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Abstract

Dynamic Retrieval-augmented Generation
(RAG) has shown great success in mitigat-
ing hallucinations in large language models
(LLMs) during generation. However, existing
dynamic RAG methods face significant limita-
tions in two key aspects: 1) Lack of an effective
mechanism to control retrieval triggers, and
2) Lack of effective scrutiny of retrieval con-
tent. To address these limitations, we propose
an innovative dynamic RAG method, DioR
(Adaptive Cognitive Detection and Contextual
Retrieval Optimization), which consists of two
main components: adaptive cognitive detection
and contextual retrieval optimization, specifi-
cally designed to determine when retrieval is
needed and what to retrieve for LLMs is useful.
Experimental results demonstrate that DioR
achieves superior performance on all tasks,
demonstrating the effectiveness of our work.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities across various generative
tasks, such as text creation, dialogue generation,
and content summarization (Raffel et al., 2020;
Brown et al., 2020; Achiam et al., 2023; Chan et al.,
2024). However, LLMs remain inherently static
and lack the ability to learn in real-time (Mallen
et al., 2023; Xing et al., 2024; Kumar, 2024). As
a result, they cannot incorporate up-to-date infor-
mation, which may generate inaccurate or even
fabricated content when encountering unfamiliar
scenarios (Maynez et al., 2020). This phenomenon
is commonly referred to as “hallucination”.

Retrieval-Augmented Generation (RAG) has
gained attention as an innovative approach to reduc-
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Figure 1: Dynamic RAG and its limitations about “Tim-
ing Selection” and “Document Quality”, as well as our
solution to address the “Retrieval” limitation.

ing hallucinations in LLM. By integrating external
knowledge bases during the generation process and
leveraging the contextual learning capabilities of
LLMs, RAG effectively minimizes the generation
of erroneous information, enhancing the reliabil-
ity and precision of LLM generation (Jiang et al.,
2022, 2024b; Niu et al., 2023; Zhu et al., 2025).

Conventional RAG methods are a single-turn
retrieval process, where relevant documents are ex-
tracted based on the LLM’s input query and used
for content generation (Ye et al., 2024; Roy et al.,
2024; Zhang et al., 2024). While effective for
simpler tasks, this method struggles with complex
tasks or extensive text generation (He et al., 2024).
These highlight the need for advanced retrieval
mechanisms to handle these complex scenarios.

In contrast, Dynamic RAG effectively alleviates
this issue by enhancing the quality of LLM outputs
through multi-turn retrieval during the generation
process (Tayal and Tyagi, 2024; Yang et al., 2024b;
Su et al., 2024a). Specifically, it consists of two
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main steps: 1) Selecting the appropriate retrieval
timing, and 2) Constructing the appropriate query
once retrieval is triggered. This approach effec-
tively addresses the shortcomings of conventional
RAG in handling more complex problems.

However, as shown in Figure 1, existing dynamic
RAG methods exhibit significant limitations from
two perspectives, specifically:

1. Lack of an effective mechanism to control re-
trieval triggers: Current dynamic RAG strate-
gies typically rely on static, predefined rules to
trigger the retrieval module, such as when the
generation probability of a token falls below a
predefined threshold. However, a low genera-
tion probability only indicates low confidence in
the token, which does not necessarily imply hal-
lucination after LLM generation text. Moreover,
existing RAG strategies often trigger retrieval
only after hallucinations occur during the LLM
text generation process. If the existence mecha-
nism could predict whether the LLM is capable
of answering a question in advance and trigger
retrieval accordingly before generating, halluci-
nations might be avoided when generating.

2. Lack of effective scrutiny of retrieval content:
The current dynamic RAG method performs
single-batch retrieval in each round and also
relies on the confidence scores of the most re-
cent sentences’ tokens generated by the LLM to
determine the final retrieval keyword, without
fully considering the overall contextual require-
ments of the task. This can lead to the retrieval
of documents that are not entirely relevant, as
well as the introduction of noisy data. In ad-
dition, single-batch retrieval often focuses on
limited aspects of the context, and the retrieved
information has high redundancy, leading to re-
peated retrievals and increased computational
costs. Moreover, retrieving documents with ex-
cessively long content can significantly hinder
the LLM’s ability to understand, leading to in-
formation overload and impacting the model’s
ability to extract key information from docu-
ments and perform effective reasoning.

To bridge these gaps, we propose a novel dy-
namic RAG method, named DioR (Adaptive Cog-
nitive Detection and Contextual Retrieval Opti-
mization). DioR consists of two main components:
adaptive cognitive detection, and contextual re-
trieval optimization. Specifically:

In terms of adaptive cognitive detection, we uti-
lize the Wiki dataset to construct two hallucination
detection datasets and train two classifiers: Early
Detection and Real-time Detection. The Early De-
tection Classifier assesses the model’s ability to
answer questions independently, while Real-time
Detection monitors for hallucinations during the
generation process. Once Early Detection finds
LLM has no confidence in its response or Real-
time Detection identifies hallucinations, we present
contextual retrieval optimization to step-by-step re-
trieve documents. We optimize the priority of query
keywords through contextual analysis for retrieval.
Retrieved documents are then used to capture new
concepts to refine query keywords for more rele-
vant and precise retrieval in later steps. Addition-
ally, we use a sentence-level chunking module to
reduce the impact of long texts, enhancing model
understanding and inference performance.

The main contributions are listed as follows:

• We propose DioR, a novel dynamic RAG method
that addresses two key limitations of existing
methods: 1) Lack of an effective mechanism to
control retrieval triggers, and 2) Lack of effective
scrutiny of retrieval content.

• We constructed and trained both early detection
and real-time detection classifiers to determine
the optimal retrieval trigger timing based on the
internal state of the LLM before and during
the text generation process. Additionally, we
adopted contextual retrieval optimization to en-
hance both the retrieval process and the quality
of the documents, thereby improving the LLM’s
reasoning generation capabilities.

• Our experiments demonstrate that DioR sur-
passes popular methods in four knowledge-
intensive generation datasets, achieving superior
performance across the board.

2 Related Work

Large language models (LLMs) have shown out-
standing performance in solving downstream tasks
(Kumar, 2024); however, due to their inability to
integrate new information, they are prone to gen-
erating hallucinations during generation (Su et al.,
2024b; Ramprasad et al., 2024). To address this is-
sue, Retrieval-Augmented Generation (RAG) is an
effective strategy, enhancing the model’s ability to
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Figure 2: Detailed technical framework of DioR. It is mainly divided into two technical aspects: 1) Adaptive
cognitive detection; and 2) Contextual retrieval optimization.

leverage non-parametric knowledge by retrieving
external data resources (Jiang et al., 2022, 2024b).

The initial RAG paradigm primarily focused on
single-turn retrievals, such as Single-round RAG
(SR-RAG) methods like KNN-LM (Wang et al.,
2023), ReAtt (Jiang et al., 2022), REPLUG (Shi
et al., 2024), and UniWeb (Li et al., 2023), which
retrieve relevant passages from external corpora
based on the initial query and append them to the
LLM’s input. Single-turn retrieval indeed shows
significant improvements in the context of simple
tasks. However, when confronted with more com-
plex tasks, such as multi-step reasoning, long-form
question answering, and chain-of-thought reason-
ing (Ayala and Béchard, 2024a; Su et al., 2024a),
relying solely on the initial input for RAG often
fails to provide sufficient effective external knowl-
edge, resulting in limited improvements in address-
ing hallucinations (Wu et al., 2024).

To address this issue, researchers have explored
multi-turn retrieval-augmented strategies (Dynamic
RAG). Fixed Length RAG (FL-RAG) methods,
such as RETRO (Borgeaud et al., 2022) and
ICRALM (Ram et al., 2023), trigger the retrieval
module after every n token, using the generated to-
kens from the previous token window as the query.
Fixed Sentence RAG (FS-RAG) methods, such as
IRCot (Trivedi et al., 2023), trigger retrieval after
each sentence, treating each generated sentence as
a new query. However, these multi-turn retrieval ap-
proaches do not fully consider the real-time needs
of the LLM during the generation process, which

may lead to suboptimal results. In contrast, FLARE
(Jiang et al., 2023) triggers retrieval when uncertain
tokens are encountered (i.e., when the probability
of any token in the text falls below a certain thresh-
old), and inspired by this, Dragin (Su et al., 2024a),
a novel dynamic RAG method, determines the tim-
ing and content of retrieval based on the LLM’s
attention entropy and token relevance.

However, current dynamic RAG methods fail
to predict whether the LLM has the capability to
answer a question prior to generation, thereby trig-
gering retrieval in advance. Moreover, most meth-
ods often rely on static rules, leading to ineffective
timing for retrieval triggers during the generation
process. Additionally, existing dynamic RAG ap-
proaches lack optimization strategies for the docu-
ment retrieval process and the quality of retrieved
documents, such as relevance and length, which
significantly hampers the LLM’s performance

3 Proposed Method: DioR

In this section, we present the DioR, an innovative
dynamic Retrieval-Augmented Generation (RAG)
method, as illustrated in Figure 2. DioR consists
of two main components: adaptive cognitive detec-
tion and contextual retrieval optimization.

