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Abstract

Large Vision-Language Models (LVLMs) have
demonstrated remarkable performance across
diverse tasks. Despite great success, recent
studies show that LVLMs encounter substantial
limitations when engaging with visual graphs.
To study the reason behind these limitations,
we propose VGCURE, a comprehensive bench-
mark covering 22 tasks for examining the fun-
damental graph understanding and reasoning
capacities of LVLMs. Extensive evaluations
conducted on 14 LVLMs reveal that LVLMs
are weak in basic graph understanding and
reasoning tasks, particularly those concerning
relational or structurally complex information.
Based on this observation, we propose a
structure-aware fine-tuning framework to en-
hance LVLMs with structure learning abilities
through three self-supervised learning tasks.
Experiments validate the effectiveness of our
method in improving LVLMs’ performance on
fundamental and downstream graph learning
tasks, as well as enhancing their robustness
against complex visual graphs.1

1 Introduction

Graphs serve as a fundamental data structure across
a wide range of domains, including social network
analysis (Schweimer et al., 2022), recommendation
systems (Zhang et al., 2023), knowledge graphs
(Zhang et al., 2024b), chemistry (Cao et al.,
2024), biomedical molecules (Liu et al., 2023) and
semantic reasoning (Bai et al., 2022). Existing
methods have achieved great success in enhancing
understanding and reasoning abilities in graph-
based tasks (Kim et al., 2023a; Chen et al., 2024).
However, these approaches typically focus on
specific graph types or tasks, posing challenges
in designing versatile systems that are suitable for
various tasks and graphs across diverse domains.

*Corresponding Author
1Our dataset and code are available at https://github.

com/AAAndy-Zhu/VGCure.

Synthetic Visual Graphs

Real-world Visual Graphs

BA ER SFN SBM Star

DBLP DBpedia Openflights PubChemQC Social Network

Graph Understanding

Graph Reasoning

Nested Node 

Query

Conjunctive 

Relation Query

Common 

Neighbor Check

Relation 

Analogy Query

Shared Relation 

Neighbor Query

FC QA FC

QA FC

QA FCQA FC

Nested Relation 

Query

QA FC

Connective 

Path Query

QA FC

Node Number 

Query

QA FC

Edge Number 

Query

QA FC

Directedness 

Check

FC

Degree 

Query

QA FC

Neighbor 

Query

QA FC

Graphs

Tasks

Figure 1: Overall of our VGCURE benchmark.

Recently, Large Vision-Language Models
(LVLMs) have exhibited outstanding performance
across a wide range of downstream tasks by
unifying various inputs in the form of images and
processing them with human-like understanding
and reasoning abilities (Zhu et al., 2024; Zheng
et al., 2024; Zhang et al., 2025). This triggers a
growing interest in employing LVLMs for graph
learning problems, as the vision modality offers a
natural and intuitive way for comprehending struc-
tural information and facilitating general graph
reasoning (Poklukar et al., 2022). However, recent
studies (Wei et al., 2024; Li et al., 2024c; Ai et al.,
2024) reveal significant challenges for LVLMs in
graph-based learning tasks, where LVLMs achieve
less than 15% accuracy on mathematical graph
reasoning tasks, markedly below their performance
in image and text reasoning (Li et al., 2024c).
Therefore, a natural challenge arises: why do
LVLMs fail in graph learning, and how to enhance
LVLMs to process graphs like professionals?

To address this challenge, we begin by identi-
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Benchmark Evaluation Topic # Tasks Graph Type Anonymity # Scale

VisionGraph Graph Theory Problems 10 Synthetic ! 3,000
Ai et al. (2024) Multi-hop Reasoning N/A Real-world % 1,355
GVLQA Graph Theory Problems 7 Synthetic ! 157,896
our VGCURE Fundamental Graph Understanding and Reasoning 22 Synthetic & Real-world ! 223,646

Table 1: Comparisons among different visual graph analysis benchmarks for LVLMs, where # Tasks and # Scale
represent the number of task types and test samples, respectively.

fying a research gap in existing evaluations that
limit our understanding of LVLMs. Current work
primarily focuses on graph theory problems or
multi-hop reasoning tasks (Wei et al., 2024; Ai
et al., 2024), which are complex and require a
combination of diverse cognitive abilities. Thus
it remains uncertain whether LVLMs have strong
fundamental understanding and reasoning ca-
pabilities in processing visual graphs—such as
recognizing the basic components of a graph and
making basic logical inferences based on graph
data—which is crucial for determining whether
the limitations stem from a lack of fundamental
abilities or other higher-order capabilities.

To this end, we present the Vision Graph
Comprehensive Understanding and REasoning
benchmark, VGCURE, designed to thoroughly
evaluate the fundamental understanding and rea-
soning capabilities of LVLMs on visual graphs.
As shown in Fig.1, VGCURE evaluates the funda-
mental capabilities of LVLMs diverse challenges,
including 9 graph understanding tasks and 13
graph reasoning tasks. Moreover, VGCURE

features 10 anonymized graph structures from
both synthetic and real-world sources, offering a
robust testbed for assessing LVLMs’ proficiency
in handling diverse graphs. Experiments on 14
representative LVLMs show that current LVLMs
exhibit weak fundamental understanding and
reasoning capabilities on visual graphs, especially
in capturing relational information and dealing with
structurally complex visual graphs.

Motivated by the above observations, we
further introduce MCDGRAPH, a novel structure-
aware fine-tuning framework to enhance structure
learning capabilities of LVLMs through three
self-supervised learning tasks: 1) masked graph
infilling, 2) contrastive graph discrimination, and
3) graph description. Experiments show that MCD-
GRAPH significantly improves LVLMs’ graph
understanding and reasoning abilities, especially on
edge-related tasks and graph-related downstream
tasks. Further analysis demonstrates that our
method also enhances LVLMs’ robustness and

generalization to visual graphs with complex
structure and unseen styles. The contributions of
this work can be summarized as follows:
• We introduce VGCURE, a comprehensive

benchmark to systematically evaluate LVLMs’
fundamental understanding and reasoning abili-
ties on visual graphs.

• Through extensive experiments on 14 LVLMs,
we reveal LVLMs’ limitations in basic graph un-
derstanding and reasoning, especially for tasks
concerning relational or structural information.

• We propose a self-supervised framework to
enhance LVLMs’ ability to capture structural
information in visual graphs. Experiments
validate its effectiveness on both fundamental
and downstream graph learning tasks.

2 The VGCURE Benchmark

To evaluate LVLMs’ fundamental graph under-
standing and reasoning capabilities, we introduce
VGCURE, a large-scale multimodal graph bench-
mark with 22 challenging tasks. VGCURE features
10 graph types, both synthetic and real-world, to
assess LVLMs’ performance on diverse graphs.
The graphs are anonymized to minimize the impact
of pre-existing LLM knowledge on core reasoning
abilities, promoting knowledge-free reasoning (Hu
et al., 2024). Tab.1 compares VGCURE with three
recent benchmarks. It is evident that VGCURE

excels in fundamental graph understanding and
reasoning capabilities. Furthermore, VGCURE

offers a comprehensive evaluation through more
varied graph types, tasks, and test samples.

2.1 Graph Structure Generation
We begin by collecting a wide variety of graph
structures for generating visual graphs and chal-
lenging tasks. Following Fatemi et al. (2024), we
first employ NetworkX (Hagberg et al., 2008) to
generate a diverse set of random synthetic struc-
tures, including Erdős-Rényi (ER) graphs (Erdős
and Rényi, 1959), scale-free networks (SFN)
(Barabási and Albert, 1999), Barabási–Albert (BA)
model (Albert and Barabási, 2002), stochastic
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Task QA sample FC sample (Label)

NNu Q: How many nodes are there in this graph?
A: 12

There are 12 nodes in this graph. (True)
There are 17 nodes in this graph. (False)

EN Q: How many edges are there in this graph?
A: 15

There are 15 edges in this graph. (True)
There are 17 edges in this graph. (True)

DC -
This graph is a directed graph. (True)
This graph is an undirected graph. (True)

DQ Q: What is the degree of E9 in this graph?
A: 1

The degree of E9 in this graph is 1. (True)
The degree of E9 in this graph is 2. (False)

NQ Q: Which nodes are out-neighbors of E6 in this graph?
A: [E3]

E3 is a out-neighbors of E6 in this graph. (True)
E7 is a out-neighbors of E6 in this graph. (False)

NN Q: Which entities are R6 of the entity that is R5 of E3?
A: [E4, E7]

E4 is R6 of the entity that is R5 of E3. (True)
E1 is R6 of the entity that is R5 of E3. (False)

CR Q: Which entities are R4 of E9 as well as R8 of E1?
A: [E2]

E2 is R4 of E9 as well as R8 of E1. (True)
E1 is R4 of E9 as well as R8 of E1. (False)

CN -
E8 and E1 share a common out-neighbor, i.e., common head entity. (True)
E10 and E12 share a common out-neighbor, i.e., common head entity. (False)

RA Q: Which entities are connected to E3 via the same relation from E3 to E1?
A: [E2]

E2 is connected to E3 via the same relation from E3 to E1. (True)
E6 is connected to E3 via the same relation from E3 to E1. (False)

SRN Q: Which entities are both R2 of E10?
A: [E4, E12]

E4 and E12 are both R2 of E10. (True)
E4 and E3 are both R2 of E10. (False)

NR Q: What is the relation from the entity that is R5 of E3 to E2?
A: [R8]

E2 is R8 of the entity that is R5 of E3. (True)
E2 is R4 of the entity that is R5 of E3. (False)

CP Q: Is there a path from E3 to E4?
A: Yes. The paths are [[E3, E1, E2, E4], [E3, E1, E4]]

There are 2 paths from E3 to E4. (True)
There are 3 paths from E3 to E4. (False)

Table 2: Examples for each task in VGCURE. These samples all correspond to the graph shown in Fig.7(d).

block model (SBM) (Holland et al., 1983) and
star graphs. In addition, we extract anonymized
structures from real-world graphs in GraphArena
(Tang et al., 2024), including DBLP, Social
Network, DBpedia, Openflights and PubChemQC.
All the entity and relation names in each graph
are replaced with generic names to eliminate
the impact of the model’s internal knowledge on
reasoning. After initializing the graph structure, we
use the Graphviz (Ellson et al., 2002) to generate
concise directed and undirected visual graphs.

