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Abstract

Large Vision-Language Models (LVLMs) typ-
ically learn visual capacity through visual in-
struction tuning, involving updates to both a
projector and their LLM backbones. Inspired
by the concept of a visual region in the human
brain, we investigate the existence of an analo-
gous visual region within LLMs that functions
as a cognitive core, and explore the potential
of efficient training of LVLMs via selective
layers tuning. Using Bunny-Llama-3-8B-V
for detailed analysis and other three LVLMs
for validation across diverse visual and textual
tasks, we find that selectively updating 25%
of LLMs layers, when sparsely and uniformly
distributed, can preserve nearly 99% of visual
performance and maintain or improve textual
task results, while effectively reducing training
time. Based on this targeted training approach,
we further propose a novel visual region-based
pruning paradigm, removing non-critical layers
outside the visual region, which can achieve
minimal performance loss. This study offers an
effective and efficient strategy for LVLM train-
ing and inference by activating a layer-wise
visual region within LLMs, which proves con-
sistently effective across different models1.

1 Introduction

Large Vision-Language Models (LVLMs) (Li et al.,
2023c; Zhu et al., 2023; Bai et al., 2023; Liu et al.,
2024) have emerged as an increasing research inter-
est for interpreting and interacting with the world
through both visual and linguistic channels. Exist-
ing LVLMs generally utilize advanced Large Lan-
guage Models (LLMs), like FlanT5 (Chung et al.,
2022) and Vicuna (Chiang et al., 2023), as their cog-
nitive core, and align visual features from visual
encoders with LLMs’ knowledge and reasoning

* Equal contribution.
† Corresponding author.
1https://github.com/SiyuanWangw/Visual-Region

abilities. This alignment has demonstrated remark-
able performance across diverse visual tasks (Lu
et al., 2022; Liu et al., 2023b; Fu et al., 2024).

LVLMs are primarily trained through visual in-
struction tuning (Liu et al., 2023a), which involves
training both a projector and LLMs on visual in-
struction datasets, with optional updates to the vi-
sual encoder. Despite its efficacy, fully tuning
all LLMs layers remains computationally costly,
even when using efficient strategies like Low-Rank
Adaptation (LoRA) (Hu et al., 2021) and its quan-
tized variant (QLORA) (Dettmers et al., 2024).
Additionally, extensive multimodal training risks
degrading LLMs’ pre-trained linguistic knowl-
edge and reasoning capabilities (Dai et al., 2024;
Agrawal et al., 2024), as evidenced by LVLMs’
increased perplexity on textual tasks compared to
their LLM backbone in the purple section of Fig. 1.

Inspired by specialized visual regions in the hu-
man brain (Grill-Spector and Malach, 2004) and
LLMs’ brain-like versatility across tasks, we pro-
pose an analogous concept of a visual region within
LLMs. We hypothesize that visual alignment to
LLMs can only activate this specific visual region
while preserving LLMs’ core language abilities,
potentially manifesting as a layer-wise structure
considering layer redundancy in LLMs (Men et al.,
2024; Gromov et al., 2024). We further detailedly
analyze LVLMs’ layer redundancy in Fig. 1 (green
part), shows that reverting certain layers of a LVLM
to its backbone LLM’ parameters minimally im-
pacts downstream visual performance. This sug-
gests certain layers within LLMs are non-essential
for visual tasks, thereby supporting our hypothesis.

Although layer-wise freezing techniques (Zhang
et al., 2024b) enable efficient LLM fine-tuning by
adapting later layers for specific language tasks,
they cannot be directly applied to visual tasks. Be-
cause visual alignment requires visual perception
capabilities beyond textual understanding and rea-
soning. While Zhang et al. (2024a) propose param-

30715

https://github.com/SiyuanWangw/Visual-Region


Model Variants
Visual Textual

OCRVQA DocVQA WikiText Pile-10k

LLaVA 2.43 30.55 11.44 29.58

LLaVAr (layer 0∼7) 1.87 38.49 [↑] 11.37 [↑] 29.19 [↑]
LLaVAr (layer 8∼15) 1.93 32.35 [↑] 11.38 [↑] 29.21 [↑]
LLaVAr (layer 16∼23) 2.18 16.47 11.35 [↑] 29.33 [↑]
LLaVAr (layer 24∼31) 2.11 17.47 11.36 [↑] 29.27 [↑]

Vicuna (all layers) 80.75 175.10 11.32 28.38
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Figure 1: Left: Perplexity of LLaVA with selected layers (in parentheses) reverted to Vicuna parameters on visual
and textual tasks. Arrows indicate perplexity increases relative to LLaVA (visual tasks) and Vicuna (textual tasks).
(1) Perplexity increases in textual tasks after multimodal training compared to the LLM backbone, indicating
multimodal training compromises LLMs’ linguistic abilities. (2) Perplexity decreases in visual tasks reverting
certain layers (e.g., reverting layers 16–23 or 24-31 in LLaVA), suggesting these layers are redundant. Right:
Accuracy of LLaVA-1.5-7B when pruning certain layers based on angular distance scores (Gromov et al., 2024).

eter localization for visual tasks, it remains highly
task-specific and data-dependent, limiting its gen-
eralizability to versatile multimodal learning and
neglecting the preservation of linguistic capabil-
ities. To bridge this gap, we identify a general-
purpose visual region within LLMs for efficient
LVLM training across diverse tasks without dimin-
ishing linguistic performance. Specifically, we aim
to investigate two key questions: (1) Where is this
visual region located within LLMs? (2) What is
the necessary scale of layers in this visual region
to ensure effective and efficient LVLMs training?