3.1 Adaptive cognitive detection
In view of the limitation of existing dynamic RAG
methods that Lack an effective mechanism to con-
trol retrieval triggers, we propose an innovative ap-
proach, Adaptive cognitive detection, which aims
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to effectively judge the optimal timing of retrieval
based on the cognitive characteristics of large lan-
guage models (LLMs). We specifically explain the
method from two perspectives.

3.1.1 Is LLM confident in answering this?

We mentioned before that existing dynamic RAG
methods all determine whether hallucinations oc-
cur after LLM generates content. However, if an
LLM exhibits a lack of sufficient confidence when
confronted with a particular question before gener-
ating, does it mean the model is more likely to gen-
erate incorrect information in uncertain situations,
potentially leading to hallucinations? Therefore,
can we intervene in the model’s output too early,
before it generates such hallucinations?

Algorithm 1 Early Detection Dataset Construction
and Training

1: Input: Wikipedia
2: Output: Trained RNN classifier RNNC

3: Step 1: Data Preparation
4: for each question-answer pair Q,R do
5: Generate answer A using LLaMA2-7B

based on question Q
6: if A matches R or contains R (i.e., R ⊆ A)

then
7: Label as Non-Hallucination
8: else
9: Label as Hallucination

10: end if
11: Extract IG Attribution Entropy (IG fea-

tures) from question Q
12: Store (Q,A,R, IG,Label)
13: end for
14: Step 2: Model Training
15: Initialize RNN-based classifier RNNC

16: for each data point (Q,A,R, IG,Label) do
17: Feed (Q,A,R, IG) into the RNN
18: Compute predicted label ŷ and loss

L(ŷ,Label)
19: Backpropagate and update model parame-

ters to minimize L
20: end for
21: Step 3: Output Trained classifier RNNC

Therefore, we plan to train a detector to deter-
mine whether early intervention in retrieval timing
is necessary to optimize the subsequent generation
process. Specifically, Early Detection aims to as-
sess the LLM’s confidence level regarding a given

question before generation, and based on this as-
sessment, decide whether retrieval should occur
prior to generation. The specific dataset construc-
tion and training process is detailed in Algorithm 1
and Appendix A.1 (Algorithm Explanation).

Based on this, we trained an RNN classifier on
a large Wikipedia dataset to determine whether to
trigger RAG based on the LLM’s confidence level
in responding to a given question.

3.1.2 Does LLM have accurate output?

Algorithm 2 Real-time Detection Dataset Con-
struction and Training

1: Input: Wikipedia W = {w1, w2, ..., wn}
2: Output: Trained MLP classifier MLPC

3: Step 1: Data Preparation
4: for each article wi ∈ W do
5: Truncate article based on entity positions
6: Generate text ti using LLaMA2-7B from

truncated article
7: end for
8: Step 2: Entity Extraction and Comparison
9: Extract entities ei from original article wi

10: Extract entities ni from generated text ti
11: for each entity nj ∈ ni, ej ∈ ei do
12: Compare ej and nj for cosine similarity
13: if similarity between ej and nj is high then
14: Consider ej and nj as the same entity

(no hallucination)
15: else
16: Mark ti as hallucination (0)
17: end if
18: end for
19: Step 3: Dataset Construction
20: Construct data point Di = {wi, ei, ti, ni, Hi},

where Hi is hallucination label (0 for halluci-
nation, 1 for non-hallucination)

21: Store data point Di in dataset Dn

22: Step 4: Model Training
23: Train MLP classifier MLPC on dataset Dn

24: for each data point (wi, ei, ti, ni, Hi) ∈ Dn

do
25: Feed wi, ei, ti, ni into the MLP classifier
26: Compute predicted hallucination label Ĥi

and loss L(Ĥi, Hi)
27: Backpropagate and update classifier param-

eters to minimize L
28: end for
29: Step 5: Output Trained classifier MLPC
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As mentioned earlier, most existing dynamic RAG
frameworks rely on static, predefined rules to trig-
ger the retrieval module. For example, retrieval is
initiated when the generation probability of a to-
ken during the LLM’s output process falls below a
predefined threshold, treating such low-probability
tokens as potential hallucinations.

However, hallucination detection should not rely
on generation probability. While the generation
probability could indicate model confidence (Far-
quhar et al., 2024; Ayala and Béchard, 2024b), it
does not directly reflect the accuracy of the LLM-
generated text, and therefore may not be a reliable
criterion for the occurrence of hallucinations.

Thus, the Real-time Detection aims to monitor
the generation process of the LLM and detect in
real time whether the output tokens from LLMs are
likely to be hallucinations, as the standard of the
retrieval timing. The specific dataset construction
and training process is described in Algorithm 2
and Appendix A.2 in detail.

Therefore, we have trained an MLP-based hal-
lucination detector on a large corpus of Wikipedia
data to ensure its effectiveness in accurately identi-
fying hallucinations.

3.2 When to retrieve is needed?
The appropriate retrieval timing helps LLM to
avoid hallucinations in the generation process with
maximum efficiency. So we define the detection
process of the above two classifiers as follows:

Definition 1. Let C(Q) denote the LLM’s confi-
dence in question Q. IG(Q) represents the Attri-
bution Entropy (IG features) (more ref. A.1.1).

IG(Q) =
N∑

j=1

−IGj∑N
k=1 IGk

log

(∑N
k=1 IGk

IGj

)
.

(1)
C(Q) = I(Softmax(fRNN(IG(Q))) > 0.5). (2)

If C(Q) is 1, the retrieval trigger. We calculate
the IG attribution value IGi separately for each
token ti of Q, and the mean of all token is IGmean.
For selecting candidate keywords for retrieval (the
model tends to focus on), we following bellow:

If IGi > IGmean ⇒ ti as candidate. (3)

Definition 2. Let tj as the generating token of
LLMs. Ptj as hallucination probability of tj .

Ptj = σ(fMLP (tj)). (4)

If Ptj (the sigmoid layer score σ) is below 0.5,
the token tj is flagged as a hallucination and the
retrieval trigger. Then, use spaCy to extract all en-
tities from the generated text, convert them into to-
kens, filter out the tokens labeled as hallucinations,
and ultimately attain valid candidate keywords.

3.3 Contextual retrieval optimization

Once the LLM is determined to lack confidence
in answering a question or when hallucinations
are detected, triggering RAG becomes necessary.
The next step in the RAG framework is to gener-
ate queries and retrieve relevant information from
external databases to support the LLM in contin-
uing text generation. However, existing dynamic
RAG methods suffer from the limitation of Lack
of effective scrutiny of retrieval content.

To address the limitation, we propose a novel
method called Contextual retrieval optimization,
consisting of two key steps: pre-retrieval and post-
retrieval. Specifically, as follows.

3.3.1 Pre-retrieval
Existing dynamic RAG frameworks rely solely on
the token confidence scores (e.g., attention weights)
of the most recent sentences generated by the LLM
to select the final retrieval keyword. This approach,
which selects keywords based on recent sentences
or token confidence, struggles to accurately capture
subtle semantic relationships between contextual
information, potentially leading to suboptimal re-
trieval results. Therefore, we performed the follow-
ing optimizations in the selection of keywords.

We analyzed the entire text generated by the
LLM using the two detectors (sec. 3.2, Early and
Real-time Detection) and identified a set of can-
didate keywords. Then, we assess the importance
of each candidate keyword (token) through four
evaluation metrics. This helps the model choose
the most important keyword (token) to retrieve.

We first compute the attention scores of each
token using a multi-head attention mechanism. By
representing attention across different heads, the
model can focus on various semantic and syntactic
features of the text, offering a more comprehensive
understanding of which parts of the text are most
important for retrieving external information. Let
Ai represent the attention score for token i. Next,
we incorporate TF-IDF scores to evaluate the in-
formation density of each token. We assign higher
priority to tokens with greater information density.
We then calculate a positional score based on the
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relative position of each token in the text, taking
into account its contextual role in text generation.
The positional score for token i is computed as:
Pi =

Pos(i)
N , where Pos(i) and N are the position

of the token and the total number of tokens respec-
tively. Finally, we assess the semantic relevance
between each token and the query term by calcu-
lating the cosine similarity Si between the word
embedding vectors of the token i and the query q⃗.

The overall importance score Ii for each token is
computed as a weighted sum of four components,
which enables more accurate identification of rele-
vant tokens and enhances subsequent retrieval.

DioR ranks tokens in descending order of impor-
tance based on Ii, it prioritizes those most relevant
to the retrieval task. These top-ranked tokens fa-
cilitate the extraction of the most relevant external
knowledge with the question. Advanced retrieval
models, such as BM25, are then used to retrieve
relevant documents from an external knowledge
base, enhancing the precision of the retrieval pro-
cess. Then, we put the retrieved documents in the
candidate area for the next step of optimization.

3.3.2 Post-retrieval
After retrieving relevant documents from the knowl-
edge base based on token priority, we need to de-
sign a dynamic optimization strategy to enhance the
accuracy and relevance of documents for real-time
retrieval needs. Specifically, since current dynamic
RAG frameworks retrieve all documents in a single
batch per query trigger, lacking flexibility and fail-
ing to fully understand the task context, we discard
this strategy in favor of stepwise retrieval.