2.2 Tasks Design

To thoroughly assess the abilities of LVLMs in
fundamental graph structure understanding and
reasoning, the proposed VGCURE encompasses
the following categories of tasks. Tab.2 presents
examples for each task.

Graph Understanding: The graph understanding
tasks involve analyzing and extracting structural,
relational, and property-based information from the
visual graph, which aims to gain insights into the
composition and topology of the graph, including
its nodes, edges, connectivity, and the relationships
among its components.
• Node Number Query (NNu): Calculate the

total number of nodes in the graph.

• Edge Number Query (EN): Determine the total
number of edges in the graph.

• Directedness Check (DC): Verify whether the

graph is undirected or directed.

• Degree Query (DQ): Calculate the degree of the
specified node.

• Neighbor Query (NQ): Identify the nodes that
are directly connected to the given node.

Graph Reasoning: The reasoning tasks focus on
exploring the knowledge-free reasoning ability of
LVLMs on visual graphs. To differentiate from
graph understanding tasks, we designed a series of
2-hop reasoning tasks.

• Nested Node Query (NN): Identify the entities
linked to the given entity through a composite
chain involving the given relations.

• Conjunctive Relation Query (CR): Retrieve
the entities satisfying both two independent
relationship constraints with two distinct entities.

• Common Neighbor Check (CN): Determine
whether two entities share at least one common
neighbor in a 2-hop relational path.

• Relation Analogy Query (RA): Find the entities
linked to a target entity via a relation identical to
that links a given entity pair.

• Shared Relation Neighbor Query (SRN):
Identify the set of entities that are connected
to the given entity through the given relation.

• Nested Relation Query (NR): Identify the rela-
tion between a target entity and an intermediate
entity obtained by traversing a specific relation
path from a given entity.
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Models

Understanding Reasoning

NNu EN DQ NQ NN CR RA SRN NR CP

Acc Acc Acc F1 Hits@1 F1 Hits@1 F1 Hits@1 F1 Hits@1 F1 Hits@1 F1 Hits@1 EM_F1 Label_Acc

SPHINX 21.03 11.38 15.45 12.84 29.45 6.05 9.81 7.28 16.44 14.62 21.69 11.62 26.93 1.54 4.99 0.68 95.59
Monkey 40.09 9.22 17.81 9.90 21.88 8.90 12.96 2.85 4.62 3.74 4.13 9.79 21.61 3.06 7.98 0.46 5.11
MiniGPT-v2 11.80 10.61 18.03 16.40 27.08 8.92 18.02 2.01 2.65 7.50 14.87 9.85 27.47 5.86 13.87 5.26 95.59
mPLUG-Owl3 28.38 8.84 6.86 20.32 51.16 8.68 11.39 5.42 11.81 11.07 14.81 6.48 18.06 2.03 0.33 10.87 74.97
LLaVA1.5-7B 14.53 7.56 30.14 11.43 21.25 1.80 0.21 2.22 0.13 6.36 9.37 5.38 7.73 0.84 2.23 2.63 78.64
LLaVA-NeXT 47.89 9.59 19.52 23.27 44.11 14.77 21.74 6.60 12.44 10.14 15.29 12.68 27.88 9.88 6.46 8.27 95.56
LLaVA-OV 23.47 3.08 23.80 15.00 39.12 10.74 19.87 7.50 16.61 9.85 19.30 10.21 30.99 1.04 1.36 9.69 94.83
LLaVA1.5-13B 17.08 7.62 26.33 15.68 32.66 6.08 7.83 4.31 13.23 6.52 10.80 7.48 12.86 4.21 6.21 5.91 82.41
InternLM-XC2.5 60.20 10.53 41.12 18.90 55.33 14.64 26.14 19.19 45.60 11.50 19.06 14.12 46.53 3.09 5.49 28.82 95.53
Llama3.2 77.31 9.39 35.56 18.79 42.34 18.93 29.43 21.90 55.00 15.80 27.51 20.79 61.30 14.11 24.05 20.80 94.70
Qwen-VL 42.45 9.66 20.56 10.95 21.25 11.44 15.51 7.93 18.30 12.48 17.36 11.11 22.79 5.43 4.01 0.00 4.48
Qwen2-VL 97.80 16.38 48.09 16.18 38.12 16.52 28.34 21.02 48.57 14.19 27.96 19.48 56.42 12.73 25.07 12.90 38.06
InternVL2 77.45 9.78 50.75 25.01 68.58 18.30 30.82 24.87 59.31 10.83 17.12 20.72 59.99 10.58 18.97 14.53 43.97

GPT-4o-mini* 89.20 15.40 56.40 30.81 77.40 17.01 29.98 22.33 53.15 15.47 24.81 22.25 59.48 8.62 13.48 42.55 92.40

Table 3: Model performance on QA samples across various tasks, where EM_F1 is the macro F1 score calculated
based on the exact match between the predicted path and the ground truth path, Label_Acc measures the accuracy of
the model’s prediction on whether a path exists or not. The best results are bolded.

• Connective Path Query (CP): Determine the
existence of directed paths or shortest undirected
paths between two given entities, and retrieve all
possible paths if they exist.
For each task, we construct one QA sample and

two fact checking (FC) samples (with labels of
True and False, respectively) automatically based
on the template, except for CN and DC which
have only fact checking samples due to the strong
similarity between the two samples. The total
number of final samples is 223,646. More details
about the design logic and statistics of VGCURE

can be found in Appendix A and Tab.9.

3 Benchmarking LVLMs on VGCURE

3.1 Experimental Setup

We conduct evaluation on 13 open-source LVLMs,
including InternLM-XComposer2.5-7B (Zhang
et al., 2024a), InternVL2-8B, Llama3.2-11B-
Vision-Instruct, LLaVA1.5-7B (Liu et al., 2024),
LLaVA1.5-13B (Liu et al., 2024), LLaVA-NeXT-
7B (Li et al., 2024b), LLaVA-OneVision-7B (Li
et al., 2024a), MiniGPT-v2 (Chen et al., 2023),
Monkey (Li et al., 2024d), mPLUG-Owl3-7B (Ye
et al., 2024), Qwen-VL (Bai et al., 2023), Qwen2-
VL-7B-Instruct (Wang et al., 2024) and SPHINX
(Lin et al., 2023). Meanwhile, we also evaluate the
performance of the GPT-4o-mini, which is a strong
closed-source LVLM2. Due to the high cost of
GPT-4o-mini, we randomly select 50 graphs from
each graph structure for testing. For all methods,
the zero-shot setting is adopted during evaluation.
More details can be found in Appendix B.

2We excluded GPT-4o as a baseline due to its high cost.

3.2 Main Result

Graph Understanding Tab.3 and Tab.4 present
the evaluation results for question answering (QA)
and fact checking (FC), respectively. We report the
averaged results across various graph structures.
In general, most LVLMs struggle to precisely
understand the structural and relational information
in visual graphs. In specific, (I) Among the graph
understanding tasks, Node Number Query (NNu)
and Directedness Check (DC) are the easiest for
most LVLMs. This indicates that most LVLMs
can accurately capture the number of nodes and
directedness information within the visual graph.
(II) All LVLMs struggle with Edge Number Query
(EN) and Neighbor Query (NQ) tasks, with the
highest accuracy of 16.38% and F1 score of
30.81% , respectively. This indicates that current
LVLMs are weak in understanding relational and
structural information. (III) Even with a similar
number of parameters, the graph understanding
abilities of open-source LVLMs vary significantly,
with Qwen2-VL and InternVL2 showing better
performance in both QA and FC samples. (IV)
For the same task, LVLMs perform differently
on QA and FC samples, likely due to different
ways in reasoning and understanding required by
each task (Thorne et al., 2018). (V) The closed-
source LVLM, GPT-4o-mini, offers no significant
advantages and even underperforms open-source
LVLMs, especially on FC tasks.
Graph Reasoning Based on graph reasoning
results in Tabs.3 and 4, it can be observed that,
(I) Compared to graph understanding, the graph
reasoning tasks are more challenging and the
overall performance of LVLMs is worse on both
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Models

