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Abstract

Entity grounding, a crucial task in constructing
multimodal knowledge graphs, aims to align
entities from knowledge graphs with their cor-
responding images. Unlike conventional visual
grounding tasks that use referring expressions
(REs) as inputs, entity grounding relies solely
on entity names and types, presenting a sig-
nificant challenge. To address this, we intro-
duce a novel Iterative Self-Refinement (ISR)
scheme to enhance the multimodal large lan-
guage model’s capability to generate high qual-
ity REs for the given entities as explicit con-
textual clues. This training scheme, inspired
by human learning dynamics and human anno-
tation processes, enables the MLLM to itera-
tively generate and refine REs by learning from
successes and failures, guided by outcome re-
wards from a visual grounding model. This
iterative cycle of self-refinement avoids overfit-
ting to fixed annotations and fosters continued
improvement in referring expression genera-
tion. Extensive experiments demonstrate that
our methods surpasses other methods in en-
tity grounding, highlighting its effectiveness,
robustness and potential for broader applica-
tions1.

1 Introduction

As a crucial subtask in the construction of multi-
modal knowledge graphs, entity grounding (EG)
task aims to ground entities in knowledge graphs to
their corresponding multimodal data, especially im-
ages (Zhu et al., 2022). Following recent research
(Wang et al., 2023; Yu et al., 2023; Tang et al.,
2024), we focus on a fine-grained entity ground-
ing task: given an entity and an image, the task
requires the model to first determine whether the
entity is present in the image (i.e., whether it can be
grounded) and, for groundable entities, to further

*Corresponding author.
1Code & Data: https://github.com/Zhuocheng0579/ISR.

Figure 1: The comparison between existing knowledge-
enhanced entity grounding method and our referring
expression-centered method.

provide their corresponding visual regions (bound-
ing boxes).

Unlike conventional visual grounding (i.e., refer-
ring expression comprehension) tasks (Mao et al.,
2016; Yu et al., 2016), the input of entity ground-
ing task only consists of an entity and an image,
without referring expression (RE), which is an un-
ambiguous text description of exactly one object or
region in the image. The absence of REs can pose
significant obstacles for entity grounding, such as
ambiguity in entity identification when the image is
complex or contains multiple similar objects. For
example, as illustrated in Figure 1, without an RE,
the grounding model may face challenges in ac-
curately identifying “Stephen Curry” among three
visually similar basketball players. In light of the
success of methods (Deng et al., 2021; Wang et al.,
2022a; Li et al., 2023c) in visual grounding, it is
intuitive to incorporate REs into the entity ground-
ing task as explicit contextual clues for the model
to ground entities.

So far, acquiring accurate REs typically requires
manual annotations (Kazemzadeh et al., 2014;
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Plummer et al., 2015), which is labor-intensive and
impractical for the entity grounding task. Existing
automated referring expression generation methods
(Yu et al., 2016; Mao et al., 2016; Sun et al., 2022;
Ye et al., 2023) need to take visual regions (i.e.,
bouding boxes) as input, limiting their applicabil-
ity to the entity grounding task as they lack the
capability to directly generate REs for the given
entities without bounding boxes. Recent efforts
utilize the knowledge related to the given entity
as referring expression, acquiring knowledge from
Wikipedia (Ok et al., 2024) or large language mod-
els (Li et al., 2024b). Nevertheless, the knowledge
employed in these methods remains limited to fac-
tual descriptions and fails to adequately integrate
visual information, making it still challenging for
the grounding model to provide correct answer, as
illustrated in Figure 1 (a).

To effectively incorporate REs into the entity
grounding task, we train a multimodal large lan-
guage model (MLLM, Li et al., 2024a; Wang et al.,
2024b; Chen et al., 2024) to generate high qual-
ity REs for the given entities, then utilize a visual
grounding model to give the bounding box predic-
tions according to the REs, as illustrated in Figure 1
(b). The focus is on how to enhance the capability
of MLLMs to generate accurate and unambigu-
ous REs for the given entities. A straight-forward
approach for training the MLLM is to directly per-
form supervised fine-tuning (SFT) on expert REs
annotated by human or advanced AI models (e.g.
GPT-4o). However, standard SFT methods overly
rely on the fixed set of expert-annotated REs, which
can lead to overfitting and hinder continued im-
provement during training.