For example, if five documents need to be re-
trieved, we first choose the top two most relevant
from the candidate area (n/2, where n is the num-
ber of remaining documents to be retrieved). Next,
we perform keyword extraction on these two doc-
uments, focusing on newly emerging keywords or
concepts. The newly emerged concepts are merged
with the original keywords, and a new round of re-
trieval is conducted based on the updated keyword
set. This process is repeated until the required num-
ber of documents is selected, providing accurate
information support for subsequent generation.

Once the document selection is complete, the
next step is to input the selected documents into
the LLM. If any individual document is too long,
it may hinder the model’s understanding and rea-
soning. To address this, we design a sentence-level
segmentation approach for the document. However,

simple sentence segmentation may lead to semantic
breaks, potentially causing misinterpretations by
the model. To solve this problem, we reassemble
the sentences into shorter, semantically coherent
segments, ensuring that the split content maintains
logical continuity. Specifically, for each sentence
x, we first split it into sub-clauses x1, x2, . . . , xn,
then evaluate the scores for various sub-clause com-
binations. For instance, we compare the score of
the combination of x1 and x2 with that of x1 alone.
If the combination score improves, we proceed
by adding x3, comparing the score of x1, x2, x3
with that of x1, x2, and repeat this process until the
score decreases. At that point, the sub-clauses are
grouped into a block. This method enables us to
break each document di into several semantically
coherent and shorter blocks (e.g., di1, di2, . . . , dik),
mitigating the negative impact of long texts on the
model’s comprehension and optimizing its reason-
ing performance. This ensures that each input is
semantically clear and concise.

We integrate all the segmented blocks from the
retrieved documents into the LLM prompt template,
please refer to the following for details:

External Knowledge After Chunk:
[1] d1[(1).d11, (2).d12, . . . , (u).d1u]

[2] d2[(1).d21, (2).d22, . . . , (t).d2t]

...
[3] di[(1).di1, (2).di2, . . . , (k).dik] . . .
Using the external knowledge provided above,

please answer the following question:
Question: [Ques.]
Answer: Insert truncated output [ ] and addi-

tional relevant details here.
This integration method effectively addresses the

knowledge gaps during the LLM generation pro-
cess. Specifically, when hallucinations occur in the
content generated by the LLM, we make it a trun-
cation point, and we introduce externally retrieved
knowledge to allow the LLM to continue generat-
ing more accurate and comprehensive content from
the truncation point. This enhances the model’s
understanding of the documents and ensures that
the generated content is more precise and relevant.

4 Experiment

4.1 Experimental Setups

The comprehensive and detailed descriptions of the
experimental setups, including the datasets, evalu-
ation metrics, and implementation specifics, can be
found in Appendix B.
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Table 1: Comparison of EM, F1, Precision, and Recall scores between the Base method and DioR across various
datasets and retrieval strategies. The highest scores for each metric in each dataset are highlighted in underline.

Matrix 2WikiMultihopQA HotpotQA IIRC StrategyQA

Base DioR Base DioR Base DioR Base DioR

EM (BM25) 0.214 0.254 0.219 0.274 0.156 0.201 0.639 0.659
EM (SGPT) 0.209 0.226 0.202 0.212 0.125 0.178 0.604 0.616
EM (SBERT) 0.231 0.266 0.165 0.205 0.142 0.153 0.645 0.654

F1 (BM25) 0.282 0.335 0.314 0.379 0.188 0.245 0.639 0.659
F1 (SGPT) 0.278 0.292 0.301 0.307 0.153 0.224 0.604 0.616
F1 (SBERT) 0.294 0.328 0.244 0.303 0.172 0.179 0.645 0.654

Pre. (BM25) 0.288 0.342 0.331 0.399 0.195 0.255 0.639 0.659
Pre. (SGPT) 0.284 0.298 0.319 0.333 0.159 0.229 0.604 0.616
Pre. (SBERT) 0.298 0.334 0.256 0.324 0.176 0.185 0.645 0.654

Rec. (BM25) 0.285 0.345 0.316 0.381 0.196 0.243 0.639 0.659
Rec. (SGPT) 0.281 0.299 0.305 0.312 0.156 0.219 0.604 0.616
Rec. (SBERT) 0.299 0.332 0.255 0.303 0.180 0.189 0.645 0.654

Table 2: Comparison of DioR and other RAG methods for LLaMA2-7B-CHAT across four different datasets

Dataset Metric DioR SEAKR RaDIO Dragin wo-RAG SR-RAG FL-RAG FS-RAG FLARE

2WikiMultihopQA EM 0.266 0.264 0.254 0.231 0.146 0.169 0.112 0.189 0.143
F1 0.335 0.330 0.317 0.294 0.223 0.255 0.192 0.265 0.213

HotpotQA EM 0.274 0.261 0.246 0.219 0.184 0.164 0.146 0.214 0.149
F1 0.379 0.365 0.351 0.314 0.275 0.150 0.211 0.304 0.221

IIRC EM 0.201 0.195 0.196 0.156 0.139 0.187 0.172 0.178 0.136
F1 0.245 0.235 0.239 0.188 0.173 0.226 0.203 0.216 0.164

StrategyQA Pre. 0.659 0.650 0.654 0.645 0.659 0.645 0.634 0.629 0.627

4.2 Experimental Results

In this subsection, we mainly discuss the most im-
portant experimental results, which aim to com-
prehensively evaluate DioR’s performance across
four datasets with various competitors. The addi-
tional experimental results, which provide further
insights into the performance of our method, are
discussed in greater detail in Appendix C.

4.2.1 Overall Results
In this part, we present results comparing the per-
formance of the Base (Dragin (Su et al., 2024a))
and DioR (Using LLaMA2-7B). As shown in Table
1 in detail.

In 2WikiMultihopQA, the DioR method con-
sistently outperforms the Base method across all
retrieval methods and evaluation metrics. Specifi-
cally, DioR achieves a notable increase in EM, with
a score of 0.254 (BM25) compared to the Base’s
0.214. Similarly, F1, Precision, and Recall scores

show advantages for DioR, surpassing the Base.
In HotpotQA. For EM, DioR reaches 0.274

(BM25), an improvement over the Base’s 0.219.
The F1 score is also better for DioR, achieving
0.379 (BM25) versus the Base’s 0.314. Pre. and
Rec. follow a similar trend. It is worth noting
that under the SBERT retrieval strategy, the Pre. is
improved by 0.068, the largest increase compared
with BM25 and SGPT.

In the IIRC dataset, DioR demonstrates a con-
sistent advantage across metrics. The EM score in-
creases from 0.156 (Base) to 0.201 (DioR, BM25).
F1, Pre., and Rec. scores also show significant
improvement, with DioR reaching a Pre. of 0.255
(BM25) and Rec. of 0.243 (BM25), higher than the
Base method by a noticeable margin.

In the StrategyQA dataset, DioR outperforms
the Base method across all retrieval methods. The
EM score increases from 0.639 (Base) to 0.659
(DioR, BM25). F1, Pre., and Rec. show similar
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Table 3: Ablation experiments. ED: Early-Detection, RD: Real-time Detection, Pre-R/Post -R: Pre/Post -retrieve.

Dataset Metric DioR w/o ED w/o RD w/o Pre-R w/o Post-R

2WikiMultihopQA EM 0.266 0.258 0.239 0.249 0.260
F1 0.335 0.327 0.301 0.306 0.322

HotpotQA EM 0.274 0.266 0.223 0.237 0.249
F1 0.379 0.363 0.319 0.334 0.356

IIRC EM 0.201 0.191 0.169 0.172 0.197
F1 0.245 0.233 0.197 0.206 0.240

StrategyQA Pre. 0.659 0.652 0.646 0.648 0.655

improvements, with DioR achieving a Precision
score of 0.659 and a Recall score of 0.659 (both
BM25), marking a consistent performance boost.

Overall, results show that DioR outperforms the
Base method across all datasets and evaluation met-
rics, providing a more robust solution for question-
answering tasks and effectively addressing halluci-
nations while enhancing LLM reasoning.

4.2.2 Comparison with Other RAG methods
In this part, we present a comparison of the perfor-
mance of DioR and various RAG-based methods
(Using LLaMA2-7B). As shown in Table 2.

On the 2WikiMultihopQA dataset, DioR
achieves the highest performance. Specifically,
DioR scores 0.266 for EM, surpassing some pop-
ular dynamic RAG methods, such as SEAKR, Ra-
DIO, and Dragin. Similarly, DioR leads in F1, with
a score of 0.335. Other RAG methods, such as wo-
RAG (EM: 0.146, F1: 0.223) and SR-RAG (EM:
0.169, F1: 0.255), perform notably worse.

In HotpotQA, DioR also outperforms other meth-
ods, achieving higher EM (0.274) and F1 (0.379)
scores than popular dynamic RAG methods such
as RaDIO (EM: 0.246, F1: 0.351), SEAKR (EM:
0.261, F1: 0.365), and Dragin (EM: 0.231, F1:
0.294). In contrast, wo-RAG and SR-RAG show
significantly lower scores (EM: 0.184, F1: 0.275
for wo-RAG; EM: 0.164, F1: 0.150 for SR-RAG).