Understanding Reasoning

NNu EN DC DQ NQ NN CR CN RA SRN NR CP

F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

SPHINX 33.33 50.00 33.33 50.00 33.33 50.00 33.33 50.00 33.33 50.00 33.33 50.00 33.33 50.00 33.84 51.16 33.33 50.00 33.33 50.00 33.33 50.00 33.33 50.00
Monkey 40.31 53.23 51.38 55.58 64.25 65.24 50.01 55.62 44.04 53.29 50.54 50.76 37.37 51.08 48.85 49.71 38.32 50.13 33.52 49.78 40.29 48.05 51.44 58.87
MiniGPT-v2 34.37 50.38 34.28 50.39 33.92 50.18 33.69 49.91 44.29 50.99 49.68 50.03 47.94 53.19 45.66 51.80 36.71 49.48 43.08 43.22 36.68 50.07 51.68 52.39
mPLUG-Owl3 37.53 50.80 31.16 38.59 73.04 74.76 39.84 46.92 33.33 50.00 34.75 49.86 46.11 52.04 33.96 51.20 44.80 48.54 47.35 53.10 36.65 49.30 37.34 50.27
LLaVA1.5-7B 33.33 50.00 33.33 50.00 33.33 50.00 33.33 50.00 33.33 50.00 33.33 50.00 33.33 50.00 33.84 51.16 33.33 50.00 33.33 50.00 33.33 50.00 33.33 50.00
LLaVA-NeXT 33.33 50.00 33.33 50.00 33.33 50.00 33.33 50.00 33.33 50.00 33.33 50.00 33.33 50.00 33.84 51.16 33.33 50.00 33.33 50.00 33.33 50.00 33.33 50.00
LLaVA-OV 39.13 52.69 33.79 49.68 65.02 68.49 36.87 51.49 37.12 51.70 46.83 53.37 39.66 52.41 34.09 51.23 39.64 48.89 44.12 52.19 48.19 52.19 33.35 49.05
LLaVA1.5-13B 60.31 63.26 50.78 57.09 87.74 87.92 33.33 50.00 36.39 49.31 47.65 50.31 35.93 50.94 34.68 49.31 33.33 50.00 33.47 50.03 35.18 43.68 44.55 52.91
InternLM-XC2.5 37.19 51.79 40.00 51.05 65.76 66.72 43.07 49.16 64.46 65.40 50.81 54.05 58.72 61.66 39.34 50.05 35.54 50.47 49.36 51.98 49.12 53.08 52.12 52.76
Llama3.2 87.66 87.66 47.26 49.67 43.27 51.83 42.23 51.39 65.87 66.03 53.47 56.40 62.79 63.74 39.00 50.30 59.89 61.20 48.82 49.38 58.59 60.36 45.65 49.32
Qwen-VL 32.30 47.72 32.27 47.56 9.50 10.49 31.04 44.54 36.69 49.97 27.07 32.57 15.55 17.99 31.68 45.30 27.83 29.13 32.71 33.70 34.72 41.94 36.37 42.63
Qwen2-VL 76.50 77.67 68.26 68.27 94.92 94.94 64.32 67.40 67.34 68.76 44.17 53.77 74.28 75.24 38.52 51.10 35.28 50.55 57.07 59.18 42.08 52.95 42.25 53.38
InternVL2 68.63 71.18 36.82 50.23 93.17 93.18 63.28 63.84 72.81 73.27 62.46 63.62 75.37 76.18 47.12 50.40 33.70 50.14 56.98 57.42 55.94 58.42 54.71 54.71

GPT-4o-mini* 64.49 67.00 39.85 52.30 90.52 90.60 42.03 52.90 48.77 56.80 50.77 51.51 62.17 62.82 53.03 55.05 36.50 50.78 54.87 54.89 44.37 51.11 51.39 54.50

Table 4: Model performance on FC samples across various tasks. The best results are bolded.
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Figure 2: Model performance (F1/Acc) on representative QA samples across various graph structures and tasks ,
where OF, PCQC and SN denotes Openflights, PubChemQC and Social network, respectively.

QA and FC samples. This may be a knock-on effect
due to deficiencies in visual graph understanding.
(II) Among all open-source LVLMs, InternVL2
and Llama3.2-Vision achieve better performance
and LLaVA1.5-7B perform the worst on graph
reasoning tasks. (III) All the LVLMs perform
poorly on Nested Relation Query (NR) for both QA
and FC samples, which is similar to the observation
in the graph understanding task. This suggests
that LVLMs are deficient in recognizing edges and
understanding structural information within visual
graphs. (IV) On the QA samples, the performance
of different LVLMs on Connective Path Query (CP)
varies widely. SPHINX, Monkey and Qwen-VL
demonstrate almost no ability to recognize paths
between two specific nodes in the visual graph.
(V) Similarly, GPT-4o-mini underperforms in most
tasks compared to open-source LVLMs, except for
the Connective Path Query (CP) task.

3.3 Impact of Structures

Inspired by Fatemi et al. (2024), we explore how
graph structure affects LVLMs’ ability to under-
stand and reason on visual graphs. Fig.2 compares
the performance of the top five LVLMs on QA
samples across various structures. Obviously,
the graph structure significantly impacts LVLMs’
performance on most tasks. Notably, all LVLMs
perform well on PCQC, which has a simpler

structure with fewer nodes and edges (averaging
5.45 nodes and 4.76 edges), and weaker on BA,
which has the highest edge count in VGCURE

(averaging 21.02 edges). Furthermore, on different
tasks, the performance of LVLMs is affected
differently by the graph structure. EN and CP
show larger performance variations across graph
structures, whereas NNu and NN show smaller
differences. More results are shown in Figs.12 and
13, the overall trends are similar to above findings.

3.4 Impact of Complexity

We further discuss the impact of graph complexity
on the LVLMs’ ability to understand and reason
over the visual graph by considering the number
of edges, number of nodes, and average degree.
Fig.3 shows a performance comparison of five
LVLMs on QA samples across representative tasks
and complexity levels. As complexity increases,
LVLMs’ performance declines, especially on EN,
where results vary significantly. Besides, some
LVLMs perform best at intermediate complexity,
but struggle with more complex graphs. This
reflects a balance between information richness
and complexity of visual graphs, whereas higher
complexity likely overwhelm the LVLMs’ abilities
to reason or generalize due to the complex
information within large graphs. In addition,
different complexity dimensions affect LVLMs’
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Figure 3: Model performance (Acc) comparison on QA samples across various dimensions of complexity.
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Error Type R.M. C.L. S.H. E.A. Ot.G. F.E.

Percentage 54% 7% 17% 9% 5% 8%

Table 5: Frequency of each error type.

performance on various tasks differently, such as
NNu, where LVLMs are more influenced by the
number of nodes and average degree than by edges.
More results in Figs.14-19 show the similar trend.

3.5 Why LVLMs Fail on Fundamental Tasks?

To explore in depth whether the failure of LVLMs
on the fundamental task is due to their weak per-
ception or other higher-order ability, we compare
the performance of LVLMs and the corresponding
backbone LLMs that take the textual graph as
input. As Fig.4 shows, despite the disparity in
the performance of the individual models, LVLMs
perform weaker than the corresponding backbone
LLMs on both understanding and reasoning tasks.
In particular, LVLMs’ performance degrades the
most on Edge Number Query (EN), which also
illustrates the lack of ability of LVLMs to capture
structural information in the visual graph. This
indicates that the failure of LVLMs is partly
attributed to their weaker visual graph perception.
In addition, the performance of the backbone
LLMs on these tasks remains undesired, with
all accuracies below 45%, this suggests that the
backbone LLMs exhibit limited capabilities in
understanding and reasoning on graph data. More
details and results are presented in Appendix C.1.

3.6 Error Analysis

In addition, by analyzing a batch of results
generated by Qwen2-VL and InternVL2 on QA
samples in VGCURE, we find that their main errors
can be grouped into the following six categories:
• Relation Misunderstanding (R.M.): Failure

to properly understand the relations between
entities, leading to erroneous reasoning.

• Complexity Limitation (C.L.): When faced
with intricate or highly complex graph structures,
LVLMs struggle to process and understand
the information effectively, often resulting in
incomplete or erroneous outputs.

• Structural Hallucination (S.H.): Generating or
perceiving structures that do not exist, leading
to erroneous or misleading results that do not
match the actual visual graph.

• Entity-based Answering (E.A): Directly using
the entities mentioned in the question as answers,
thus ignoring deeper relation understanding or
logical reasoning in the visual graph.

• Off-target Generation (Ot.G.): Deviation from
the task or misunderstanding of the question,
leading to the generation of irrelevant answers.

• Format Error (F.E.): The output of the model
is incorrectly formatted or unexpected.