To this end, we embark on empirical experi-
ments with Bunny-Llama-3-8B-V (He et al., 2024)
across diverse visual tasks. Our findings indicate
that sparsely and uniformly distributed layers
within LLMs are the optimal position for visual
learning while simultaneously preserving textual
performance. This strategic visual region selec-
tion also outperforms previous layer importance
strategies. Notably, updating only 25% of lay-
ers achieves nearly 99% performance on visual
tasks while effectively saving training time. We
further validate this conclusion with LLaVA-1.5-
7B, LLaVA-1.5-13B (Liu et al., 2023a) and Bunny-
Phi3-mini-4B-V, demonstrating its consistent ap-
plicability across varying models and parameter
scales. Specifically, we achieve time reductions
of nearly 23% for LLaVA-1.5-7B and LLaVA-1.5-
13B, and 12% for Bunny-Llama-3-8B-V.

Additionally, as shown in Figure 1 (right), we
find that commonly used layer-pruning strategies
are ineffective for LVLMs, with even minimal layer
removal causing significant performance degrada-
tion. In response, we propose a visual region-

based pruning paradigm that selectively prunes less-
important layers outside the visual region after tar-
geted training. Specifically, we follow the angular
distance based layer importance strategy (Gromov
et al., 2024) outside the visual region, and exper-
imental results demonstrate that our paradigm is
effective to minimizes performance decline. Over-
all, our work highlights promising potential for
more efficient LVLMs training and inference. No-
tably, our approach is flexibly complementary to
other efficient training techniques, such as LoRA,
as demonstrated in our experiments.

2 Preliminary of LVLMs

2.1 Model Architecture

Mainstream LVLMs consist of three components:
a LLM, a visual encoder, and a projector or con-
nection module, aim to effectively leverage the
capabilities of both the pre-trained visual model
and LLMs. The visual encoder extracts visual fea-
tures from images, commonly utilizing pre-trained
models such as CLIP ViT-L/14 (Radford et al.,
2021). The connection module then projects these
extracted features into word embedding space un-
derstandable by LLMs, commonly employing tech-
niques such as linear projection (Tsimpoukelli
et al., 2021), Q-former (Li et al., 2023c), or cross-
attention layers (Alayrac et al., 2022). This enables
LVLMs based on LLMs cores, like Vicuna (Chi-
ang et al., 2023), FlanT5 (Chung et al., 2022), and
LLaMA (Touvron et al., 2023) to process visual
information in a similar manner as text.
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2.2 Model Training

The training of LVLMs can be broadly divided
into two phases: pre-training and supervised fine-
tuning. Unlike LLMs, both phases utilize super-
vised image-text pairs for visual instruction tuning.
Pre-training primarily uses large-scale captioning
instruction data, guiding the model to briefly de-
scribe images. This phase enables the model to in-
terpret image content, usually with LLMs’ weights
frozen and the visual encoder optionally updated.
Some works such as Qwen-VL (Bai et al., 2023),
expand the pre-training to include additional tasks
like visual question answering, updating the LLM
component accordingly. Supervised fine-tuning
employs high-quality instruction data to enhance
the LVLMs’ ability to following diverse visual in-
structions and engaging in conversations. The vi-
sual encoder in this stage is typically kept static
while the LLMs are tuned. During both stages,
the projector is consistently updated, ensuring the
model effectively bridges visual and textual data.

3 Experimental Setup

In this study, we conduct empirical experiments
on Bunny-Llama-3-8B-V to investigate our hypoth-
esis regarding the existence of a specific visual
region within LLMs (Sec. 4.1∼ 4.3), and apply
our findings on LLaVA-1.5-7B, LLaVA-1.5-13B
and Bunny-Phi3-mini-4B-V to validate its general
applicability across different models (Sec. 5.1).

3.1 LVLM Implementation

We employ Bunny-Llama-3-8B-V for investigation,
which builds upon the 32-layer Llama3-8B (Tou-
vron et al., 2023), and LLaVA-1.5-7B/13B, built on
the 32/40-layer Vicuna-1.5-7B/13B (Chiang et al.,
2023), Bunny-Phi3-mini-4B-V based on 32-layer
Phi-3-mini for validation. Since the LLM compo-
nents remain frozen during pre-training, we focus
on the supervised fine-tuning stage using 695K
and 665K language-image instruction-following in-
stances for Bunny and LLaVA. Considering compu-
tational constraints, we use LoRA (Hu et al., 2021),
highlighting that our approach is complementary
to other efficient training methods. Additional im-
plementation details are available in the Appendix.

3.2 Evaluation Tasks

Our investigation spans 10 visual tasks involving
both perception and cognition, to comprehensively
evaluate models and examine our hypothesis.