In the IIRC dataset, DioR achieves the highest
EM (0.201) and F1 (0.245) scores, outperforming
other RAG methods such as Dragin (EM: 0.156,
F1: 0.188), FL-RAG (EM: 0.172, F1: 0.203) and
FS-RAG (EM: 0.178, F1: 0.216).

On the StrategyQA dataset, DioR achieves the
highest Precision score (0.659), surpassing the Ra-
DIO (0.654), Dragin (0.645), SEAKR (0.650), and
other RAG methods. While wo-RAG shows sim-
ilar performance (0.659) due to the dataset is not

complex, DioR still leads in all datasets, which is
indicative of its overall more reliable performance.

Thus, the experimental results demonstrate that
DioR offers a robust solution for handling LLM-
generated hallucinations, making it a superior
choice for tasks requiring high factual accuracy,
such as those involving complex, multi-hop reason-
ing or multi-turn question answering.

4.2.3 Ablation Experiment
In this part, we mainly test the effectiveness of
the following two components of our proposed
method: adaptive cognitive detection and contex-
tual retrieval optimization. As shown in Tabel. 3.

It is worth noting that if we remove the Real-time
Detection module, retrieval is triggered directly
when the generation probability of a token is below
0.5. If we remove the “Pre-retrieval” step, retrieval
is performed sequentially based on the order of
token appearances. The remaining two modules
can be directly removed: removing Early Detection
eliminates the need to assess the LLM’s ability to
answer in advance while removing “Post-retrieval”
leads to single-batch retrieval, where all documents
are included in the prompt input to the LLM (the
prompt for LLMs reference Appendix F).

Based on the results of the ablation experiments,
we can observe the effectiveness of each com-
ponent in enhancing DioR across four datasets.
This further validates the efficacy of our proposed
method in addressing the two limitations of exist-
ing dynamic RAG approaches.

5 Conclusion and Future work

In this paper, we investigate the effectiveness
of Retrieval-Augmented Generation (RAG) tech-
niques in mitigating hallucination issues in large
language models (LLMs). However, existing dy-
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namic RAG methods face significant limitations
in two key aspects, 1) Lack of an effective mech-
anism to control retrieval triggers, and 2) Lack
of effective scrutiny of retrieval content. To ad-
dress these limitations, we propose an innovative
dynamic RAG approach, DioR (Adaptive Cog-
nitive Detection and Contextual Retrieval Opti-
mization), achieving when retrieval is needed and
what to retrieve for LLMs is useful. Compared
to existing popular dynamic RAG methods, DioR
demonstrates superior performance across four
knowledge-intensive generation datasets, proving
the effectiveness of our method in improving.

Looking ahead, we will refine DioR, especially
in its ability to tackle complex problems in a step-
by-step manner. By integrating more refined rea-
soning strategies, we aim to further elevate the
model’s performance on intricate tasks.

Limitations

We acknowledge the limitations of this paper.
Specifically, we face the performance impact of
retrieving long documents for model inference.
While we have implemented chunking to shorten
the length of individual knowledge pieces and im-
prove the model’s understanding of each, the total
length of all input knowledge remains unchanged.
In the future, we could introduce a model that sum-
marizes the key points of each document, reducing
the overall length and focusing on the core content
for retrieval, thereby improving both the efficiency
and the relevance of the retrieved knowledge.

On the other hand, we have identified that com-
plex problems often pose significant challenges
when approached through a single, direct reasoning
process. For instance, in mathematical problems,
attempting to solve them in one step can lead to
increased computational complexity, higher error
rates, and difficulty in identifying intermediate is-
sues. To address these challenges, we plan to adopt
a step-by-step reasoning approach in the future.
Specifically, we will plan to break down complex
problems into a series of smaller, more manageable
sub-problems. By tackling each sub-problem se-
quentially, we can enhance the clarity and accuracy
of the reasoning process, making it easier to iden-
tify and correct errors at each stage, and ultimately
improve the overall effectiveness and reliability of
large language models’ reasoning.
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A Adaptive cognitive detection algorithm
details

In Section 3, we build two hallucination detection
classifiers, as shown in Figure 3. We describe the
algorithm described above in detail as follows and
the effectiveness analysis of these two classifiers is
shown in the Appendix C.6:

A.1 Early Detection

We choose the Wikipedia dataset and used
LLaMA2-7B-CHAT for generative question an-
swering. For a randomly selected question Q, we
generate an answer A with the model, where each
Q contains a ground truth answer R, as described
in lines 3 to 5 of Algorithm 1. We consider that
if the generated answer A is inconsistent with the
factual details of R, then it is factually incorrect,
and the model’s response is a hallucination (Jiang
et al., 2024a; Ji et al., 2023). This definition aligns
with previous generative question-answering stud-
ies, which view factually incorrect statements as
hallucinations. However, since LLM outputs can be
quite long, merely matching the generated answer
A with the reference answer R via exact string com-
parison is insufficient for judging the correctness of
A. For example, assume Q = [Where is the capital
of America?] and R = [Washington]. Whether
LLaMA generates the answer A as "Washington"
or "Washington D.C." both represent correct an-
swers. Therefore, we consider that the reference
answer R is contained within the generated answer
A, i.e., R ⊆ A, and the answer is correct, as de-
scribed in lines 6 to 10 of Algorithm 1.

To effectively determine whether the LLM has
enough information to answer a question, we can
assess the model’s focus on certain words within
the question, i.e., whether the LLM can capture the
key points of the question. We use the Integrated
Gradients (IG) method to generate feature attribu-
tion, which indicates the importance of each fea-
ture in the specific prediction (Snyder et al., 2024).
This method is typically used to inspect the behav-
ior of the model and uncover potential problematic
patterns. In simple terms, if we calculate the fea-
ture attribution based on the LLM’s attention, if
the LLM’s output does not generate hallucinations,
i.e., if it focuses on certain keywords, the attribu-
tion entropy will be low (focusing on keywords,
keywords’ attribution is high). Otherwise, when
hallucinations are generated, the model will focus
on more input words, resulting in higher attribution
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entropy (the focus is more dispersed, and all word
attribution is relatively even). Specific proof of
attribution entropy process reference A.1.1.

Thus, we construct an Early-Detection dataset
consisting of Q,A,R, and the IG-generated feature
attribution values, along with hallucination labels,
as described in lines 11 and 12 of Algorithm 1.

Due to the sequential nature of the data, we use
a Recurrent Neural Network (RNN) for training,
as RNNs are adept at handling sequential data and
effectively capture contextual dependencies within
the input sequence, as described in lines 14 to 21 of
Algorithm 1. During training, we use the standard
binary cross-entropy loss function to predict the ŷi
given Q,A,R, and IG, as follows:

L(θ) = −
N∑

i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] ,

(5)
where ŷi = sigmoid (f(Qi, Ai, Ri, IGi, θ)) and
f(Qi, Ai, Ri, IGi, θ) is the model’s output, calcu-
lated from the model parameters θ and the inputs
Qi, Ai, Ri, IGi.

A.1.1 Proof of Attribution Entropy Behavior

Uniform distribution of attribution values: If the
model pays almost equal attention to each input
feature (for example, the attribution value of each
feature is similar), the entropy value will be high
because the model as a whole does not tend to favor
a specific feature, but pays attention to multiple
features. In this case, the system is more uncertain
or chaotic, so the attribution entropy is large.

Concentrated attribution values: If the model’s
attention is mainly focused on a few features, while
the attribution values of other features are small
or close to zero (for example, the attribution val-
ues of some features are significantly higher than
other features), the entropy value will be small be-
cause the model’s attention is not scattered, but
concentrated on a few features, which reduces the
uncertainty of the system, so the attribution entropy
is small.

The following proves the attribution entropy,
specifically:

1. Definition of Attribution Entropy:

The attribution entropy H(P ) of a probability
distribution P = {p1, p2, ..., pn} is defined as:

H(P ) = −
n∑

i=1

pi log pi, (6)

where
∑n

i=1 pi = 1.

2. Uniform Distribution (Hallucination):

For a uniform distribution, where each probabil-
ity pi =

1
n , the attribution entropy becomes:

H(P ) = −
n∑

i=1

1

n
log

1

n
= log n (7)

3. Concentrated Distribution (Non-
Hallucination):

Now, consider a distribution where most of the
probability mass is concentrated on one element.
For example, let p1 = 1 − ϵ and p2 = p3 =
· · · = pn = ϵ

n−1 , where ϵ → 0. The attribution
entropy is:

H(P ) = − ((1− ϵ) log(1− ϵ))

− (n− 1)× ϵ

n− 1
log

ϵ

n− 1

(8)

When ϵ is small, we can approximate log(1 −
ϵ) ≈ −ϵ. Thus:

H(P ) ≈ − ((1− ϵ)(−ϵ))

− (n− 1)× ϵ

n− 1
log

ϵ

n− 1

(9)

This simplifies to:

H(P ) ≈ ϵ− ϵ2 − ϵ log
ϵ

n− 1
(10)

As ϵ → 0, H(P ) → 0, indicating that the attri-
bution entropy is minimized for a concentrated
distribution.