Examples of each error are shown in the Tab.11.
Error Distribution Analysis We also calculate the
overall distribution of each error. The results are
shown in Tab.5. It can be observed that, (I) Re-
lation Misunderstanding appears most frequently
due to LVLMs’ limited capacity to effectively
capture structural and relational information in the
visual graph. (II) Structural Hallucination also
appears frequently due to the inherent hallucination
tendency of LLMs. (III) Despite demonstrating
robust instruction-following capabilities, LVLMs
remain prone to errors like Off-target Generation
and Format Error. (IV) Complexity Limitation
and Entity-based Answering also account for a
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Figure 5: Overall illustration of MCDGRAPH.

certain percentage, i.e., LVLMs may be stumped
when faced with overly complex visual graphs, or
directly use the entities mentioned in the question
as answers.
Primary Error Pattern Analysis We further
analyze the primary error pattern of each task.
We find that, (I) Generally, the primary error
occurring in all tasks except the Node Number
Query is Relation Misunderstanding. (II) Structural
Hallucination occurs more frequently in Nested
Node Query, Conjunctive Relation Query, Relation
Analogy Query, Shared Relation Neighbor Query,
and Nested Relation Query tasks. (III) Format Error
is usually found in Connective Path Query task.

4 The MCDGRAPH Framework

To enhance the ability of LVLMs to understand and
reason on visual graphs, we propose MCDGRAPH,
a self-supervised fine-tuning framework designed
to improve LVLMs’ ability to capture structural
and relational information within visual graphs. As
illustrated in Fig.5, MCDGRAPH comprises three
key tasks: Masked Graph Infilling, Contrastive
Graph Discrimination, and Graph Description.

4.1 Task1: Masked Graph Infilling

For this task, we randomly mask either nodes or
edges in a visual graph and challenge the model to
predict the masked element based on the partially
observed graph. Since anonymized visual graphs
contain no semantic information, we also provide
the corresponding text triples as input.

M = LVLMs(Ĝ, I, T ), (1)

where Ĝ, I , T denotes the masked graph, task
instruction, and text triples of the original graph,
respectively. This task encourages LVLMs to
infer missing structure information, improving

their ability to understand graph structure and the
relationships between elements.

4.2 Task2: Contrastive Graph Discrimination

To further refine the LVLMs’ understanding of
graph structure, we introduce a contrastive learning
task, which helps train the LVLMs to distinguish
between two visual graphs that may either represent
the same graph with different layouts or two distinct
graphs with similar layouts.

Y = LVLMs(G1, G2, I), (2)

where the answer Y ∈ {Yes, No}, G1, G2 denotes
two graphs, and I is the task instruction. By
learning how to perform structural reasoning and
graphical isomorphism detection, this task aims to
improve LVLMs by recognizing subtle structural
differences between two visual graphs.

4.3 Task3: Graph Description

Graph Description task requires LVLMs to gener-
ate a textual description of a given visual graph,
including the total number of nodes and edges, as
well as the names of all the nodes in the graph,

D = LVLMs(G, I), (3)

where D represents the description, and G, I
denotes the input graph and task instruction,
respectively. This task ensures that the LVLMs
develop a clear understanding of the graph’s
composition, thereby enhancing their ability to
interpret and summarize graph-based information.

5 Enhancing LVLMs with MCDGRAPH

5.1 Experimental Setup

We validate the effectiveness of MCDGRAPH on
top two performing LVLMs on VGCURE, i.e.,
Qwen2-VL and InternVL2. We collect a new set
of anonymized visual graphs beyond VGCURE
with synthetic structures and automatically create
20k training samples for MCDGRAPH. To prevent
catastrophic forgetting, we apply LoRA (Hu et al.,
2022) to efficiently enhance the LVLMs’ abilities
while preserving their original performance. More
details about training samples and implementation
are available in Appendix D.

5.2 Results and Analysis

Main Results Tab.6 compares the performance
of Qwen2-VL and InternVL2 before and after
applying MCDGRAPH on both visual graph
understanding and reasoning tasks. We can observe
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Models
Understanding Reasoning

NNu EN DC DQ NQ NN CR CN RA SRN NR CP

QA Samples

Qwen2-VL 97.80 16.38 - 48.09 16.18 16.52 21.02 - 14.19 19.48 12.73 12.90
w MCDGRAPH 98.34 ↑ 25.92 ↑ - 60.94 ↑ 25.44 ↑ 13.32 26.14 ↑ - 13.14 20.74 ↑ 14.44 ↑ 11.95
InternVL2 77.45 9.78 - 50.75 25.01 18.30 24.87 - 10.83 20.72 10.58 14.53
w MCDGRAPH 95.68 ↑ 40.45 ↑ - 54.78 ↑ 28.80 ↑ 19.43 ↑ 28.53 ↑ - 11.67 ↑ 22.34 ↑ 16.50 ↑ 12.76

FC Samples

Qwen2-VL 76.50 68.26 94.92 64.32 67.34 44.17 74.28 38.52 35.28 57.07 42.08 42.25
w MCDGRAPH 89.58 ↑ 65.80 95.84 ↑ 77.10 ↑ 79.75 ↑ 60.71 ↑ 83.07 ↑ 53.90 ↑ 53.48 ↑ 64.17 ↑ 64.12 ↑ 60.11 ↑
InternVL2 68.63 36.82 93.17 63.28 72.81 62.46 75.37 47.12 33.70 56.98 55.94 54.71
w MCDGRAPH 76.55 ↑ 71.98 ↑ 90.04 56.83 80.98 ↑ 73.14 ↑ 80.23 ↑ 52.09 ↑ 52.81 ↑ 59.07 ↑ 69.03 ↑ 45.82

Table 6: Model performance (Acc/F1/EM_F1 for QA and F1 for FC) on various tasks. ↑ indicates an improvement
compared to the original model. The complete experimental results are shown in Tab.18 and 19.
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Figure 6: Model performance (F1/Acc) comparison on
QA samples across representative tasks and edge ranges.

that (I) MCDGRAPH improves the performance
of LVLMs on almost all tasks, demonstrating the
effectiveness of the proposed method. (II) The
improvement of LVLMs is particularly impressive
on edge-related tasks, i.e., Edge Number Query
(EN) and Nested Relation Query (NR), that are
relatively difficult for LVLMs. This suggests
that MCDGRAPH enhances LVLMs’ ability to
capture structural information. (III) Although
MCDGRAPH does not optimize for the tasks in
VGCURE, it still shows obvious improvement
in both QA and FC samples for most tasks in
VGCURE. This demonstrates that the proposed
method can improve the fundamental graph struc-
ture understanding capabilities of LVLMs, which
leads to better performance on downstream tasks.
We also present a case on NR to further understand
the effectiveness of the proposed method, please
refer to Appendix G for detailed information.
Ablation Study We also conduct ablation study
on QA samples with Qwen2-VL and the results
are shown in Tab.7. It can be observed that
after removing different training tasks, although
the LVLM may have a slight performance im-
provement on some tasks, it may lose certain

Models
Understanding Reasoning

NNu EN DQ NQ NN CR RA SRN NR CP

Qwen2-VL 97.80 16.38 48.09 16.18 16.52 21.02 14.19 19.48 12.73 12.90
w MCDGraph 98.34 25.92 60.94 25.44 13.32 26.14 13.14 20.74 14.44 11.95
- Masked 99.02 32.11 57.75 22.84 14.15 23.29 15.32 19.15 5.01 24.61
- Contrastive 99.64 28.70 64.02 25.35 15.16 25.13 11.83 21.11 15.20 5.33
- Description 2.00 13.27 57.80 23.09 14.14 23.47 10.16 19.87 16.99 8.41

Table 7: Ablation study on across various tasks.

capabilities causing its performance to plummet
on some task (as evidenced by the red results in
the Tab.7). Meanwhile, all three self-supervised
tasks enhance the LVLMs’ ability to capture
structural and relational information from different
dimensions, complementing each other in order
to comprehensively improve the LVLM’s overall
performance on all tasks.
Performance on Varying Complexity Fig.6
illustrates the performance improvements of MCD-
GRAPH on LVLMs across varying graph complexi-
ties on six representative tasks in VGCURE. Fine-
tuning with MCDGRAPH consistently improves
performance across most tasks and complexity lev-
els, demonstrating its its effectiveness in enhancing
the LVLMs’ ability to understand and reason over
visual graphs. For simpler graphs, the improvement
is smaller, where LVLMs already perform well,
but as complexity increases, the performance gap
between fine-tuned and baseline models becomes
more pronounced, highlighting MCDGRAPH’s
importance in handling more complex visual
graphs. Due to the space limit, the results for
other dimensions are shown in Figs.20-25 in the
Appendix, with conclusions similar to those above.

Generalization of MCDGRAPH To validate the
generalization of our method, we regenerate 50
visual graphs with different visual styles and
naming conventions of nodes and edges from
those in VGCURE for each graph structure. The
details and results are presented in Appendix E.
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Model
VisionGraph FACTKG

Connect Cycle MaxFlow Accuracy Precision Recall F1

Qwen2-VL 55.8 52.88 1.72 79.60 81.18 79.13 79.13
w MCDGRAPH 53.37 52.88 5.17 80.15 81.71 79.69 79.71
InternVL2 46.9 52.88 6.9 79.41 80.93 78.95 78.95
w MCDGRAPH 54.72 52.88 8.62 79.78 81.34 79.32 79.33

Table 8: Model performance on downstream tasks.

5.3 Results on Downstream Reasoning Tasks
To further demonstrate the scalability and applica-
bility of our method, we evaluate MCDGRAPH on
graph-related downstream reasoning tasks.