Visual perception tasks assess models’ ability
to interpret and understand surface-level visual fea-
tures, like object identification and scene recogni-
tion, mirroring human sensory perception process.
(1) OCRVQA (Mishra et al., 2019): VQA by read-
ing text in images through optical character recog-
nition (OCR). We follow(Bai et al., 2023) for accu-
racy calculation on the test set, allowing a margin
of error. (2) DocVQA (Mathew et al., 2021): VQA
by interpreting document images. We use the same
evaluation method and metric as OCRVQA on the
validation set. (3) RefCOCOg (Yu et al., 2016): A
variant of RefCOCO (Kazemzadeh et al., 2014) fea-
turing more complex object referring expressions.
We assess the reference expression generation on
the test set using Intersection over Union metric.
(4) TDIUC (Kafle and Kanan, 2017): covering 12
categories, primarily perception tasks (e.g., object
presence, counting, recognition) with some cogni-
tion tasks (e.g., positional reasoning, affordance).
Accuracy is measured on the validation set.

Visual cognition tasks require deeper reasoning
based on visual stimuli, drawing on prior knowl-
edge and decision-making abilities learned within
LLMs, mirroring human cognitive thinking and
manipulation. (5) MMBench (Liu et al., 2023b):
focuses on cognition tasks, with some fine-grained
perception tasks requiring knowledge and reason-
ing. For model variant comparison, we report
accuracy on the dev subset instead of submit-
ting to the evaluation server. (6) GQA (Hudson
and Manning, 2019): real-world visual reasoning
and compositional question answering. (7) Sci-
enceQA (Lu et al., 2022): sourced from elementary
and high school science curricula, requiring exter-
nal knowledge and reasoning. We evaluate only
image-based questions. (8) TextVQA (Singh et al.,
2019): requiring reasoning about text in images.
(9) MMMU (Yue et al., 2024): covering math, sci-
ence, and commonsense reasoning with accuracy
calculated. (10) SEED-IMG: The image-based QA
from SEED-Bench (Li et al., 2023a).

4 Visual Region Investigation

We first analyze the position and scale of the
layerwise-structure vision region within its LLM
core on Bunny-Llama-3-8B-V, to answer the fol-
lowing two questions.
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Model Version OCRVQA DocVQA RefCOCOg TDIUC MMBench GQA ScienceQA TextVQA MMMU SEED-IMG Avg

All layers 64.26% 29.45% 50.12% 83.84% 74.74% 64.29% 79.28% 62.11% 40.6% 73.13% 62.18%

Heuristic Selections

Sparse & Uniform 62.65% 29.51% 48.33% 83.68% 73.88% 63.68% 78.78% 62.43% 42.1% 72.61% 61.82%
Consecutive Lower 61.38% 22.47% 46.49% 83.27% 73.63% 62.33% 75.26% 62.26% 42.6% 72.66% 60.24%

Consecutive Lower-middle 62.54% 26.13% 48.17% 83.77% 72.51% 62.81% 77.14% 60.96% 38.8% 72.16% 60.50%
Consecutive Upper-middle 62.32% 28.06% 43.12% 83.40% 70.27% 61.28% 78.83% 59.33% 38.3% 70.45% 59.54%

Consecutive Top 60.48% 26.47% 39.92% 83.22% 67.96% 60.30% 77.54% 58.71% 37.0% 71.00% 57.26%
Hybrid Top-Lower 57.63% 29.76% 41.79% 83.26% 72.25% 62.71% 77.99% 62.74% 40.1% 72.59% 60.09%

Importance-based Selections

Image Attention Score 63.65% 24.53% 43.62% 83.90% 72.59% 62.82% 77.59% 61.99% 39.3% 72.29% 60.23%
Parameter Change Ratio 63.94% 26.94% 47.67% 83.88% 73.54% 63.21% 78.68% 61.73% 42.0% 72.85% 61.45%
Block Influence Score 62.38% 28.45% 46.37% 83.73% 71.13% 61.93% 77.34% 59.93% 38.9% 71.66% 60.18%
Multimodal BI Score 61.48% 28.80% 46.68% 83.74% 73.02% 63.23% 77.24% 62.23% 41.0% 72.25% 60.97%

Angular Distance 60.95% 27.71% 46.74% 83.49% 73.88% 62.11% 77.14% 62.76% 39.9% 73.01% 60.77%

Table 1: Performance comparison of Bunny-LLaMA-3-8B-V tuned with different layer selection methods (8
layers). Bold numbers indicate the best performance in each column (excluding “all layers”).

4.1 Where are visual region layers located
within LLMs for effective visual learning?

To demonstrate the optimal positioning of the vi-
sual region in LLMs for effective and efficient vi-
sual learning, we re-train Bunny-Llama-3-8B-V by
updating 25% of layers (8 layers) 2 under various
selection configurations. As pre-training does not
involve LLM optimization, we focus on supervised
fine-tuning, starting from the pre-trained check-
point. We specifically explore different positional
selection strategies as detailed below.

