
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 30653–30677
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Meta-Tool: Unleash Open-World Function Calling Capabilities of
General-Purpose Large Language Models

Shengqian Qin1,3, Yakun Zhu1,3, Linjie Mu1,3,
Shaoting Zhang1, Xiaofan Zhang1,2,3*

1Shanghai Jiao Tong University, 2SII, 3SPIRAL Lab
Correspondence: xiaofan.zhang@sjtu.edu.cn

Abstract
Large language models (LLMs) have show-
cased remarkable capabilities as autonomous
agents when augmented with external tools.
Equipped with fixed tool sets, LLMs strug-
gle with addressing diverse user inquiries in
open-world tasks. To evaluate and boost the
performance of LLMs in dealing with com-
plex demands in the real-world, we propose
open-world function calling, where LLMs need
to retrieve suitable tools from a pre-defined
external tool library and use retrieved tools
to resolve the user’s problem. We introduce
Meta-Tool, a versatile and plug-and-play tool
retrieval system as the access of LLMs to
external tool library. Drawing inspiration
from the myriad of enhanced approaches as-
sociated with Retrieval-Augmented Genera-
tion (RAG), Meta-Tool employs a hypothesize-
retrieve-invoke framework. We further pro-
pose Meta-Bench, a comprehensive benchmark
for evaluating LLMs in open-world function
calling and associated tasks. Meta-Bench en-
compasses 2, 800 dialogues and 7, 361 tools,
spanning ten distinct scenarios to provide ro-
bust and diverse test categories. In conjunc-
tion, we present MT-LLaMA, a finetuned ver-
sion of LLaMA-3.1, which exhibits remark-
able performance improvements. Our empiri-
cal experiments reveal that Meta-Tool signifi-
cantly enhances the ability of advanced LLMs
to retrieve and leverage the most suitable tools
compared to previous tool retrieval methods.
Moreover, our fine-tuning enables even smaller-
sized LLMs to achieve comparable even ex-
ceeding results to GPT-4o. Both the benchmark
and the model are made publicly available at
https://github.com/qinshengqian/Meta-Tool to
foster further research and development in the
field.

1 Introduction

In recent years, Large Language Models (LLMs)
(Achiam et al., 2023; Dubey et al., 2024; Bai et al.,

* Corresponding author

user What’s the weather in New
York Tomorrow?

Closed-World Function Calling

Candidate tools: [Weather: …]

Weather(Location=“New
York”, Time=“Tomorrow”)

Function IN system instruction

user Can you book a flight for
me?

Candidate tools: [Weather: …]

I'm sorry, but I currently
cannot directly access real-
time flight information.

Function NOT IN system instruction

Open-World Function Calling

Candidate tools: [meta_tool]

user What’s the weather in New
York Tomorrow?

There is no suitable
function for weather query.
I’ll invoke meta_tool to
search suitable tools in
external tool library.
meta_tool(tool_description
=“get current temperature”,
param_description=[“locati
on, city or country”,
“specific time”])
Retrieved functions:
[{“name”: “Weather”,
“descriptions”: …,
“parameters”: …}…]

Weather(Location=“New
York”, Time=“Tomorrow”)

Figure 1: Comparison between closed-world and open-
world function calling. In closed-world function calling,
the predefined tools are strictly matched with a limited
set of scenarios. In contrast, integrated with an exter-
nal tool library, open-world function calling offers a
more dynamic and scalable solution. These tools can
then be retrieved and utilized by meta-tool in a wide
range of scenarios, allowing for greater adaptability and
innovation.

2023; Liu et al., 2024a) have made significant
strides, demonstrating remarkable capabilities in
various domains such as code generation (Roziere
et al., 2023; Hui et al., 2024) and mathematical rea-
soning (Guo et al., 2025; Jaech et al., 2024), often
comparable even exceeding human performance.
This is largely due to their powerful knowledge
bases and zero-shot abilities. Nevertheless, they
struggle with specific tasks, such as calculator and
calendar (Schick et al., 2023), which can be effec-
tively accomplished through existing tools. More-
over, they face substantial limitations in interacting
dynamically with the real world (Yao et al., 2022).

To address these problems, Researchers have
explored the integration of LLMs with external

30653

xiaofan.zhang@sjtu.edu.cn

tools to expand the boundaries of LLMs’ capac-
ities. They endow LLMs with the ability to uti-
lize one or several basic tools by embedding tool-
related knowledge into the implicit parameters of
the models (Schick et al., 2023; Komeili, 2021)
or through the carefully designed prompts (Wu
et al., 2023; Shen et al., 2024), employing both
zero-shot and few-shot learning methods. With the
increasingly accelerating progress in function call-
ing techniques, subsequent advancements in tool-
augmented LLMs focus on training these models
to dynamically handle any tools referenced in the
system instruction, pushing the boundaries towards
supporting a wider array of tools and facilitating
more intricate, multi-turn dialogues (Tang et al.,
2023; Zhuang et al., 2023; Zhang et al., 2024; Lin
et al., 2024).

LLMs equipped with a manually selected set
of tools can operate effectively as agent systems
within specific domains. However, their utility is
based on the prerequisite that users are aware of
which tools will be employed. This scenario es-
sentially relegates the LLM to the roles of tool
selection and slot filling, limiting LLMs to operate
within a confined scope of intelligence, as shown
in Figure 1. To evaluate and boost the performance
of LLMs in dealing with complex demands in the
real-world, we propose open-world function call-
ing, where LLMs need to interact with a fully open-
world environment, and discretionarily retrieve ap-
propriate tools from the tool library in response to
task-oriented user queries. With the advancement
of LLM’s ability to process long context (Ding
et al., 2023; Su et al., 2024; Peng et al., 2023), one
straightforward approach is to inject all tool defini-
tions into prompts. While feasible, this approach
is inefficient, as it significantly increases useless
computational resource consumption. Integrating
a retriever with LLMs has proven to be a practi-
cal solution (Qin et al., 2023; Patil et al., 2023;
Li et al., 2023). However, the real challenge lies
in enabling LLMs to discretionarily decide when
to activate the retriever and accurately retrieve the
most appropriate tools.

To bridge this gap, we introduce Meta-Tool, a
comprehensive tool retriever system designed to
empower LLMs with the ability to autonomously
retrieve tools in a hypothesize-retrieve-invoke
framework. LLMs need to first hypothesize a
tool that is appropriate for the context, and de-
scribe the functionality of the tool as well as its
parameters. Subsequently, the LLMs retrieve the

specified tool and proceed to invoke it according
to retrieval results. As is shown in Figure 4, en-
capsulated in a standard JSON format, Meta-Tool
seamlessly integrates as a plug-and-play module
within prompts, ensuring compatibility with both
built-in tools and other tools present in prompts.
In our quest to assess the performance of leading
LLMs in open-world environments, we augment
existing high-quality datasets to construct the Meta-
Bench. This pioneering benchmark is tailored for
open-world function calling, boasting a collection
of 2,800 dialogues that span across 7,361 tools.
Meta-Bench is structured with different difficulty
levels and encompasses 10 distinct scenarios, en-
compassing both open-world and closed-world sce-
narios. To further boost the capabilities of open-
source models in this domain, we propose Meta-
Tool-LLaMA (MT-LLaMA), which is fine-tuned
based on LLaMA-3.1-8B-Instruct, which yields a
remarkable enhancement in the model’s proficiency
for open-world function calling.

In summary, our contributions are as follows:

• Meta-Tool: Based on the standard JSON for-
mat for tool definitions and advanced text em-
bedding models, we introduce a novel tool
retrieval approach in the hypothesize-retrieve-
invoke framework.

• Meta-Bench: We present an automated
framework designed for open-world augmen-
tation of pre-existing high-quality tool-use
datasets. We introduce Meta-Bench, a bench-
mark specifically tailored for open-world func-
tion calling scenarios.

• MT-LLaMA: Building upon these advance-
ments, we fine-tune LLaMA-3.1.8B-Instruct,
achieving a substantial advancement in its per-
formance for open-world function calling.

2 Related Works

LLMs and Benchmarks for Function Calling.
The exploration of LLM function calling stems
from developing specialized tool-use datasets to
train LLMs in mastering common tools, such as
calculators (Schick et al., 2023) and web search
engines (Komeili, 2021). Owing to the robust zero-
shot capabilities of LLMs, by injecting tools into
prompts, researchers guide LLMs to reason step
by step, select, and execute external tools (Shen
et al., 2024; Wu et al., 2023). Subsequent studies
(Patil et al., 2023; Qin et al., 2023; Li et al., 2023;

30654

Benchmark #Dialogues #Tools Multi-turn Open-World
Function Calling

Irrelevance
Detection

ToolQA (Zhuang et al., 2023) 1530 13 ✗ ✗ ✗
ToolAlpaca (Tang et al., 2023) 3938 400 ✓ ✗ ✗
API-Bank (Li et al., 2023) 2202 2211 ✓ ✓ ✗
ToolBench (Qin et al., 2023) 12657 16464 ✗ ✓ ✗
BFCL (Yan et al., 2024) 4751 3372 ✓ ✗ ✓
Meta-Bench (Ours) 2800 7361 ✓ ✓ ✓

* BFCL does not explicitly specify the number of tools. We calculate the number of functions in all the JSON files it provides.