VisionGraph We first evaluate the performance of
MCDGRAPH on three representative graph theory
problems in VisionGraph (Li et al., 2024c). As
the results shown in Tab.8, MCDGRAPH generally
improve the performance of LVLMs on these tasks,
especially for the relatively difficult Maximum
Flow task. This confirms the effectiveness and
scalability of our method.

FACTKG We then evaluate MCDGRAPH on
FACTKG (Kim et al., 2023b), a knowledge graph-
based fact verification dataset collected from real-
world data. As Tab.8 shows, MCDGRAPH gives
consistently better performance than LVLMs on
FACTKG, suggesting that the proposed method can
improve LVLMs in real-world graph-related tasks.
Note that FACTKG not only requires fundamental
visual graph understanding and reasoning abilities
but also relies on LVLMs’ understanding of
semantic and logical relationships between entities,
which our method does not address. Therefore, the
improvement of LVLMs is not as significant as that
of the graph theory problems. We also evaluate
our method on two general vision reasoning tasks
and the results are available in Appendix F.

6 Related Work

Multimodal Benchmark for Graphs Li et al.
(2024c) and Wei et al. (2024) introduce Vision-
Graph and GVLQA, respectively, for testing
the problem-solving capabilities of LVLMs in
graph theory. Both of them contain numerous
synthetic visual graphs and complex graph theory
problems. Besides, Ai et al. (2024) propose a novel
instruction-following benchmark for multimodal
graph understanding and reasoning, which contains
a number of real-world graph images with diverse
structures across various domains. However,
these benchmarks focus on specific downstream
tasks where LVLMs perform poorly. The goal
of VGCURE is to assess LVLMs’ fundamental
understanding and reasoning abilities on visual

graphs to identify the reasons for their failures.

Boosting LVLMs for Visual Graph Reasoning
Li et al. (2024c) propose a Description-Program-
Reasoning (DPR) chain to enhance logical accu-
racy through graphical structure description and
multi-step reasoning. Wei et al. (2024) introduce
GITA, an end-to-end framework integrating visual
information into instruction-based graph reasoning.
Additionally, Deng et al. (2024) present GraphVis,
which uses curriculum fine-tuning for training
LVLMs on feature recognition and visual graph QA
tasks. Unlike current methods, our MCDGRAPH

is a general-purpose, self-supervised approach
that improves the fundamental understanding and
reasoning of LVLMs on visual graphs, making it
adaptable to most graph-related downstream tasks.

Graph Benchmarks for GNNs Rozemberczki
et al. (2021) construct Wikipedia-based graphs
with pages as nodes and hyperlinks as edges. Hu
et al. (2020) present realistic datasets spanning
social, biological, molecular, code, and knowledge
graphs. Mernyei and Cangea (2020) propose
Wiki-CS, a GNN benchmark based on Computer
Science articles. Morris et al. (2020) release
TUDataset, covering 120 datasets across multiple
domains for graph classification and regression.
To address homophily limitations, Lim et al.
(2021) introduce large-scale, non-homophilous
graph datasets. Dwivedi et al. (2022) propose
the Long Range Graph Benchmark to evaluate
models on long-range interaction reasoning tasks.
Different from these graph benchmarking approach,
the proposed VGCure focuses on exploring the
fundamental graph understanding and reasoning ca-
pabilities of LVLMs, showcasing their potential to
unify multimodal information processing through
a unified visual learning paradigm.

7 Conclusion

This paper introduces VGCURE, a comprehen-
sive benchmark comprising 22 tasks to evaluate
LVLMs’ fundamental understanding and reasoning
capabilities on visual graphs. Experiments on 14
LVLMs reveal significant limitations, especially
in capturing structural information. To this
end, we propose MCDGRAPH, a structure-aware
self-supervised method to enhance open-source
LVLMs’ structure learning abilities. Extensive
experiments validate the effectiveness of our
method across a wide range of graph-related tasks.
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Limitations

• Complexity of Visual Graphs. Due to the
limitations of current LVLMs’ performance
on visual graph tasks, we restrict the number
of nodes in the synthetic graph structure to
between 7 and 15, potentially limiting the
exploration and improvement of the LVLMs’
performance on more complex visual graphs.

• Experiments on Larger LVLMs. Due to
limited resources, the majority of our exper-
iments are performed only on LVLMs with
around 7B parameters, lacking performance
evaluation and improvement of larger models
with more parameters.
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A VGCURE Construction

A.1 Graphs Generation
For synthetic graph structures, we use the
NetworkX library for random generation and
employ hyperparameters to control the expected
macroscopic properties of each graph:
• ER: This structure takes an edge probablity

parameter p, which we choose randomly from
{0.2, 0.3, 0.4} during generation.

• BA: This structure takes the parameter m, which
denotes the number of edges to attach from a new
node to existing nodes. We choose randomly
from {2, 3} during generation.

• SFN: For this structure, we use the default
parameters provided by NetworkX except for
the number of nodes during generation.

• SBM: This structure takes the sizes of blocks s
and the density of edges going from the nodes
of one group to nodes of another group p as
parameters. During generation, we set s to
[n,m] and p to [[p1, p2], [p2, p3]], where n and
m are a random integer from [3, 7] and [4, 8],
respectively, and p1, p2, p3 are all randomly
selected from {0.2, 0.3, 0.4}.

• Star: This structure requires no parameters other
than the number of nodes.
For all the above structures except SBM, the

number of nodes during generation is an arbitrary
integer in the range [7, 15].

To anonymize the visual graph, we use the
unique name Ex containing no information to
name the nodes in the graph structure, where
x ∈ {1, 2, . . . , n} and n is the number of nodes in
the graph. For edges, we choose a random identify
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from {R1, R2, ... , R10} to name them. The name
can be repeated for each edge. The examples of
synthetic visual graph are shown in Fig.7.

A.2 Tasks Generation

To ensure the correctness of the generated samples,
we first search for relevant paths in the given graph
that satisfy the conditions of the task. Then the final
QA samples and FC samples are generated based
on the paths and corresponding templates. If no
path exists, the generation of samples for the task
is skipped. The final statistics of VGCURE and the
example samples with undirected graph for each
task are shown in Tab.9 and Tab.10, respectively.

B Experimental Setup for Evaluation

B.1 Prompts

To facilitate the LVLMs to understand the content
in the visual graph, we take a visual graph
description in addition to the input during test.
• Directed Visual Graph Description: The given

image shows a graph where circles represent
nodes, with the content inside indicating the
node names. The arrowed lines connecting two
nodes represent edges, and the content in the
middle of the edges indicates the edge names.

• Undirected Visual Graph Description: The
given image shows a graph where circles
represent nodes, with the content inside being
the node names. The lines connecting two nodes
represent edges, and the content in the middle of
the edges represents the edge names.

The complete prompt for QA samples are as follow:
• NN, CR, RA, SRN, NQ: [Visual Graph

Description] Answer the given questions
based on the graph in the image.\nQuestion:
[question]\nPlease provide the answer directly
without the reasoning process and present your
answer in the LIST format: [Entity1, Entity2,
...].

• NR: [Visual Graph Description] Answer the
given questions based on the graph in the
image.\nQuestion: [question]\nPlease provide
the answer directly without the reasoning
process and present your answer in the LIST
format: [Relation1, Relation2, ...].

• CP: [Visual Graph Description] Answer the
given questions based on the graph in the
image.\nQuestion: [question]\nIf yes, please
output all the shortest paths in the LIST Format

and conclude your answer with "Yes. The
shortest paths are [[Entity1, Entity2,...], [Entity3,
Entity4,...], ...]". If no path exists, please answer
"No".

• NNu, EN, DQ: [Visual Graph Description]
Answer the given questions based on the graph in
the image.\nQuestion: [question]\nPlease pro-
vide the answer directly without the reasoning
process.

The complete prompt for FC samples are as follow:
• [Visual Graph Description] Verify the truth

of the given claim against the graph in the
image.\nClaim: [claim]\nThe answer should
contain only "True" or "False", without reason-
ing process.

B.2 Evaluation Metrics
For the QA samples of NQ, NN, CR, RA,
SRN, and NR tasks, we use (macro-averaged)
F1 score and Hits@1 as in the previous QA
benchmarks (Rajpurkar et al., 2016; Zhang et al.,
2018). For the QA samples of CP task, we
employ EM_F1, which is the macro F1 score
calculated based on the exact match between the
predicted path and the ground truth path, and
Label_Acc, which measures the accuracy of the
model’s prediction on whether a path exists or not.
For the QA samples of NNu, EN and DQ tasks, we
compute the accuracy between predicted answers
and ground truth. For the FC samples of all tasks,
following Si et al. (2024a,b), we use macro F1 and
accuracy as the metrics.

C Why LVLMs Fail on Fundamental
Tasks?

C.1 Comparison with Backbone LLMs
To compare the performance of the LVLMs with
the corresponding LLMs on the VGCURE task,
we first randomly select 1000 samples for each
task and convert the corresponding visual graphs
into text triples to construct the text version of
the samples, and then evaluate them with the
corresponding backbone LLMs.

