
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 30750–30762
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

TestNUC: Enhancing Test-Time Computing Approaches and Scaling
through Neighboring Unlabeled Data Consistency

Henry Peng Zou1*, Zhengyao Gu1*, Yue Zhou1, Yankai Chen2, Weizhi Zhang1,
Liancheng Fang1, Yibo Wang1, Yangning Li3, Kay Liu1, Philip S. Yu1

1University of Illinois Chicago, 2Cornell University 3Tsinghua University
{pzou3, zgu24}@uic.edu

Abstract

Test-time computing approaches, which lever-
age additional computational resources during
inference, have been proven effective in en-
hancing large language model performance.
This work introduces a novel, linearly scal-
ing approach, TestNUC, that improves test-
time predictions by leveraging the local con-
sistency of neighboring unlabeled data-it clas-
sifies an input instance by considering not
only the model’s prediction on that instance
but also on neighboring unlabeled instances.
We evaluate TestNUC across eight diverse
datasets, spanning intent classification, topic
mining, domain discovery, and emotion detec-
tion, demonstrating its consistent superiority
over baseline methods such as standard prompt-
ing and self-consistency. Furthermore, Test-
NUC can be seamlessly integrated with exist-
ing test-time computing approaches, substan-
tially boosting their performance. Our anal-
ysis reveals that TestNUC scales effectively
with increasing amounts of unlabeled data and
performs robustly across different embedding
models, making it practical for real-world ap-
plications. Our code is available at https:
//github.com/HenryPengZou/TestNUC.

1 Introduction

Test-time computing approaches, which leverage
additional computational resources during infer-
ence to enhance performance, have gained increas-
ing attention in the era of large language models
(LLMs) (Snell et al., 2024; Dong et al., 2024).
There are two primary strategies for modifying
an LLM’s distribution at test time: (1) at the in-
put level: augmenting the prompt with additional
tokens (e.g., few-shot in-context learning (Mos-
bach et al., 2023)); or (2) at the output level: sam-
pling multiple candidate answers and aggregating
them (e.g., self-consistency (Wang et al., 2023b),

*Equal Contribution.

BANK

CLINC

Reddit

StackEx

MTOP

CLINC(D)

FewEvent

GoEmotion

1.000.900.800.70

Self-Consistency
w. TestNUC

BANK

CLINC

Reddit

StackEx

MTOP

CLINC(D)

FewEvent

GoEmotion

1.000.900.800.70

Best-of-N
w. TestNUC

BANK

CLINC

Reddit

StackEx

MTOP

CLINC(D)

FewEvent

GoEmotion

1.000.900.800.70

TopK-ICL
w. TestNUC

BANK

CLINC

Reddit

StackEx

MTOP

CLINC(D)

FewEvent

GoEmotion

1.000.900.800.70

TopK-ICL-P
w. TestNUC

Figure 1: TestNUC effectively integrates with both
output-level (e.g., Self-Consistency, Best-of-N) and
input-level (e.g., ICL-based) test-time computing meth-
ods, consistently enhancing their performance across
eight datasets. More details in Section 4 and Table 2.

best-of-N (Beeching et al., 2024)). Despite demon-
strating promising capabilities, input-augmentation
approaches incur a computational cost that scales
quadratically with the number of added tokens in
the prompt, making them more computationally
expensive than output-sampling methods. Mean-
while, output-sampling approaches typically over-
look the potential of large amounts of unlabeled
data that are often available in real-world settings
(Berthelot et al., 2019; Sohn et al., 2020; Zou and
Caragea, 2023; Zou et al., 2025; Gu et al., 2025).

To bridge these gaps, we present an initial
exploration of how unlabeled data can be effi-
ciently leveraged to enhance test-time computing
approaches. We hypothesize that instances with
similar embeddings are likely to share the same
semantic label, which can provide unsupervised
signals for improving inference consistency, par-
ticularly for challenging instances (Van Gansbeke

30750

https://github.com/HenryPengZou/TestNUC
https://github.com/HenryPengZou/TestNUC

et al., 2020). Our pilot experiments across various
benchmarks reveal strong semantic label consis-
tency among neighboring instances, and we find
that aggregating these neighborhood labels through
simple aggregation methods such as majority vot-
ing leads to stable and accurate predictions (as
shown in Figure 2, 3 in Section 2).

Motivated by these findings, we propose Test-
NUC, a simple yet effective approach that enhances
test-time LLM predictions by leveraging neighbor-
ing unlabeled data consistency. Concretely, Test-
NUC consists of two key steps: ❶ Neighbor Re-
trieval, where we identify the top-K nearest un-
labeled neighbors of a test sample based on fea-
ture similarity; and ❷ Collaborative Prediction,
where the LLM generates predictions for both the
test sample and its retrieved neighbors, which are
then aggregated to obtain the final answer. The
intuition behind TestNUC is that samples in close
proximity within the embedding space are likely to
share similar labels. By incorporating predictions
of nearby unlabeled samples, the LLM can exploit
the consistency of local data structures to better
contextualize and refine its decision-making, ef-
fectively using unlabeled examples as an auxiliary
signal to boost test-time performance while reduc-
ing noise and uncertainty (Van Gansbeke et al.,
2020; Zhou et al., 2024; Wang et al., 2025).

We evaluate our approach across diverse tasks,
including intent classification, topic mining, do-
main discovery, and emotion detection, using eight
datasets that cover a wide spectrum of granularities,
with class sizes ranging from 10 to 150. Our results
demonstrate that TestNUC consistently outper-
forms baseline methods, such as standard prompt-
ing and self-consistency (Wang et al., 2023b), by
a large margin across four large language models,
showing its effectiveness in leveraging unlabeled
data for test-time computation. Moreover, Test-
NUC can be seamlessly integrated with existing
test-time computing approaches, such as TopK-
ICL (Peng et al., 2024; Gao et al., 2024), best-
of-N (Lightman et al., 2024; Beeching et al., 2024)
and self-consistency (Wang et al., 2023b), signifi-
cantly boosting their performances (as illustrated
in Figure 1). In addition, TestNUC is effective
across various embedders of different sizes and
scales well with increasing amounts of unlabeled
data (as shown in Figure 5), making it applicable
to real-world scenarios.

1 5 20 50 100
Number of Nearest Neighbors (K)

0.0

0.2

0.4

0.6

0.8

1.0

Ne
ig

hb
or

ho
od

 P
ur

ity

CLINC(D)
MTOP(D)
CLINC
BANKING
FewEvent
Reddit
StackEx
GoEmotion

Figure 2: Neighboring samples tend to be instances of
the same semantic class.

2 Preliminary Analysis

Leveraging neighboring examples at inference time
has been shown to improve the generalization of
language models (Khandelwal et al., 2020), miti-
gate prompting bias (Xu et al., 2023), and improve
retrieval-augmented generation (Shi et al., 2022).
Building on these findings, we explore a more fo-
cused question: To what extent can semantically
similar neighborhood data serve as effective predic-
tion proxies and potentially enhance LLM predic-
tions at test time?