As we know, humans usually master a new skill
in continuous exploration and experimentation,
learning from feedback to progressively enhance
their proficiency. Building on this observation, we
propose a novel Iterative Self-Refinement (ISR)
training scheme for referring expression genera-
tion, which encourages the MLLM to explore valid
ways of describing the target entity during train-
ing and learn from both successes and failures. To
obtain feedback for the model during training, we
draw inspiration from ReferitGame (Kazemzadeh
et al., 2014), which is widely adopted in the pro-
cess of human referring expression annotation. In
this two-player game, Player 1 writes RE for the
target object, and Player 2 is asked to click on the
region corresponding to the RE written by Player
1. The correctness of Player 2 serves as feedback

on the quality of the written RE. Analogously, at
each iteration of the training loop, we let the cur-
rent MLLM act as Player 1, generating multiple
REs for each given entity. We employ a visual
grounding model as Player 2, providing bounding
box predictions according to the generated REs.
The correctness then serves as an outcome reward
to judge the quality of the REs. Based on the out-
come rewards, we construct the preference data
to perform Direct Preference Optimization (DPO,
Rafailov et al., 2024) training, thereby enhancing
the MLLM’s capability.

The main contributions of our work could be
summarized as follows:
• As far as we know, we are the first to incorporate

referring expression generation into the entity
grounding task, enhancing its process by provid-
ing descriptive textual clues.

• We introduce the ISR training scheme, that en-
courages the MLLM to explore diverse ways of
generating REs while learning from both correct
and incorrect outcomes, without over-reliance on
a fixed set of expert annotations.

• Through extensive experiments, we demonstrate
that our methods significantly outperform previ-
ous methods for entity grounding.

2 Related Work

Entity Grounding As an integral part of con-
structing multimodal knowledge graphs, entity
grounding focuses on aligning entities within the
knowledge graph to their corresponding multi-
modal information, particularly visual data. Pre-
vious methods primarily rely on online encyclo-
pedic resources (Wang et al., 2020; Alberts et al.,
2020) or search engines (Oñoro-Rubio et al., 2017;
Liu et al., 2019) to retrieve images for a given en-
tity. However, these approaches often results in
noise, as the retrieved images may not contain the
specified entity or may include other unrelated en-
tities. Consequently, recent research has shifted
focus toward a more fine-grained entity ground-
ing task (Wang et al., 2023; Yu et al., 2023; Tang
et al., 2024). Given an entity and an image, the
task requires the model to first ascertain whether
the entity is groundable and for groundable enti-
ties, to further provide their corresponding visual
regions. Many previous studies (Yu et al., 2023; Ok
et al., 2024) rely on object detection models (Zhang
et al., 2021b; Girshick et al., 2014) to identify can-
didate regions, which are then matched to entities.
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However, the performance of these approaches is
inherently constrained by the capabilities of the
object detection models. To address this limitation,
Li et al. (2024b) explored the use of visual ground-
ing models, incorporating entity-related knowledge
as referring expressions. Nonetheless, since the
knowledge does not directly include visual infor-
mation, it poses challenges for visual grounding
models to make accurate predictions.

Multimodal Large Language Models Recent
work on multimodal large language models has
made significant progress in integrating and pro-
cessing multiple modalities, including text, im-
ages, and audio. These models aim to improve
cross-modal reasoning and generation, advanc-
ing capabilities toward more general-purpose AI
systems. Several approaches, such as Flamingo
(Alayrac et al., 2022), BLIP-2 (Li et al., 2023b),
and MiniGPT (Zhu et al., 2023), have contributed
to better cross-modal understanding and generation.
Additionally, researchers have focused on aligning
model outputs with human preferences to ensure
the generated content adheres to principles of being
helpful, honest, and harmless (Bai et al., 2022a).
Techniques such as reinforcement learning with
human feedback (RLHF) and its multimodal exten-
sions (Zhao et al., 2023; Wang et al., 2024a; Zhang
et al., 2024) have been applied to enhance relia-
bility and reduce harmful outputs. These method-
ologies also help make MLLMs more interpretable
and ethically robust, supporting their potential use
in real-world applications.

3 Methodology

During inference phase, as depicted in Figure 1
(b), we utilize an MLLM to generate an RE for
the given entity. The generated RE then serves
as the input of a visual grounding model, which
provides the bounding box prediction according to
the RE. In this section, we first collect the expert
REs for training (Section 3.2). Then, we briefly
introduce the fine-tuning of the visual grounding
model (Section 3.3). Finally, we elaborate on the
ISR training process for enhancing the MLLM’s
ability to generate accurate REs (Section 3.4).

3.1 Task Formulation

Given an entity e, its type c ∈ {PER,LOC,
ORG,MISC}, and an image I , the goal of entity
grounding is to map the entity to its correspond-
ing visual region v in the image. If e appears in

I , v consists of a 4D coordinates representing the
top-left and bottom-right locations of the grounded
bounding box, i.e., (x1, y1, x2, y2). Otherwise, v
should be None.