The complete prompts for QA samples are as
follows:
• NN, CR, RA, SRN, NQ: Given a set

of triples representing an directed/undirected
graph, where each triple denotes [Node, Edge,
Node], answer the given questions based
on the graph.\nTriples: [Triples of visual
graph]\nQuestion: [question]\nPlease provide
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Figure 7: Examples of synthetic visual graphs.
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Figure 8: Visual graphs corresponding to the examples
of error type.

the answer directly without the reasoning
process and present your answer in the LIST
format: [Entity1, Entity2, ...].

• NR: Given a set of triples representing an
directed/undirected graph, where each triple
denotes [Node, Edge, Node], answer the given
questions based on the graph.\nTriples: [Triples
of visual graph]\nQuestion: [question]\nPlease
provide the answer directly without the reason-
ing process and present your answer in the LIST
format: [Relation1, Relation2, ...].

• NNu, EN, DQ: Given a set of triples
representing an directed/undirected graph,
where each triple denotes [Node, Edge,
Node], answer the given questions based

on the graph.\nTriples: [Triples of visual
graph]\nQuestion: [question]\nPlease provide
the answer directly without the reasoning
process.

The complete prompt for FC samples are as follow:
• [Visual Graph Description] Given a set of triples

representing an directed graph, where each triple
denotes [Node, Edge, Node], verify the truth
of the given claim against the graph.\nTriples:
[Triples of visual graph]\nClaim: [claim]\nThe
answer should contain only "True" or "False",
without reasoning process.
The Connective Path Query (CP) task is ignored

here due to LLMs’ poor instruction-following
ability on this task.

D Experimental Setup for Training

D.1 Training Samples

Graphs Generation For Masked Graph Infilling
and Graph Description task, we use the same syn-
thetic visual graph generation strategy as VGCURE.
As for the Contrastive Graph Discrimination, in
order to reduce the difficulty, we limited the
number of nodes per graph structure to [4, 8] during
generation.

Task Instruction To increase the diversity of
samples, we designed various instructions with sim-
ilar semantics for each task in the MCDGRAPH.
• Masked Graph Infilling

– Using the given set of triples, predict the word
that should fill the [MASK] position in the
knowledge graph in the image.
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Structue Type # Graphs
Number of QA Samples

Avg. Nodes Avg. Edges
NN CR CN RA SRN NR CP NNu EN DC DQ NQ

BA
Directed 400 400 400 400 370 324 400 400 400 400 400 400 400 10.98 20.99

Undirected 400 400 400 400 400 400 400 400 400 400 400 400 400 11.02 21.04

ER
Directed 400 387 377 377 304 229 387 400 400 400 400 400 400 11.06 17.69

Undirected 400 396 395 396 346 346 395 400 400 400 400 400 400 11.00 17.41

SBM
Directed 400 399 392 392 314 399 400 253 400 400 400 400 400 10.99 17.13

Undirected 400 399 399 399 399 400 371 371 400 400 400 400 400 11.04 17.32

SFN
Directed 400 400 400 400 331 149 400 400 400 400 400 400 400 10.95 13.86

Undirected 400 400 400 400 400 400 379 379 400 400 400 400 400 11.05 12.80

Star
Directed 400 396 388 388 350 288 396 400 400 400 400 400 400 12.05 11.05

Undirected 400 400 400 400 393 393 400 400 400 400 400 400 400 12.11 11.11

DBLP
Directed 200 196 192 192 140 196 200 145 200 200 200 200 200 7.85 17.76

Undirected 200 200 200 200 173 173 200 200 200 200 200 200 200 7.85 17.76

Dbpedia
Directed 200 186 185 185 93 186 200 101 200 200 200 200 200 8.13 11.36

Undirected 200 200 200 200 155 155 200 200 200 200 200 200 200 8.13 11.36

Openflights
Directed 100 100 100 100 65 100 100 63 100 100 100 100 100 5.51 13.59

Undirected 100 100 100 100 90 90 100 100 100 100 100 100 100 5.51 13.59

PubChemQC
Directed 400 400 138 400 400 119 119 37 400 400 400 400 400 5.45 4.76

Undirected 400 400 398 400 398 400 151 151 400 400 400 400 400 5.45 4.76

Social Network
Directed 300 262 254 254 134 262 300 124 300 300 300 300 300 7.57 9.25

Undirected 300 299 297 299 238 238 297 300 300 300 300 300 300 7.57 9.25

Total 6400 6320 6015 6282 5493 5247 5795 5224 6400 6400 6400 6400 6400 - -

Table 9: Statistics of VGCURE benchmark, where # Graphs represents the number of visual graphs, Avg.Nodes and
Avg.Edges denote the average number of nodes and edges in the graph, respectively. For each task, the number of
QA samples is the values in the table, except for CN and DC, which have no QA samples, and the number of FC
samples is twice the value in the table.

– Based on the provided triples, determine the
correct word to complete the [MASK] position
in the knowledge graph shown in the image.

– Given the set of triples, predict the word that
should be placed in the [MASK] position
within the knowledge graph in the image.

– Use the given triples to predict the appropriate
word for the [MASK] position in the knowl-
edge graph depicted in the image.

– Using the set of triples, identify the word
that should fill the [MASK] position in the
knowledge graph in the image.

– Based on the set of triples, predict the
correct word for the [MASK] position in the
knowledge graph in the image.

– Given the triples, predict the word that fits
the [MASK] position in the knowledge graph
present in the image.

– Using the triples provided, determine the word
that should be used to fill the [MASK] position
in the knowledge graph in the image.

– Predict the word that should occupy the
[MASK] position in the knowledge graph in
the image, based on the given triples.

– Using the provided triples, identify the word
that should complete the [MASK] position in
the knowledge graph in the image.

• Contrastive Graph Discrimination
– Determine whether Graph A and Graph B in

the given image are identical.

– Assess if Graph A and Graph B depicted in the
image are equivalent.

– Evaluate whether the structures of Graph A
and Graph B in the provided image match.

– Identify if there are any differences between
Graph A and Graph B in the shown image.

– Check if Graph A and Graph B illustrated in
the image are the same.

– Analyze the image to determine if Graph A is
identical to Graph B.

– Investigate whether Graph A and Graph B in
the given image are congruent.

– Examine the provided image to see if Graph A
and Graph B are equivalent.

– Compare Graph A and Graph B in the image
to establish their similarity.

– Confirm if Graph A and Graph B presented in
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Task QA sample FC sample (Label)

NNu Q: How many nodes are there in this graph?
A: 11

There are 11 nodes in this graph. (True)
There are 15 nodes in this graph. (False)

EN Q: How many edges are there in this graph?
A: 15

There are 15 edges in this graph. (True)
There are 19 edges in this graph. (True)

DC -
This graph is an undirected graph. (True)
This graph is a directed graph. (True)

DQ Q: What is the degree of E7 in this graph?
A: 2

The degree of E7 in this graph is 2. (True)
The degree of E7 in this graph is 7. (False)

NQ Q: Which nodes are neighbors of E6 in this graph?
A: [E1, E2, E7, E9]

E7 is a neighbors of E6 in this graph. (True)
E10 is a neighbors of E6 in this graph. (False)

NN Q: Which entities are connected to the entity that has R10 with E2 via R9?
A: [E11, E4]

E4 is connected to the entity that has R10 with E2 via R9. (True)
E3 is connected to the entity that has R10 with E2 via R9. (False)

CR Q: Which entities are connected to E8 via R3 as well as connected E1 via R10?
A: [E2]

E2 is connected to E8 via R3 as well as connected E1 via R10. (True)
E3 is connected to E8 via R3 as well as connected E1 via R10. (False)

CN -
E5 and E2 share a common neighbor. (True)
E10 and E11 share a common neighbor. (False)

RA Q: Which entities are connected to E1 via the same relation between E11 and E1?
A: [E4]

E4 is connected to E1 via the same relation between E11 and E1. (True)
E2 is connected to E1 via the same relation between E11 and E1. (False)

SRN Q: Which entities are both connected to E2 via R10?
A: [E1, E5]

E5 and E1 both connected to E2 via R10. (True)
E5 and E3 are both connected to E2 via R10. (False)

NR Q: What is the relation between E2 and the entity that is connected to E6 via R8?
A: [R10]

The relation between E2 and the entity that is connected to E6 via R8 is R10. (True)
The relation between E2 and the entity that is connected to E6 via R8 is R4. (False)

CP Q: Is there a path between E5 and E3?
A: Yes. The shortest paths are [[E5, E1, E3], [E5, E2, E3]]

[E5, E1, E3] is one of the shortest path between E5 and E3. (True)
[E5, E11, E2, E3] is one of the shortest path between E5 and E3. (False)

Table 10: Examples with undirected graph for each task in VGCURE. These samples all correspond to the SFN
graph shown in Fig.7(i).

the image are indistinguishable.

• Graph Description
– Describe the given graph, including the

number of nodes, the number of edges, and
the names of all the nodes.

– Provide a description of the given graph,
specifying the number of nodes, edges, and
listing all the node names.

– Analyze the given graph by stating the number
of nodes, edges, and enumerating the names
of all the nodes.

– Summarize the graph by detailing the number
of nodes, edges, and listing the names of each
node.

– Explain the graph, including the count of
nodes and edges, and provide the names of
all the nodes.

– Describe the graph, indicating how many
nodes and edges it contains, and listing all
the node names.