• Heuristic Layer Selection (1) We intuitively
hypothesize that tuning sparsely and uniformly
distributed layers (0,4,8,12,18,22,26,30) pre-
serves LLMs’ existing knowledge and reason-
ing abilities while enabling visual learning. (2)
We experiment with tuning consecutive 8-layer
blocks at different positions in LLMs: lower lay-
ers (0∼7), lower-middle layers (8∼15), upper-
middle layers (16∼23), and top layers (24∼31),
with the latter being a common practice of effi-
cient domain-specific fine-tuning (Liao et al.,
2024). (3) We test a hybrid of lower and top
layers (0∼3, 28∼31).

• Importance-based Layer Selection We com-
pare layer selection strategies based on vary-
ing importance metrics. (1) Image Attention
Score: We compute the average attention score
on all image tokens at each layer to gauge the
layer’s affinity for image information. The top
8 layers with the highest scores are selected
(1,2,3,4,5,27,29,31). (2) Parameter Change Ra-
2We use the 8-layer configuration as a testbed for its bal-

ance of efficiency and effectiveness.

tio (Zhao et al., 2023): 8 layers with the high-
est relative parameter change ratios (averaged
all parameters in each layer) in Bunny-Llama-
3-8B-V compared to its backbone Llama are
selected (0,2,9,12,23,24,25,26). (3) Block In-
fluence (BI) Score (Men et al., 2024): Using
Flickr30k dataset, we calculate hidden state
transformations at each layer as the BI score,
and select 8 layers with the highest scores
(12,15,18,25,27,29,30,31). (4) Multimodal BI
Score: We propose a multimodal variant that av-
erage hidden state transformations respectively
of visual tokens and textual tokens, and select 8
layers with highest scores (0,1,2,3,4,5,9,31). (5)
Angular Distance Score (Gromov et al., 2024):
The top 8 layers with the highest angular dis-
tances between consecutive layer inputs are se-
lected (0,1,2,3,5,6,7,8). Detailed calculations
for these metrics are provided in Appendix A.

The results are shown in Table 1. We observe that
tuning sparsely and uniformly distributed layers
achieves the best overall performance across per-
ception and cognition tasks, closely matching the
all-layers upper bound. In contrast, consecutive
layers generally underperform, likely due to lim-
ited diversity in similar representations across adja-
cent layers (Kornblith et al., 2019), which hinders
adaptability to various tasks. This further under-
scores the superiority of sparsely and uniformly
distributed layers. Notably, tuning top layers yields
the worst performance, deviating from the con-
ventional practice in domain-specific fine-tuning,
where the last few layers are typically adjusted for
downstream tasks (Liao et al., 2024). This high-
lights a significant distinction between adapting to
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Model Scale OCRVQA DocVQA RefCOCOg TDIUC MMBench GQA ScienceQA TextVQA MMMU SEED-IMG Avg

32 layers 64.26% 29.45% 50.12% 83.84% 74.74% 64.29% 79.28% 62.11% 40.6% 73.13% 62.18%
16 layers 62.42% 26.43% 49.15% 84.04% 74.83% 64.10% 78.93% 62.96% 42.6% 72.75% 61.82%(99.42%)
8 layers 62.65% 29.51% 48.33% 83.68% 73.88% 63.68% 78.78% 62.43% 42.1% 72.61% 61.78%(99.36%)
6 layers 62.25% 29.76% 47.71% 84.01% 75.00% 62.93% 77.54% 62.92% 40.6% 72.67% 61.55%(98.99%)
4 layers 62.40% 28.89% 46.00% 83.99% 73.71% 62.66% 77.69% 62.74% 39.2% 72.14% 60.94%(98.01%)
2 layers 57.96% 28.49% 44.67% 83.15% 72.68% 61.00% 78.48% 60.35% 40.8% 72.35% 60.00%(96.49%)
1 layer 53.68% 24.33% 38.47% 82.92% 68.64% 59.19% 77.69% 58.32% 37.4% 70.69% 57.14%(91.89%)

Table 2: Performance comparison of Bunny-Llama-3-8B-V fine-tuned with different numbers of layers. Bold
numbers represent the best performance in each column. Values in parentheses denotes the percentage relative to
the performance achieved by tuning all layers.

all
 la

ye
rs

16
 la

ye
rs

8 l
ay

ers

6 l
ay

ers

4 l
ay

ers

2 l
ay

ers

1 l
ay

er

Layers

54

56

58

60

62

64

Pe
rf

or
m

an
ce

OCRVQA

all
 la

ye
rs

16
 la

ye
rs

8 l
ay

ers

6 l
ay

ers

4 l
ay

ers

2 l
ay

ers

1 l
ay

er

Layers

56

58

60

62

TextVQA

all
 la

ye
rs

16
 la

ye
rs

8 l
ay

ers

6 l
ay

ers

4 l
ay

ers

2 l
ay

ers

1 l
ay

er

Layers

80

82

84

TDIUC

all
 la

ye
rs

16
 la

ye
rs

8 l
ay

ers

6 l
ay

ers

4 l
ay

ers

2 l
ay

ers

1 l
ay

er

Layers

52

54

56

58

60

62

64

GQA

100% data 25% data 10% data

Figure 2: Performance variation of the re-trained Bunny-Llama-3-8B-V model across different training data scales
during the supervised fine-tuning stage, with tuning varying number of layers. Dashed lines indicate 98% of the
performance achieved by tuning all layers with the corresponding training data scale.

new modalities and new downstream domains.
While some importance-based selections, such

as parameter change ratio, yield close performance,
all importance-based methods operate post-hoc
that require a fully trained model to compute im-
portance metrics for layer selection. This makes
them primarily suitable for inference and applying
them during LVLM training incurs significantly
higher computational costs. In contrast, our heuris-
tic method is training-free, allowing for greater
flexibility and direct transferability across differ-
ent models, enhancing its practical applicability.
We compare importance-based selections to show
that our sparsely and uniformly distributed layers
even outperform these post-hoc strategies and also
simplify the process.