3.2 Expert Referring Expressions Collection

Define E as the set of all entities in the dataset, Eg

as the subset of groundable entities and Eu as the
subset of ungroundable entities. For each ground-
able entity e ∈ Eg, we draw its bounding box2 on
the corresponding image I , then we prompt GPT-
4o to generate the expert referring expression s.
The prompt used here could be seen in Appendix
A.1. For each ungroundable entity e ∈ Eu, we
define its expert RE as "The entity does not appear
in the image", which we denote as su. Additionally,
we manually check the REs generated by GPT-4o
for accuracy and make corrections where needed.

3.3 Visual Grounding Model Fine-tuning

The visual grounding model takes referring expres-
sion and image as input, then predicts the visual
region (bouding box) according to the referring
expression. It plays two roles in our method: (1)
during the training phase, it provides feedback for
the REs generated by the MLLM (Section 3.4.2);
(2) during inference phase, it gives the final predic-
tions. We employ off-the-shelf visual grounding
models in this work, fine-tuning them on the expert
REs and ground-truth bounding boxes:

DVG =
{
(I, s, v)(i)

∣∣∣e(i) ∈ Eg

}
(1)

where v represents the ground-truth bounding box
and Eg denotes the set of groundable entities. We
train the VG model by minimizing the loss:

LVG(θ) = −E(I,s,v)∼DVG
[logPθ(v|I, s)] (2)

where θ refers to the model parameters.

3.4 Iterative Self-Refinement of RE
Generation

The complete training process of ISR consists of
two stages: supervised fine-tuning initialization
(Section 3.4.1) and iterative preference learning
(Section 3.4.2).

2In cases where there are multiple ground-truth bounding
boxes, we select the largest one by area.
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Figure 2: The overall architecture of ISR. The MLLM is first fine-tuned on expert REs. Then we optimize the
MLLM through iterative preference learning.

3.4.1 Supervised Fine-tuning Initialization
To equip the MLLM with a foundational ability
to generate REs based on the given entities and
images, we first perform supervised fine-tuning on
the model. We randomly select a small subset of
samples DSFT for supervised fine-tuning, while
the remaining samples, referred to as DPL, were
reserved for iterative preference learning. We fine-
tune the MLLM on the auto-regressive loss to get
the π0:

LSFT(πθ) = −E(p,s)∼DSFT
[log πθ(s|p)] (3)

where p denotes the prompt for the MLLM, consist-
ing of instruction, entity and image (see Appendix
A.2) and s is the expert referring expression.

3.4.2 Iterative Preference Learning
Starting from the supervised fine-tuned MLLM π0,
we adopt an iterative training scheme to guide the
model toward generating more accurate REs.

Reward Definition Reward serves as a measure
of how well the model’s output aligns with human
preferences or task objectives. Prior studies usually
rely on reward models trained on human preference
annotations (Ouyang et al., 2022; Bai et al., 2022a;
Dubey et al., 2024), or advanced AI models (Bai
et al., 2022b; Lee et al., 2023) to assign rewards for
the model’s outputs. However, these approaches de-
mand additional cost of human labeling or calling
APIs, and may not directly reflect the quality of the
generated REs. Inspired by the human RE labeling
process ReferitGame (Kazemzadeh et al., 2014),

we adopt a more simple yet effective approach to
define the reward of RE. Given a generated RE ŝ of
an entity e, (1) if e is groundable, we feed the RE
and image into the VG model to get the predicted
visual region:

v̂ = MVG(I, ŝ) (4)

where MVG denotes the VG model, ŝ represents the
RE generated by the MLLM and v̂ is the predicted
visual region. Then we check the correctness of the
v̂ to assign a reward for ŝ. (2) If e is ungroundable,
we just check if ŝ is su (i.e., The entity does not
appear in the image). Formally, we define the
binary reward of ŝ as:

r =





1, e ∈ Eg ∧ v̂ is correct
1, e ∈ Eu ∧ ŝ = su

0, otherwise

(5)

where Eg is the set of groundable entities and Eu

is the set of ungroundable entities.

