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Abstract

The safety mechanisms of large language mod-
els (LLMs) exhibit notable fragility, as even
fine-tuning on datasets without harmful content
may still undermine their safety capabilities.
Meanwhile, existing safety alignment methods
predominantly rely on the fine-tuning process,
which inadvertently leads to the increased com-
plexity and computational resources required.
To address these issues, we introduce LSSF, a
novel safety re-alignment framework with Low-
Rank Safety Subspace Fusison. Our proposed
method exploits the low-rank characteristics of
safety information in LLMs by constructing a
low-rank projection matrix to extract the prin-
cipal components of safety vectors. Notably,
this projection matrix represents the low-rank
safety subspace of the LLMs, which we have
observed to remain stable during fine-tuning
process and is isolated from the model’s gen-
eral capabilities. These principal components
are used to effectively restore safety alignment
when combined with fine-tuned LLMs through
linear arithmetic. Additionally, to account for
the varying encoding densities of safety infor-
mation across different layers of LLMs, we pro-
pose a novel metric called safety singular value
entropy. This metric quantifies the encoding
density and allows for the dynamic computa-
tion of the safety-critical rank for each safety
vector. Extensive experiments demonstrate that
our proposed post-hoc alignment method can
effectively restore the safety alignment of fine-
tuned models with minimal impact on their per-
formance in downstream tasks.

1 Introduction

In recent years, as the capabilities of large lan-
guage models (LLMs) have improved significantly
(Achiam et al., 2023; AI@Meta, 2024), a grow-
ing amount of research has focused on enhancing
their safety to prevent unsafe responses that conflict
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Figure 1: Illustration of using low-rank safety principal
components to restore model safety alignment, where all
safety components share the same low-rank subspace.

with human values (Christiano et al., 2017; Yuan
et al., 2023). Numerous studies have revealed that
aligned LLMs exhibit surprising safety vulnerabil-
ities after fine-tuning (Qi et al., 2023; Zhan et al.,
2024; Fan et al., 2025). The safety of these models
can be significantly compromised when updated
with a small amount of maliciously crafted or even
benign data. To address this issue, existing studies
(Zong et al., 2024; Huang et al., 2024) have primar-
ily focused on ensuring model safety and consis-
tency by aligning the model during the fine-tuning
phase. However, these methods not only increase
the complexity of the training process and require
additional computational resources, but they also
potentially inhibit the model’s general capabilities.
Recent work (Ilharco et al., 2022) demonstrates that
adding or subtracting task vectors, i.e., directional
vectors corresponding to specific tasks within a
model, can enhance or reduce the model’s perfor-
mance on those tasks. Building on this, RESTA
(Bhardwaj et al., 2024) introduces a post-hoc align-
ment method that restores the safety of compro-
mised models by performing an arithmetic com-
bination with safety vectors. Nonetheless, as the
safety vectors contain elements that inhibit general
capabilities, the integrated model may experience
an inevitable reduction in its general abilities.

Recent studies (Sun et al., 2023; Wei et al., 2024)
have indicated that the safety regions in LLMs are
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isolated and sparse at the rank level, distinct from
the directions of the models’ general capabilities.
Our experiments in Section 4.2.2 also confirm that
the safety drift directions of safety vectors likewise
exhibit low-rank properties and share a common
low-rank safety subspace with LLMs.

Based on the above insights, we introduce LSSF,
a novel safety re-alignment framework with Low-
Rank Safety Subspace Fusion. Specifically, we
perform low-rank orthogonal matrix decomposition
on the activations of the safety-aligned LLMs and
construct a projection matrix to extract the low-
rank principal components of the corresponding
safety vectors. As illustrated in Figure 1, when
the critical safety directions of a fine-tuned model
drift, we can effectively rectify this deviation by
applying linear arithmetic to the low-rank principal
components of the safety vectors.

Moreover, we propose a safety singular value
entropy information density quantification method
inspired by Shannon entropy (Shannon, 1948). Pre-
vious work on assessing brittleness of safety align-
ment (Wei et al., 2024) reveals that different lin-
ear layers in LLMs encode safety and general ca-
pabilities to varying degrees. This highlights the
necessity of determining the pruning rank of the
corresponding safety vector based on the density
of safety information encoded in the weight matrix.
Our singular value entropy considers both the ab-
solute magnitudes of the singular values and their
relative distribution. By analyzing the proportion
of singular value entropy, we can effectively control
information loss when truncating the rank. Exten-
sive experiments on Qwen2.5-7B-Instruct (Team,
2024) and Llama3.1-8B-Instruct (AI@Meta, 2024)
demonstrate that our proposed LSSF can restore
safety alignment with minimal impact on the down-
stream task performance of their fine-tuned models.

Our contributions are summarized as follows:

• We proposed the utilization of a projection ma-
trix to extract the low-rank principal compo-
nents of the safety vector, enabling the safety
realignment of the fine-tuned LLMs within
this low-rank subspace.

• We proposed a novel safety singular value
entropy-based information density quantifica-
tion method that effectively assesses the safety
information encoding density within the linear
layer and assists in the determination of the
appropriate pruning rank for the safety vector.