To understand this, we introduce neighborhood
purity, which measures how often semantically
similar examples share the same label. Formally,
let D = (xi, yi)

N
i=1 be a set of inputs and cor-

responding ground truth labels, where N is the
total number of data points. We denote the K-
nearest neighborhood of an input x as N =
argtopK{Sf

(
x, xi) | i = 0, . . . , N}, representing

the set of indices corresponding to the most similar
instances according to an embedding function f .
We refer to x as the anchor of the neighborhood
and measure the consistency of its neighborhood
with purity ϕ, defined as:

ϕ (N) =
1

KN

N∑

i=1

∑

j∈N
1(yi = yj) (1)

Intuitively, purity measures the proportion of in-
stances that share the same label as the anchor.

We conduct our preliminary experiments across
eight datasets spanning class granularities from 10
to 150. Detailed dataset descriptions and statistics
are provided in Section 4.1 and Table 5. As shown
in Figure 2, nearest neighbors frequently belong to
the same semantic class as the anchor. In the worst

30751

1 5 10 20 50 100 200 500
0.2

0.4

0.6

0.8

CLINC

Neighborhood Purity
Majority Vote Accuracy
Weighted Majority Vote Acc

1 5 10 20 50 100 200 500
0.2

0.4

0.6

0.8

BANKING

Neighborhood Purity
Majority Vote Accuracy
Weighted Majority Vote Acc

1 5 10 20 50 100 200 500
of Neighbors (K)

0.6

0.7

0.8

FewEvent

Neighborhood Purity
Majority Vote Accuracy
Weighted Majority Vote Acc

1 5 10 20 50 100 200 500
of Neighbors (K)

0.3

0.4

GoEmotion

Neighborhood Purity
Majority Vote Accuracy
Weighted Majority Vote Acc

Figure 3: Majority vote over neighborhood ground-truth
labels leads to stable and accurate predictions. Incor-
porating feature similarity-based weighting further im-
proves stability for large K values by mitigating noise.

case, purity still reaches around 0.3 when K = 20
on the GoEmotion dataset.

Then, we ascertain how accurately the aggrega-
tion over neighboring ground-truth labels predicts
the anchor’s label. To this end, we consider two
aggregation strategies: majority vote and weighted
majority vote. Majority vote returns the most fre-
quent class label in the neighborhood:

ŷm(N) = argmax
y

∑

i∈N
1(y = yi) (2)

while weighted majority vote adjusts label counts
based on similarity in representation space:

ŷw(N) = argmax
y

∑

i∈N
Sf (x, xi)1(y = yi) (3)

Figure 3 compares majority-vote accuracy with
neighborhood purity across different K values, re-
vealing several key insights: (1) Majority voting
over neighboring labels consistently produces accu-
rate anchor predictions; (2) While larger K values
decrease neighborhood purity due to noise introduc-
tion, majority-vote accuracy remains notably stable,
indicating its robustness to the hyperparameter K.
(3) Similarity-based weighting improves prediction
stability for large K values by reducing the impact
of less relevant neighbors. These findings suggest
semantically similar neighborhood data can serve
as effective prediction proxies, offering a potential
means to enhance LLM predictions at test time.

3 Method

Motivated by our findings in Section 2, we pro-
pose TestNUC, a test-time computing strategy that

Algorithm 1 TestNUC algorithm.

1: Input: Embedder f , test sample x0, unlabeled
data U = {ui}Ni=1, number of neighbors K,
threshold θ.

2: z0 = f(x0), Z = {zi = f(ui)}Ni=1

{Extract embeddings for test sample and unlabeled data}
3: N = argtopK{Sf (x0, xi)| i = 0, . . . , N}

{Mine top-K neighbors based on similarity, note that

test sample x0 is included}
4: for k = 1 to K do
5: (yNk

, conf Nk
) = PLLM(uNk

)
{Prompt LLM to obtain predictions and confidences}

6: wk = sim(z0, zNk
)

{Compute neighbor weights based on similarity}
7: ck = 1(conf Nk

≥ θ)
{Filter out unconfident predictions}

8: end for
9: yfinal = argmax

y

∑K
k=1 ck wk 1(yNk

= y)

{Aggregate neighbors’ predictions by majority voting}
10: Return yfinal

leverages neighboring unlabeled data consistency
to enhance LLM predictions. Our approach in-
troduces a complementary dimension to test-time
computing by integrating signals from unlabeled
data during inference.

3.1 Framework Overview
TestNUC consists of two key steps:

• Step 1: Neighbor Retrieval. Identify the top-
K nearest neighbors of a test sample based on
feature similarity.

• Step 2: Collaborative Prediction. Prompt
the LLM to generate predictions for both the
test sample and its K retrieved neighbors.
These predictions are combined through a de-
signed aggregation strategy.

Note that TestNUC is based on LLM predictions in-
stead of the ground truth label. The intuition behind
TestNUC is that samples in close proximity within
the embedding space are likely to share similar
labels. By incorporating predictions on nearby un-
labeled samples, the LLM can better contextualize
and refine its decision-making. This approach aims
to exploit the consistency of local data structures,
effectively using unlabeled examples as an aux-
iliary signal to boost inference-time performance
and reduce the noise and uncertainty associated
with isolated predictions.

30752

3.2 Aggregation Strategy

The aggregation strategy in Step 2 affects the
sensitivity of TestNUC to noise. In this work, we
explore three types of aggregation strategies.

Naive Majority Voting. The naive approach
simply selects the most consistent answer across
the K unlabeled data predictions.

Weighted Majority Voting. As demonstrated
in our analysis in Section 2, when using a large
K, neighborhood purity tends to decline rapidly.
This indicates that distant neighbors can introduce
significant noise and negatively impact the accu-
racy of majority voting. To mitigate this issue, we
additionally use cosine similarity distance between
the test sample and its neighbors as weights for
majority voting.

Filtered Weighted Majority Voting. The quality
of LLM’s predictions for neighboring unlabeled
data can affect the accuracy of the aggregated
results. In this approach, we explore leveraging
verbalized confidence to filter out low-quality pre-
dictions during majority voting. Specifically, for
each unlabeled data, we ask LLM to generate both
the prediction and confidence in its predictions
and only high confidence predictions are kept for
majority voting.

A complete algorithm for Filtered Weighted Ma-
jority Voting is presented in Algorithm 1. The
algorithms for the other two voting strategies men-
tioned above can be obtained by removing the blue-
and red-colored code. More complex aggregation
strategies can also be explored, such as adding
additional distance-based filtering mechanisms or
confidence-weighting mechanisms, which we leave
for interested researchers to explore.

4 Experiments

4.1 Experiment Setup

Tasks and Datasets. We consider eight datasets
across diverse tasks with various perspectives and
granularities as follows.

• Intent Detection. Intent detection aims to dis-
cover fine-grained intents in customer utterances.
We use BANKING (Casanueva et al., 2020) and
CLINC (Larson et al., 2019) for evaluation.