A.2 Real-Time Detection

Specifically, we consider that the part of the LLM
output most prone to hallucinations typically in-
volves changes in entities (e.g., incorrect dates or
names) (Huang et al., 2024; Li et al., 2024; Chang
et al., 2024). Therefore, effectively identifying the
semantic differences of entities is an effective so-
lution for detecting hallucinations. Based on this,
we select the Wikipedia dataset, denoted as W ,
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Figure 3: The construction process of Real-time Detection (a) and Early Detection (b) datasets

which contains several independent article para-
graphs {w1, w2, ..., wn}. From each article wi, we
extract key entities (such as names, years, num-
bers, and other important terms), and truncate each
article wi based on the positions of the extracted
entities ei (excluding the beginning of each sen-
tence). The truncated document is then fed into
the LLM with the prompt: "Below is the open-
ing sentence from a Wikipedia article titled [Title].
Please continue the passage from where the sen-
tence ends. [First sentence of that article]." We
choose LLaMA2-7b-CHAT to generate a new piece
of text based on the prompt, which we define as ti,
as shown in lines 1-7 of Algorithm 2.

To detect whether the newly generated text con-
tains hallucinations, we perform entity extraction
on the same truncated portion of ti and the origi-
nal text wi, resulting in ni. We then compare the
extracted entities ni with the original entities ei to
determine if a hallucination has occurred. How-
ever, entities often exist in multiple forms, such
as abbreviations, variations in naming conventions,
or different word orders. Therefore, simple direct
matching may not capture all entity-level errors. To
address this, we combine manual evaluation with
the cosine similarity comparison between the vec-
tor representations of the extracted entities and the
originally selected entities. In this way, we can
assess whether two entities are semantically equiv-
alent. If the entities are semantically similar (e.g.,
"USA" and "United States of America" are con-
sidered the same), a hallucination is not detected.
Otherwise, the LLM-generated text is labeled as a

hallucination. This is specifically described in lines
8-18 of step 2 in Algorithm 2.

Based on the above steps, we construct a real-
time hallucination detection dataset Di, which in-
cludes (wi, ei, ti, ni, Hi), where Hi represents the
hallucination label, with 0 indicating a hallucina-
tion and 1 indicating no hallucination. For Di, we
train a multi-layer perceptron (MLP) model.

P = MLP(Di {wi, ei, ti,ni,Hi}+ b), (11)

where b is the bias vector.

A.3 How many training samples are
generated from Wikipedia?

In this subsection, we mainly explain how much
data is constructed to train these two classifiers:
Early Detection and Real-time Detection.

A.3.1 The number of training samples of
Early Detection

We used LLaMA2-7B to construct 5201 data from
Wikipedia, with a training set and a test set ratio of
0.8:0.2, to train and validate Early Detection. We
use an NVIDIA A100 GPU, which processes for
about half an hour.

A.3.2 The number of training samples of
Real-time Detection

We constructed the training set for Real-time De-
tection from Wikipedia by means of the LLaMA2-
7B model. Our dataset comprises 6,000 training
samples, 1,000 validation samples, and 1,304 test
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samples. We use an NVIDIA A100 GPU, which
processes for about one hour.

B Experimental Setups

B.1 Datasets

We evaluate our approach using four multi-hop
benchmark datasets and three single-hop bench-
mark datasets, each designed to assess different
aspects of model reasoning and performance:

a) 2WikiMultihopQA (Ho et al., 2020): This
dataset is specifically designed to test a model’s
ability to perform chain-of-thought (CoT) reason-
ing. It challenges the model to generate answers by
integrating information from multiple Wikipedia
articles, requiring the model to navigate through
several hops of information to synthesize a final
response. It has 1000 examples.

b) HotpotQA (Yang et al., 2018): Similar to
2WikiMultihopQA, this dataset focuses on ques-
tions that necessitate information retrieval from
multiple documents. It evaluates the model’s ca-
pacity to engage in CoT reasoning, requiring it to
identify and connect different pieces of evidence
scattered across diverse passages to formulate a co-
herent and accurate answer. It has 1000 examples.

c) IIRC (Abdelsalam et al., 2021): The IIRC
dataset is aimed at evaluating reading comprehen-
sion and advanced synthesis. Questions in this
dataset require the model to integrate information
from multiple documents, often spanning several
passages, and demand a deep level of synthesis to
derive accurate answers from complex, intercon-
nected pieces of text. It has 954 examples.

d) StrategyQA (Geva et al., 2021): This dataset
is designed to assess commonsense reasoning by
posing questions that involve implicit strategies.
To answer these questions, models must generate
CoT reasoning steps and leverage abstract thinking,
making it a strong test for evaluating a model’s
commonsense knowledge and its ability to navigate
reasoning processes that are not explicitly stated. It
has 1000 examples.

e) NaturalQuestions (Kwiatkowski et al., 2019):
NaturalQuestions is a large-scale open-domain
question answering dataset constructed from real
user queries issued to Google Search. Each ques-
tion is paired with a Wikipedia page, and annotated
with both long answers (typically paragraphs) and
short answers (typically named entities or phrases).
The dataset is challenging due to the natural, free-
form nature of the questions and the need for deep

contextual understanding, making it a strong bench-
mark for evaluating information retrieval and read-
ing comprehension models.

f) TriviaQA (Joshi et al., 2017): TriviaQA is a
question answering dataset collected from trivia
websites, featuring naturally occurring questions
written by trivia enthusiasts. Each question is asso-
ciated with multiple evidence documents retrieved
from Wikipedia and the web, with answers anno-
tated within these documents. The dataset covers a
broad range of topics and requires models to per-
form reasoning across long and sometimes noisy
contexts, providing a robust test for reading com-
prehension in real-world settings.

g) SQuAD (Rajpurkar et al., 2018): The Stan-
ford Question Answering Dataset (SQuAD) is one
of the most widely used benchmarks in QA re-
search. In version 2.0, it combines answerable and
unanswerable questions, requiring models to ei-
ther extract a precise span from a given Wikipedia
paragraph or determine that no answer is present.
SQuAD emphasizes fine-grained language under-
standing, span-level prediction, and the ability to
distinguish between answerable and unanswerable
contexts.

B.2 Evaluation Metrics
We employed a comprehensive set of metrics to
evaluate the performance of DioR and other RAG
methods on different datasets and retrieval methods.
These metrics can be broadly categorized into two
groups: effectiveness metrics and efficiency metrics.
Specifically as follows:

Effectiveness metrics aimed to measure the ac-
curacy and quality of the generated answers. We
evaluated the models using Exact Match (EM), F1
Score, Precision (Pre.), and Recall (Rec.). The EM
metric measures the proportion of model-generated
answers that exactly match the reference answers,
providing a strict assessment of answer accuracy.
The F1 Score calculates the harmonic mean of pre-
cision and recall, offering a balanced evaluation
of answer quality. We assessed the precision and
recall of the models to evaluate their ability to pro-
duce accurate responses.

Efficiency metrics focused on assessing the com-
putational resources and time complexity associ-
ated with each model. We measured the Retrieve
Count (Rc) for the number of documents retrieved
during the retrieval process, which measures the
ability of the model to efficiently gather relevant
information. Furthermore, we calculated the Gen-
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erate Count (Gc) for the number of times generated
answers are produced, reflecting the model’s ca-
pacity for generating responses. The Hallucinated
Count (Hc) metric assesses the number of halluci-
nated content occurrences, where the model gen-
erates responses that are not grounded in the input
text or retrieved documents. Finally, we measured
the Token Count (Tc) and Sentence Count (Sc) to
evaluate the verbosity and response length of the
models. Due to the fact that LLM is generated
more than once, multiple RAGs may be performed,
resulting in cumulative statistics of Tc and Sc indi-
cators.

B.3 Implementation
We compare our method with seven RAG baselines,
including SEAKR (Yao et al., 2024), RaDIO (Zhu
et al., 2025), DRAGIN (Su et al., 2024a), wo-RAG
(Su et al., 2024a), SR-RAG (Su et al., 2024a), FL-
RAG (Borgeaud et al., 2022; Ram et al., 2023),
FS-RAG (Trivedi et al., 2023), and FLARE (Jiang
et al., 2023; Su et al., 2024a). wo-RAG represents
a setting where no retrieval-augmented generation
(RAG) is applied. Other methods are already in-
troduced in the related work section. Notably, wo-
RAG and SR-RAG are single-round RAG methods,
while the remaining techniques employ a multi-
round retrieval strategy.

For our experiments, DRAGIN serves as the
baseline (we express it as Base), referenced
throughout this work. We employ two fine-tuned
large language models as the underlying backbone:
LLaMA2-7B CHAT (Touvron et al., 2023) and
Qwen2.5-7B (Yang et al., 2024a), both optimized
for dialogue-oriented tasks.

Three retrieval strategies are employed: BM25
(Lv and Zhai, 2011), SBERT (Wang and Kuo,
2020), and SGPT (Muennighoff, 2022). Specif-
ically as follows,

1) BM25: It is a classic information retrieval
algorithm based on the idea of TF-IDF (Word Fre-
quency Inverse Document Frequency), but has been
improved to consider factors such as document
length. It can quantitatively evaluate the relevance
between documents and queries, help determine
the most relevant documents, and thus improve
retrieval performance.