4.2 What is the necessary scale of layers for
effective and efficient LVLMs training?

To investigate the necessary scale of this visual re-
gion to enable LVLMs to receive visual signals and
align with linguistic features, we re-train Bunny-
Llama-3-8B-V by updating varying number of lay-
ers. We respectively experiment with configura-
tions of 32, 16, 8, 6, 4, 2 and 1 layers, with all
selected layers uniformly distributed across all lay-

ers 3. This selection strategy is based on our finding
that sparsely and uniformly distributed layers are
the optimal position for effective visual learning.

The results of tuning varying scales of layers on
visual perception and cognition tasks are summa-
rized in Table 2. Tuning 20∼25% of the layers
(6 and 8 layers) retains approximately 98% of the
performance achieved by tuning all LLMs layers
of Bunny-Llama-3-8B-V, with 25% (8 layers) pre-
serving up to 99%. However, updating fewer than
4 layers leads to a significant performance drop,
particularly in perception tasks that heavily relies
on visual interpretation, highlighting the necessity
of tuning at least 12.5% of the layers (4 layers) for
effective visual alignment.

3Specifically, we select all even-numbered layers for the
16-layer configuration; layer 0, 4, 8, 12, 18, 22, 26, 30 for
8-layer; layer 0, 6, 12, 18, 24, 30 for 6-layer; and layer 0, 10,
20, 30 for 4-layer (Experiments show that layer 30 or 31 yields
comparable results, and all odd-numbered selections perform
slightly worse). Since 2-layer and 1-layer selection can not be
uniform, we have tested various configurations and adopted
the best-performing strategy: layer 0 and 31 for 2-layer, and
layer 31 for 1-layer based on highest block influence scores.
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Model Scale OCRVQA DocVQA RefCOCOg TDIUC MMBench GQA ScienceQA TextVQA MMMU SEED-IMG Avg

LLaVA-1.5-7B

32 layers 61.51% 19.46% 49.01% 83.40% 66.67% 62.98% 68.47% 58.19% 35.3% 67.52% 57.25%
16 layers 64.01% 20.75% 48.02% 83.47% 64.00% 62.43% 67.53% 58.27% 35.4% 67.22% 57.11%(99.76%)
8 layers 62.19% 21.10% 47.71% 83.10% 63.92% 61.60% 68.17% 57.35% 34.6% 67.23% 56.70%(99.04%)
6 layers 61.39% 22.84% 46.54% 83.31% 61.77% 61.08% 68.32% 56.19% 33.2% 65.69% 56.04%(97.87%)
4 layers 63.28% 21.01% 43.47% 83.14% 60.82% 60.48% 67.97% 54.48% 33.8% 64.08% 55.25%(96.51%)
2 layers 54.54% 19.10% 41.90% 81.47% 57.22% 57.38% 65.84% 53.27% 33.7% 63.19% 52.76%(92.16%)
1 layer 53.16% 16.96% 33.29% 81.20% 51.89% 55.83% 64.50% 45.51% 30.1% 57.64% 49.01%(85.61%)

LLaVA-1.5-13B

40 layers 67.60% 25.19% 50.26% 83.61% 68.38% 63.29% 71.64% 60.21% 37.2% 68.70% 59.61%
10 layers 65.17% 23.56% 48.27% 83.57% 66.58% 62.01% 70.75% 59.13% 36.9% 67.39% 58.33%(97.85%)
9 layers 66.47% 23.65% 49.29% 83.74% 65.61% 62.31% 72.14% 59.71% 37.7% 67.29% 58.80%(98.64%)

Bunny-Phi3-mini-4B-V

32 layers 63.62% 29.19% 48.07% 83.69% 72.94% 62.35% 76.75% 60.64% 42.4% 72.09% 61.17%
8 layers 61.96% 27.21% 46.95% 83.11% 71.74% 61.38% 75.71% 59.69% 42.3% 71.53% 60.16%(98.35%)

Table 3: Performance of LVLMs with varying LLM backbones and parameter scales tuned with different numbers
of layers. Values in parentheses denotes the percentage relative to the performance achieved by tuning all layers.