• Topic Mining. We use Reddit and StackEx-
change from MTEB (Muennighoff et al., 2023)
and ClusterLLM (Zhang et al., 2023a) to evaluate
models’ ability to categorize discussion topics.

• Domain Discovery. For this task, we use MTOP
(Li et al., 2021) and CLINC(D) (Zhang et al.,
2023a) to allow evaluations of models’ capability
in discovering domain-specific knowledge.

• Type Discovery. We use the FewEvent dataset
(Deng et al., 2020) that focuses on extracting
event types from the given text and event triggers.

• Emotion Recognition. We use GoEmotion
(Demszky et al., 2020), which is a dataset of Red-
dit comments labeled with fine-grained emotions,
such as amusement, fear and gratitude.

Dataset statistics are summarized in Appendix A.

Baselines. We consider three types of baselines:
❶ Standard Prompting, which prompts the
LLM in a standard way to select a label from the
provided options to a test sample. The details
of the prompt template are available in Appendix B.

❷ Test-time computing approaches that operate at
the input level by augmenting the given prompt
with additional demonstrations to enhance infer-
ence performance. Since our proposed method
combines decisions based on similar examples, we
compare it with two varieties of in-context learning
counterparts: TopK-ICL (Peng et al., 2024),
where the input text of the nearest neighbors of the
test example are added to the prompt as context
information. TopK-ICL-P, where we additionally
append each neighbor’s Standard Prompting
prediction result to its text as demonstrations.

❸ Test-time computing approaches that operate
at the output level through multiple candidate
answer sampling and aggregation to boost output
quality. For this category, we consider three
representative approaches: Self-Consistency
(Wang et al., 2023b), Best-of-N (Snell et al.,
2024; Beeching et al., 2024), and Weighted
Best-of-N (Beeching et al., 2024). Specifically,
Best-of-N selects the most confident predictions
out of multiple predictions based on the LLM’s
own verbalized confidence (Xiong et al., 2024).
Weighted Best-of-N aggregates the decisions
by assigning weights based on their respective
confidence score.

30753

Intent Detection Topic Mining Domain Discovery Type Emotion

Model Method BANKING CLINC Reddit StackEx MTOP CLINC(D) FewEvent GoEmotion AVG

GPT-4o-mini Standard Prompting 0.652 0.792 0.534 0.482 0.896 0.536 0.630 0.378 0.613
Self-Consistency 0.666 0.802 0.586 0.494 0.902 0.530 0.640 0.382 0.625
TestNUC 0.712 0.858 0.614 0.528 0.936 0.544 0.674 0.410 0.660
TestNUC† 0.764 0.864 0.646 0.540 0.948 0.554 0.680 0.414 0.676

Llama-3.1-8B Standard Prompting 0.572 0.726 0.502 0.492 0.892 0.528 0.530 0.332 0.572
Self-Consistency 0.620 0.774 0.564 0.526 0.902 0.518 0.564 0.340 0.601
TestNUC 0.694 0.806 0.618 0.558 0.934 0.528 0.596 0.356 0.636
TestNUC† 0.724 0.812 0.646 0.576 0.940 0.542 0.614 0.360 0.652

Claude-3-Haiku Standard Prompting 0.680 0.848 0.486 0.564 0.892 0.552 0.594 0.336 0.619
Self-Consistency 0.702 0.870 0.510 0.578 0.904 0.564 0.568 0.350 0.631
TestNUC 0.762 0.894 0.596 0.588 0.940 0.590 0.620 0.348 0.667
TestNUC† 0.804 0.902 0.612 0.600 0.946 0.622 0.660 0.368 0.689

GPT-4o Standard Prompting 0.746 0.924 0.712 0.674 0.962 0.614 0.682 0.406 0.715
Self-Consistency 0.758 0.922 0.720 0.688 0.958 0.624 0.696 0.426 0.724
TestNUC 0.804 0.934 0.744 0.710 0.974 0.644 0.692 0.446 0.744
TestNUC† 0.824 0.940 0.750 0.710 0.978 0.654 0.708 0.464 0.754

Table 1: Accuracy comparison with Standard Prompting and Self-Consistency across four diverse LLMs. TestNUC
consistently improves the inference performance on all benchmark datasets. † denotes that 50 neighbors are utilized.

Intent Discovery Topic Mining Domain Discovery Type Emotion

Method BANKING CLINC Reddit StackEx MTOP CLINC(D) FewEvent GoEmotion AVG

KNN-ICL 0.664 0.768 0.670 0.520 0.942 0.518 0.570 0.386 0.630
w. TestNUC 0.762 0.832 0.728 0.566 0.960 0.544 0.606 0.410 0.676
Improvement 14.76% 8.33% 8.66% 8.85% 1.91% 5.02% 6.32% 6.22% 7.51%

KNN-ICL-P 0.702 0.870 0.620 0.556 0.922 0.548 0.624 0.416 0.657
w. TestNUC 0.768 0.894 0.672 0.584 0.960 0.584 0.654 0.444 0.695
Improvement 9.40% 2.76% 8.39% 5.04% 4.12% 6.57% 4.81% 6.73% 5.98%

Self-Consistency 0.666 0.802 0.586 0.494 0.902 0.530 0.640 0.382 0.625
w. TestNUC 0.750 0.878 0.706 0.562 0.928 0.566 0.670 0.420 0.685
Improvement 12.61% 9.48% 20.48% 13.77% 2.88% 6.79% 3.69% 9.95% 9.56%

Best-of-N 0.662 0.814 0.606 0.492 0.902 0.544 0.620 0.378 0.627
w. TestNUC 0.758 0.880 0.706 0.568 0.954 0.564 0.696 0.412 0.692
Improvement 14.50% 8.11% 16.50% 15.45% 5.76% 3.68% 12.26% 8.99% 10.36%

Weighted Best-of-N 0.658 0.820 0.602 0.484 0.900 0.532 0.612 0.372 0.623
w. TestNUC 0.752 0.876 0.710 0.558 0.938 0.566 0.672 0.422 0.687
Improvement 14.29% 6.83% 17.94% 15.29% 4.22% 6.39% 9.80% 13.44% 10.32%

Table 2: TestNUC can significantly enhance various existing test-time computing approaches - both those that
prepend demonstrations at the input level (ICL-based) and those that do sampling and “post-hoc” candidate
refinements at the output level (Self-Consistency, Best-of-N). The relative improvement is visualized in Figure 1.

Implementation Details. We utilize both open-
sourced and close-sourced LLMs with varying
scales: GPT-4o-mini, GPT-4o (OpenAI, 2024),
Llama-3.1-8B (Dubey et al., 2024), Claude 3 Haiku
(Anthropic, 2024). We set temperature T = 0.7
and Top-p = 1.0 for sampling decoding for all
evaluated language models. By default, the num-
ber of candidate answers N we sampled for Self-
Consistency, Best-of-N and Weighted Best-of-N is
10. Similarly, the number of retrieved neighbors,
i.e., K, for TopK-ICL, TopK-ICL-P, and our Test-
NUC is 10 unless stated otherwise. We adopt NV-

Embed-v2-7B (Lee et al., 2024) as the embedding
model for all methods. Due to resource constraints,
we randomly sample 500 data points from each
dataset for evaluation and use the remaining for
neighboring sample retrieval.