Table 1: A comparative analysis of various function calling benchmarks. The terms #Dialogue and #Tools
denote the respective quantities of dialogues and tools incorporated in the evaluation. The concept of an
open-world function calling encompasses the existence of tool or API retrieval mechanisms within the
experimental framework. Irrelevance detection pertains to the inclusion of test cases designed to assess the
model’s proficiency in distinguishing tools that are irrelevant to the user query.

Lin et al., 2024) explore more complex scenarios,
including intricate reasoning, multi-turn dialogues,
and multi-tool applications. Significant advance-
ments have also been made in developing bench-
marks to assess the function-calling capabilities
of LLMs. However, numerous limitations and de-
ficiencies still persist. As illustrated in Table 1,
benchmarks that only involve single-turn interac-
tions (Qin et al., 2023; Zhuang et al., 2023) are
limited in their ability to evaluate function call-
ing performance in complex scenarios that require
multi-turn interactions. Many benchmarks (Zhuang
et al., 2023; Tang et al., 2023; Yan et al., 2024) fo-
cus solely on tool selection and slot filling, neglect-
ing the application and evaluation in open-world
environments.

Retrieval-Augmented Generation for Open-
Domain Tasks. Retrieval-Augmented Generation
(RAG) offers a solution to mitigate hallucination
issues in LLMs, functioning as a versatile plug-
and-play module that significantly boosts their ef-
ficacy in knowledge-intensive tasks (Lewis et al.,
2020). Subsequent impressive approaches encom-
pass pre-processing of user inputs before retrieval,
such as query rewriting (Ma et al., 2023), query
refining (Chan et al., 2024), and query splitting
(Rackauckas, 2024), alongside the post-retrieval
refinement of documents (Blagojevi, 2023). More-
over, RAG technology is adeptly integrated into
iterative (Shao et al., 2023) or adaptive systems
(Jiang et al., 2023; Asai et al., 2023), further broad-
ening its applicability and impact. Inspired by dis-
cretionary decision-making capacities (Asai et al.,
2023) of LLMs in open-domain tasks and hypo-
thetical document embeddings (Gao et al., 2022),
we propose meta-tool, a brand new tool retrieval
approach.

Open-world Function Calling. Benefiting from

the rapid advancements in LLMs and tool-use
datasets, even LLMs with relatively fewer parame-
ters have demonstrated remarkable proficiency in
specific environments (Lin et al., 2024). Nonethe-
less, a fixed set of tools cannot gracefully and effi-
ciently adapt to any other scenarios. Recent works
(Qin et al., 2023; Patil et al., 2023) incorporate
LLMs with an external API retriever as part of
their experiment setting. However, these retrievers
are passive in nature, unable to determine when to
activate the retriever by themselves. In contrast,
API-Bank (Li et al., 2023) injects ToolSearcher, as
shown in Figure 5, into the LLM’s prompt, em-
powering the LLM to autonomously determine the
optimal moments for its utilization based on the
specific task. This approach allows the LLM to
generate relevant keywords as parameters for the
ToolSearcher, facilitating effective tool matching.
Our proposed meta-tool builds upon this concept
but shifts the focus towards tool generation rather
than tool matching in a hypothesize-retrieve-invoke
framework.

3 Methodology

3.1 Meta-Tool

To boost the performance of LLMs in open-world
function calling tasks, we develop the Meta-Tool.
Different from other approaches in Figure 2(a), it
adopts a hypothesize-retrieve-invoke framework.
To address the user’s needs effectively, the LLMs
need to first hypothesize and describe the required
tools in the format of meta-tool, even though its
description may not be entirely accurate. Subse-
quently, tool retrieval is executed and the LLMs
invoke the retrieved tools to fulfill the user’s request.
This advanced system excels at precisely retrieving
the most relevant tools by deeply understanding
their tool descriptions and parameter descriptions,

30655

user What’s the weather in New
York Tomorrow?

Dialogue History-Based Tool Retrieval

User Query

{“name”: “weather”,
“ description”: “Get
current temperature...

Cosine
Similarity

Tool Document
Tool Library

Keyword-Based Tool Retrieval
[ToolSearcher(keyword=“weather query”)]

Keyword

Weather: get current
temperature…

Cosine
Similarity

Tool Name + Tool Description

Meta-Tool-Based Tool Retrieval (Ours)
[meta_tool(tool_description=“get current temperature…”,
param_description=[“Location, city or country”, “specific
time”,…])]

Tool description

Param1 description

Param2 description

Location

Get temperature…

Time

Tool Description + Param Description

Tool Library

Tool Library

…

…

…

Cosine Similarity-
Based Matching

Desired Tool
Embedding

Embedding
Tool in Library

Weighted
Average
Similarity

Tool
Similarity

(a) Tool Retrieval Methods Dataset Construction

user

system Instruction

Task-oriented query

Function Call

Insert

(b) Insert Meta-Tool Turns (c) Rewrite Meta-Tool Function Call

Meta-Tool Result

Meta-Tool Function Call=

[{“name”: “meta_tool”, “result”:{“name”:”weather”,
“description”: “get current temperature…”, “parameters”:
{“properties”:{”location”: {“type”: “string”, “description”:
“location, city or country”}, “time”: {“type”: “string”,
“description”: “specific time, format in year-mouth-day.”}}}]

≈

[{“name”: “meta_tool”, “parameters”:{“tool_description”: “get
current temperature…”, “param_description”: [“location, city
or country”, “specific time, format in year-mouth-day.”]}}]

Original Meta-Tool Function Call

[{“name”: “meta_tool”, “parameters”:{“tool_description”:
“retrieve the current temperature…”, “param_description”:
[“geographical location, such as city or country”, “specific date,
formatted as year-month-day.”]}}]

Rewrite Meta-Tool Function Call Add noise

Meta-Tool Result

(d) Add Reasoning Process before Function Call

Function Call

Insert

ü Analyze the current user
state based on the context;

ü Specify selection of tools;
ü Specify the values of the

parameters required for
the tools.

(e) Data Verification

Meta-Tool Function Call

Automatic
Verification

Valid JSON object
Correct function call name
Valid parameters
No additional parameters
High similarity before and
after rewriting

Reasoning before Function Call

LLM-based
Verification

Hallucination detection

Consistency check

Multi-step reasoning
verification

Dialogue History

same tool
different tool in format
similar functionality

Figure 2: Framework for Meta-Tool and Meta-Bench Construction. In (a), the tool retrieval methods encompass
a passive retrieval approach driven by dialogue history, a discretionary keyword-based method, and our novel
meta-tool approach. The key distinction of our method is its dual consideration of both the tool itself and the effects
of its parameters. The red arrow in the figure indicates the description matching with the highest similarity. In (b),
we enrich existing datasets by inserting meta-tool function calling and corresponding results. To ensure real-world
robustness, we rewrite the meta-tool’s function calling in (c). In (d), we introduce a multi-step reasoning mechanism
by leveraging more powerful LLMs. This enhancement enables our model to distill and adopt multi-step reasoning
patterns, thereby improving its capability to handle complex tool interactions. Finally, in (e), we rigorously verify the
effectiveness of our augmented datasets through automatic and LLM-based assessments across multiple dimensions.

free from any misleading influences.
To determine the similarity between two spe-

cific tools: tool query and tool value, denoted as
tq and tv, we employ the approach in Algorithm 1.
Initially, we utilize a text embedding model E to
extract features, et and ep, from both the tool de-
scriptions, dest, and parameter descriptions, desp,
in tool JSONs. Subsequently, we calculate the
cosine similarity St between the descriptions of
the two tools. For each required parameter in tq,
we calculate parameter cosine similarity Sp[i] and
identify the most similar parameter among the re-
quired parameters in tv. Smean

p is the average of
Sp. The weighted sum of St and Sp will serve as
the ultimate measure of similarity between tq and
tv.

3.2 Dataset Construction

Our dataset is constructed using a fully auto-
mated approach, leveraging ToolACE (Liu et al.,
2024b) and a subset of the glaiveai/glaive-function-

calling-v2 dataset1. ToolACE provides diverse task-
oriented dialogues with various function calling
modes, including single, parallel, and dependent
calls, as well as non-tool-use scenarios. In contrast,
glaive focuses on single tool calls and includes
more non-tool-use cases, such as concept explana-
tions and code examples, which challenge the ir-
relevance detection capabilities of tool-augmented
LLMs. Detailed introduction of dataset construc-
tion is in Section A.2 and Section A.3.

From the original instructions, we extract two
tool categories: invoked tools and unused tools ac-
cording to whether these tools have been called
in the entire conversation. Invoked tools are the
primary targets for augmentation, while unused
tools enhance model robustness against unrelated
queries. We remove invoked tools and insert meta-
tool into system instruction, which acts as a gate-
way to an external tool library. As shown in Fig-

1https://huggingface.co/datasets/glaiveai/glaive-function-
calling-v2

30656

ure 2(b), we insert the meta-tool’s function call-
ing, treating the tool and parameter descriptions
of invoked tools as its parameters. This allows
the model to learn how to handle function missing
and utilize retrieved tools effectively. We have pro-
vided an example in Figure 11 and Figure 12 to
help understanding.