2) SGPT: It is a semantic search sentence em-
bedding method based on GPT model. It utilizes
the powerful semantic understanding ability of the
GPT model and proposes two architectures: dual
encoder (SGPT-BE) and cross encoder (SGPT-CE).

SGPT-BE generates sentence representations by
fine-tuning the bias tensor of the GPT model and
using position weighted average pooling.

3) SBERT: It is a variant based on BERT, de-
signed specifically for generating sentence embed-
dings, mainly used for tasks such as calculating
semantic similarity, text clustering, and informa-
tion retrieval. It optimizes the generation of seman-
tic embeddings, making it more efficient to calcu-
late the similarity between sentence pairs. SBERT
solves the problem of low efficiency in semantic
similarity calculation of the original BERT model.
By introducing sentence embeddings, each sen-
tence only needs to be encoded once, greatly im-
proving efficiency.

The experiments are conducted on NVIDIA
A100 80GB. For hyperparameter settings, we set
the maximum generated sequence length to 256
tokens, with a retrieval top-k value of 3 and max re-
trieval times of 5, and selected the top 25 passages
to ensure high-quality responses. We used datasets
containing 1000 data points each to ensure robust
and reliable results. We processed approximately
12,000 samples on four A100 GPUs. The total run-
time was around 18 hours, with an average overall
response time of 5.4 seconds per sample.

C More Experimental Results

C.1 Efficiency Comparison Experiment

As shown in Table 4, We discuss the effectiveness
of DioR from the perspective of efficiency indica-
tors.

DioR demonstrates a more efficient retrieval and
generation process. For example, in 2WikiMulti-
hopQA, DioR retrieves significantly more docu-
ments, reaching 3.006, while reducing hallucinated
generations to just 1.003. The same findings can
also be observed from SBERT.

In HotpotQA, DioR retrieves more documents
with BM25 (3.033 vs. 2.832) but generates fewer
responses (Gc 3.037 vs. Base 6.372), leading to
more computationally efficient performance.

Additionally, DioR reduces hallucinated con-
tent across all retrieval methods. In 2WikiMul-
tihopQA (BM25), DioR’s Hc is 1.003, much lower
than Base’s 1.018, reflecting its improved ability
to ground responses and minimize irrelevant infor-
mation. This trend is consistent across datasets,
with DioR generally exhibiting fewer hallucina-
tions than the Base method.

In terms of verbosity, DioR produces slightly
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Table 4: Compare the efficiency of various retrieval and generation methods in base and DioR across four different
datasets.

Matrix 2WikiMultihopQA HotpotQA IIRC StrategyQA

Base DioR Base DioR Base DioR Base DioR

Rc (BM25) 1.018 3.006 2.832 3.033 3.696 3.019 4.422 3.173
Rc (SGPT) 3.602 1.932 3.002 2.053 3.002 2.023 4.305 2.213
Rc (SBERT) 1.804 4.006 0.974 4.060 1.534 4.018 2.390 4.258

Gc (BM25) 2.038 3.006 6.372 3.037 7.431 3.022 8.849 3.206
Gc (SGPT) 7.208 2.021 6.007 2.092 6.009 2.074 8.613 2.280
Gc (SBERT) 3.982 2.033 2.725 2.098 3.206 2.062 5.601 2.206

Hc (BM25) 1.018 1.003 2.832 2.017 3.696 2.010 4.422 2.093
Hc (SGPT) 3.602 1.005 3.002 1.046 3.002 1.035 4.305 1.134
Hc (SBERT) 1.804 1.014 0.974 1.046 1.534 1.030 2.390 1.098

Tc (BM25) 523.763 772.585 694.887 391.962 959.080 776.529 894.252 323.321
Tc (SGPT) 1852.543 519.481 775.129 270.201 775.328 533.008 870.086 229.660
Tc (SBERT) 537.053 522.566 216.537 270.896 497.527 529.970 325.277 222.434

Sc (BM25) 36.530 47.589 34.372 21.491 47.099 42.073 59.893 23.066
Sc (SGPT) 123.930 32.572 40.494 14.887 36.826 29.014 60.191 16.984
Sc (SBERT) 30.908 32.544 10.629 14.575 25.094 29.376 23.592 16.293

longer responses in some cases, such as 2Wiki-
MultihopQA (Tc 772.585 vs. Base 523.763), but
this is balanced by its ability to generate more pre-
cise answers with fewer sentences (Sc 47.589 vs.
36.530 with BM25). In datasets like StrategyQA,
DioR achieves a more concise output (Tc 323.321
vs. 894.252 for Base) without sacrificing accuracy,
showing its flexibility in adjusting verbosity based
on the task requirements.

DioR outperforms the Base method by retriev-
ing more relevant documents, generating fewer
responses, and reducing hallucinations, all while
maintaining a balanced verbosity. These improve-
ments result in a more efficient and effective ap-
proach to complex question-answering tasks.

C.2 Compare With Single-hop Datasets

As shown in Table 5, we conducted experiments on
three single-hop datasets: NaturalQuestions, Trivi-
aQA, and SQuAD. From the results, we observed
that DioR achieves certain advantages in terms
of EM and F1 scores in most cases. Compared
to other dynamic RAG methods such as FLARE,
DRIGIN, and RaDIO, our approach consistently
demonstrates a certain level of improvement.

Table 5: Performance of various models on Natu-
ralQuestions, TriviaQA, and SQuAD using LLaMA2-
7B and BM25. Metrics shown are Exact Match (EM)
and F1 scores.

Model NQ TriviaQA SQuAD

EM F1 EM F1 EM F1

DioR 26.2 35.9 52.3 61.9 21.5 27.8
CoT 13.4 18.7 42.6 48.6 8.7 13.6
Self-RAG 32.3 40.2 21.2 37.9 5.1 18.3
FLARE 25.3 35.9 51.5 60.3 19.4 28.3
DRAGIN 23.2 33.2 42.0 62.3 18.7 28.7
RaDIO 24.6 34.0 48.3 61.8 20.4 27.5

C.3 Compare with other LLM backbone

We have supplemented our results with experi-
ments using Qwen2.5-7B, comparing performance
from both effectiveness and efficiency perspectives.
Our results on four knowledge-intensive datasets
further validate the effectiveness of DioR. Specifi-
cally see Table 6.

C.4 More effciency ablation study

Our efficiency analysis further demonstrates that,
compared to the baseline (DRAGIN), DioR effec-
tively minimizes hallucinations, improves the con-
ciseness of generated content, and optimizes infer-
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Table 6: Performance Metrics for Multiple Datasets using Qwen2.5-7B

Metric 2WikiMultihopQA HotpotQA IIRC StrategyQA
Base RaDIO DioR Base RaDIO DioR Base RaDIO DioR Base RaDIO DioR

EM (BM25) 0.165 0.178 0.214 0.111 0.124 0.163 0.1488 0.1594 0.1719 0.768 0.776 0.789
F1 (BM25) 0.246 0.2641 0.2902 0.1951 0.2236 0.2548 0.1851 0.2039 0.2086 0.768 0.776 0.789
Precision (BM25) 0.259 0.2704 0.2913 0.1931 0.2261 0.2605 0.1899 2.0645 0.2145 0.768 0.776 0.789
Recall (BM25) 0.245 0.2556 0.3032 0.3003 0.3023 0.3052 0.1939 0.2036 0.2153 0.768 0.776 0.789
Metric 2WikiMultihopQA HotpotQA IIRC StrategyQA

Base RaDIO DioR Base RaDIO DioR Base RaDIO DioR Base RaDIO DioR
Rc (BM25) 1.866 1.015 2.036 2.904 3.024 2.524 1.9004 2.1962 2.0922 1.776 3.026 2.638
Gc (BM25) 3.737 2.301 2.04 4.386 3.985 2.553 3.8050 3.136 2.0953 4.06 2.897 2.703
Hc (BM25) 1.866 1.135 1.019 2.094 1.765 1.263 1.9004 1.693 1.0471 1.776 1.471 1.321
Tc (BM25) 856.514 521.979 442.793 302.894 200.398 194.395 868.561 697.563 515.927 239.286 210.397 171.608
Sc (BM25) 54.754 36.474 28.751 19.146 13.562 12.273 48.010 36.854 30.769 17.845 14.672 12.487

Table 7: Comparison of Gc and Hc Metrics Across Datasets and Retrieval Methods (w/o ED vs DioR)

Metric 2WikiMultihopQA HotpotQA IIRC StrategyQA
w/o ED DioR w/o ED DioR w/o ED DioR w/o ED DioR

Gc (BM25) 3.165 3.006 3.574 3.037 3.566 3.022 3.406 3.206
Gc (SBERT) 3.356 2.021 2.357 2.092 2.431 2.074 2.862 2.280
Gc (SGPT) 2.833 2.033 2.114 2.098 3.012 2.062 2.232 2.206
Hc (BM25) 1.015 1.003 2.041 2.017 2.209 2.010 2.131 2.093
Hc (SBERT) 1.035 1.014 1.075 1.046 1.084 1.030 1.268 1.098
Hc (SGPT) 1.016 1.005 1.304 1.046 1.242 1.035 1.165 1.134

ence time. Consequently, DioR not only achieves
accuracy improvements over existing state-of-the-
art RAG methods while maintaining answer quality
but also significantly reduces computational over-
head. The table 7 below presents an efficiency
experiment that validates the effectiveness of our
approach in improving computational efficiency.
(Early-Detection: ED)

C.5 Case Study
As shown in Table 8, we present a case study com-
paring the Base method and DioR on five example
questions, evaluating their ability to generate accu-
rate answers while minimizing hallucinations (Hc),
reducing verbosity (Sc), and optimizing response
generation (Gc). For each example, we assess the
correctness of the predictions and the associated
metrics.