4.2 Main Results

Comparison with Standard Prompting and Self-
Consistency. Table 1 presents the compar-
ison results with Standard Prompting and Self-
Consistency across four large language models. It
can be observed that TestNUC significantly im-
proves the inference performance of four large lan-

30754

0 2000 4000 6000 8000 10000
of Unlabeled Data

60

65

70

75

80
Ac

cu
ra

cy
 (%

)
BANKING

GPT-4o-mini
Llama-3.1-8B
Claude-3-Haiku

0 2000 4000 6000 8000 10000
of Unlabeled Data

75

80

85

90

Ac
cu

ra
cy

 (%
)

CLINC

GPT-4o-mini
Llama-3.1-8B
Claude-3-Haiku

0 2000 4000 6000 8000 10000
of Unlabeled Data

50

55

60

65

Ac
cu

ra
cy

 (%
)

Reddit

GPT-4o-mini
Llama-3.1-8B
Claude-3-Haiku

0 2000 4000 6000 8000 10000
of Unlabeled Data

50.0

52.5

55.0

57.5

60.0

Ac
cu

ra
cy

 (%
)

StackEx

GPT-4o-mini
Llama-3.1-8B
Claude-3-Haiku

0 2000 4000 6000 8000 10000
of Unlabeled Data

55

60

65

70

Ac
cu

ra
cy

 (%
)

FewEvent

GPT-4o-mini
Llama-3.1-8B
Claude-3-Haiku

0 2000 4000 6000 8000 10000
of Unlabeled Data

58

60

62

64

66

68

70

Ac
cu

ra
cy

 (%
)

Avg on 8 Tasks

GPT-4o-mini
Llama-3.1-8B
Claude-3-Haiku

Figure 4: Increasing the amount of unlabeled data consistently boosts performance across all evaluated LLMs and
datasets. The scaling trends are more distinctly visible in the logarithmic version of the figure (Figure 5).

0.5K 1K 2.5K 5K 10K 15K
of Unlabeled Data

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

BANKING

GPT-4o-mini
Llama-3.1-8B
Claude-3-Haiku

0.5K 1K 2.5K 5K 10K 15K
of Unlabeled Data

75

80

85

90

Ac
cu

ra
cy

 (%
)

CLINC

GPT-4o-mini
Llama-3.1-8B
Claude-3-Haiku

0.5K 1K 2.5K 5K 10K 15K
of Unlabeled Data

50

55

60

65

Ac
cu

ra
cy

 (%
)

Reddit

GPT-4o-mini
Llama-3.1-8B
Claude-3-Haiku

0.5K 1K 2.5K 5K 10K 15K
of Unlabeled Data

50.0

52.5

55.0

57.5

60.0

Ac
cu

ra
cy

 (%
)

StackEx

GPT-4o-mini
Llama-3.1-8B
Claude-3-Haiku

0.5K 1K 2.5K 5K 10K 15K
of Unlabeled Data

55

60

65

70

Ac
cu

ra
cy

 (%
)

FewEvent

GPT-4o-mini
Llama-3.1-8B
Claude-3-Haiku

0.5K 1K 2.5K 5K 10K 15K
of Unlabeled Data

58

60

62

64

66

68

70

Ac
cu

ra
cy

 (%
)

Avg on 8 Tasks

GPT-4o-mini
Llama-3.1-8B
Claude-3-Haiku

Figure 5: The logarithmic version of Figure 4.

guage models on all eight evaluated datasets over
standard prompting. TestNUC can also outperform
Self-Consistency when utilizing the same amount
of sampling paths and neighboring unlabeled data
(i.e., K=10 in both cases). For example, TestNUC
surpasses Self-Consistency by 5.87% on average
when using Llama-3.1-8B model and 5.48% on
average when using GPT-4o-mini. Besides, Test-
NUCperformance can be further boosted by utiliz-
ing more neighboring unlabeled data. TestNUC†,
which utilizes 50 neighbors, can improve the per-
formance over standard prompting up to 11.35%
on average across 8 datasets when using Claude-3-
Haiku. Additionally, performance improvements
are observed across all four language models, even
in the already powerful GPT-4o model.

TestNUC can enhance various existing test-time
computing approaches. The results are shown in
Table 2. Across all baselines and all datasets, incor-
porating TestNUC boosts performance. The aver-
age improvements range from about +6% (TopK-
ICL-P) to +10% (Best-of-N and Weighted Best-
of-N), indicating that TestNUC is complementary
to diverse inference strategies—both those that
prepend demonstrations at the input level (ICL-
based) and those that do sampling and “post-hoc”
candidate refinements at the output level (Self-
Consistency, Best-of-N). Methods that work at
the output level (e.g., Self-Consistency, Best-of-N)
present larger average gains (9–10%), compared to
input-level approaches (6–7%). The biggest per-
formance gains often appear on the Topic Mining

30755

Aggregation Strategy BANKING CLINC Reddit StackEx MTOP CLINC(D) FewEvent GoEmotion AVG

Standard Prompting 0.652 0.792 0.534 0.482 0.896 0.536 0.630 0.378 0.613

Naive Majority Voting 0.756 0.862 0.644 0.538 0.948 0.550 0.668 0.392 0.670
Weighted Majority Voting (Distance) 0.764 0.864 0.646 0.540 0.948 0.554 0.680 0.414 0.676
Weighted Majority Voting (Distance & Confidence) 0.768 0.870 0.656 0.542 0.948 0.552 0.684 0.416 0.680
Filtered Weighted Majority Voting 0.762 0.876 0.688 0.542 0.954 0.572 0.688 0.410 0.687

Table 3: Comparison of aggregation strategies across diverse datasets. Naive majority voting already significantly
improves accuracy over standard prompting. Weighted Majority Voting with distance and confidence further
enhances performance, and filtering low-confidence predictions achieves the highest average result.

Embedder BANKING CLINC Reddit MTOP AVG

Standard Prompting 0.652 0.792 0.534 0.896 0.719

all-MiniLM-L12-v2-120M 0.706 0.832 0.584 0.928 0.763
all-distilroberta-v1-290M 0.690 0.840 0.586 0.938 0.764
all-mpnet-base-v2-420M 0.712 0.852 0.586 0.942 0.773

gte-Qwen2-1.5B-instruct 0.694 0.844 0.614 0.946 0.775
stella-en-400M-v5 0.728 0.834 0.618 0.946 0.782
NV-Embed-v2-7B 0.764 0.864 0.646 0.948 0.806

Table 4: Results with varying embedding models. Test-
NUC is effective on diverse embedding models from
different companies and of different sizes.

tasks (e.g., Reddit, StackEx), where improvements
can exceed +15–20%. This suggests that adding
TestNUC is especially helpful in scenarios involv-
ing more open-ended or noisy textual inputs, where
post-hoc aggregations can more effectively disam-
biguate the model’s initial outputs.