To enhance the model’s robustness, we incorpo-
rate "noise" into the meta-tool’s function callings
by leveraging an LLM to rewrite the JSON used
for meta-tool invocation. This involves revising the
descriptions of tools and parameters to ensure bet-
ter adaptability and performance (see Figure 2(c)
and Figure 7). This ensures model robustness when
faced with variety in complex open-world function
calling.

We further augment the data to adapt the model
to a "reason and act" paradigm, where the LLM
reasons step by step before executing actions. As
shown in Figure 2(d) and Figure 8, we input the
current turn of function calling and dialogue his-
tory into an LLM to form supervision signals in
analyzing function calling requirements to train our
smaller-sized model. This distillation of reasoning
behaviors from more powerful models can enhance
the decision-making accuracy and reliability of our
model efficiently.

For non-tool-use queries, we introduce another
special tool: get_user_input, which treats human
interaction as a function calling option without in-
voking any additional tools, as shown in Figure 6.
This ensures response paradigm consistency in the
LLM’s interaction with users and tools.

The dataset undergoes automatic JSON structure
verification and LLM-based validation. JSON ver-
ification ensures the meta-tool’s function calling
adheres to predefined formats, while LLM-based
verification utilizes GPT-4o to check for halluci-
nations, consistency, and adherence to multi-step
reasoning (see Figure 2(e)). Detailed prompts are
listed in Figure 9. Further, tool similarity thresh-
olds are enforced to ensure that the intents of the
meta-tool before and after rewriting are similar.

3.3 Meta-Bench
Based on the aforementioned series of data aug-
mentation and verification processes, we have es-
tablished a comprehensive training dataset. This
dataset is designed to facilitate general-purpose
LLMs in rapidly acquiring proficiency in open-
world function calling tasks. Moreover, we are
proud to announce the open-source release of the pi-

single tool call
closed-world

m
ulti tool call

closed-w
orld

hard

simple

Meta-Bench

sim
ple

open-world

function missin
g

hard

simple

hard

open-w
orld

function existing

chat

open-world
closed-world

simple

sim
ple

hardhard

Figure 3: Meta-Bench encompasses a comprehensive
collection of test cases centered around meta-tools, char-
acterized by their domain specificity, various levels of
difficulty, openness, and diverse test categories. It also
features a detailed distribution of function calling counts,
ensuring a robust evaluation framework for assessing
the efficacy and adaptability of meta-tool applications.

oneering benchmark specifically tailored for open-
world function calling.

3.3.1 Benchmark Analysis

Figure 3 describes diverse difficulties, openness,
and categories distributions in our Meta-Bench.
Our benchmark encompasses 2800 conversations
and 7361 tools. It is systematically categorized
based on difficulty into simple and hard, acces-
sibility to external tool libraries into open-world
and closed-world, and various testing environments
into chat, function missing, function existing, and
single/multi tool call. Several detailed examples
are presented in Section A.8.

Difficulty. The benchmark is segmented into
simple and hard categories according to the fre-
quency of function calling within conversations,
excluding meta-tool’s. For simple tasks, unused
tools, as outlined in 3.2, are eliminated to minimize
their influence on decision-making. Conversely, in
hard tasks, these tools are retained; if the conver-
sation lacks a sufficient number of unused tools,
irrelevant tools are introduced until the total count
reaches five, thereby enhancing the challenge level.

Open-world Function Calling. The benchmark
is further divided into open-world and closed-world
scenarios based on the LLM’s ability to access ex-
ternal tool libraries. In closed-world settings, the
meta-tool definition is removed from system in-
struction. In contrast, open-world settings provide

30657

LLMs with access to meta-tool or other tool retriev-
ers, irrespective of their necessity for the task at
hand.

Category. The benchmark assesses LLMs
across a range of evaluation categories, with the
most basic scenarios encompassing both single tool
call and multi-tool call, all conducted within a
closed-world environment. They assess the LLM’s
proficiency in invoking a single tool and multiple
tools when several are available. Function missing
examines the LLM’s ability to detect the absence
of a required tool within the system instruction,
utilize meta-tool to retrieve necessary tools, and
subsequently employ the tool. For each dialogue
instance, we construct a tool pool of size 1000 in-
cluding its invoked tools, which function as the
operational domain for tool retrieval. Function ex-
isting evaluates the LLM’s judgment in scenarios
where the required tool is already present in sys-
tem instruction, challenging the LLM to directly
invoke the needed tool without defaulting to the
meta-tool. LLMs are required to discretionarily
decide when to utilize the meta-tool. Lastly, the
chat scenario focuses on common conversational
content or scenarios where users have not provided
adequate parameters for function calling, requiring
the LLM to respond in natural language without
hallucination in tools or their parameters.

3.3.2 Metrics
We conduct evaluations on different metrics across
different categories. We classify all evaluations
into three primary groups according to their simi-
larities and differences: Common Function Calling,
Tool Retrieval and Irrelevance Detection. The com-
mon function calling is specifically designed for
evaluating function calling tasks related to meta-
tools, which are similar to previous benchmarks in
form, while tool retrieval is specifically aimed at
assessing the tool retrieval performance of different
LLMs under various tool retrieval methods.

Common Function Calling. It includes four cat-
egories: function missing, function existing, single
tool call, and multi tool call, where all necessary
tools are present in the context, the direct utilization
of these tools is mandated, bypassing the need for
meta-tool function calling. In the function missing
category, given the ground truth of retrieved tools,
we evaluate LLMs’ capacities in understanding re-
trieved tools and invoking tools in tool execution
results rather than system instruction. Two straight-
forward metrics are calculated: (1) Tool Selection

Accuracy (T-Acc), which deems a function call-
ing accurate if the invoked tool’s name aligns with
the ground truth; otherwise, it is marked as inaccu-
rate. (2) Parameter Selection Accuracy (P-Acc),
where a function calling is accurate only if all pa-
rameters of the invoked tool precisely match those
of the ground truth in value. For the other three cat-
egories, metrics analogous to those in the function
missing category are computed.

Tool Retrieval. In scenarios involving a func-
tion missing, we evaluate the performances of tool
retrieval of various LLMs utilizing different re-
trieval methods. LLMs are expected to detect a
function missing and call the meta-tool with spec-
ified parameters. We measure the success rate of
this meta-tool function calling, which we define
as Function Missing Detection (FMD). Subse-
quently, the meta-tool operates by identifying and
retrieving the top five most similar tools from the
pre-defined tool pool. We then assess the hit rate of
the ground truth tool within the retrieved tool set,
denoted as HR@1, HR@3, and HR@5.

Irrelevance Detection. Under the chat category,
there may be instances where the tools are either
irrelevant to the ongoing dialogue or there are not
adequate parameters for function calling. In such
cases, the invocation of any tool is considered an
error. Conversely, abstaining from tool invocation
is deemed correct. The metric for this assessment
is termed as Irrelevance Detection (IRR).

4 Experiment

Experimental Setup. Our evaluation encompassed
two models from the GPT series: GPT-4 and GPT-
3.5. In addition, we conducted assessments on
a suite of the latest open-source models, namely
LLaMA-3.1-8B, LLaMA-3.3-70B, Qwen2.5-7B
and Qwen2.5-72B. To further enrich our analy-
sis, we incorporated a model renowned for its ro-
bustness in tool utilization, Hammer-2.1-7B, along-
side our model: MT-LLaMA-8B, fine-tuned from
LLaMA3.1-8B. Embedding model used in our
work is intfloat/multilingual-e5-large (Wang et al.,
2024).

Tool Retrieval Baseline Methods. We employ
two straightforward tool retrieval methods (Qin
et al., 2023; Patil et al., 2023; Li et al., 2023) as our
retrieval baselines, referred to as dialogue-history
based tool retrieval and keyword-based tool re-
trieval. The former operates by treating the user’s
query or dialogue history as a direct input to as-

30658

Openness Open-World Closed-World

Categories Function
Missing

Function
Existing Chat Single/Multi

Tool Call Chat

Metrics T-Acc P-Acc T-Acc P-Acc IRR T-Acc P-Acc IRR

Simple

GPT-4o 91.50 72.00 97.75 77.25 11.30 100.00 79.50 24.54
GPT-3.5 92.75 70.00 99.00 79.75 13.33 99.75 79.75 13.50

LLaMA-3.3-70B 22.00 8.00 99.25 65.25 0.29 99.75 73.75 1.53
Qwen2.5-72B 97.50 76.25 99.21 75.92 49.28 99.75 79.25 22.39

LLaMA-3.1-8B 4.50 4.00 98.00 68.25 20.58 99.00 72.00 23.31
Qwen2.5-7B 70.50 58.25 99.50 74.75 26.96 99.75 77.25 27.61