Preference Dataset Construction At iteration
t, we sample a mini-batch of prompts from DPL.
For each prompt p ∈ DPL, we aim to construct
an preference pair sw ≻ sl, where sw and sl rep-
resents the better and worse RE. Specifically, for
each each prompt p, we generate K different REs
{ŝ1, ..., ŝK} by sampling from the model πt−1,
which is from the previous iteration:

ŝk ∼ πt−1(s|p), k = 1...K (6)

We randomly select a generated RE with a reward
of 0 as sl. If none of the REs receive a reward of 0,
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Algorithm 1: Iterative Self-Refinement
Input: Dataset DPL, max iteration number T ,

base MLLM πθ, sampling number K
Output: Final MLLM πθ∗

Supervised fine-tuned πθ to π0
for t = 1 to T do

πref = πt−1

Sample a mini-batch of prompts from DPL

Generate K different REs for each prompt:
ŝk ∼ πt−1(s|p), k = 1...K

Calculate their rewards: {r1, ..., rK}
Construct the preference dataset:
Dt =

{
(p, sw, sl)

(i)
}|Dt|
i=1

Update the MLLM’s parameters:
πt = argminπθ

LDPO(πθ;πref)
end

we simply discard the prompt. A straight-forward
choice for the sw is the expert RE from the DPL

dataset. However, this may limit the diversity of
the preference data and the model could be prone
to overfitting to the expert REs. To mitigate this,
we select sw based on different situations:
1. All K generated REs have a reward of 0, which

means that the MLLM currently struggles to
generate a correct RE for the given entity. In
this case, we choose the expert RE as sw, which
serves as the expert guidance for the MLLM on
how to generate a correct RE.

2. If any of the K generated REs receives a reward
of 1, we randomly select one of them as sw.
This encourages the MLLM to explore multiple
valid ways of describing the target entity, and
to learn from and reinforce its own successes,
without overfitting to a fixed set of expert REs.

Finally, we get the preference dataset at iteration t:

Dt =
{
(p, sw, sl)

(i)
}|Dt|

i=1
(7)

DPO Training Direct Preference Optimization
(DPO, Rafailov et al., 2024) offers a scalable, di-
rect approach to preference learning by focusing on
aligning the model’s output to preferred responses,
without the need for complex reinforcement learn-
ing algorithms. Given the preference dataset Dt at
iteration t, DPO optimizes the model by training it
to increase the likelihood of preferred RE sw rela-
tive to the less preferred one sl. We fine-tune the
MLLM by minimizing the DPO loss:

LDPO(πθ ;πref ) =

− E(p,sw,sl)∼Dt

[
log σ

(
β log

πθ(sw|p)
πθ(sl|p)

− β log
πref (sw|p)
πref (sl|p)

)]

(8)
This equation reflects the goal of maximizing the

probability of generating the higher-reward expres-
sion sw over the lower-reward expression sl for a
given prompt p. By iteratively constructing pref-
erence dataset and applying DPO at each step, the
model gradually becomes more effective at generat-
ing accurate and contextually appropriate referring
expressions, improving its performance over multi-
ple rounds of preference learning.

4 Experiments

4.1 Experiment Settings
Datasets We conduct our experiments utilizing
the images, entities and their bounding box annota-
tions in Twitter-GMNER dataset (Yu et al., 2023).
The dataset is built on two MNER datasets, i.e.,
Twitter-15 (Zhang et al., 2018) and Twitter-17 (Yu
et al., 2020), with human bounding box annota-
tions. The dataset contains four types of entities:
person (PER), location (LOC), organization (ORG)
and miscellaneous (MISC). We collect expert REs
for the entities in the training set and use them to
train our models. Please refer to Appendix B for
more details.

Implementation Details We utilize Qwen2-VL-
7B (Wang et al., 2024b) as the MLLM to generate
REs, and OFALarge (Wang et al., 2022a) as the vi-
sual grounding model. The size of DSFT is 1457
and the size of DPL is 10000. For the SFT training
of the MLLM, the batch size is 32 and the learning
rate is 1e-4 with 3% warm up and a cosine sched-
uler. For sampling REs from the MLLM, we set
the temperature to 0.8 and the number of samples
K to 4, using vllm (Kwon et al., 2023) to accelerate
the process of generation. For the DPO training,
the batch size is 32 and the learning rate is 5e-6
with 10% warm up. We set the β in the DPO loss
to 0.5. All the training of the MLLM uses AdamW
optimizer (Loshchilov, 2017) and LoRA (Hu et al.,
2021) with rank set to 32 and α set to 64. For the
fine-tuning of the visual grounding model, we set
the batch size to 4 and the learning rate to 3e-5.
All experiments are conducted on 1 NVIDIA A800
80G GPU.