5 Additional Studies

5.1 Influence of Unlabeled Data Size

Increasing unlabeled data helps boost per-
formance across tasks. Figure 4 reports the
linear-scale results on BANKING, CLINC, Reddit,
StackEx, FewEvent, and an overall average across
eight tasks. In all cases, increasing the unlabeled
set yields notable accuracy improvements for
GPT-4o-mini, Llama-3.1-8B, and Claude-3-Haiku.
Adding even a modest number (e.g., 500–1k) of
unlabeled instances yields substantial accuracy
gains, especially on BANKING and Reddit.
However, improvements taper off after roughly
8–10k unlabeled samples, suggesting a saturation
point where additional unlabeled data provides
diminishing returns. The log-scale plots in Figure 5
further highlight these trends, confirming that the
utility of unlabeled examples gradually diminishes
but still delivers meaningful improvements
up to the 10K–15K range. This pattern holds
consistently across all tasks, confirming that
increasing unlabeled data universally improves

performance but with predictable saturation effects.

5.2 Aggregation Strategy Comparison
We find that naive majority voting greatly
surpasses standard prompting performance,
with advanced strategies further enhancing
results. As shown in Table 3, simply aggregating
multiple predictions with naive majority voting
can already boost average accuracy significantly
from 0.613 to 0.670. Introducing distance and
confidence weighting further refines these gains
from the average to 0.680. Finally, filtering out
low-confidence predictions yields the highest
performance, although on certain tasks (e.g.,
GoEmotion), Weighted Majority Voting (Distance
& Confidence) can be more effective, suggesting
that a carefully tuned confidence threshold may be
necessary for each dataset.

5.3 Varying Embedding Models
TestNUC works on different sizes of embedders.
The embedders used to generate data embeddings
for neighbor retrieval play a crucial role in the suc-
cess of TestNUC. In this work, we explore diverse
embedding models, including public encoders from
different companies and embedders of different
sizes ranging from 120M to 7B. As shown in Table
4, TestNUC is effective when applied to various
embedding models. Not surprisingly, TestNUC
achieves significant improvements with larger and
more advanced embedders, such as NV-Embed-v2-
7B, which records the highest average performance
(0.755) and excels across all datasets. Mid-sized
embedders like stella-en-400M-v5 (0.738) and gte-
Qwen2-1.5B-instruct (0.732) also perform well,
demonstrating that TestNUC can effectively lever-
age diverse embedding architectures. Even smaller
models, such as all-MiniLM-L12-v2-120M (0.720),
deliver competitive results over standard prompting
(0.682), showcasing TestNUC’s robustness across
varying model sizes and complexities.

30756

0 20 40 60 80 100
of Neighbors

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

BANKING

GPT-4o-mini
Llama-3.1-8B
Claude-3-Haiku

0 20 40 60 80 100
of Neighbors

50

55

60

65

Ac
cu

ra
cy

 (%
)

Reddit

GPT-4o-mini
Llama-3.1-8B
Claude-3-Haiku

0 20 40 60 80 100
of Neighbors

50.0

52.5

55.0

57.5

60.0

Ac
cu

ra
cy

 (%
)

StackEx

GPT-4o-mini
Llama-3.1-8B
Claude-3-Haiku

0 20 40 60 80 100
of Neighbors

89

90

91

92

93

94

95

Ac
cu

ra
cy

 (%
)

MTOP

GPT-4o-mini
Llama-3.1-8B
Claude-3-Haiku

0 20 40 60 80 100
of Neighbors

52.5

55.0

57.5

60.0

62.5

65.0

67.5

Ac
cu

ra
cy

 (%
)

FewEvent

GPT-4o-mini
Llama-3.1-8B
Claude-3-Haiku

0 20 40 60 80 100
of Neighbors

58

60

62

64

66

68

Ac
cu

ra
cy

 (%
)

Avg on 8 Tasks

GPT-4o-mini
Llama-3.1-8B
Claude-3-Haiku

Figure 6: Influence of the number of neighbors. The results show that even a small set of neighbors can significantly
boost performance for all three LLMs, significantly surpassing their zero-neighbor baselines.

5.4 Influence of Neighbor Size

Influence of the Number of Neighboring Un-
labeled Data. Figure 6 shows the results of
TestNUC from GPT-4o-mini, Llama-3.1-8B, and
Claude-3-Haiku as the number of neighbors in-
creases. The results show that even a small set
of neighbors can significantly boost performance
for all three models, significantly surpassing their
zero-neighbor baselines. Additionally, all three
models generally benefit from increasing the num-
ber of neighbors from 0 to 60, although the gains
tend to plateau after approximately 40–60 neigh-
bors. Notably, the performance of GPT-4o-mini
and Llama-3.1-8B slightly decreases when the
number of neighbors increases from 60 to 80 on
certain datasets, likely due to the introduction of
more noisy neighbors. In contrast, Claude-3-Haiku
often achieves higher accuracies with relatively
larger neighborhood sizes (e.g., 60–100), indicat-
ing greater robustness to noise.

6 Related Work

6.1 Test-Time Computing

Test-time compute (Snell et al., 2024) improves
LLM performance by modifying the prediction
distribution during test time. Such modification
is usually accompanied with extra computational
cost. Instead of decoding greedily, the model may
sample multiple decoding paths before aggregating
them into a response. Chain of Thought (Wei et al.,
2022) modifies the output distribution through
hand-crafted prompts that contain reasoning chains.

Self-consistency (Wang et al., 2023b) samples mul-
tiple chain-of-thought paths and aggregate the sam-
ple with majority voting. (Portillo Wightman et al.,
2023) observed improved accuracy and robustness
by querying the model with semantically equiva-
lent prompts before responding with the majority
answer. (Gao et al., 2021) uses sentence embed-
dings to retrieve k-nearest-neighbor demonstration
for in-context learning. (Ye et al., 2023) retrieves
relevant and diverse demonstrations by training a
model that predicts the relevance of a demonstra-
tion via contrastive learning (Chen et al., 2020).
Our work is directly inspired by the KNN method
proposed by (Gao et al., 2021). Later work has re-
vealed that similarity based demonstration retrieval
improves in-context learning because LLMs attend
to the most similar demonstration during few-shot
prompting (Wang et al., 2023a). Instead of using
similar demonstrations for in-context learning, we
explore using them as near neighbors in the fashion
of non-parametric prediction.