Hammer2.1-7B 89.17 68.19 95.76 73.82 68.12 96.90 74.08 73.31

MT-LLaMA-8B (Ours) 96.75 69.50 94.00 69.25 95.07 96.50 71.25 99.39

Hard

GPT-4o 78.81 49.85 74.09 29.54 2.00 73.43 29.24 6.00
GPT-3.5 52.88 25.73 59.07 22.08 3.00 63.43 22.67 0.00

LLaMA-3.3-70B 11.10 6.16 45.26 18.55 9.00 42.67 18.00 23.00
Qwen2.5-72B 67.81 44.60 56.45 22.98 9.00 49.14 21.33 33.00

LLaMA-3.1-8B 14.23 12.41 40.42 19.15 17.00 37.33 17.81 36.00
Qwen2.5-7B 59.33 36.02 50.81 19.86 11.00 46.57 19.43 30.00

Hammer2.1-7B 63.66 39.62 68.57 37.27 10.00 67.96 36.33 15.00

MT-LLaMA-8B (Ours) 81.49 46.32 84.26 45.52 28.00 87.35 44.12 56.00

Table 2: The common function calling performance of various models. LLMs are required to comprehend and
execute the retrieved tools (Function Missing), as well as to invoke tools that are already present in the context,
irrespective of the meta-tool’s presence (Function Existing and Single/Multi-Tool Call). In these scenarios, we
independently assessed the accuracy of tool selection and parameter selection during tool invocation, referred to as
Tool Selection Accuracy (T-Acc) and Parameter Selection Accuracy (P-Acc). Furthermore, models must possess
the capability for irrelevance detection, the ability to determine if no function calling within the candidate set
corresponds to the user’s intent. Irrelevance Detection (IRR) serves as a metric to evaluate performance in this
regard. The state-of-the-art (SOTA) results are highlighted in bold.

sess its similarity against the standard tool JSONs.
The latter introduces ToolSearcher, a meta-tool-
like mechanism that empowers the model with the
discretion to invoke it and generate the keyword
for tool retrieval as needed, as shown in Figure
5. The keyword will be used to calculate similar-
ity with concatenated strings of tool names and
descriptions.

4.1 Evaluation on Common Function Calling
Tasks in Meta-Bench

To assess the general-purpose performance of our
proposed models regarding function calling, we
conduct evaluations using common function calling
categories in 3.3.2. The experimental results of
common function calling are presented in Table 2.

The results reveal several key points: (1) In
simple scenarios, the majority of models demon-
strate competent function calling capacity, along
with sporadic parameter inaccuracies. Training of
common conversational content and scenarios con-
tributes to booming in irrelevance detection of our

model, as shown in Figure 19. (2) Across the board,
models experience a notable drop when tackling
hard tasks as opposed to simpler ones, underscor-
ing their limited function calling capabilities in
complex situations. Nevertheless, our model sur-
passes almost all others in performance on hard
tasks. The meticulous fine-tuning of the model’s re-
sponse framework for reasoning and acting, along-
side the training of parallel function calling, has
been instrumental in boosting its capabilities, as
shown in Figure 18.

4.2 Performance of Tool Retrieval

To compare the performance of previous tool re-
trieval methods with our meta-tool, we conduct
evaluations on the function missing category in
Meta-Bench. The experimental results about func-
tion missing detection and retrieval accuracy are
presented in Table 3.

The most straightforward approach, entailing
tool retrieval predicated on dialogue history, excels
in simple tasks, notably in single-turn dialogues,

30659

Models Simple Hard

FMD HR@1 HR@3 HR@5 FMD HR@1 HR@3 HR@5

Dialogue History-Based Tool Retrieval

- 100.00 63.45 81.81 88.13 100.00 0.49 1.30 1.83

Keyword-Based Tool Retrieval

GPT-4o 99.25 69.25 83.00 87.00 49.13 15.90 19.08 21.30
GPT-3.5 91.00 58.75 72.25 76.50 46.26 23.37 29.41 30.84

LLaMA-3.3-70B 100.00 66.00 82.25 87.00 40.06 23.53 28.46 30.68
Qwen2.5-72B 80.00 49.25 62.25 66.75 13.35 4.29 6.36 7.47

LLaMA-3.1-8B 92.50 60.25 74.75 78.75 27.34 15.10 19.55 20.67
Qwen2.5-7B 56.25 32.50 41.25 44.75 12.56 5.56 7.63 8.59

Hammer2.1-7B 48.83 30.91 37.27 39.26 11.77 4.51 6.21 6.74

Meta-Tool

GPT-4o 98.00 63.75 83.00 89.25 60.89 34.18 46.10 49.13
GPT-3.5 99.00 59.50 77.00 82.50 56.44 30.05 38.63 41.49

LLaMA-3.3-70B 100.00 67.25 86.25 92.00 62.80 34.82 46.26 50.24
Qwen2.5-72B 99.75 65.75 85.00 91.00 58.03 34.50 44.36 47.22

LLaMA-3.1-8B 98.50 54.00 69.75 77.00 47.55 22.19 32.85 35.73
Qwen2.5-7B 98.25 51.25 73.75 80.00 44.83 21.46 30.68 34.50

Hammer2.1-7B 81.68 51.17 66.70 71.21 35.45 19.91 25.95 28.01

MT-LLaMA-8B (Ours) 92.25 53.00 69.50 74.75 75.75 33.54 45.83 48.66

Table 3: The performances of various models under the Function Missing category. The Dialogue History-Based
Tool Retrieval approach utilizes the dialogue history as a query to compute similarity against the standard JSON
representation of tools. Conversely, the Keyword-Based Tool Retrieval strategy employs autonomously generated
keywords as queries to assess similarity with the names and descriptions of tools. The Meta-Tool method delineates
the novel approach introduced in this study. For metrics, FMD (Function Miss Detection), denotes the efficacy rate
of tool retrieval activation, complemented by HR@1, HR@3, and HR@5 as additional performance indicators. The
state-of-the-art (SOTA) results are highlighted in bold.

but fails entirely in hard tasks. The meta-tool-based
methodology surpasses the keyword-based tech-
nique across both simple and hard tasks, as it incites
the LLM to engage in more profound cogitation,
thereby facilitating the alignment with the desired
tool. Open-source models with fewer parameters
exhibit performance on par with other models in
simple tasks but suffer from performance diminu-
tion in complex situations. Larger open-source
models, such as LLaMA-3.3-70B, and Qwen2.5-
72B, demonstrate comparable even superior perfor-
mance than closed-source models. Hammer and
our model, MT-LLaMA, having undergone special-
ized training in tasks associated with irrelevance de-
tection, may inquire additional specific information
from users to assist in tool retrieval within complex
scenarios, leading to a marginal decrement in per-
formance. Nonetheless, our model eclipses GPT-4o
in hard scenarios, boasting a function missing de-
tection accuracy that surpasses GPT-4o by 14.86
and exceeds its base model, LLaMA-3.1-8B, by
28.20. However, its generation quality in desired
tools lags behind the latest powerful open-source
models with much more parameters.

5 Conclusion

This paper introduces Meta-Tool, a groundbreak-
ing tool retrieval method designed to encourage
LLMs to retrieve tools that align with user inten-
tions from an external tool library and invoke them
in a hypothesize-retrieve-invoke framework. To val-
idate its effectiveness and the capability of various
LLMs to utilize it, we augment pre-existing high-
quality function calling datasets. Simultaneously,
we introduce Meta-Bench, a comprehensive bench-
mark containing 2,800 dialogues and 7,361 tools
tailed for open-world function calling. There are di-
verse and challenging scenarios including multiple
turns and tools, requiring models to reason, retrieve,
understand, and invoke tools effectively. The re-
sults indicate that the performance of our meta-tool
is much better than previous tool retrieval methods.
Benefiting from our fine-tuning, the performance
of smaller models has significantly improved, even
rivaling that of GPT-4o as a general-purpose tool-
augmented LLM. We are confident that our work
will inspire future research and pave the way for
the development of more intelligent agents.

30660

Limitations

Meta-Tool represents a groundbreaking benchmark
for open-world function calling. While we have
undertaken numerous intriguing experiments, some
limitations still remain to be resolved. Firstly, our
fine-tuning strategy is only applied to LLaMA-3.1-
8B; it is anticipated that analogous reasoning and
acting methodologies would yield even more pro-
nounced results in larger models. Secondly, our
fine-tuning aimed to bolster the open-world func-
tion calling proficiency without hurting LLM’s gen-
eral capabilities. To date, we have solely conducted
irrelevance detection evaluation to ensure that our
model is not a function calling machine without
general intelligence. We will design more experi-
ments in our future efforts. It is our aspiration that
this work will catalyze further research, enabling
the full exploitation of LLMs’ potential and foster-
ing the development of more intelligent agents.

Acknowledgment

This work was supported by the National Natural
Science Foundation of China (No. 62301311) and
the Fundamental Research Funds for the Central
Universities (No. YG2022QN029).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and
Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
arXiv preprint arXiv:2310.11511.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Vladimir Blagojevi. 2023. Enhancing rag pipelines
in haystack: Introducing diversityranker and
lostinthemiddleranker.

Chi-Min Chan, Chunpu Xu, Ruibin Yuan, Hongyin Luo,
Wei Xue, Yike Guo, and Jie Fu. 2024. Rq-rag: Learn-
ing to refine queries for retrieval augmented genera-
tion. arXiv preprint arXiv:2404.00610.

Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang,
Shaohan Huang, Wenhui Wang, Nanning Zheng,
and Furu Wei. 2023. Longnet: Scaling trans-
formers to 1,000,000,000 tokens. arXiv preprint
arXiv:2307.02486.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Luyu Gao, Xueguang Ma, Jimmy Lin, and Jamie Callan.
2022. Precise zero-shot dense retrieval without rele-
vance labels. arXiv preprint arXiv:2212.10496.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. 2024. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, et al.
2024. Openai o1 system card. arXiv preprint
arXiv:2412.16720.

Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing
Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
Jamie Callan, and Graham Neubig. 2023. Ac-
tive retrieval augmented generation. arXiv preprint
arXiv:2305.06983.

M Komeili. 2021. Internet-augmented dialogue genera-
tion. arXiv preprint arXiv:2107.07566.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. 2023. Api-bank: A comprehensive
benchmark for tool-augmented llms. arXiv preprint
arXiv:2304.08244.

Qiqiang Lin, Muning Wen, Qiuying Peng, Guanyu
Nie, Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu
Zhou, Cheng Cheng, Yin Zhao, et al. 2024. Ham-
mer: Robust function-calling for on-device lan-
guage models via function masking. arXiv preprint
arXiv:2410.04587.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024a.
Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

30661

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao,
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan,
Zhengying Liu, Yuanqing Yu, Zezhong Wang, Yux-
ian Wang, Wu Ning, Yutai Hou, Bin Wang, Chuhan
Wu, Xinzhi Wang, Yong Liu, Yasheng Wang, Duyu
Tang, Dandan Tu, Lifeng Shang, Xin Jiang, Ruiming
Tang, Defu Lian, Qun Liu, and Enhong Chen. 2024b.
Toolace: Winning the points of llm function calling.
Preprint, arXiv:2409.00920.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao,
and Nan Duan. 2023. Query rewriting for retrieval-
augmented large language models. arXiv preprint
arXiv:2305.14283.

Shishir G Patil, Tianjun Zhang, Xin Wang, and
Joseph E Gonzalez. 2023. Gorilla: Large language
model connected with massive apis. arXiv preprint
arXiv:2305.15334.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and En-
rico Shippole. 2023. Yarn: Efficient context window
extension of large language models. arXiv preprint
arXiv:2309.00071.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

Zackary Rackauckas. 2024. Rag-fusion: a new take
on retrieval-augmented generation. arXiv preprint
arXiv:2402.03367.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves
to use tools. Advances in Neural Information Pro-
cessing Systems, 36:68539–68551.

Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie
Huang, Nan Duan, and Weizhu Chen. 2023. Enhanc-
ing retrieval-augmented large language models with
iterative retrieval-generation synergy. arXiv preprint
arXiv:2305.15294.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2024. Hugging-
gpt: Solving ai tasks with chatgpt and its friends
in hugging face. Advances in Neural Information
Processing Systems, 36.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei Han,
Qiao Liang, and Le Sun. 2023. Toolalpaca: Gener-
alized tool learning for language models with 3000
simulated cases. Preprint, arXiv:2306.05301.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2024. Multilin-
gual e5 text embeddings: A technical report. arXiv
preprint arXiv:2402.05672.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Chenfei Wu, Shengming Yin, Weizhen Qi, Xi-
aodong Wang, Zecheng Tang, and Nan Duan.
2023. Visual chatgpt: Talking, drawing and edit-
ing with visual foundation models. arXiv preprint
arXiv:2303.04671.

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji,
Tianjun Zhang, Shishir G. Patil, Ion Stoica, and
Joseph E. Gonzalez. 2024. Berkeley function calling
leaderboard. https://gorilla.cs.berkeley.
edu/blogs/8_berkeley_function_calling_
leaderboard.html.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai
Hoang, Shirley Kokane, Weiran Yao, Juntao Tan,
Akshara Prabhakar, Haolin Chen, et al. 2024. xlam:
A family of large action models to empower ai agent
systems. arXiv preprint arXiv:2409.03215.

Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun,
and Chao Zhang. 2023. Toolqa: A dataset for llm
question answering with external tools. Advances in
Neural Information Processing Systems, 36:50117–
50143.

30662

https://arxiv.org/abs/2409.00920
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2306.05301
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html

A Appendix

A.1 Fine-tuning Details

Dataset Construction. Our training dataset and benchmark are constructed based on the entirety of
the Team-ACE/ToolACE dataset and a subset of the glaiveai/glaive-function-calling-v2 dataset. Our
training set includes 2, 000 dialogue examples from Glaive that involve chat without tool calling, 2, 000
examples of single-tool invocation dialogues, and 8, 591 dialogue examples sourced from ToolACE. To
support the training of open-world function calling, half of the dataset is randomly sampled to include
meta-tool-related dialogues. For closed-world function calling, the meta-tool-related turns are removed
from the other half of the dataset. Both the training set and the benchmark are derived through sampling,
ensuring they follow the same distribution.

Training Process. We fine-tune the LLaMA-3.1-8B-Instruct model using LoRA in a supervised
fine-tuning manner. We adopt the function calling instruction format used in LLaMA. During training,
we follow a multi-turn dialogue training approach, where only the gradients of the assistant’s content field
are computed. This includes function calling turns, the subsequent result descriptions after obtaining the
results, as well as everyday conversational responses in chat scenarios. The training dataset consists of
34208 data points in total. Fine-tuning required approximately 30 hours to complete.

Meta-Bench. Meta-Bench does not overlap with the training set, but their data distributions are nearly
identical, and some tools with identical or similar functionalities may exist in both. However, this issue
is difficult to avoid entirely, as the presence of tools with similar functions is common. Meta-Bench is
constructed by randomly sampling from the remaining data, followed by an additional filtering step to
remove dialogues from Glaive where there are consecutive turns by the assistant. The resulting dataset
distribution is illustrated in Figure 3, with a total of 2, 800 dialogues, which aligns with the expected size
for a benchmark.

We fine-tune the LLaMA-3.1-8B-Instruct model using LoRA (Hu et al., 2021). The training process
involves 3 epochs, with a batch size of 128. The learning rate is configured at 5× 10−5, the warmup ratio
is set to 0.04, and cosine scheduler. The context length is at 4096. Note that all baselines and our base
models are instruction-tuned versions.

A.2 Dataset Construction Details

We adopt a fully automatic approach to build and augment our dataset based on ToolACE (Liu et al.,
2024b) and a portion of the dataset from glaiveai/glaive-function-calling-v2. ToolACE features many task-
oriented dialogues and supports a variety of function calling modes, including single, parallel, dependent
function calls, and non-tool-use dialogues, where no suitable tools exist or the user has not provided
sufficient parameters for tool invocation. It also covers different interaction types, such as single-turn
and multi-turn dialogues. In contrast, glaive primarily focus on single tool calls and includes much more
non-tool-use scenarios in its dialogues, such as concept explanations and writing example code. These
non-tool-use cases are particularly challenging for the irrelevance detection capabilities of tool-augmented
LLMs, where LLMs need to recognize unrelated tools and queries.

We observe that not all tools defined in the instructions are actually utilized. To utilize this, we extract
two tool categories from the original instructions: invoked tools and unused tools. The invoked tools
will serve as the primary targets for our augmentation, while the unused tools will play a crucial role
in enhancing and evaluating the model’s robustness when dealing with unrelated queries and tools. We
remove the invoked tools from the instructions and introduce meta-tool, which acts as a gateway for the
model to access an external tool library. As is shown in Figure 4, it has nothing different from regular
tools in style and will be seamlessly integrated into models that excel in instruction-following and function
calling, making it a plug-and-play solution for open-world function calling. Moreover, as shown in Figure
2 (b), we insert the function calling of the meta-tool, treating the tool description and parameter description
of the invoked tools as its parameters. The tools returned by the meta-tool will then be appended after the
function calling. This helps the model learn how to use the meta-tool when a function miss occurs, how to
receive and understand the results returned by the meta-tool, and how to effectively utilize the tools that
meta-tool provides. Please note that for each invoked tool, the dialogue related to the meta-tool will only

30663

be added before its first invocation. If a tool is invoked multiple times within a conversation, the meta-tool
should be used only once to avoid redundancy.

However, at this juncture, the function calling and resultant outputs of the meta-tool demonstrate an
abnormal uniformity. This is evident in the fact that the tool and parameter descriptions during meta-tool
function calling are perfectly aligned with those in the returned results, a situation scarcely encountered
in real-world applications. To boost the model’s resilience to interference and its overall robustness, we
strategically incorporate "noise" into the meta-tool’s function calling mechanism. We utilize a LLM to
meticulously reconstruct the JSON for meta-tool invocation, with particular emphasis on refining the tool
and parameter descriptions, which is described in Figure 2 (c) and Figure 7 in detail.