– Provide an overview of the graph, mentioning
the number of nodes, edges, and the names of
all nodes.

– Characterize the given graph, noting the
number of nodes, edges, and listing all the
node names.

– Detail the structure of the given graph,
including node and edge counts, and providing

a list of all node names.

– Give a description of the graph, including the
total number of nodes, edges, and the names
of all the nodes.

Similar to VGCURE, we include a visual graph
description in input as well. Thus, the complete
task instruction I for each training sample
in MCDGRAPH is “[Visual Graph Description]
[Instruction]”.

Number of Samples For Masked Graph Infilling
task, we generate 10,000 samples, with half of the
samples masking nodes and the other half masking
edges. For Contrastive Graph Discrimination tasks,
5,000 samples, where each sample consists of
two visual graphs, are generated automatically.
Similarly, the Graph Description task also contains
5,000 samples, each corresponding to a unique
visual graphs.

D.2 Implementation Details

For Qwen2-VL, we employ the LoRA-based
supervised fine-tuning scripts provided by LLaMA-
Factory3. For InternVL2, we perform LoRA-based
fine-tuning based on the code and documentation
provided officially4. The hyperparameters used for
training are shown in Tab.12. All the experiments
are finished on 4 A100 GPUs with 80GB memory.

3https://github.com/hiyouga/LLaMA-Factory
4https://github.com/OpenGVLab/InternVL
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Error Type QA samples Visual Graph

Relation Misunderstanding
Q: What is the relation from the entity that is R5 of E3 to E1?
A: [R1]
P: [R6]

Fig.8(a)

Complexity Limitation
Q: What is the relation from the entity that is R7 of E1 to E7?
A: [R5]
P: [R9]

Fig.8(b)

Structural Hallucination
Q: Is there a path between E1 and E3?
A: Yes. The shortest paths are [[E1, E6, E3]]
P: Yes. The shortest paths are [E1, E3] and [E1, E4, E3].

Fig.8(c)

Entity-based Answering
Q: Which entities are R5 of E2 as well as R1 of E1?
A: [E11]
P: [E2, E1]

Fig.8(b)

Off-target Generation
Q: What is the relation between E2 and the entity that is connected to E4 via R9?
A: [R2]
P: [Edge, Node]

Fig.8(d)

Format Error
Q: Is there a path between E4 and E1?
A: Yes. The shortest paths are [[E4, E3, E2, E1]]
P: Yes. The shortest paths are [[E4, R9, E3, R2, E2, R6, E1]].

Fig.8(d)

Table 11: Examples of each error type, where Q denotes question, A denotes gold answer and P denotes prediction.

Model Lora_rank Lora_ alpha Global Batch Size Learning rate Epoch

Qwen2-VL 8 16 64 1e-4 5
InternVL2 64 128 64 4e-5 1

Table 12: Hyperparameters for training

Models ScienceQA AOKVQA

Qwen2-VL 85.13 84.37
w MCDGRAPH 81.31 83.67
InternVL2 97.07 85.41
w MCDGRAPH 96.88 84.45

Table 13: Model performance (Acc) on general VQA
tasks.

E Generalization of MCDGRAPH

E.1 Impact on Visual Styles
To validate the generalization of our method, we
employ NetworkX and Matplotlib to regenerate 50
visual graphs with different visual styles from those
in VGCURE for each graph structure to explore
the impact of visual graph styles. The examples
of the same visual graph with different styles are
illustrated in Fig.10 and Fig.11.

As the results shown in Tabs.14 and 15, although
LVLMs never encounter the different style of visual
graph during fine-tuning, our method can still
improve the performance of the LVLMs on almost
all tasks. This demonstrates the ability of our
method to enhance LVLMs’ ability in capturing
the structural information in visual graphs with
excellent generalization. In addition, compared to
Tab.6, it can be noticed that the experimental results
before and after the change of style are similar,

which indicates that the style itself has no effect on
the evaluation of LVLMs.

E.2 Impact of Naming Conventions
To explore the impact of altering the naming
conventions, we regenerated the visual graphs
and samples using the following new naming
conventions.
• Node-Edge: The nodes in the visual graph

are renamed Nodex, where x ∈ {1, 2, . . . , n}
and n is the number of nodes in the graph,
and the edges are renamed Edgey, where y ∈
{1, 2, . . . , 10}.

• Name-R: The nodes in the visual graph are
renamed to a simple and common human name
without any semantic bias, like “John”, “Jane”,
“Mike”, “Mary”, etc. The names of the edges
remain as they are, i.e., R1, R2, ..., R10.
The results are shown in Tabs.16 and 17. We can

observe that after altering the naming conventions,
LVLMs continue to show similar trends on most of
tasks. Therefore, the experimental analysis in the
main text still holds. Meanwhile, the performance
of LVLMs decreases on most of the tasks when
confronted with different names. This might be due
to the fact that the new naming conventions gives
longer names to nodes and edges and recognizing
these information increases the difficulty of the
task. It is worth noting that in the face of the
new naming conventions, our MCDGRAPH still
improves the performance of LVLMs on most
tasks, although the fine-tuning still uses the original
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What is the relation from the entity 

that is R1 of E9 to E3?

Figure 9: A case of Nested Relation Query task.

naming conventions. This strongly demonstrates
the effectiveness as well as the generalization of
our method.

F Results on General VQA Tasks

We evaluate our MCDGRAPH on two general
VQA tasks, i.e., ScienceQA (Lu et al., 2022) and
AOKVQA (Schwenk et al., 2022). According
to the results shown in Tab.13, we can observe
that after MCDGraph, LVLMs perform worse on
these two VQA tasks. This is due to the fact
that our MCDGRAPH is proposed for visual graph
understanding and reasoning tasks, which are very
different from general VQA tasks. And it is worth
noting that our method does not overly compromise
the LVLMs’ performance on general VQA tasks,
which we consider acceptable.

G Case Study

Fig.9 illustrates a case on Nested Relation Query
task. We can observe that Qwen2-VL, LLaVA-

Figure 10: An example of visual graph with different
style for the experimental results in Tab.14

Figure 11: An example of visual graph with different
style for the experimental results in Tab.15

13B and mPLUG-Owl3 all make the error of
Entity-based Answering when confronted with
this question, i.e., using “R1”, “E9”, and “E3”
mentioned in the question as the generated answer.
InternLM-XC2.5 makes the error of Relation
Misunderstanding, i.e., the edge pointing from E3
to E1 is also used as the answer. However, Qwen2-
VL after applying MCDGRAPH can answer this
question correctly. This demonstrates that the pro-
posed method can improve the fundamental graph
structure understanding of LVLMs, thus avoiding
the occurrence of the previously mentioned errors.
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Models
Understanding Reasoning

NNu EN DC DQ NQ NN CR CN RA SRN NR CP

QA Samples

Qwen2-VL 98.20 18.10 - 50.70 18.64 15.66 22.66 - 14.83 20.45 16.95 11.04
w MCDGRAPH 99.40 ↑ 40.20 ↑ - 56.80 ↑ 28.44 ↑ 14.64 27.02 - 13.69 22.22 ↑ 14.73 11.99 ↑
InternVL2 73.70 8.60 - 48.40 26.33 18.26 26.19 - 9.85 21.75 11.20 1.60
w MCDGRAPH 95.80 ↑ 35.70 ↑ - 52.90 ↑ 28.89 ↑ 19.90 ↑ 29.24 ↑ - 11.73 ↑ 23.23 ↑ 18.04 ↑ ↑ 14.49

FC Samples

Qwen2-VL 71.37 61.78 86.53 73.82 73.03 48.00 77.35 39.98 36.04 60.22 45.31 42.93
w MCDGRAPH 88.45 ↑ 63.14 ↑ 94.43 ↑ 76.26 ↑ 78.59 ↑ 63.17 ↑ 82.63 ↑ 53.78 ↑ 54.33 ↑ 66.26 ↑ 65.95 ↑ 56.30 ↑
InternVL2 75.43 34.80 86.85 63.68 74.52 61.12 74.23 47.22 33.48 55.85 55.32 53.15
w MCDGRAPH 83.82 ↑ 70.14 ↑ 83.48 60.77 79.69 ↑ 71.39 ↑ 78.30 ↑ 52.38 ↑ 51.24 ↑ 59.83 ↑ 68.58 ↑ 44.73

Table 14: Model performance (Acc/F1/EM_F1 for QA and F1 for FC) on various tasks with different visual styles.
The example of the corresponding visual style is shown in Fig.10

Models
Understanding Reasoning

NNu EN DC DQ NQ NN CR CN RA SRN NR CP

QA Samples

Qwen2-VL 95.30 20.80 - 40.00 13.95 8.73 19.04 - 11.73 14.89 13.16 3.17
w MCDGRAPH 98.80 ↑ 17.30 - 50.50 ↑ 22.33 ↑ 11.56 ↑ 21.92 ↑ - 11.05 17.84 ↑ 11.60 0.12
InternVL2 85.20 17.90 - 39.60 24.21 19.99 22.26 - 8.06 19.46 12.03 2.25
w MCDGRAPH 97.20 ↑ 35.70 ↑ - 43.00 ↑ 26.46 ↑ 19.12 23.54 ↑ - 11.00 ↑ 20.45 ↑ 14.80 ↑ 12.11 ↑

