), while the dashed lines represent the results for
out-of-distribution data (700 < n ≤ 840).

Hyperparameter Value
Model parameters
Number of attention heads 1
Embedding dimension dmodel 30
Use of bias terms False
Affine Transformation in the

RMS layer normalization
True

Window size 1, 024
Activation function ReLU
Training parameters
Dropout rate 0.0
Batch size 16
Learning rate {3e−3, 3e−4}
Gradient accumulation steps 2
Weight decay 0.0
Adam parameters (β1, β2) (0.9, 0.999)
Maximum iterations 3, 000
Warmup iterations 0
Learning rate decay False

Table 4: Hyperparameter configuration for experiments
on the Dyckk language.

R.2 Evaluation on natural language datasets

In Section 5.2, to investigate how our modi-
fication on layer normalization position affects
the model performance, we compared perplex-
ity on natural language datasets across four po-
sitions: Post-LN, Pre-LN, No-LN, and FFN-LN be-
cause Wang et al. (2019) and Xiong et al. (2020)
empirically showed that layer normalization posi-
tion significantly affects the model performance.
We used two natural language datasets, WikiText-
103 2 (Merity et al., 2016), a common English
dataset that contains over 100 million tokens ex-
tracted from the articles on Wikipedia, and Open-
WebText 3 (Gokaslan et al., 2019), a 30GB of com-
mon English dataset that contains HTML pages
whose URLs are shared on Reddit. Here, we pro-
vide detailed experimental settings and other exper-
imental results.

Generally, there are two types regarding the posi-
tion of the layer normalization used in Transformer
architectures. One is Post-LN, which is used in

2The WikiText-103 dataset is licensed under CC BY-SA
3.0, and we can freely use the content as long as we provide
appropriate attribution. Our use of this dataset is consistent
with the intended use. To the best of our knowledge, there is
no specific step that checks whether personal information or
offensive content is contained.

3The OpenWebText is licensed under Creative Commons
CC0 license, and we can freely use the content. Our use of
this dataset is consistent with the intended use. To the best of
our knowledge, there is no specific step that checks whether
personal information or offensive content is contained.
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Figure 9: Test accuracy over 5 runs of generating the correct closed brackets on Shuffle-Dyckk(k ∈ {2, 4, 8, 16}).
The solid lines represent the results for in-distribution data (n ≤ 700), while the dashed lines represent the results
for out-of-distribution data (700 < n ≤ 840).

models such as the original Transformer (Vaswani
et al., 2017) and GPT (Radford et al., 2018), and
the other is Pre-LN, which is used in models such
as GPT-2 (Radford et al., 2019), GPT-3 (Brown
et al., 2020), Llama (Touvron et al., 2023a), and
Llama 2 (Touvron et al., 2023b).

We used the default split for WikiText-103:
103, 227, 021 tokens from 28, 475 articles for train-
ing, 217, 646 tokens from 60 articles for validation,
and 245, 569 tokens from 60 articles for test. In
contrast, for OpenWebText, we used 0.5% of the
total data for the validation set following the ap-
proach of Fu et al. (2023), and similarly used 0.5%
for the test set.

We implemented the architecture based on
nanoGPT4, which is a small version of GPT and
incorporates the GPT-2 tokenizer in the tiktoken
library 5. We add modifications to the position
of the layer normalization. Regarding the hyper-
parameters, we used the default values except the
values concerning the number of iterations: we
modified the number of iterations to 20, 000, and
accordingly, we also modified the number of itera-
tions for learning-rate decay to 20, 000. Note that
we adopt the QK normalization (Dehghani et al.,
2023) to stabilize training. We use NVIDIA A100,

4nanoGPT(https://github.com/karpathy/nanoGPT)
is licensed under MIT License, and we can freely use, copy,
modify, publish, and distribute.

5https://github.com/openai/tiktoken

and each experiment on WikiText-103 required ap-
proximately 40 GPU hours, while each experiment
on OpenWebText required approximately 100 GPU
hours. The values of the other hyperparameters are
summarized in Table 5, and the decrease in training
and validation loss is shown in Figure 12.

In addition, we empirically investigated the abil-
ity of length generalization with WikiText-103.
We trained four models with FFN-LN (PE+BOS,
PE+NoBOS, NoPE+BOS, and NoPE+NoBOS) on se-
quences of length 700 and tested the four models
on sequences of length 1.2 × nmax(= 840). we
modified the number of iterations from 20, 000 to
10, 000 because 10, 000 iterations are enough for
models to converge.

We use NVIDIA A100, and each experiment
on WikiText-103 required approximately 20 GPU
hours. The values of the hyperparameters, except
the sequence length and the number of iterations,
are the same as summarized in Table 5. Figure 13
shows that the decrease in training and validation
loss (nmax = 700), and Table 6 shows the test
perplexities on sequences of length 1.2× nmax(=
840).