1. Does Santa Claus work during summer?
The Base method incorrectly asserts that Santa
Claus works during summer based on flawed
reasoning, leading to a hallucination (Hc =
2) and generating 16 sentences (Sc = 16). In
contrast, DioR correctly deduces that Santa
Claus works during winter, producing a cor-
rect answer with only one hallucination (Hc =
1) and 15 sentences (Sc = 15), but with a lower
number of generations (Gc = 2), indicating a

more efficient response.

2. Would an uninsured person be more likely
than an insured person to decline a CT
scan?
The Base method fails to reason effectively,
resulting in incorrect reasoning and an answer
that was not grounded in the text, with 4 hal-
lucinations (Hc = 4) and 46 sentences (Sc =
46). DioR, however, produces a grounded and
correct response with minimal hallucination
(Hc = 1) and more concise reasoning (Sc =
16) while generating only 2 responses (Gc =
2).

3. Are Christmas trees dissimilar to decidu-
ous trees?
The Base method incorrectly concludes that
Christmas trees are similar to deciduous trees,
producing a large number of hallucinations
(Hc = 6) and an extensive response (Sc = 59).
DioR, however, correctly answers that Christ-
mas trees are evergreen and not deciduous,
with significantly fewer hallucinations (Hc =
1) and a more succinct response (Sc = 11), gen-
erating only 2 answers (Gc = 2), indicating
better efficiency and correctness.

4. Is the language used in Saint Vincent and
the Grenadines rooted in English?
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The Base method produces a false response,
relying on incorrect reasoning, resulting in
2 hallucinations (Hc = 2) and 15 sentences
(Sc = 15). DioR provides the correct answer,
grounded in more accurate reasoning, with
only 1 hallucination (Hc = 1) and a more con-
cise response (Sc = 10), generating 2 answers
(Gc = 2).

5. Are more people today related to Genghis
Khan than Julius Caesar?
Both methods provide a correct answer, but
the Base method’s reasoning leads to a higher
number of hallucinations (Hc = 5) and a larger
response (Sc = 33). DioR correctly answers
with more concise reasoning, fewer halluci-
nations (Hc = 1), and shorter response length
(Sc = 12), generating only 2 answers (Gc = 2),
demonstrating higher efficiency.

6. Does Hades appear in a Disney Channel
musical movie?

The Base method incorrectly concludes that
Hades does not appear in a Disney Channel
musical movie, producing a large number of
hallucinations and an extensive response. In
contrast, DioR correctly answers, with signif-
icantly fewer hallucinations (Hc = 2) and a
more succinct response (Sc = 18), indicating
better efficiency and correctness

7. Could someone theoretically use an
armadillo as a shield?

Although both the Base and DioR methods
produce the correct answer that someone the-
oretically use an armadillo as a shield. How-
ever, DioR demonstrates a greater advantage
in metrics.

8. Did a Mediterranean Sea creature kill
Steve Irwin?

For this question, the Base method incor-
rectly believes that Steve Irwin was killed by
Stingray, so the answer is incorrect. In con-
trast, DioR can generate fewer hallucination
(Hc = 1) to answer correctly.

9. Does a Generation Y member satisfy
NYPD police officer age requirement?

Figure 4: An example of an IG attribution score for
hallucination and non-hallucination.

The logic of the Base method is confusing.
The age requirement for the New York Po-
lice Department is 21 years old, while the age
range for millennial members is from 26 to 41
years old (based on members born in 1994).
Since the minimum age for members of the
millennial generation is 26 years old, which is
already higher than 21 years old, they clearly
meet the age requirements of the New York
Police Department. On the contrary, DioR can
correctly derive the answer and all indicators
are superior to Base.

10. Would someone with back pain enjoy
picking strawberries?

The description of the Base method is incor-
rect. Strawberry picking is not a sedentary
activity, but a physical activity that requires
frequent bending, twisting, and weightlifting.
This activity may cause discomfort for people
suffering from back pain. And DioR can out-
put the correct answer, that strawberry picking
does require these actions, which may cause
discomfort for people with back pain.

DioR consistently outperforms the Base method
across all five examples by producing correct an-
swers with fewer hallucinations, more efficient re-
sponses (lower Gc), and more concise text (lower
Sc). These results demonstrate DioR’s superior
ability to ground its answers while minimizing un-
necessary verbosity, highlighting its advantage in
handling complex reasoning tasks.
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Figure 5: The difference in the distribution of the output
entropy values when the model generates the correct
answer (non-hallucination) and the wrong answer (hal-
lucination).
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Figure 6: The uncertainty distribution of the model
when processing the input and generating the first token.
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Figure 7: The difference in the distribution of input to-
ken attribution scores when the model generates correct
answers and incorrect answers.
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Figure 8: The model outputs the difference in softmax
probability distribution when generating correct answers
and incorrect answers.
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Figure 9: The distribution of correct and incorrect an-
swers in the PCA dimensionality reduction space when
the model generates the first token.

C.6 Effectiveness Analysis of Hallucination
Detection Methods

As mentioned earlier, to validate whether our
method can effectively determine whether a large
language model (LLM) is capable of answering a
question, we assess the model’s attention to par-
ticular words within the input question. Specifi-
cally, we use the Integrated Gradients (IG) method
to generate feature attribution, which allows us to
quantify the attention distribution of the LLM when
processing different questions. This approach en-
ables us to determine whether the model is able
to recognize and focus on the key features of a
question during the answering process, to assess
the level of confidence LLMs have in facing a new
problem.

As shown in Figure 4. By comparing instances
of hallucination and non-hallucination generation,
we observe significant differences in the model’s
attention distribution between the two cases. In
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non-hallucination examples, the model accurately
identifies and focuses on the key information in the
question. In contrast, in hallucination examples,
the model’s attention is more dispersed, failing to
concentrate on the core words, which leads to in-
correct or irrelevant responses. These experimental
results indicate that the model’s ability to effec-
tively focus on key features directly impacts the
accuracy of its answers, thus validating that our
method can effectively assess whether an LLM is
capable of answering a question before the gen-
eration to reduce the probability of hallucination
generation (The confidence level of LLMs in an-
swering questions).

We can observe from Figures 5, 6, 7, 8, and 9 that
the model exhibits noticeable differences when gen-
erating hallucinations versus non-hallucinations.
The horizontal axis of the first three Figures is the
entropy value, the vertical axis is the cumulative
distribution function, and the horizontal axis of
the fourth Figure is the Softmax probability value.
These Figures provide insight into the behavior
of the LLaMA2-7B model in generating text, an-
alyzed through various methods such as ECDF,
PCA, integrated gradients, and more.

As shown in Figure 5, the two curves for non-
hallucination and hallucination are clearly sepa-
rated in specific entropy ranges, indicating that
the model’s behavior differs significantly between
these two scenarios.

Figure 6 illustrates the cumulative distribution
of entropy values from the first layer of activation
values when the model generates the first token. By
comparing the distributions of activation values for
correct and incorrect answers, we can observe the
differences in the model’s uncertainty during the
generation of the initial word, further revealing how
the internal state varies between correct and incor-
rect answers. A higher cumulative distribution in
the higher entropy regions suggests that the model
experiences greater uncertainty when generating
the first token.

Figure 7 shows the cumulative distribution of en-
tropy values for input token attribution scores gen-
erated using the integrated gradients (IG) method.
This figure highlights the disparity in the model’s
attention to input tokens when generating correct
and incorrect answers. We can observe a subtle dif-
ference in IG scores between scenes that produce
hallucinations and those that do not.

Figure 8 displays the cumulative distribution of
the Softmax output probabilities. Higher Softmax

probability values reflect greater model confidence
in a prediction. We can observe that in the high
softmax range, the range of non-hallucinations is
greater than that of hallucinations, indicating that
the model is more confident in generating non-
hallucination scenes. However, in the low softmax
range, the model appears less confident and prone
to hallucinations.

Lastly, Figure 9 presents a two-dimensional scat-
ter plot of the Softmax output after PCA dimension-
ality reduction for the first token. The distribution
of correct and incorrect predictions in the PCA
space shows a clear separation between the two,
indicating that the Softmax output is significantly
different when the model generates correct versus
incorrect answers.

These findings validate that our Early-Detection
method can effectively assess whether a large lan-
guage model (LLM) is capable of answering a ques-
tion before it starts generating text.