6.2 In-Context Learning

Apart from Chain-of-Though, many work explore
the possibility of using self-generated content by
the LLM to aid with reasoning or classification.
STaR (Zelikman et al., 2022) iteratively add self-
generated rationales that are proved correct by a
verifier to the exist pool of demonstrations. A
significant limitation of STaR is that it relies on
knowing the correct answer to the questions the
LLM is generating rationale for. Our method sim-
ply make predictions for neighboring examples,

30757

which does not require ground truth labels. Auto-
CoT(Zhang et al., 2023b) uses self-generated ra-
tionales as demonstrations for similar inputs. The
generated data by Auto-CoT incurs a quadratically
scaling overhead to the final prediction. Our pro-
posed method only incurs a linearly scaling over-
head due to the nature of nearest-neighbor algo-
rithm. Self-ICL (Chen et al., 2023) generated its
own demonstration and their pseudo-labels and
uses them as demonstrations. We disagree with
Self-ICL’s premise that even unlabeled data are
hard to come by in realistic settings, and posit that
unlabeled data are abundant and inexpensive to
obtain (Zou et al., 2023a,b). Thus, self-generated
demonstration inputs are unnecessary. Like Auto-
CoT, Self-ICL’s test-time compute overhead also
scales quadratically. Lastly, Auto-CoT, STaR, and
Self-ICL all focuses on reasoning tasks, whereas
our work primarily focuses on classification tasks.

7 Conclusion

In this work, we introduced TestNUC, a simple
yet effective approach that leverages the consis-
tency of neighboring unlabeled data to enhance
test-time predictions in large language models. Ex-
tensive experiments across eight datasets and mul-
tiple LLMs demonstrate that TestNUC consistently
outperforms baselines like standard prompting and
self-consistency. It can be seamlessly integrated
with existing methods such as TopK-ICL, self-
consistency, and best-of-N to yield further gains.
These results highlight the practical value of lever-
aging unlabeled data during inference, which not
only boosts label consistency but also offers a scal-
able path to better generalization in real-world ap-
plications where labeled data may be scarce.

8 Limitation

Our evaluation of TestNUC is limited to classifi-
cation tasks and does not include generative tasks.
We leave this extension for future work. Due to
computational resource constraints and limited bud-
gets, we did not evaluate recent powerful reasoning
models such as o3-mini and DeepSeek-R1.

Acknowledgements

This work is supported in part by NSF under grants
III-2106758, and POSE-2346158.

References
Anthropic. 2024. The claude 3 model family: Opus, son-

net, haiku. https://www.anthropic.com/news/claude-
3-family.

Edward Beeching, Lewis Tunstall, and Sasha Rush.
2024. Scaling test-time compute with open models.

David Berthelot, Nicholas Carlini, Ian Goodfellow,
Nicolas Papernot, Avital Oliver, and Colin A Raf-
fel. 2019. Mixmatch: A holistic approach to semi-
supervised learning. Advances in neural information
processing systems, 32.

Iñigo Casanueva, Tadas Temčinas, Daniela Gerz,
Matthew Henderson, and Ivan Vulić. 2020. Efficient
intent detection with dual sentence encoders. In Pro-
ceedings of the 2nd Workshop on Natural Language
Processing for Conversational AI, pages 38–45, On-
line. Association for Computational Linguistics.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In
Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 1597–1607.
PMLR.

Wei-Lin Chen, Cheng-Kuang Wu, Yun-Nung Chen, and
Hsin-Hsi Chen. 2023. Self-icl: Zero-shot in-context
learning with self-generated demonstrations.

Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo
Ko, Alan Cowen, Gaurav Nemade, and Sujith Ravi.
2020. GoEmotions: A Dataset of Fine-Grained Emo-
tions. In 58th Annual Meeting of the Association for
Computational Linguistics (ACL).

Shumin Deng, Ningyu Zhang, Jiaojian Kang, Yichi
Zhang, Wei Zhang, and Huajun Chen. 2020. Meta-
learning with dynamic-memory-based prototypical
network for few-shot event detection. In Proceedings
of the 13th International Conference on Web Search
and Data Mining, WSDM ’20, page 151–159. ACM.

Xiangjue Dong, Maria Teleki, and James Caver-
lee. 2024. A survey on llm inference-time self-
improvement. arXiv preprint arXiv:2412.14352.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Hongfu Gao, Feipeng Zhang, Wenyu Jiang, Jun Shu,
Feng Zheng, and Hongxin Wei. 2024. On the noise
robustness of in-context learning for text generation.
In The Thirty-eighth Annual Conference on Neural
Information Processing Systems.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics

30758

https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://doi.org/10.18653/v1/2020.nlp4convai-1.5
https://doi.org/10.18653/v1/2020.nlp4convai-1.5
https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v119/chen20j.html
http://arxiv.org/abs/2305.15035
http://arxiv.org/abs/2305.15035
https://doi.org/10.1145/3336191.3371796
https://doi.org/10.1145/3336191.3371796
https://doi.org/10.1145/3336191.3371796
https://api.semanticscholar.org/CorpusID:274859169
https://api.semanticscholar.org/CorpusID:274859169
https://openreview.net/forum?id=00uVk06eVK
https://openreview.net/forum?id=00uVk06eVK
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295

and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816–3830, Online. Association for Computa-
tional Linguistics.

Zhengyao Gu, Henry Peng Zou, Yankai Chen, Aiwei
Liu, Weizhi Zhang, and Philip S Yu. 2025. Semi-
supervised in-context learning: A baseline study.
arXiv preprint arXiv:2503.03062.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2020. Generalization
through memorization: Nearest neighbor language
models.

Stefan Larson, Anish Mahendran, Joseph J. Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K. Kummerfeld, Kevin Leach, Michael A.
Laurenzano, Lingjia Tang, and Jason Mars. 2019. An
evaluation dataset for intent classification and out-of-
scope prediction. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP).

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan
Raiman, Mohammad Shoeybi, Bryan Catanzaro, and
Wei Ping. 2024. Nv-embed: Improved techniques for
training llms as generalist embedding models. arXiv
preprint arXiv:2405.17428.

Haoran Li, Abhinav Arora, Shuohui Chen, Anchit
Gupta, Sonal Gupta, and Yashar Mehdad. 2021.
MTOP: A comprehensive multilingual task-oriented
semantic parsing benchmark. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 2950–2962, Online. Association for Computa-
tional Linguistics.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In The Twelfth Inter-
national Conference on Learning Representations.

Marius Mosbach, Tiago Pimentel, Shauli Ravfogel, Di-
etrich Klakow, and Yanai Elazar. 2023. Few-shot
fine-tuning vs. in-context learning: A fair compari-
son and evaluation. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 12284–
12314, Toronto, Canada. Association for Computa-
tional Linguistics.

Niklas Muennighoff, Nouamane Tazi, Loic Magne, and
Nils Reimers. 2023. MTEB: Massive text embedding
benchmark. In Proceedings of the 17th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 2014–2037, Dubrovnik,
Croatia. Association for Computational Linguistics.

OpenAI. 2024. Gpt-4o system card.
https://arxiv.org/pdf/2410.21276.

Keqin Peng, Liang Ding, Yancheng Yuan, Xuebo Liu,
Min Zhang, Yuanxin Ouyang, and Dacheng Tao.