The decrease in training loss shows little differ-
ence between cases with and without explicit po-
sitional encoding. In contrast, the models without
explicit positional encoding achieve much better
test perplexity than those with explicit positional
encoding. These results suggest that explicit posi-
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Figure 10: Average TV distance over 5 runs on Dyckk(k ∈ {1, 2, 4, 8, 16}). The solid lines represent the results for
in-distribution data (n ≤ 700), while the dashed lines represent the results for out-of-distribution data (700 < n ≤
840).

Hyperparameter Value
Model parameters
Number of layers L 12
Number of attention heads 12
Embedding dimension dmodel 768
Use of bias terms False
Window size 1, 024
Activation function gelu
Training parameters
Dropout rate 0.0
Batch size 12
Gradient accumulation steps 40
Learning rate 6e−4
Minimum learning rate 6e−5
Weight decay 1e−1
Adam parameters (β1, β2) (0.9, 0.95)
Maximum iterations 20, 000
Warmup iterations 2, 000
Learning rate decay iterations 20, 000

Table 5: Hyperparameter configuration for experiments
on natural language datasets.

Architecture Test Perplexity
PE+BOS 21.97
PE+NoBOS 22.41
NoPE+BOS 19.55
NoPE+NoBOS 19.43

Table 6: Perplexity on test dataset (n ≤ 1.2 · nmax =
840) for the four models (PE+BOS, PE+NoBOS, NoPE+BOS,
and NoPE+NoBOS) trained with sequences of nmax =
700.

tional encoding might have a negative impact on the
model’s ability to generalize to longer sequences.

S Further Discussion on Layer
Normalization Position

A common explanation for the reason why the layer
normalization leads to good performance is that the
layer normalization stabilizes the output distribu-
tion. Recently, some studies have investigated how
the position of the layer normalization affects the
model performance.

Most of the recent models such as Llama (Tou-
vron et al., 2023a), Llama 2 (Touvron et al., 2023b),
GPT-2 (Radford et al., 2019), and GPT-3 (Brown
et al., 2020) adopt Pre-LN, while the original Trans-
former architecurue (Vaswani et al., 2017) and GPT
(Radford et al., 2018) adopt Post-LN. There are
some studies supporting that Pre-LN outperforms
Post-LN. However, there are also results indicat-
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Figure 11: Average TV distance over 5 runs on Shuffle-Dyckk(k ∈ {2, 4, 8, 16}). The solid lines represent the
results for in-distribution data (n ≤ 700), while the dashed lines represent the results for out-of-distribution data
(700 < n ≤ 840).

Figure 12: Results on natural language datasets. The transitions of training and validation losses are reported.

ing that Post-LN can outperform Pre-LN under
specific conditions.

Xiong et al. (2020) analyzed the layer normaliza-
tion from the perspective of mean-field theory and
showed that Pre-LN provides more stable gradient
after initialization compared to Post-LN. Xiong
et al. (2020) also empirically showed that Pre-LN,
unlike Post-LN, does not require a warmup phase
and significantly reduces training time. In addi-
tion, Wang et al. (2019) suggested that Post-LN
can have a higher risk of gradient vanishing and
that in settings with a large number of layers, which
are commonly seen in recent years, Pre-LN outper-
forms Post-LN.

In contrast, with respect to neural machine trans-

lation (NMT) task, Nguyen and Salazar (2019)
showed that although Pre-LN contributes to train-
ing stability and better performance in low-resource
settings, Post-LN shows superior performance in
high-resource settings. Moreover, Mao et al. (2023)
demonstrated that for zero-shot machine transla-
tion, Post-LN consistently outperforms Pre-LN.
Furthermore, Shleifer et al. (2021) demonstrated
that incorporating the layer normalization right be-
fore the second linear layer of the feed-forward
network layer can effectively mitigate gradient ex-
plosion and vanishing, which are observed com-
monly in both Pre-LN and Post-LN setups.

Based on these results, we concluded that the
optimal position of the layer normalization has not
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Figure 13: Results on WikiText-103 dataset. The transi-
tions of training and validation losses are reported. Note
that the four models (PE+BOS, PE+NoBOS, NoPE+BOS,
and NoPE+NoBOS) are trained with sequences of length
700.

been established yet. Although the optimal position
of the layer normalization remains unclear, in our
experiments using the WikiText-103 and OpenWeb-
Text, we observed that the performance of Pre-LN,
Post-LN, and FFN-LN consistently outperformed
No-LN. Therefore, we concluded that the archi-
tecture used in our proof FFN-LN is competitive
compared to other layer normalization positions,
Pre-LN and Post-LN.
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