Baselines We compare our method with three
types of baselines. (1) Object detection-based meth-
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ods, including RCNN-EVG and VinVL-EVG (Yu
et al., 2023). These methods first employ an ob-
ject detection method (Girshick et al., 2014; Zhang
et al., 2021b) to identify all candidate objects (i.e.,
visual regions), then choose the visual region with
the highest probability. If all probabilities are lower
than a threshold, the prediction region is None. (2)
Knowledge-enhanced methods, including RiVEG
(Li et al., 2024b) and its data-augmented variant,
which attempt to utilize knowledge as a substitute
for REs. (3) Closed-source advanced MLLMs, in-
cluding GPT-4o and GPT-4o-mini, which exhibit
robust text and visual analysis capabilities and have
demonstrated remarkable performance across vari-
ous multimodal tasks. (4) Fine-tuned Open-source
MLLMs, including Qwen2-VL-7B (Wang et al.,
2024b), InternVL2-8B (Chen et al., 2024) and
LLaVA-NeXT-7B (Liu et al., 2024), which exhibit
remarkable performance in visual grounding tasks.
After fine-tuning on the entity grounding dataset
(see Appendix A.3 for the prompt), they can serve
as strong baselines for comparison. Except for the
closed-source advanced MLLMs, all other meth-
ods have been fine-tuned on the training set of the
entity grounding dataset.

Evaluation We evaluate all methods on the en-
tities of the test set, and report the accuracy for
four distinct entity types as well as the overall ac-
curacy. For groundable entities, following previous
work, we define a model prediction as correct if and
only if the intersection-over-union (IoU) between
the predicted bounding box and the ground-truth
bounding box is greater than 0.5. For ungroundable
entities, the model is required to output "None" to
be considered correct.

4.2 Results

Table 1 shows the performance comparison of var-
ious methods on the entity grounding task across
four entity types as well as the overall accuracy.
Our proposed method achieves SOTA performance
with an overall accuracy of 82.78%, demonstrating
its effectiveness in entity grounding.

We notice that conventional object detection-
based achieve moderate performance, with over-
all accuracies of 62.33% and 63.51%, respec-
tively. Their performance is constrained by the
limitations of object detection methods. Improve-
ments can be observed when a more advanced
object detection model is used (e.g., VinVL vs.
RCNN). Knowledge-enhanced approaches have

significantly improved performance. However, the
absence of visual information in the incorporated
knowledge imposes limitations on achieving fur-
ther advancements.

The Closed-Source Advanced MLLMs, GPT-4o
and GPT-4o-mini struggle significantly with person
(PER) entities and have the lowest overall accura-
cies of 58.51% and 52.62% respectively. Their
lack of task-specific fine-tuning likely impact their
performance. In contrast, open-source MLLMs
fine-tuned for this task generally outperform both
object detection-based methods and closed-source
models. Among them, Qwen2-VL-7B performs no-
tably well with an overall accuracy of 80.77%. We
further improve the performance by using ISR to
train the MLLM to generate referring expressions,
which bridge the gap between entity names and
their visual regions. Compared to directly using
Qwen2-VL-7B for predictions, our method boosts
overall accuracy by 2.01%, with a notable 4.53%
improvement in the MISC category.

4.3 Application to GMNER task
The entity grounding task is a crucial subtask of
the recent proposed Grounded Multimodal Named
Entity Recognition (GMNER, Yu et al., 2023) task,
which aims to identify, classify and ground the
entities in the text-image social post. The task for-
mulation of GMNER is shown in Appendix D.To
demonstrate the effectiveness and broad applicabil-
ity of our method, we apply it to solve the GMNER
task in conjunction with Multimodal Named Entity
Recognition (MNER, Zhang et al., 2018) methods,
which identifies and classifies named entities in the
text by leveraging both textual and visual informa-
tion. Here we employ two MNER methods, UMT
(Yu et al., 2020) and PGIM (Li et al., 2023a), and
compare the performance on the Twitter-GMNER
dataset with previous methods.

The experiment results in Table 2 demonstrate
the superiority of our EG method over the EG
modules in previous GMNER methods. When
using the same MNER methods, our approach
achieves superior performance. For instance, UMT
+ Qwen2-VL-7B (ISR) + OFALarge improves the F1
score by 14.23% compared to UMT-VinVL-EVG,
while PGIM + Qwen2-VL-7B (ISR) + OFALarge
surpasses RiVEG (PGIM + OFA) by 5.29%. Even
with a less advanced MNER model (i.e., UMT), the
enhanced entity grounding performance enables us
to reach near-state-of-the-art levels on the GMNER
task. With a more advanced MNER model (i.e.,
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Methods w/ FT? PER LOC ORG MISC Overall

Object Detection-Based

RCNN-EVG (Yu et al., 2023) ✓ 61.23 73.76 58.46 59.95 62.33
VinVL-EVG (Yu et al., 2023) ✓ 62.59 77.48 59.25 58.69 63.51

Knowledge-Enhanced

RiVEG (Li et al., 2024b) ✓ 74.73 91.58 73.82 78.84 77.82
RiVEG (Augmented) (Li et al., 2024b) ✓ 72.46 92.08 71.32 77.83 76.13

Closed-Source Advanced MLLMs

GPT-4o ✗ 35.51 89.36 71.32 70.53 58.51
GPT-4o-mini ✗ 33.06 79.21 62.70 63.73 52.62