Function calling, particularly involving meta-tools, presents a significant challenge in the realm of
LLMs. This task demands advanced autonomous decision-making capabilities from LLMs: they must
discretionarily decide when to invoke a meta-tool to address function misses, directly call a tool when it is
already in the context, and provide natural language responses without any tool invocation for queries
unrelated to tool invocation. Currently, mainstream LLMs, when engaging in tool invocation, typically
generate tool calls directly in a structured format. Although this method enhances the efficiency and speed
of LLM-based agent systems in executing actions, the reliability of these actions remains uncertain. To
strengthen the reliability of LLMs in a completely open tool call environment, it is crucial for LLMs to
engage in preliminary reasoning before executing actions (Yao et al., 2022; Wei et al., 2022). In order to
adapt our model to this "reason and act" pattern, we further augment the data. As shown in Figure 2 (d),
we input the current turn, which includes tool invocation (including meta-tool), along with the previous
dialogue history into LLM. This allows it to systematically analyze the tool invocation requirements:
initially, assessing the user’s current state; subsequently, determining the necessity of tool invocation and
identifying the specific tool to call; and finally, defining the tool’s parameters based on the contextual
information. By distilling the reasoning behaviors of more powerful language models, our smaller model
can swiftly adapt to the "reason and act" paradigm, thereby enhancing its decision-making accuracy and
reliability.

Furthermore, when users pose questions that do not necessitate the invocation of tools, the model is
unable to consistently follow the "reason and act" response paradigm, leading to potential problems in our
fine-tuning process. To bridge the gap, we introduce another special tool: get_user_input. It treats human
interaction as one of function calling options and invoke none of additional tools. This approach ensures
consistency in how the LLM interacts with users and tools, ultimately enhancing its ability to provide
intelligent and context-aware responses.

A.3 Dataset Verification Details

The dataset our work are based on has already undergone basic verification of tool calls. Our primary
focus is on validating the calls of the meta-tool. This involves two main aspects: automatic verification of
the JSON structure and verification through LLM, as shown in Figure 2 (e).

JSON Structure Verification. This part ensures that the invocation of the reconstructed meta-tool
adheres to pre-defined format. Specifically, the invocation must be a valid JSON object. Each invocation
should have the name: meta-tool, and its parameters must include tool description and param description,
with no additional parameters allowed. Additionally, we employ meta-tool to compute the similarity
between the original and reconstructed invocations, thereby ensuring that the original intent is preserved.
As illustrated in the Fig, the similarity between the original and reconstructed invocations remains
consistently high, significantly exceeding the similarity with any randomly selected alternative tool. For
cases where the similarity falls below 0.90, we iteratively rewrite the invocation until the desired threshold
is achieved.

LLM-based Verification. Automated JSON structure validation is both efficient and effective; however,
it often falls short in identifying inconsistencies within the reasoning process. To address this limitation,
we employ GPT-4o to evaluate the reasoning content, focusing on the following key dimensions:

• Hallucination Detection: This involves identifying any parameters introduced during reasoning that
were not part of the original tool invocation, as well as detecting potential errors or inaccuracies in

30664

these parameters.

• Consistency Check: This step ensures that the reasoning process is logically coherent and aligns
seamlessly with the preceding dialogue.

• Multi-step Reasoning Verification: Here, we confirm that the reasoning adheres to the systematic
steps outlined in 3.2.

30665

A.4 Special function definition

In our experiment, we involve several special tools, namely meta_tool (our tool retrieval approaches),
ToolSearcher (tool retrieval baseline), and get_user_input. The following are their definitions:

META_TOOL = {
"name": "meta_tool",
"description": "Use this tool when no suitable tool is available in the

current list , and an external tool is required to provide an accurate
response to the user.",

"parameters": {
"type": "object",
"properties": {

"tool_description": {
"description": "A clear and concise description of the

external tool you need to use.",
"type": "string"

},
"param_description": {

"type": "array",
"description": "A list of descriptions for each parameter

required by the external tool.",
"items": {

"type": "string"
}

}
},
"required": [

"tool_description",
"param_description"

]
}

}

Figure 4: Meta-Tool definition as a standard JSON format. It employs tool descriptions and parameters descriptions
of desired functions as its own parameters.

TOOLSEARCHER = {
"name": "ToolSearcher",
"description": "Searches for relevant tools in library based on the

keywords.",
"input_parameters": {

"keywords": {
"type": "str",
"description": "The keyword to search for."

}
},
"output_parameters": {

"best_matchs": {
"type": "Union[List[dict], dict]",
"description": "The best match tool(s)."

}
}

}

Figure 5: ToolSearcher definition as a standard JSON format. It employs keywords as its parameters.

30666

GET_USER_INPUT = {
"name": "get_user_input",
"description": "Not invoke any additional functions.",
"parameters": {

"type": "object",
"properties": {}

}
}

Figure 6: get_user_input definition, not invoke any additional functions, one of options of function calling.

A.5 Prompts and Instructions
In this section, we present the prompts used in the steps of rewriting, adding reasoning before function
calling and LLM-based verification during our data augmentation process, as well as the instructions
employed in our benchmark.

Could you please help me rewrite the following json of func? Some modifications can be made
to the tool name, parameter name and their description, but make sure not to deviate from the
original meaning.
{ORIGINAL_FUNCTION}
Your output should have only the json of this func and nothing else.

Figure 7: Prompts we use to rewrite function calling of meta-tool to strength robustness of our model.

I need you to add an reasoning section to the dataset about function calls. Here is one of my
pieces of data, please add an reasoning section to the last one turn.
{INPUT_CONVS}
Note that:
1.Your output should have only the content of reasoning.
2.Please assume that you are the assistant, replace "the user" with "you", replace "to achieve
this" with "to help you".
3.The reasoning should in three sentences: Briefly analyze the current state, select suitable
tools and specifies parameters of tools.

Figure 8: Prompts we use to add reasoning process before function calling.

30667

Hallucination_Detection_Prompt = You are a data construction expert, mainly responsible for
identifying issues in tool call datasets. Please determine whether there is a hallucination in
the last round based on the dialogue provided to you, that is, whether the tool call invoked a
tool that was not mentioned, or whether it used parameters that were not mentioned.
{Dialogue_History}
Note that your output should only contain "1" or "0", where "1" indicates an issue, and "0"
indicates no issue.
Consistency_Check_Prompt = You are a data construction expert, mainly responsible for identifying
issues in tool call datasets. Please determine whether there is an inconsistency in the last
round based on the dialogue provided to you, such as writing wrong parameters that were mentioned
by the user.
{Dialogue_History}
Note that your output should only contain "1" or "0", where "1" indicates an issue, and "0"
indicates no issue.
Multi_Step_Reasoning_Prompt = You are a data construction expert, mainly responsible for
identifying issues in tool call datasets. Please determine whether there was multi-step reasoning
before the tool call in the last round based on the dialogue provided to you, which includes:
1. Analyzing user intent 2. Clarifying the tool to be used 3. Clarifying the parameters of the
tool
{Dialogue_History}
Note that your output should only contain "1" or "0", where "1" indicates an issue, and "0"
indicates no issue.

Figure 9: Prompts we use to make verifications based on GPT-4o.

You are a powerful and helpful chatbot.
Given the following functions, please respond with a JSON for a function calling with its proper
arguments that best answers the given prompt.
{TOOLS}
Respond in the format {"name": function name, "parameters": dictionary of argument name and its
value}.
You SHOULD NOT include any other text in the response.

Figure 10: Instruction we employ in our Meta-Bench.

A.6 Core Algorithm of Meta-Tool
As is shown in 1, we define the algorithmic core of our proposed meta-tool, namely how to calculate the
similarity between two tools: tool query and tool value. In this work, we set the value of α to 0.5.

A.7 Examples in Dataset Construction Process
Figure 11 and Figure 12 show an example of how we insert the function calling of meta-tool and its
execution results into the conversation. The tools requested by meta-tool and the returned results are
completely same.

30668

Algorithm 1 Meta-Tool algorithm.

1: eqt = E(desqt) ▷ calculate embeddings of tool description of tool query
2: eqp = E(desqp) ▷ calculate embeddings of param description of tool query
3: evt = E(desvt) ▷ calculate embeddings of tool description of tool value
4: evp = E(desvp) ▷ calculate embeddings of param description of tool value
5: St = cos_sim(eqt , e

v
t) ▷ calculate similarity in tool descriptions

6: for i ∈ range(len(desqp)) do ▷ calculate similarity in parameters descriptions
7: Sp[i] = max(cos_sim(desqp[i], desvp))
8: end for
9: Smean

p = mean(Sp)
10: tool similarity = α ∗ St + (1− α) ∗ Smean

p ▷ ultimate tool similarity

Instruction: You are a powerful and helpful chatbot.The current time is 2025-03-26 08:33:17.
Given the following functions, please respond with a JSON for a function calling with its proper
arguments that best answers the given prompt.

[
{

"name": "get_traffic_report",
"description ": "Get the current traffic report",
"parameters ": {

"type": "object",
"properties ": {

"location ": {
"type": "string",
"description ": "The city and state , e.g. Los Angeles , CA"

}
},
"required ": [" location "]

}
}

]

Respond in the format {"name": function name, "parameters": dictionary of argument name and its
value}. You SHOULD NOT include any other text in the response.

User: I need to check the traffic situation in Miami, Florida before I head out. Can
you help with that?