4.3 Trend between Data Size and Visual
Region Scale

We further explore the trend between data size and
the optimal layer count for effective visual instruc-
tion tuning. Using random subsets of 100%, 25%
and 10% from a pool of 695K visual instruction-
following instances, we tune Bunny-Llama-3-8B-
V with varying numbers of layers following the
same selection strategy as the full dataset. We re-
port the performance trends across four datasets,
OCRVQA, TextVQA, TDIUC and GQA. As shown
in Figure 2, tuning 25% of the layers consistently
achieves over 98% of full performance across dif-
ferent data sizes while reducing training time. This
approach offers a resource-efficient pathway for
optimizing hyperparameters and training data se-
lection by tuning such a visual region before final-
izing the model with all layers. Moreover, even
with smaller datasets, tuning fewer than 4 layers
still results in notable performance declines.

5 Further Analysis

5.1 Generalizability Validation

To validate our findings of the visual region be-
yond Bunny-Llama-3-8B-V, we take LLaVA-1.5-
7B, LLaVA-1.5-13B and Bunny-Phi3-mini-4B-V
as additional testbeds to assess the generalizabil-
ity across LVLMs with different LLM backbones
and parameter scales. Following the setup in
Sec. 4.2, we re-train these models with different
number of layers that are sparsely and uniformly
distributed within their respective backbones, in-
cluding Vicuna-1.5-7B, Vicuna-1.5-13B and Phi-

3-mini-4B (Abdin et al., 2024). Results presented
in Table 3 show that under our visual region po-
sitioning strategy, tuning approximately 25% of
the layers consistently yield 98% of the full per-
formance. This demonstrates that our approach
generalizes effectively across varying LVLMs.

5.2 Computational Cost
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Figure 3: Computational costs for tuning LLaVA-1.5-
7B, Bunny-Llama-3-8B-V, and LLaVA-1.5-13B with
different number of layers using LoRA.

To demonstrate the efficiency of visual region-
based tuning, we report the computational costs
associated with tuning different numbers of lay-
ers across various models using the LoRA strategy.
For fair comparison across setups with different
numbers of GPUs (specifically A800 GPUs in this
analysis), we compute the product of the number
of GPUs and running hours as a measure of com-
putational cost. From Figure 3, Table 2 and Ta-
ble 3, tuning a visual region comprising up to 25%
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of layers (8 layers for LLaVA-1.5-7B and Bunny-
Llama3-8B-V, 10 layers for LLaVA-1.5-13B) can
achieve 98% of full performance while achieving
substantial reductions in computational overhead.
Specifically, we reduce training time by 23% for
LLaVA models and 13% for Bunny. These results
highlight that the effectiveness of visual region-
based tuning in training LVLMs efficiently with
minimal performance trade-offs. Moreover, this
relative reduction in computational cost would be
more significant as dataset and model sizes scale.

5.3 Evaluation of Textual Tasks
As highlighted in (Dai et al., 2024; Agrawal
et al., 2024) and illustrated in Figure 1, multi-
modal training risks degradation of LLMs’ pre-
trained linguistic knowledge and reasoning capa-
bilities. To verify whether training our sparsely
and uniformly distributed visual region affects the
model linguistic capacity, we extend our evalua-
tion to four text-only question answering datasets,
MMLU (Hendrycks et al., 2020), C-Eval (Huang
et al., 2023), CMMLU (Li et al., 2023b), and BIG-
bench-Hard (Suzgun et al., 2022), covering diverse
topics and fields. We use “Answer with the op-
tion’s letter from the given choices directly” as the
prompts for the first three and “Please answer this
question in a word or phrase” for BIG-bench-Hard,
and allow models to provide explanations along-
side its responses. We adopt a five-shot prompting
strategy for MMLU, C-Eval and CMMLU, and a
zero-shot strategy for BIG-bench-Hard.

Model Version MMLU BIG-Bench-H C-Eval CMMLU

Bunny-LLaMA3-8B-V

Fully-trained (32layers) 60.27% 30.93% 45.84% 45.68%
Partial-trained (8layers) 63.36% 31.50% 49.70% 48.39%

LLM-Backbone 66.01% 57.93% 50.52% 50.70%

LLaVA-1.5-7B

Fully-trained (32layers) 50.52% 26.85% 38.34% 37.27%
Partial-trained (8layers) 50.74% 31.64% 39.08% 37.71%

LLM-Backbone 49.78% 29.33% 38.78% 36.60%

Table 4: Performance on text-only tasks. The LLm
backbones of Bunny-LLaMA3-8B-V and LLaVA-1.5-
7B are respectively LLaMA3-8B and Vicuna-1.5-7B.

As shown in Table 4, fully-trained LVLMs gen-
erally exhibit decreased performance on text-only
tasks compared to their LLM backbones, particu-
larly with more powerful LLaMA3-8B and on the
challenging BIG-bench-Hard dataset. In contrast,
our selectively trained LVLMs minimally compro-
mise models’ linguistic capacity, which consis-

tently outperform fully-trained LVLMs, and some-
times even surpass their LLMs backbones. These
results support our hypothesis that positioning the
visual region strategically by tuning sparsely and
uniformly distributed layers better preserves LLMs’
linguistic knowledge and reasoning capabilities,
whereas full training may cause minor disruptions.