Fine-tuned Open-Source MLLMs

InternVL2-8B (Chen et al., 2024) ✓ 72.37 91.09 68.96 77.58 75.30
LLaVA-NeXT-7B (Liu et al., 2024) ✓ 78.98 90.59 72.57 78.84 79.20
Qwen2-VL-7B (Wang et al., 2024b) ✓ 80.52 91.83 77.27 75.82 80.77

Qwen2-VL-7B(Full SFT) + OFALarge ✓ 80.62 92.82 77.27 79.60 81.56
Qwen2-VL-7B (ISR) + OFALarge ✓ 83.51 92.33 76.96 80.35 82.78

Table 1: The performance comparison (Acc@0.5) of different methods on the dataset. Except for the closed-source
advanced MLLMs, all other methods have been fine-tuned on the training set. Our proposed method demonstrates
superiority over other approaches, achieving the highest accuracy for PER, LOC, MISC categories as well as in
overall performance.

Methods Twitter-GMNER
Pre. Rec. F1

Text

HBiLSTM-CRF-None (Lu et al., 2018) 43.56 40.69 42.07
BERT-None (Devlin et al., 2019) 42.18 43.76 42.96
BERT-CRF-None 42.73 44.88 43.78
BARTNER-None (Yan et al., 2021) 44.61 45.04 44.82

Text+Image

GVATT-RCNN-EVG (Lu et al., 2018) 49.36 47.80 48.57
UMT-RCNN-EVG (Yu et al., 2020) 49.16 51.48 50.29
UMT-VinVL-EVG (Yu et al., 2020) 50.15 52.52 51.31
UMGF-VinVL-EVG (Zhang et al., 2021a) 51.62 51.72 51.67
ITA-VinVL-EVG (Wang et al., 2022b) 52.37 50.77 51.56
BARTMNER-VinVL-EVG (Yu et al., 2023) 52.47 52.43 52.45
H-Index (Yu et al., 2023) 56.16 56.67 56.41
TIGER (Li et al., 2024c) 55.84 57.45 56.63
MQSPN (Tang et al., 2024) 59.03 58.49 58.76
RiVEG (PGIM + OFA) (Li et al., 2024b) 67.02 67.10 67.06
SCANNER (Ok et al., 2024) 68.34 68.71 68.52

UMT + Qwen2-VL-7B(Full SFT) + OFALarge 64.26 63.43 63.84
PGIM + Qwen2-VL-7B(Full SFT) + OFALarge 72.03 71.10 71.56
UMT + Qwen2-VL-7B (ISR) + OFALarge 65.98 65.12 65.54
PGIM + Qwen2-VL-7B (ISR) + OFALarge 72.46 72.24 72.35

Table 2: Experiment results on the Twitter-GMNER
dataset.

PGIM), our approach outperforms the previous
SOTA SCANNER model, with a 3.83% improve-
ment in F1 score.

5 Analysis

5.1 Ablation Studies
Comparison with Supervised Fine-tuning In
Table 3, we show the performance comparison of
ISR with SFT training. We can observe that, with

Methods PER LOC ORG MISC Overall

Qwen2-VL-7B 61.96 75.25 60.66 68.01 64.69
+ SFT (Initialization) 80.25 91.34 76.33 79.09 80.85
+ SFT (Full) 80.62 92.82 77.27 79.60 81.56

+ ISR (Iteration=1) 82.25 91.83 76.64 78.84 81.83
+ ISR (Iteration=2) 82.97 92.08 76.64 79.85 82.34
+ ISR (Iteration=3) 83.24 92.08 76.96 79.85 82.54
+ ISR (Iteration=4) 83.51 92.33 76.96 80.35 82.78
+ ISR (Iteration=5) 83.51 92.33 76.80 79.85 82.66

Table 3: The performance comparison of ISR at differ-
ent iterations with SFT training.

SFT initialization on a small amount of expert REs
(Section 3.4.1), the model’s performance is signif-
icantly enhanced. However, further SFT training
on the remaining data yields only marginal gains.
Starting from the same SFT-initialized model, ISR
surpasses the performance of full-data SFT after
just one iteration of training, with subsequent itera-
tions leading to continued improvement in model
performance until iteration 5.