We also experimented with the Real-time De-
tection module to prove its feasibility in hallu-
cination detection. We conduct experiments on
LLaMA2-7B to judge the state-of-the-art methods
for sentence-level hallucination detection, achiev-
ing an AUC of 0.7913, compared to 0.6583 for
GPT4-HDM (Achiam et al., 2023) and 0.7876 for
MIND (Su et al., 2024b).

D Hallucination Prevention vs. Detection
and Regeneration

Listing 1: Hallucination Prevention (DioR)
function answerWithHallucinationControl(question

):
// Initial detection phase
confidence = EarlyDetection(question)

// Based on confidence, decide whether to
retrieve information upfront

context = confidence ? "" :
retrieveRelevantInformation(question)

answer = ""

// Token-by-token generation
while not isEndOfSequence(answer) and len(

answer) < max_tokens:
// Generate next token
next_token = generateNextToken(question,

answer, context)

// Real-time detection for hallucination
in the token

if RealTimeDetection(next_token):
// Hallucination detected, retrieve

relevant documents
new_context = Retrieve()
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// Continue generation with newly
retrieved context

return continueGeneration(question,
answer, new_context)

// Token is valid, add it to the answer
answer += next_token

return answer

Listing 2: Detection and Regeneration
function answerWithHallucinationControl(question

):
answer = generateLLMResponse(question)
isHallucination = detectHallucination(

question, answer)

if isHallucination:
// Discard the hallucinated answer
retrievedContext =

retrieveRelevantInformation(question)
return generateNewResponse(question,

retrievedContext)
else:

return answer

E Traditional RAG vs. Dynamic RAG

Traditional RAG: Traditional RAG uses a single-
round retrieval method to perform a one-time docu-
ment retrieval operation before generating answers.
This method is based on the user’s original query,
retrieves relevant documents, and simultaneously
inputs all retrieved information into a large lan-
guage model, forming a static contextual window.
Due to the fact that the retrieval process is only
performed once before the start of generation, the
model cannot obtain additional knowledge based
on the new information requirements that arise dur-
ing the generation process, which may result in
information gaps or inaccuracies in the answers.

Dynamic RAG: Dynamic RAG fundamentally
changes the way information is obtained and inte-
grated by implementing multiple rounds of retrieval
processes. It consists of two key steps: 1) Deter-
mining the appropriate retrieval timing during the
generation process of the LLM; 2) Formulating
queries upon retrieval activation.

Listing 3: Traditional RAG Pseudocode
def traditional_rag(user_query, knowledge_base):

# 1. Single-round retrieval based on user
query

relevant_documents = retrieve_documents(
user_query, knowledge_base)

# 2. Input retrieved documents and user query
to LLM

context = prepare_context(relevant_documents)

# 3. Generate response
response = generate_response(user_query,

context)

return response

Listing 4: Dynamic RAG Pseudocode
def dynamic_rag(user_query, knowledge_base):

# Initialize response state
response_so_far = ""
llm_state = initialize_llm()

# Iteratively generate response
while not is_generation_complete(llm_state):

# 1. Determine if retrieval is needed at
current generation step

if should_retrieve_now(llm_state,
response_so_far, user_query):
# 2. Dynamically construct retrieval

query
retrieval_query = formulate_query(

llm_state, response_so_far,
user_query)

# 3. Retrieve documents
relevant_documents =

retrieve_documents(
retrieval_query, knowledge_base)

# 4. Update LLM state with new
context

llm_state = update_llm_with_context(
llm_state, relevant_documents)

# 5. Continue generating the next part of
the response

next_token, llm_state =
generate_next_token(llm_state)

response_so_far += next_token

return response_so_far

F The prompt words input to LLM after
removing the “Post-retrieval”
component in the ablation experiment

After removing the “Post-retrieval” component in
the ablation experiment, the RAG prompt template
is as follows:
External Knowledge: [1] Ki1 [2] Ki2 ...
Using the external knowledge provided above,
please answer the following question:
Question: [Ques.]
Answer: Insert truncated output [] and addi-
tional relevant details here
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Table 8: Comparison between the Base method and DioR methods in terms of Hc, Sc, and Gc for a case study. The
table highlights specific examples, their predictions and outcomes, and the metrics associated with each method. A
checkmark ( ✓ ) denotes correct outcomes, while a cross ( × ) indicates incorrect outcomes.

Example Base Num. DioR Num.
Prediction Outcome Hc Sc Gc Prediction Outcome Hc Sc Gc

1

The text states that Howard worked at the train sta-
tion, which is a place of business. Businesses are
typically open during the summer. Thus, Santa Claus
works during summer. So the answer is yes.

× 2 16 5

Santa Claus works during winter. Winter is from
December to February. Summer is from June to
August. Thus, Santa Claus does not work during
summer. So the answer is no.

✓ 1 15 2

2

An uninsured person would be more likely than an
insured person to decline a CT scan. Reasoning:
1. The diagnostic accuracy of coronary CT angiog-
raphy (CCTA) is similar to that of invasive coronary
angiography via cardiac catheterization (ICA). (1)
2. Both CCTA and ICA yield similar prognostic in-
formation, such as stenosis severity and extent of
coronary artery disease.

× 4 46 8

The cost of a CT scan is $500. If a person has insur-
ance, the person’s insurance company pays for the
CT scan. If a person does not have insurance, the
person pays for the CT scan. Thus, if a person does
not have insurance, the person is more likely than an
insured person to decline a CT scan. So the answer
is yes.

✓ 1 16 2

3

1. The text states that the Christmas tree was a 40-
foot Colorado Blue Spruce donated by the Loving
Shepherd Lutheran Church and School.
2. Deciduous trees are trees that lose their leaves in
the fall.
3. Colorado Blue Spruce trees are evergreen, which
means they keep their needles year-round. Thus, the
Christmas tree is not dissimilar to deciduous trees.
So the answer is no.

× 6 59 13
Christmas trees are evergreen. Evergreen trees are
not deciduous. Thus, Christmas trees are dissimilar
to deciduous trees. So the answer is yes.

✓ 1 11 2

4

No.
Reasoning:
The passage states that the official language of
Guernsey is English, but it also mentions that French
was the official language until 1948. This implies
that the language used in Guernsey is not rooted in
English. Therefore, the answer is no.

× 2 15 5

Saint Vincent and the Grenadines is an independent
country. The official language of an independent
country is the language of the country. Thus, the
language used in Saint Vincent and the Grenadines
is rooted in English. So the answer is yes.

✓ 1 10 2

5

Genghis Khan lived in the 13th century. Julius Caesar
lived in the 1st century. Today is in the 21st century.
The distance between the 13th century and the 21st
century is 890 years. There are 890 years between
the number of people alive today and Genghis Khan.
Thus, more people today are related to Genghis Khan
than Julius Caesar. So the answer is yes.

✓ 5 33 11

The world population is about 7 billion. Genghis
Khan lived about 800 years ago. Julius Caesar lived
about 2000 years ago. So, more people today are
related to Genghis Khan than Julius Caesar. Thus,
the answer is yes.

✓ 1 12 2

6

No. Explanation: 1. Hades is a character from Greek
mythology. 2. The Disney Channel is a television
network. 3. Musical movies are movies with music.
4. Hades does not appear in any Disney Channel
musical movies. Therefore, the answer is no.

× 3 27 6
Hades appears in the Disney Channel musical movie
Ḧercules.̈ Thus, the answer is yes.

✓ 2 18 3

7

Someone theoretically could use an armadillo as a
shield. Reasoning: 1. Armadillos have a hard cara-
pace that protects their body. 2. The carapace is
flexible, allowing the armadillo to roll into a ball for
defense. 3. The armadillo’s small size makes it easier
to hold and use as a shield. 4. The armadillo’s curved
claws could be used to grip onto an attacker’s shield.

✓ 7 70 14
An armadillo is a mammal. Mammals can use their
bodies as shields. Thus, someone theoretically could
use an armadillo as a shield. So the answer is yes.

✓ 2 25 3

8

Mediterranean Sea creatures are not known to kill
humans. Steve Irwin was killed by a stingray. Thus,
no Mediterranean Sea creature killed Steve Irwin. So
the answer is no.

× 2 11 3

Steve Irwin died when a stingray barb pierced his
chest. The stingray lives in the Mediterranean Sea.
Thus, the Mediterranean Sea creature that killed
Steve Irwin was a stingray. So the answer is yes.

✓ 1 13 3

9

The NYPD police officer age requirement is 21 years
old. A Generation Y member is someone born be-
tween 1980 and 1994. The youngest Generation
Y member is 26 years old, which is older than the
NYPD police officer age requirement. Thus, a Gen-
eration Y member does not satisfy the NYPD police
officer age requirement. So the answer is no.

× 3 24 7

The NYPD age requirement is 21. Generation Y
is 1980 and 1994. 1994 is the year Generation Y
ends. Thus, a Generation Y member could satisfy the
NYPD age requirement. So the answer is yes.

✓ 2 14 3

10

Someone with back pain could enjoy picking straw-
berries. The reason is that picking strawberries is a
sedentary activity. Sedentary activities do not strain
the back. Thus, picking strawberries would not cause
back pain.

× 3 23 6
Strawberry picking typically involves bending, twist-
ing, and lifting weights, which may cause discomfort
for patients with back pain.

✓ 2 12 3
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