Assistant: [{"name": "get_traffic_report","parameters": {"location": "Miami, Florida"}}]

Figure 11: Conversations before inserting meta-tool turns.

Figure 13 shows the comparison before and after inserting step-by-step reasoning before the function
calling.

30669

Instruction: You are a powerful and helpful chatbot.The current time is 2025-03-26 08:33:17.
Given the following functions, please respond with a JSON for a function calling with its proper
arguments that best answers the given prompt.

[
{META_TOOL}

]

Respond in the format {"name": function name, "parameters": dictionary of argument name and its
value}. You SHOULD NOT include any other text in the response.

User: I need to check the traffic situation in Miami, Florida before I head out. Can
you help with that?

Assistant: [{"name":"meta_tool","parameters":{"tool_description":"Retrieve the latest traffic
information","param_description":["The city and state where you want to get traffic information,
e.g. New York, NY"]}}]

Tool: [{"name": "meta_tool", "function_id": 0, "results": {"name": "get_traffic_report",
"description": "Get the current traffic report", "parameters": {"type":"object", "properties":
{"location":{"type": "string", "description": "The city and state, e.g. Los Angeles, CA"}},
"required": ["location"]}}}]

Assistant: [{"name":"get_traffic_report","parameters":{"location":"Miami, Florida"}}]

Figure 12: Conversations after inserting meta-tool turns. The parts in bold are the newly inserted conversational
turns.

Before adding reasoning

User: I need to check the traffic situation in Miami, Florida before I head out. Can
you help with that?

Assistant: [{"name":"get_traffic_report","parameters":{"location":"Miami, Florida"}}]

After adding reasoning

User: I need to check the traffic situation in Miami, Florida before I head out. Can
you help with that?

Assistant: To help you with the traffic situation in Miami, Florida, I understand that
you need the current traffic report for that location. I will invoke the "get_traffic_report"
function with the parameter "location" set to "Miami, Florida" to provide you with the required
information.<|python_tag|>[{"name":"get_traffic_report","parameters":{"location":"Miami,
Florida"}}]

Figure 13: Comparison of conversations before and after adding reasoning process before function calling.

A.8 Examples in Meta-Bench
In this section, we present examples of simple/open-world/chat, simple/open-world/function_missing and
simple/open-world/function_existing to help understand the composition and details of our benchmark.

30670

Instruction: You are a powerful and helpful chatbot.
Given the following functions, please respond with a JSON for a function calling with its proper
arguments that best answers the given prompt.

[
{META_TOOL}

]

Respond in the format {"name": function name, "parameters": dictionary of argument name and its
value}. You SHOULD NOT include any other text in the response.

User: Can you explain what is NLP?

Assistant: Natural Language Processing (NLP) is a field of artificial intelligence that
focuses on the interaction between computers and humans through natural language. It involves
the ability of machines to understand, interpret, and generate human language in a meaningful
way. NLP combines linguistics, computer science, and machine learning to enable applications
like chatbots, translation services, and sentiment analysis.

Figure 14: An example in simple, open-world, chat test-set in Meta-Bench.

Instruction: You are a powerful and helpful chatbot.
Given the following functions, please respond with a JSON for a function calling with its proper
arguments that best answers the given prompt.

[
{META_TOOL}

]

Respond in the format {"name": function name, "parameters": dictionary of argument name and its
value}. You SHOULD NOT include any other text in the response.

User: I need to check the traffic situation in Miami, Florida before I head out. Can
you help with that?

Assistant: There is not a suitable function in the current list to provide the latest
traffic information, so I will use the meta_tool function to search for an external function
that can help you. To help you, I will specify the parameters of the meta_tool function with
the desired_function set to a function named "traffic_update" that requires an "area" parameter,
which will be set to "Miami, Florida".<|python_tag|>[{"name": "meta_tool", "parameters":
{"tool_description": "Retrieve the latest traffic information", "param_description": ["The city
and state where you want to get traffic information, e.g. New York, NY"]}}]

Tool: [{"name": "meta_tool", "function_id": 0, "results": {"name": "get_traffic_report",
"description": "Get the current traffic report", "parameters": {"type": "object", "properties":
{"location": {"type": "string", "description": "The city and state, e.g. Los Angeles, CA"}},
"required": ["location"]}}}]

Assistant: To help you with the traffic situation in Miami, Florida, I understand that
you need the current traffic report for that location. I will invoke the "get_traffic_report"
function with the parameter "location" set to "Miami, Florida" to provide you with the required
information.<|python_tag|>[{"name":"get_traffic_report","parameters":{"location":"Miami,
Florida"}}]

Figure 15: An example in simple, open-world, function missing test-set in Meta-Bench.

A.9 Ablation Studies

Multi-step reasoning and Non-function. To illustrate the efficacy of our multi-step reasoning in intricate
scenarios and the utility of the non-function get_user_input in irrelevance detection tasks, we conduct
a comparative analysis involving our fine-tuned model, a fine-tuned version without these features, and
the base model, within hard tasks, as shown in Table 4 and Table 5. Empirical results reveal that the

30671

Instruction: You are a powerful and helpful chatbot.
Given the following functions, please respond with a JSON for a function calling with its proper
arguments that best answers the given prompt.

[
{META_TOOL},
{

"name": "get_traffic_report",
"description ": "Get the current traffic report",
"parameters ": {

"type": "object",
"properties ": {

"location ": {
"type": "string",
"description ": "The city and state , e.g. Los Angeles , CA"

}
},
"required ": [" location "]

}
}

]

Respond in the format {"name": function name, "parameters": dictionary of argument name and its
value}. You SHOULD NOT include any other text in the response.

User: I need to check the traffic situation in Miami, Florida before I head out. Can
you help with that?

Assistant: To help you with the traffic situation in Miami, Florida, I understand that
you need the current traffic report for that location. I will invoke the "get_traffic_report"
function with the parameter "location" set to "Miami, Florida" to provide you with the required
information.<|python_tag|>[{"name":"get_traffic_report","parameters":{"location":"Miami,
Florida"}}]

Figure 16: An example in simple, open-world, function existing test-set in Meta-Bench.

model fine-tuned with specialized tool-use datasets significantly surpasses the base model in performance.
Moreover, the variant enhanced through multi-step reasoning fine-tuning exhibits superior capabilities
compared to its non-reasoning fine-tuned counterpart. And equipping the LLM with a nonfunction such as
get_user_input sustains commendable conversational proficiency, even under compellent function calling
instructions.

The influence of Alpha. α is an important factor in tool retrieval performance. In practice, α = 0.5
may not represent the optimal balance. To better understand the appropriate weighting, we conduct
ablation studies to explore the most suitable range for α. Specifically, we performed experiments under the
simple setting with three LLMs: Qwen2.5-7B-Instruct, LLaMA-3.1-8B-Instruct and Ours. As is shown
in Table 6, the experimental results demonstrate that both tool descriptions and parameter descriptions
contribute to the performance of the meta-tool, with tool descriptions playing a relatively more significant
role. As the value of α increases, the hit rate initially rises and then declines, reaching its optimal range
when α is between 0.65 and 0.8. These findings confirm that incorporating parameter descriptions does
not degrade the performance of tool retrieval. Instead, it enhances the overall effectiveness of the retrieval
process when appropriately balanced with tool descriptions.

30672

Categories
Function
Missing

Function
Existing

Multi Tool
Call

Metrics T-Acc P-Acc T-Acc P-Acc T-Acc P-Acc

LLaMA-
3.1-8B

14.23 12.41 40.42 19.15 37.33 17.81

Ours wo/
reasoning

23.51 17.05 73.69 50.30 78.19 37.52

Ours w/
reasoning

81.49 46.32 84.98 45.16 88.67 47.52

Table 4: Ablation studies on multi-step reasoning in hard setting.

Openness Open-World Closed-World

LLaMA-
3.1-8B

17.00 36.00

Ours wo/
nonfunction

16.00 45.00

Ours w/
nonfunction

28.00 56.00

Table 5: Ablation studies of irrelevance detection on nonfunction: get_user_input in hard setting.

A.10 Case studies
We conduct evaluations of various models across three highly representative scenarios, as shown in
Figure 17, Figure 18 and Figure 19. Owing to meticulous system fine-tuning, our model demonstrate
remarkable performance, particularly under hard setting, without succumbing to hallucinations in routine
conversational contexts.

30673

α Qwen LLaMA Ours

Metrics HR@1 HR@3 HR@5 HR@1 HR@3 HR@5 HR@1 HR@3 HR@5

0.2 46.00 63.75 74.25 43.00 57.00 66.75 44.00 59.75 68.25
0.35 50.00 76.00 87.75 44.00 68.25 78.25 47.75 54.25 70.75
0.5 51.25 73.75 80.00 54.00 69.75 77.00 53.00 69.50 74.75
0.65 59.75 81.75 83.75 68.25 77.75 81.75 52.00 74.25 80.25
0.8 53.75 77.75 80.00 60.00 74.00 77.75 62.50 72.25 80.50
1.0 38.00 49.25 64.25 59.75 68.75 73.25 60.00 68.50 73.75

Table 6: Ablation studies on the setting of α.