Strategies of Preference Dataset Construction
In our ISR training method, the strategy of prefer-
ence dataset construction is essential for guiding
the model’s RE generation. In Figure 3, we com-
pare our strategy stated in Section 3.4.2 with two
variations: one without learning from successes
and one without expert guidance. The former omits
the mechanism that allows the model to learn from
previously successful REs by always choosing ex-
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Figure 3: The performance comparison of different
strategies of preference dataset construction. Iteration=0
represents the MLLM after SFT initialization.
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Figure 4: The model performance with different sam-
pling number K.

pert REs as sw. This limits the model’s ability
to reinforce successful exploration outcomes and
results in over-fitting, as observed in the last few
iterations. On the other hand, the variant without
expert guidance removes the use of expert REs as
fallback preferred responses, relying solely on self-
generated REs. This strategy restricts the model’s
access to high-quality guidance when all generated
REs are unsatisfactory,

5.2 Impact of the Sampling Number

We conduct experiments to explore the impact of
the sampling number K, which represents the num-
ber of REs generated per entity prompt during each
training iteration. As shown in Figure 4, the ac-
curacy generally improves as K increases, with
noticeable gains from K = 1 to K = 4. This indi-
cates that too small K restricts the model’s explo-
ration, limiting its opportunities to generate diverse

MLLM VG PER LOC ORG MISC Overall

Qwen2-VL-7B OFALarge 83.51 92.33 76.96 80.35 82.78

Qwen2-VL-2B OFALarge 81.16 92.33 76.33 80.10 81.56
LLaVA-NeXT-7B OFALarge 83.06 92.08 76.80 78.59 82.22
Llama-3.2-11B-Vision OFALarge 84.69 93.32 75.86 79.60 83.05

Qwen2-VL-7B OFABase 83.24 92.57 77.12 79.09 82.54
Qwen2-VL-7B Qwen2-VL-7B 84.24 92.57 77.27 81.11 83.33

Table 4: The performannce comparison of different
MLLM and VG model selections.

REs for each entity, which hampers the effective
construction of preference data pairs. However,
the accuracy gains start to plateau after K = 4,
and increasing K will lead to additional computa-
tional burden and time costs. Based on our findings,
K = 4 provides a balance, achieving high accuracy
without excessive computational demands.

5.3 Different MLLMs and VG Models
To further demonstrate the effectiveness and ro-
bustness of our approach, we conducted experi-
ments with various MLLM and VG models, mod-
ifying only one component at a time while keep-
ing the other at its default setting. The MLLM
models include Qwen2-VL-2B, LLaVA-NeXT-7B
and Llama-3.2-11B-Vision, and the VG models in-
clude OFABase and Qwen2-VL-7B. As shown in
Table 4, replacing the MLLM with similarly sized
models results in stable performance. Even with a
much smaller model, Qwen2-VL-2B, only a slight
performance decline is observed, illustrating the
robustness of our ISR training approach and its
adaptability to various MLLM models. Meanwhile,
replacing the MLLM with a larger model leads to
improved performance. A similar trend is observed
when changing the VG model: using the smaller
OFABase model leads to only minor performance
drops, while switching to a more advanced VG
model, Qwen2-VL-7B, yields performance gains.

6 Conclusion

In this paper, we present ISR, a novel training
scheme to enhance the capability of multimodal
large language models (MLLMs) in generating
high-quality referring expressions (REs) for the
entity grounding task. Through an iterative training
process, the MLLM is encouraged to explore di-
verse ways of generating REs while learning from
both successes and failures, without over-reliance
on a fixed set of expert annotations. Extensive ex-
periments validate the effectiveness and robustness
of our method, achieving state-of-the-art perfor-
mance in entity grounding and demonstrating its
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adaptability to broader multimodal tasks, such as
GMNER. These findings highlight the potential of
our approach to advance entity grounding method-
ologies, paving the way for more robust applica-
tions in multimodal knowledge graph construc-
tion and other complex multimodal understanding
tasks.

Limitations

Despite its promising results, our proposed method
has certain limitations that warrant further inves-
tigation. First, the reliance on a visual ground-
ing model for feedback may constrain the sys-
tem’s performance to the accuracy and robustness
of the grounding model employed. Future work
could explore the integration of feedback from vi-
sual grounding outcome, advanced AI models, and
human-beings to achieve a more comprehensive
reward signal. Second, the method assumes the
availability of high-quality training data, including
entities and ground truth bounding boxes, which
may not be feasible in all domains. Additionally,
during our training process, sampling is required
to construct preference data, which incurs addi-
tional time costs. Furthermore, DPO training de-
mands a more substantial GPU memory compared
to conventional SFT training. Future work could
investigate more resource-efficient training method-
ologies.
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A Prompts Used in Our Work

A.1 Prompt for Expert REs Collection

We show the prompt for GPT-4o to generate the
expert referring expression for a given entity. We
first draw its ground-truth bounding box on the
image, then prompt GPT-4o to generate an RE of
the bounding box.

Give a referring expression in one sentence,
according to which the green bounding box in
the image can be determined without any other
prior knowledge.