6 Visual Region-Based Layer Pruning

Beyond layer selection for efficient LVLMs train-
ing, we explore whether the visual region can also
benefit LVLM efficient inference. Although layer
pruning techniques (Men et al., 2024; Ma et al.,
2023) have been widely developed for LLM infer-
ence, they prove ineffective for LVLMs. As shown
in Figure 1 (right), minimal layer removal caus-
ing significant performance degradation on visual
tasks even using advanced angular distance based
pruning strategy (Gromov et al., 2024).
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Figure 4: Results of pruning LLaVA-1.5-7B using
angular distance-based strategy with 0∼4 layers re-
moved. Dashed lines represent pruning applied to the
fully trained model while solid layers denote our visual
region-based pruning within the targeted trained model.

Building on our visual region targeted training,
we propose a visual region-based pruning paradigm
that selectively prunes less-important layers outside
the visual region after training. Specifically, we fol-
low the angular distance based layer importance
metric and select 0∼4 layers with the lowest an-
gular distance outside the visual region. We do
not evaluate pruning beyond this range as remov-
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ing additional layers in LVLMs would lead to sig-
nificant performance collapse. We evaluate this
approach on LLaVA-1.5-7B across four datasets:
OCRVQA, TextVQA, DocVQA and SciQA. As
shown in Figure 4, our paradigm generally main-
tain higher performance, especially when pruning
3∼4 layers, even though the visual region targeted
trained model performs slightly worse than fully
trained model without pruning. This result demon-
strates that our paradigm effectively minimizes per-
formance degradation compared to pruning in full-
layer trained LVLMs, serving as an initial explo-
ration into LVLM-specific pruning strategies.

7 Related Work

7.1 Efficient Training and Inference

Recent research community has witnessed an emer-
gent interest in LLMs (Touvron et al., 2023; Chiang
et al., 2023) and LVLMs (Li et al., 2023c; Zhu et al.,
2023; Bai et al., 2023; Liu et al., 2024) due to their
remarkable ability to interpret and interact with the
world via linguistic and visual channels. With the
sustainably increased scale of LLMs and LVLMs,
training or inference using all model parameters
are cost for practical deployment. There are nu-
merous techniques for efficient model training and
inference. For instance, quantization reduce the
memory footprint of models by decreasing the pre-
cision of model weights (Dettmers et al.; Dettmers
and Zettlemoyer, 2023; Xiao et al., 2023). Low
rank adapters enable cost-effective fine-tuning by
updating only a small subset of the adapter parame-
ters (Hu et al., 2021; Karimi Mahabadi et al., 2021).

Moreover, LLMs exhibit significant redundancy
at the layer level, making training or inference with
all layers computationally wasteful, and this redun-
dancy is established for LVLMs as well, where
LLMs serve as the core cognitive brain for visual
learning. In responding, layer-wise freezing tech-
niques (Zhang et al., 2024b; Liang et al., 2023;
Pan et al., 2024) and layer pruning strategies (Men
et al., 2024; Ma et al., 2023; Gromov et al., 2024)
are proposed to enable efficient LLM fine-tuning
and inference. However, they are designed for
LLMs and fail to generalize effectively to visual
learning, often resulting in substantial performance
degradation. While Zhang et al. (2024a) introduce
parameter localization for visual tasks, their ap-
proach is highly task-specific and data-dependent,
limiting its applicability to versatile visual learn-
ing and neglecting the preservation of linguistic

capabilities. In contrast, we propose a more effi-
cient layer-selected strategy for LVLMs training
and inference.

7.2 Functional Regions in LLMs

The existing literature on cognitive science and
brain localization indicates that different regions
among the human brain are dedicated to specific
functions (Fedorenko and Varley, 2016), such as
frontotemporal language processing region local-
ized by Scott et al. (2017). Grill-Spector and
Malach (2004) highlight the existence of visual re-
gions in neuroscience (Grill-Spector and Malach,
2004). These insights have inspired an analogy
with LLMs, increasingly viewed as cognitive core
for remarkable performance across diverse tasks,
mirroring the human brain’s functionality in terms
of overall planning and processing. For exam-
ple, Aw et al. (2023) propose that LLMs can be
aligned to the human brain through instruction-
tuning. Building upon this parallel, Zhao et al.
(2023) unveil a core linguistic region within LLMs,
accounting approximately 1% of the model’s pa-
rameters. Li and Li (2024) identify a duality be-
tween Tulving’s synergistic ecphory model (SEM)
of memory and LLMs’ emergent abilities. Draw-
ing inspiration from these, our research focuses on
defining a vision region within LLMs, suggesting a
more effective and efficient pipeline to optimizing
LVLMs for visual tasks.

8 Conclusion

In this study, we introduce an effective and effi-
cient training paradigm for LVLMs by activating
a specific visual region within LLMs. This offers
a new pipeline for advancing LVLMs which first
identify such visual region using limited data fol-
lowed by efficient continual training. Specifically,
we investigating the necessity of tuning all layers
within LLM cores, and propose the concept of a
specialized visual region within LLMs. We con-
duct extensive empirical experiments with Bunny-
LLaMA-3-8B-V, covering a range of visual and
textual tasks. Our results reveal that selectively
updating no more than 25% of sparsely and uni-
formly layers, can preserve nearly 99% visual per-
formance, while also yielding comparable results
in textual tasks. This targeted LVLMs’ training
approach is consistently effective for different mod-
els and parameter scales, effectively reducing train-
ing time by 23% for LLaVA models and 12% for

30722



Bunny-LLaMA-3-8B-V. Additionally, we propose
a visual region-based layer pruning by strategy re-
moving non-critical layers outside the visual region
and achieve minimal performance drop. Overall,
our work presents a promising pathway for more
efficient LVLMs training and inference, while com-
plementing existing efficient training methods.