2024. Revisiting demonstration selection strategies
in in-context learning. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 9090–
9101, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Gwenyth Portillo Wightman, Alexandra Delucia, and
Mark Dredze. 2023. Strength in numbers: Es-
timating confidence of large language models by
prompt agreement. In Proceedings of the 3rd Work-
shop on Trustworthy Natural Language Processing
(TrustNLP 2023), pages 326–362, Toronto, Canada.
Association for Computational Linguistics.

Weijia Shi, Julian Michael, Suchin Gururangan, and
Luke Zettlemoyer. 2022. Nearest neighbor zero-shot
inference. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 3254–3265, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.

Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao
Zhang, Han Zhang, Colin A Raffel, Ekin Dogus
Cubuk, Alexey Kurakin, and Chun-Liang Li. 2020.
Fixmatch: Simplifying semi-supervised learning
with consistency and confidence. Advances in neural
information processing systems, 33:596–608.

Wouter Van Gansbeke, Simon Vandenhende, Stamatios
Georgoulis, Marc Proesmans, and Luc Van Gool.
2020. Scan: Learning to classify images without
labels. In European conference on computer vision,
pages 268–285. Springer.

Fangxin Wang, Kay Liu, Sourav Medya, and Philip S.
Yu. 2025. BANGS: Game-theoretic node selection
for graph self-training. In The Thirteenth Interna-
tional Conference on Learning Representations.

Lean Wang, Lei Li, Damai Dai, Deli Chen, Hao Zhou,
Fandong Meng, Jie Zhou, and Xu Sun. 2023a. Label
words are anchors: An information flow perspective
for understanding in-context learning. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 9840–9855,
Singapore. Association for Computational Linguis-
tics.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023b. Self-consistency
improves chain of thought reasoning in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,

30759

http://arxiv.org/abs/1911.00172
http://arxiv.org/abs/1911.00172
http://arxiv.org/abs/1911.00172
https://www.aclweb.org/anthology/D19-1131
https://www.aclweb.org/anthology/D19-1131
https://www.aclweb.org/anthology/D19-1131
https://doi.org/10.18653/v1/2021.eacl-main.257
https://doi.org/10.18653/v1/2021.eacl-main.257
https://openreview.net/forum?id=v8L0pN6EOi
https://doi.org/10.18653/v1/2023.findings-acl.779
https://doi.org/10.18653/v1/2023.findings-acl.779
https://doi.org/10.18653/v1/2023.findings-acl.779
https://doi.org/10.18653/v1/2023.eacl-main.148
https://doi.org/10.18653/v1/2023.eacl-main.148
https://doi.org/10.18653/v1/2024.acl-long.492
https://doi.org/10.18653/v1/2024.acl-long.492
https://doi.org/10.18653/v1/2023.trustnlp-1.28
https://doi.org/10.18653/v1/2023.trustnlp-1.28
https://doi.org/10.18653/v1/2023.trustnlp-1.28
https://doi.org/10.18653/v1/2022.emnlp-main.214
https://doi.org/10.18653/v1/2022.emnlp-main.214
http://arxiv.org/abs/2408.03314
http://arxiv.org/abs/2408.03314
https://openreview.net/forum?id=h51mpl8Tyx
https://openreview.net/forum?id=h51mpl8Tyx
https://doi.org/10.18653/v1/2023.emnlp-main.609
https://doi.org/10.18653/v1/2023.emnlp-main.609
https://doi.org/10.18653/v1/2023.emnlp-main.609
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf

volume 35, pages 24824–24837. Curran Associates,
Inc.

Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie
Fu, Junxian He, and Bryan Hooi. 2024. Can llms
express their uncertainty? an empirical evaluation of
confidence elicitation in llms.

Benfeng Xu, Quan Wang, Zhendong Mao, Yajuan Lyu,
Qiaoqiao She, and Yongdong Zhang. 2023. knn
prompting: Beyond-context learning with calibration-
free nearest neighbor inference.

Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and
Lingpeng Kong. 2023. Compositional exemplars for
in-context learning. In International Conference on
Machine Learning.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good-
man. 2022. Star: Bootstrapping reasoning with rea-
soning. In Advances in Neural Information Process-
ing Systems, volume 35, pages 15476–15488. Curran
Associates, Inc.

Yuwei Zhang, Zihan Wang, and Jingbo Shang. 2023a.
ClusterLLM: Large language models as a guide for
text clustering. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 13903–13920, Singapore. Association
for Computational Linguistics.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2023b. Automatic chain of thought prompt-
ing in large language models. In The Eleventh In-
ternational Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. Open-
Review.net.

Yue Zhou, Yada Zhu, Diego Antognini, Yoon Kim, and
Yang Zhang. 2024. Paraphrase and solve: Explor-
ing and exploiting the impact of surface form on
mathematical reasoning in large language models.
In Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 2793–2804, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Henry Zou and Cornelia Caragea. 2023. JointMatch:
A unified approach for diverse and collaborative
pseudo-labeling to semi-supervised text classifica-
tion. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, pages 7290–7301, Singapore. Association for
Computational Linguistics.

Henry Zou, Yue Zhou, Weizhi Zhang, and Cornelia
Caragea. 2023a. DeCrisisMB: Debiased semi-
supervised learning for crisis tweet classification via
memory bank. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pages
6104–6115, Singapore. Association for Computa-
tional Linguistics.

Henry Peng Zou, Cornelia Caragea, Yue Zhou, and
Doina Caragea. 2023b. Semi-supervised few-shot
learning for fine-grained disaster tweet classification.
In Proceedings of the 20th International ISCRAM
Conference. ISCRAM 2023.

Henry Peng Zou, Siffi Singh, Yi Nian, Jianfeng He,
Jason Cai, Saab Mansour, and Hang Su. 2025.
Glean: Generalized category discovery with diverse
and quality-enhanced llm feedback. arXiv preprint
arXiv:2502.18414.

30760

http://arxiv.org/abs/2306.13063
http://arxiv.org/abs/2306.13063
http://arxiv.org/abs/2306.13063
http://arxiv.org/abs/2303.13824
http://arxiv.org/abs/2303.13824
http://arxiv.org/abs/2303.13824
https://api.semanticscholar.org/CorpusID:256826793
https://api.semanticscholar.org/CorpusID:256826793
https://proceedings.neurips.cc/paper_files/paper/2022/file/639a9a172c044fbb64175b5fad42e9a5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/639a9a172c044fbb64175b5fad42e9a5-Paper-Conference.pdf
https://doi.org/10.18653/v1/2023.emnlp-main.858
https://doi.org/10.18653/v1/2023.emnlp-main.858
https://openreview.net/forum?id=5NTt8GFjUHkr
https://openreview.net/forum?id=5NTt8GFjUHkr
https://doi.org/10.18653/v1/2024.naacl-long.153
https://doi.org/10.18653/v1/2024.naacl-long.153
https://doi.org/10.18653/v1/2024.naacl-long.153
https://doi.org/10.18653/v1/2023.emnlp-main.451
https://doi.org/10.18653/v1/2023.emnlp-main.451
https://doi.org/10.18653/v1/2023.emnlp-main.451
https://doi.org/10.18653/v1/2023.emnlp-main.451
https://doi.org/10.18653/v1/2023.findings-emnlp.406
https://doi.org/10.18653/v1/2023.findings-emnlp.406
https://doi.org/10.18653/v1/2023.findings-emnlp.406

A Dataset Statistics

Table 5 provides the dataset statistics summary for
all evaluated datasets.