FC Samples

Qwen2-VL 70.88 68.06 66.94 57.90 65.09 43.62 67.32 34.28 34.79 53.23 42.54 42.89
w MCDGRAPH 76.36 ↑ 58.47 85.20 ↑ 74.38 ↑ 73.69 ↑ 56.97 ↑ 75.05 ↑ 48.68 ↑ 53.84 ↑ 60.99 ↑ 60.44 ↑ 56.93 ↑
InternVL2 68.42 38.35 91.84 64.58 65.45 62.91 72.42 48.17 34.60 57.88 57.77 52.48
w MCDGRAPH 69.45 ↑ 69.11 ↑ 84.10 62.09 74.68 ↑ 71.52 ↑ 75.19 ↑ 52.97 ↑ 50.89 ↑ 61.00 ↑ 66.44 ↑ 43.19

Table 15: Model performance (Acc/F1/EM_F1 for QA and F1 for FC) on various tasks with different visual styles.
The example of the corresponding visual style is shown in Fig.11

Models
Understanding Reasoning

NNu EN DC DQ NQ NN CR CN RA SRN NR CP

QA Samples

Qwen2-VL 94.30 18.10 - 48.40 17.55 11.34 13.72 - 10.10 11.82 5.34 10.63
w MCDGRAPH 94.10 16.00 - 63.50 ↑ 17.25 8.50 14.56 ↑ - 8.29 12.81 ↑ 12.71 ↑ 13.00 ↑
InternVL2 65.61 19.15 - 47.94 17.45 12.11 15.75 - 8.87 13.54 8.25 8.12
w MCDGRAPH 89.30 ↑ 34.60 ↑ - 49.20 ↑ 17.59 ↑ 12.88 ↑ 14.63 - 8.29 13.75 ↑ 4.52 5.45

FC Samples

Qwen2-VL 74.18 66.99 91.90 58.77 58.34 37.99 59.80 34.25 34.51 45.99 35.39 39.40
w MCDGRAPH 85.24 ↑ 66.42 90.93 81.77 ↑ 77.30 ↑ 56.79 ↑ 76.47 ↑ 53.06 ↑ 52.85 ↑ 59.45 ↑ 58.51 ↑ 58.72 ↑
InternVL2 72.82 41.92 96.19 65.34 73.36 61.51 77.15 52.21 34.79 55.23 57.50 53.17
w MCDGRAPH 73.86 ↑ 72.70 ↑ 94.28 59.99 78.23 ↑ 69.02 ↑ 74.32 52.12 54.71 ↑ 57.41 ↑ 68.51 ↑ 44.20

Table 16: Model performance (Acc/F1/EM_F1 for QA and F1 for FC) on various tasks with Node-Edge naming
convention.

Models
Understanding Reasoning

NNu EN DC DQ NQ NN CR CN RA SRN NR CP

QA Samples

Qwen2-VL 21.00 22.90 - 51.10 17.78 11.80 18.31 - 11.50 15.33 8.66 14.02
w MCDGRAPH 13.50 25.70 ↑ - 63.30 ↑ 18.66 ↑ 9.56 18.91 ↑ - 10.13 15.90 ↑ 10.81 ↑ 11.72
InternVL2 32.80 17.70 - 55.10 19.77 14.61 21.60 - 10.69 16.20 11.29 11.79
w MCDGRAPH 24.40 36.00 ↑ - 54.20 21.10 ↑ 13.32 21.44 - 8.15 16.01 17.77 ↑ 11.84 ↑

FC Samples

Qwen2-VL 86.35 67.03 93.73 69.39 74.05 41.30 71.54 43.59 38.54 58.05 42.43 44.18
w MCDGRAPH 68.68 69.10 ↑ 96.45 ↑ 78.20 ↑ 76.96 ↑ 57.61 ↑ 82.66 ↑ 56.07 ↑ 55.19 ↑ 63.51 ↑ 63.17 ↑ 56.45 ↑
InternVL2 69.34 39.80 87.75 62.98 76.17 69.06 72.14 57.15 39.82 56.87 65.83 48.31
w MCDGRAPH 78.05 ↑ 71.65 ↑ 75.85 55.84 81.23 ↑ 71.50 ↑ 79.29 ↑ 52.43 57.76 ↑ 53.85 67.60 ↑ 41.99

Table 17: Model performance (Acc/F1/EM_F1 for QA and F1 for FC) on various tasks with Name-R naming
convention.
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Figure 12: Model performance (Acc/F1) on QA samples across various graph structures and tasks.
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Figure 13: Model performance (F1) on FC samples across various graph structures and tasks.
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Figure 14: Model performance (F1/Acc) comparison on QA samples across various tasks and edge ranges.
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Figure 15: Model performance (F1) comparison on FC samples across various tasks and edge ranges.
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Figure 16: Model performance (F1/Acc) comparison on QA samples across various tasks and node ranges.
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Figure 17: Model performance (F1) comparison on FC samples across various tasks and node ranges.
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Figure 18: Model performance (F1/Acc) comparison on QA samples across various tasks and average degree.
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Figure 19: Model performance (F1) comparison on FC samples across various tasks and average degree.

QA Samples

Models
Understanding Reasoning

NNu EN DQ NQ NN CR RA SRN NR CP

Acc Acc Acc F1 Hits@1 F1 Hits@1 F1 Hits@1 F1 Hits@1 F1 Hits@1 F1 Hits@1 EM_F1 Label_Acc

Qwen2-VL 97.80 16.38 48.09 16.18 38.12 16.52 28.34 21.02 48.57 14.19 27.96 19.48 56.42 12.73 25.07 12.90 38.06
w MCDGRAPH 98.34 ↑ 25.92 ↑ 60.94 ↑ 25.44 ↑ 63.44 ↑ 13.32 28.97 ↑ 26.14 ↑ 63.84 ↑ 13.14 28.42 ↑ 20.74 ↑ 62.21 ↑ 14.44 ↑ 23.71 ↑ 11.95 63.98 ↑
InternVL2 77.45 9.78 50.75 25.01 68.58 18.30 30.82 24.87 59.31 10.83 17.12 20.72 59.99 10.58 18.97 14.53 43.97
w MCDGRAPH 95.68 ↑ 40.45 ↑ 54.78 ↑ 28.80 ↑ 72.72 ↑ 19.43 ↑ 27.86 28.53 ↑ 67.61 ↑ 11.67 ↑ 19.81 ↑ 22.34 ↑ 61.67 ↑ 16.50 ↑ 40.21 ↑ 12.76 25.23

Table 18: Performance Improvement of MCDGRAPH on QA samples across various tasks. ↑ indicates an
improvement compared to the original model.

FC Samples

Models

Understanding Reasoning

NNu EN DC DQ NQ NN CR CN RA SRN NR CP

F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc

Qwen2-VL 76.50 77.67 68.26 68.27 94.92 94.94 64.32 67.40 67.34 68.76 44.17 53.77 74.28 75.24 38.52 51.10 35.28 50.55 57.07 59.18 42.08 52.95 42.25 53.38
w MCDGRAPH 89.58 ↑ 89.69 ↑ 65.80 68.64 ↑ 95.84 ↑ 95.84 ↑ 77.10 ↑ 77.23 ↑ 79.75 ↑ 80.03 ↑ 60.71 ↑ 63.35 ↑ 83.07 ↑ 83.08 ↑ 53.90 ↑ 54.12 ↑ 53.48 ↑ 53.69 ↑ 64.17 ↑ 64.21 ↑ 64.12 ↑ 65.51 ↑ 60.11 ↑ 60.17 ↑
InternVL2 68.63 71.18 36.82 50.23 93.17 93.18 63.28 63.84 72.81 73.27 62.46 63.62 75.37 76.18 47.12 50.40 33.70 50.14 56.98 57.42 55.94 58.42 54.71 54.71
w MCDGRAPH 76.55 ↑ 77.71 ↑ 71.98 ↑ 72.02 ↑ 90.04 90.50 56.83 58.53 80.98 ↑ 81.89 ↑ 73.14 ↑ 73.98 ↑ 80.23 ↑ 80.69 ↑ 52.09 ↑ 52.99 ↑ 52.81 ↑ 57.08 ↑ 59.07 ↑ 60.07 ↑ 69.03 ↑ 70.24 ↑ 45.82 49.27

Table 19: Performance Improvement of MCDGRAPH on FC samples across various tasks. ↑ indicates an
improvement compared to the original model.
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Figure 20: Performance Improvement of MCDGRAPH (F1/Acc) on QA samples across various tasks and edge
ranges.
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Figure 21: Performance Improvement of MCDGRAPH (F1) comparison on FC samples across various tasks and
edge ranges.
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Figure 22: Performance Improvement of MCDGRAPH (F1/Acc) on QA samples across various tasks and node
ranges.
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Figure 23: Performance Improvement of MCDGRAPH (F1) comparison on FC samples across various tasks and
node ranges.
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Figure 24: Performance Improvement of MCDGRAPH (F1/Acc) on QA samples across various tasks and average
degree.
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Figure 25: Performance Improvement of MCDGRAPH (F1) comparison on FC samples across various tasks and
average degree.
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