Limitations

Experimented Models Our work primarily fo-
cuses on LLaVA-1.5 family, Bunny-LLama3-8B-V
and Bunny-Phi3-mini-4B-V to demonstrate the ef-
fectiveness and efficiency of our proposed training
and inference paradigms for LVLMs. Future work
will expand to a broader range of models to fur-
ther validate the generalizability of our approach.
Additionally, we will explore extensions to other
modalities such as speech, and investigate the exis-
tence of other modality-specific regions to develop
more versatile and scalable multimodal models.

Sparse Architectures While our approach ef-
fectively reduces training and inference costs by
activating the visual region, it currently operate in
a layer-wise dense manner. Future efforts will fo-
cus on integrating our method with sparse model
architectures to optimize visual region activation.
For example, explore routing mechanisms target-
ing modality-specific partitions within models to
implement sparse mixture-of-expert architectures
with specialized functional areas, analogous to the
functional regions of the human brain.
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A Details of Layer Importance Metrics

To demonstrate the effectiveness of our heuristi-
cally identified sparsely and uniformly distributed
visual region, we conduct a comparative analysis
against several other layer importance metrics (orig-
inally for layer pruning) by selecting 8 layers and
re-training Bunny-Llama-3-8B-V. Below are the
details of how these metrics are calculated.

• Block Influence (BI) Score (Men et al., 2024):
serves as an indicator of layer importance by
measuring the transformation of hidden states.
We utilize the Flickr30k dataset (Jia et al., 2015)
to calculate the BI score for each layer within
LVLMs. The BI score of ith layers is calculated
as following:

BIi = 1− EX,t

XT
i,tXi+1,t

∥Xi∥2∥Xi+1∥2

where Xi represents the hidden states of the ith

layer and Xi,t denotes the hidden states of the
tth token at the ith layer. By calculating the
average cosine similarity of token states before
and after passing through a layer, we measure
the change magnitude across all tokens.

• Multimodal BI Score: As the above method
treats visual image and text as a single modality,
we propose a multimodal variant that separately
calculates the hidden state transformations of
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visual tokens and textual tokens, and take its av-
erage as a multimodal BI score. The Multimodal
BI score of ith layers is calculated as follows.

BI ′i = 1− 1

2
(EX,t

XT
i,tXi+1,t

∥Xi∥2∥Xi+1∥2

+EY,l

Y T
i,lYi+1,l

∥Yi∥2∥Yi+1∥2
)

Xi,t and Yi,l respectively mean the hidden states
of the tth visual token and the lth text token
at the ith layer. We calculate the cosine simi-
larity of each modality tokens before and after
passing through a layer, then average the results.
This balances the token quantity across various
modalities.

• Parameter Change Ratio (Zhao et al., 2023):
We calculate the relative change ratio of the pa-
rameters in LVLM against its backbone LLM
across each layer (by averaging all parameters
within each layer). The parameter change ratio
of ith layers is calculated as follows:

Ri = Eθ∈Li,j |
θ′j − θj

θj
|

where θj and θ′j respectively mean the jth pa-
rameter of layer Li in LLM and LVLM.

• Angular Distance (Gromov et al., 2024): We
calculate the Angular Distance of the parameters
in LVLM against its backbone LLM across each
layer (by averaging all parameters within each
layer). The Angular Distance of ith layers is
calculated as follows:

Di =
1

π
arccos

(
θ′j · θj

∥θ′j∥∥θj∥

)

where θj and θ′j respectively mean the jth pa-
rameter of layer Li in LLM and LVLM, ∥ · ∥
denotes the L2-norm and the factor of 1

π is a
constant.

• Image Attention Score: We calculate image
attention score to measure each layer’s affinity
for image information. We utilize the DocVQA,
OCRVQA, TDIUC, and RefCOCOg datasets,
sampling 50 instances from each dataset to cal-
culate the attention scores of the all image tokens
for each layer within Bunny-Llama-3-8B-V. The
heat map of image attention Score of every in-
stances for each layers in Bunny-Llama-3-8B-V

is showed in Figure 5. The image attention score
of one instance in ith layers Ai is calculated as
follows:

Ai =

∑k+Nimg−1
t=k

∑H
h=1

∑T
j=1 Attn[i][h, j, t]

NimgH

where H represents the number of attention
heads per layer and T denotes the total num-
ber of tokens at the ith layer. Nimg is the number
of image tokens of the instance. The index range
for the image tokens is from k to k +Nimg − 1.
While Attn[h, j, t] means the attention score of
the hth attention head for the jth token to the tth

token.
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Figure 5: Visualization of Image Attention Scores for every instances across all layers
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