Task Dataset # Classes Total Test

Intent Detection
BANKING 77 10,003 500

CLINC 150 15,000 500

Topic Mining
Reddit 50 25,000 500

StackExchange 121 25,000 500

Domain Discovery
MTOP 11 15,667 500

CLINC(D) 10 15,000 500

Type Discovery FewEvent 34 18909 500

Emotion Detection GoEmotion 27 23485 500

Table 5: Dataset statistics.

B Prompt Template

The prompt template we used in the experiments
is listed below. Note that we use the same prompt
template for all methods for fair comparisons.

Prompt Template

Instruction: Please select a label from the
provided options for the following testing
samples and also show your confidence
in the label assignment by providing a
probability between 0 and 1.

Label Options: [A List of Labels].

== Testing Samples ==
[Testing Samples]

C LLM Predictions Can Be Inaccurate
and Unstable

Figure 7 demonstrates the error rate and inconsis-
tency ratio of predictions by different LLMs on di-
verse datasets. The inconsistency ratio here refers
to the proportion of prediction changes when an
LLM is rerun N times for the same input query
across the entire dataset. The results are obtained
using standard zero-shot prompting with a temper-
ature of 0.7 and N = 10. It can be observed that
even in standard text classification tasks, LLMs
can produce inaccurate and inconsistent prediction
results for ambiguous or challenging data points.

D Robustness in Adversarial Scenarios

In real-world applications, suitable in-distribution
data may not always be available, and retrieved
samples could be out-of-distribution. This sec-
tion demonstrates the robustness of our TestNUC
method in such adversarial scenarios. We con-
ducted an adversarial experiment by replacing in-
distribution samples in the BANKING dataset with
out-of-distribution samples (i.e., outliers) from the
REDDIT dataset. To create sufficiently challenging
scenarios, we replaced 60% and 75% of the in-
distribution samples with OOD samples. As shown
in the Table 6, even with 60%–75% OOD samples
present, TestNUC still significantly improves base-
line performance across many cases in these highly
noisy scenarios, demonstrating its robustness and
effectiveness.

Furthermore, when using Weighted Majority
Voting (WMV) instead of Naive Majority Voting
(NMV), TestNUC’s performance and robustness
can be further enhanced. This is because OOD
samples are likely to have lower semantic similar-
ity with the test sample compared to in-distribution
samples, and thus the model can assign lower
weights to OOD samples when using WMV. This
is also consistent with our previous findings that
WMV outperforms NMV in most cases.

OOD Ratios 60% 75%

Neighbors NMV WMV NMV WMV

0 63.7±0.6 63.7±0.6 63.7±0.6 63.7±0.6

3 67.9±0.7 68.2±0.9 68.3±0.7 69.2±0.9
5 69.6±0.8 70.6±0.8 70.3±0.7 71.1±0.6
10 72.3±0.8 72.8±0.6 73.7±0.7 74.0±0.5
20 74.7±0.3 75.0±0.4 73.3±0.7 73.3±0.8
30 75.9±0.7 75.6±0.6 72.1±0.6 72.8±0.7
40 75.7±0.8 76.3±0.6 69.1±0.8 70.8±0.9
50 74.7±0.6 75.2±0.6 67.0±0.7 69.6±0.8
60 73.5±0.6 73.7±0.5 62.0±0.8 66.0±0.7
80 71.3±0.6 72.1±0.7 54.9±0.6 61.7±0.8
100 67.3±0.7 70.1±0.7 48.8±0.6 59.0±0.7

Table 6: Performance of TestNUC under adversarial
conditions with out-of-distribution (OOD) samples.

E Runtime and Cost Analysis

This section presents an estimated analysis of the
trade-off between gains in accuracy (average on all
8 tasks) and the compute/runtime cost required for
the approach in different settings. The following
table summarizes the estimated runtime and cost

30761

Emotion (GoEmotion)

Topic Mining (StackEx)

Type Discovery (FewEvent)

Topic Mining (Reddit)

Domain Discovery (CLINC-D)

Intent Discovery (BANKING)

Intent Discovery (CLINC)

Domain Discovery (MTOP-D)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Ra

te
Llama-3.1-8B - Error Rate
Llama-3.1-8B - Inconsistency Ratio
Claude 3 Haiku - Error Rate
Claude 3 Haiku - Inconsistency Ratio

GPT-4o-mini - Error Rate
GPT-4o-mini - Inconsistency Ratio
GPT-4o - Error Rate
GPT-4o - Inconsistency Ratio

Figure 7: LLM predictions can be inaccurate and unstable.

per sample using GPT-4o-mini. The number of
retrieved neighbors and sampled candidate answers
is set to 10 by default, unless otherwise specified.

We include two variants of TestNUC: TestNUC
and TestNUC-S. TestNUC-S is an efficient im-
plementation of TestNUC that pre-computes and
stores the embeddings and predictions of previ-
ously queried or seen samples. Thus, when a
new sample arrives, TestNUC-S can simply re-
trieve the embeddings and predictions of the near-
est neighbors from the stored set and use them to
generate the final label without additional LLM
calls—where the runtime cost for retrieval is negli-
gible compared to querying the LLM. As shown in
Table 7, when increasing the number of retrieved
neighbors (K=5 to K=50), TestNUC can greatly
improves performance although at the cost of in-
creased runtime and cost. When using the same
number of retrieved neighbors (K=10), TestNUC
is more efficient than the best-performing baseline
KNN-ICL-P, which incurs a computational cost
that scales quadratically with K, whereas TestNUC
incurs only a linear cost. Moreover, the efficient im-
plementation TestNUC-S can significantly reduce
runtime cost and is also a very practical solution for
real-world applications, as storing the embeddings
and queries of previously queried samples is both
quite common and cheap in practice.

Runtime (s) Cost ($) Performance

Standard Prompting 0.6820 $0.000028 0.613
w. TestNUC (K=5) 3.4100 $0.000140 0.648
w. TestNUC (K=10) 6.8200 $0.000280 0.660
w. TestNUC (K=50) 34.1000 $0.001400 0.676
w. TestNUC-S (K=5) 0.6842 $0.000028 0.648
w. TestNUC-S (K=10) 0.6843 $0.000028 0.660
w. TestNUC-S (K=50) 0.6847 $0.000028 0.676

KNN-ICL 0.6972 $0.000085 0.630
KNN-ICL-P 7.5510 $0.000371 0.657
Self-Consistency 6.8200 $0.000280 0.625
Best-of-N 6.8200 $0.000280 0.627

Table 7: Runtime and cost analysis. TestNUC improves
performance with more neighbors at higher cost, while
TestNUC-S achieves the same gains with negligible
runtime by reusing stored embeddings and predictions.

30762