30674

Instruction: You are a powerful and helpful chatbot.
Given the following functions, please respond with a JSON for a function calling with its proper
arguments that best answers the given prompt.

[
{META_TOOL}, {UNRELATED_TOOL1}, {UNRELATED_TOOL2}, {UNRELATED_TOOL3},

{UNRELATED_TOOL4}
]

Respond in the format {"name": function name, "parameters": dictionary of argument name and its
value}. You SHOULD NOT include any other text in the response.

User: Can you help me find the Cash4Life winning numbers from January 1st to January
31st this year, get a random motivational quote, retrieve the details of the riddle with ID
’1234’, and list some action movies under the ’Superhero’ genre?

Ground Truth: [{"name":"meta_tool","parameters":{"tool_description":"Fetch a specific
riddle based on its identifier.","param_description":["The unique identifier for the
riddle to be fetched."]}},{"name":"meta_tool","parameters":{"tool_description":"Generate
a movie ID and fetch a list of action movies based on the input
provided.","param_description":["Specify the type of action movie to fetch (e.g., ’title’,
’category’, etc.)"]}},{"name":"meta_tool","parameters":{"tool_description":"Fetch a random
quote from a database of quotations","param_description":["Narrow down quotes by genre (e.g.
film, literature, etc.)"]}},{"name":"meta_tool","parameters":{"tool_description":"Retrieve all
Cash4Life winning number sets within a specified date range, where the first date supplied
marks the beginning and the second date marks the end.","param_description":["The initial date
of the range (YYYY-MM-DD)","The final date of the range (YYYY-MM-DD)"]}}]

GPT-4o response: {"name": "meta_tool", "parameters": {"tool_description": "A tool to
fetch winning numbers for Cash4Life, get random motivational quotes, retrieve riddle details by
ID, and list movies by genre.", "param_description": ["Start date and end date for Cash4Life
winning numbers.", "Request for a random motivational quote.", "Riddle ID to retrieve details.",
"Genre to list movies."]}}"

LLaMA-3.3-70B-Instruct response: {"type": "function", "name": "meta_tool", "parameters":
{"tool_description": "Lottery results API", "param_description": ["date range", "lottery
type"]}}

Qwen2.5-72B-Instruct response: {"name": "meta_tool", "parameters": {"tool_description":
"A lottery results retrieval tool for specific date ranges.", "param_description": ["The
name of the lottery (e.g., ’Cash4Life’)", "The start date of the date range (e.g.,
’2021-01-01’)", "The end date of the date range (e.g., ’2021-01-31’)"]}}\n{"name": "meta_tool",
"parameters": {"tool_description": "A motivational quote generator tool.", "param_description":
[]}}\n{"name": "meta_tool", "parameters": {"tool_description": "A riddle details retrieval
tool.", "param_description": ["The unique ID of the riddle (e.g., ’1234’)"]}}\n{"name":
"meta_tool", "parameters": {"tool_description": "A movie lister tool that can filter by genre.",
"param_description": ["The genre of the movie (e.g., ’Superhero’)", "The type of movie (e.g.,
’Action’)"]}}

Our response: There is not a suitable function in the current list to help you find
the Cash4Life winning numbers, retrieve a random motivational quote, get the details of
the riddle with ID ’1234’, and list some action movies under the ’Superhero’ genre. To
help you, I will utilize the meta_tool function by specifying the desired functions,
including "Retrieve Cash4Life Numbers", "Fetch Motivational Quote", "Get Riddle Details",
and "Fetch Action Movies", with the corresponding parameters such as date_range, riddle_id,
and genre.<|python_tag|>[{"name": "meta_tool","parameters": {"tool_description": "Fetch a
random motivational quote from a predefined set","param_description": ["The date range for
which to retrieve the quote (in the format YYYY-MM-DD)"]}},{"name": "meta_tool","parameters":
{"tool_description": "Get the details of a specific riddle, including its title, description, and
hint","param_description": ["The ID of the riddle for which to retrieve the details"]}},{"name":
"meta_tool","parameters": {"tool_description": "Fetch a list of action movie titles under a
specific genre","param_description": ["The category or genre of action movies to retrieve (e.g.,
’Comedy’, ’Science Fiction’, etc.)"]}},{"name": "meta_tool","parameters": {"tool_description":
"Retrieve the winning numbers of the Cash4Life lottery","param_description": ["The date range
for which to retrieve the winning numbers (in the format YYYY-MM-DD)"]}}]"

Figure 17: The performance of different models on the tool retrieval task in the Function Missing category under
the hard setting.

30675

Instruction: You are a powerful and helpful chatbot.
Given the following functions, please respond with a JSON for a function calling with its proper
arguments that best answers the given prompt.

[
{META_TOOL}, {UNRELATED_TOOL1}, {UNRELATED_TOOL2}, {UNRELATED_TOOL3},

{UNRELATED_TOOL4}
]

Respond in the format {"name": function name, "parameters": dictionary of argument name and its
value}. You SHOULD NOT include any other text in the response.

User: Can you help me find the Cash4Life winning numbers from January 1st to January
31st this year, get a random motivational quote, retrieve the details of the riddle with ID
’1234’, and list some action movies under the ’Superhero’ genre?

Assistant: FOUR PARALLEL META-TOOL FUNCTION CALLING

Tool: GROUND TRUTH OF RETRIEVED TOOLS

Ground Truth: [{"name": "Drawings Between Dates", "parameters": {"string1": "2021-01-01",
"string2": "2021-01-31"}}, {"name": "Get Random Quote", "parameters": {"category":
"motivational"}}, {"name":"Get Riddle by ID", "parameters": {"id":"1234"}}, {"name": "Get
Action Movies", "parameters": {"action":"Superhero"}}]

GPT-4o response: [{"name": "Drawings Between Dates", "parameters": {"string1": "2021-01-01",
"string2": "2021-01-31"}}, {"name": "Get Random Quote", "parameters": {"category":
"motivational"}}, {"name": "Get Riddle by ID", "parameters": {"id": "1234"}}, {"name":
"Get Action Movies", "parameters": {"action": "Superhero"}}]

LLaMA-3.3-70B-Instruct response: {"name": "meta_tool", "parameters":
{"tool_description": "Fetch a specific riddle based on its identifier.",
"param_description": ["The unique identifier for the riddle to be
fetched."]}}<|eom_id|><|start_header_id|>assistant<|end_header_id|>\n\n{"name": "meta_tool",
parameters": {"tool_description": "Generate a movie ID and fetch a list of action movies based
on the input provided.", "param_description": ["Specify the type of action movie to fetch (e.g.,
’title’, ’category’, etc.)"]}}

Qwen2.5-72B-Instruct response: [{"name":"Get Riddle by ID","parameters":{"id":"1234"}},{"name":"Get
Action Movies","parameters":{"action":"Superhero"}},{"name":"Get Random
Quote","parameters":{"category":"motivational"}},{"name":"Drawings Between
Dates","parameters":{"string1":"2021-01-01","string2":"2021-01-31"}}]

Our response: To help you find the Cash4Life winning numbers from January 1st to January
31st this year, get a random motivational quote, retrieve the details of the riddle with
ID ’1234’, and list some action movies under the ’Superhero’ genre, I will utilize the
provided functions by specifying the parameters for each function. I will call the "Drawings
Between Dates" function with the parameters "string1" set to "2021-01-01" and "string2" set to
"2021-01-31", the "Get Riddle by IDf̈unction with the parameter "id" set to "1234", the "Get
Action Movies" function with the parameter "action" set to "Superhero", and the "Get Random
Quote" function with the parameter "category" set to "motivational", to provide the information
you requested.<|python_tag|>[{"name": "Drawings Between Dates", "parameters": {"string1":
"2021-01-01", "string2": "2021-01-31"}}, {"name": "Get Riddle by ID", "parameters": {"id":
"1234"}}, {"name": "Get Action Movies", "parameters": {"action": "Superhero"}}, {"name": "Get
Random Quote", "parameters": {"category": "motivational"}}]

Figure 18: The performance of different models on the function calling after retrieval in the Function Missing
category under the hard setting.

30676

Instruction: You are a powerful and helpful chatbot.
Given the following functions, please respond with a JSON for a function calling with its proper
arguments that best answers the given prompt.

[]

Respond in the format {"name": function name, "parameters": dictionary of argument name and its
value}. You SHOULD NOT include any other text in the response.

User: I need a new graphic design for our banner.

GPT-4o response: {"name": "createGraphicDesign", "parameters": {"designType": "banner"}}

LLaMA-3.3-70B-Instruct response: {"name": "create_graphic_design", "parameters":
{"design_type": "banner", "purpose": "new design"}}

Qwen2.5-72B-Instruct response: {"name": "create_banner_design", "parameters": {"size":
"large", "theme": "corporate", "text": "Welcome to Our Store", "colors": ["blue", "white"]}}

Our response: The function you need is the "createGraphicDesign" function, but it is
not provided in the given list of functions. Therefore, I cannot call this function to help
you.<|python_tag|>[{"name": "get_user_input", "parameters": {}}]

Figure 19: The performance of different models in Chat Category.

30677