A.2 Prompt for MLLM’s RE Generation

We show the prompt for MLLM to generate REs.

Given an image and a named entity, please
check if the entity appears in the image. If
it exists, please provide a description of the
entity in the image.
Image: {image}
Entity: {entity (type)}

A.3 Prompt for MLLM’s Direct Entity
Grounding

We fine-tune several open-source MLLMs on the
entity grounding training set as baselines and
prompt them to direct solve the entity grounding
task.

Given an image and a named entity, please
check if the entity appears in the image. If it
exists, please provide the corresponding bound-
ing box; otherwise, please answer “The entity
does not appear in the image.”
Image: {image}
Entity: {entity (type)}

B Detailed Statistics of the Dataset

We utilize the images, entities and their bounding
box annotations in Twitter-GMNER dataset (Yu
et al., 2023) as the entity grounding dataset for
training and evaluation. The statistics of the dataset
are shown in Table 5. It is noteworthy that we man-
ually filter out entities with incorrect bounding box
annotations in the training and development sets
of the Twitter-GMNER dataset. To maintain the

Split #Entity #Groundable Entity #Image

Train 11457 4449 6565
Dev 2406 964 1405
Test 2543 1046 1500

Total 16406 6459 9470

Table 5: The statistics of the entity grounding dataset.

fairness and integrity of the evaluation, all entities
in the test set were retained without modification.

C Training and Inference Costs

The detailed training and inference costs are shown
below:
• GPU Hours: The training was conducted on

1 NVIDIA A800 80G GPU. SFT initialization
stage took about half an hour. Each iteration of
the ISR training process, including preference
data construction and DPO training, took approx-
imately 3 hours, and the total training time was
about 12 GPU hours.

• Expert Annotation Cost: The expert REs were
generated using GPT-4o, with a total cost of ap-
proximately $20.

• Closed-source Model API Cost: We prompt
GPT-4o and GPT-4o-mini to directly solve en-
tity grounding task as our baselines. The total
cost for GPT-4o was $10 and the total cost for
GPT-4o-mini was $0.6.

D Task Formulation of GMNER

Given a sentence S = {s1, ..., sn} and its corre-
sponding image I , the goal of GMNER is to extract
a set of multimodal entity triples:

Y = {(e1, c1, v1), ..., (em, cm, vm)} (9)

where ei is the i-th entity in the sentence, ci ∈
{PER,LOC,ORG,MISC} refers to the type
of ei, and vi denotes the visually grounded region
of ei. If ei is ungroundable, vi should be None;
otherwise, vi consists of a 4D coordinates repre-
senting the top-left and bottom-right locations of
the grounded bounding box, i.e., (x1, y1, x2, y2).

E Case Study

Here, we further provide a detailed comparison
of the predictions given by knowledge-enhanced
method RiVEG (Li et al., 2024b) and our proposed
method for challenging samples, which illustrates
how refined REs generated by the MLLM trained
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Entity: Stephen Curry (PER) 

Entity: Under Armour (ORG)

RiVEG Ours

RE: The basketball player in the 

center of the image. 

Knowledge: Stephen Curry(PER)-

A professional basketball player 

who is being discussed by Russell 

Westbrook.

RE: The logo on the yellow 

glove.

Knowledge: Under Armour(ORG)-

A sports apparel brand in the US.

None

Inputs

Figure 5: A case study on the entity grounding predictions given by RiVEG and our method.

with ISR benefit the process of entity grounding,
providing fine-grained visual information for the
grounding model. The cases are shown in Figure 5.

In the first case, the entity to be grounded is
“Stephen Curry (PER)” in a basketball game im-
age. The RiVEG method, leveraging knowledge:
“a professional basketball player who is being dis-
cussed by Russell Westbrook”, fails to correctly lo-
cate Stephen Curry in the image. This error arises
because the factual description focuses on textual
context and lacks explicit visual clues to unambigu-
ously ground the entity. In contrast, our method
generates the RE: “The basketball player in the
center of the image”, which explicitly describes the
spatial position of Stephen Curry in the image. This
precise RE enables the visual grounding model to
accurately identify the bounding box for Stephen
Curry.

The second example involves grounding the
entity “Under Armour (ORG)”, a sports apparel
brand, in an image featuring gloves with the Under
Armour logo. RiVEG relies on the factual descrip-
tion “a sports apparel brand in the US”, which pro-
vides no direct visual information. Consequently,
the model fails to ground the entity. Our method
generates the RE: “The logo on the yellow glove”,
effectively linking the entity to a specific visual
attribute (the logo) and its associated object (the
glove). This RE facilitates the grounding model to
locate the correct bounding box around the logo.
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