• We performed comprehensive experiments on
various LLMs, which demonstrated that our
method can effectively restores their safety
alignment without significantly compromising
the downstream task performance.

2 Related Work

Safety Realignment. Pre-trained LLMs are typ-
ically enhanced for specific downstream tasks
through a process known as supervised fine-tuning,
which often involves full fine-tuning (Howard and
Ruder, 2018) and parameter-efficient fine-tuning
(Hu et al., 2021; Ben Zaken et al., 2022). Even
LLMs with strong initial safety alignment can be
manipulated to produce harmful content during the
fine-tuning process (Bianchi et al., 2023; He et al.,
2024). Some studies (Dai et al., 2023; Huang et al.,
2024; Bianchi et al., 2023) focus on ensuring safety
realignment during the fine-tuning of LLMs, which
undoubtedly increases the complexity of this pro-
cess. RESTA (Bhardwaj et al., 2024) employs the
direct arithmetic combination of safety vectors to
the weights of fine-tuned models. Since safety vec-
tors include general capability-suppressing com-
ponents, there is a certain impact on the model’s
performance on downstream tasks.
Low-Rank Compression and Pruning. Unstruc-
tured pruning techniques aim to establish criteria
based on weight magnitude, activations, or network
gradients to remove individual weights from the
network (Cao et al., 2021; Guo et al., 2021; Zhang
et al., 2024). Low-rank compression techniques
are similar to structured pruning methods, focusing
on identifying important structured sub-networks
(Sun et al., 2023; Frantar and Alistarh, 2023; Wang
et al., 2024). ActSVD (Wei et al., 2024) extracts
the safety-critical rank of LLMs through singular
value decomposition (SVD) of stacked activations
and demonstrates its low-rank nature. We extend
the low-rank pruning of LLMs to safety vectors to
extract principal components of the corresponding
low-rank secure subspace.
Model fusion. Current fusion methods for LLMs
generally fall into three categories: geometric
(Shoemake, 1985), pruning (Yadav et al., 2023),
and arithmetic (Xiao et al., 2024). As a geometry-
based approach, Model Stock (Jang et al., 2024)
considers the geometric properties in the weight
space. Pruning-based methods such as Bread-
crumbs (Davari and Belilovsky, 2024) and DARE
(Yu et al., 2023) eliminate interference among mul-
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Figure 2: Overview of our safety re-alignment framework. Step I: ① → ②, obtain an unsafe model through unsafe
fine-tuning. Step II: ② → ③, invert the delta parameters to derive the safety vector. Step III: ③ → ④, construct
a low-rank projection matrix to extract the safety principal components of the safety vector and perform linear
arithmetic with the downstream fine-tuned model to restore its safety alignment.

tiple models by removing redundant parameters.
Arithmetic-based methods include Average Merg-
ing (Wortsman et al., 2022) and Task Arithmetic
(Bhardwaj et al., 2024). The former merges models
by averaging parameters, while the latter introduces
task vectors and uses scaling terms to adjust the
importance of different models. We extend task
arithmetic to safety fine-tuning tasks and employ
low-rank pruning methods to mitigate its impact on
the LLMs’ downstream task performance.

3 Methodology

Our objective is to restore the safety of LLMs
through post-hoc alignment. Figure 2 illustrates
our safety re-alignment framework. Starting from
an unsafe model derived via harmful fine-tuning,
we compute the inverted safety vector and extract
its low-rank safety components. These are then
integrated into the downstream task model through
linear arithmetic to restore safety alignment. In Sec-
tion 3.1, we introduce the safety vectors of LLMs,
Sections 3.2 and 3.3 provide a detailed explanation
of how to extract low-rank safety components and
Section 3.4 explains how task arithmetic restores
the safety of fine-tuned models.

3.1 Safety Vector

Safety vector is derived from the delta parameters
when transitioning from the unsafe base model to
the safety-aligned model, formulated as:

θsafe = θunsafe + δsafe, (1)

where θsafe denotes the parameters of the safety-
aligned model, while θunsafe refers to the parame-
ters of the unsafe model and δsafe represents the

safety vector obtained through the alignment pro-
cess. However, compromising safety guardrails is
significantly easier than safety alignment, as the for-
mer only requires fine-tuning on a small amount of
toxic data. As shown in Figure 2 Step I, we use the
toxic dataset Dunsafe = {(xi, yi) | i = 1, . . . , N}
to perform supervised fine-tuning on θsafe to ob-
tain the inverse safety vector −δsafe,where xi rep-
resents harmful queries, and yi denotes affirmative
responses to these harmful queries.

As shown in Figure 2 ②, −δsafe consists of two
main components. The first is the drift of the low-
rank safety component in the opposite direction of
safety, which can be extracted through low-rank
decomposition due to its low-rank nature. The sec-
ond is the general suppression component, which
impairs the model’s performance on general tasks.

3.2 Low-rank Orthogonal Decomposition

Motivated by ActSVD (Wei et al., 2024), we per-
form singular value decomposition on the linear
layer activations of θbase and use the left sin-
gular vectors to construct a low-rank projection
matrix. First, we construct a calibration dataset
Danchor = {(x′i, y′i)|i = 1, · · · , N ′}, where x′i rep-
resents harmful queries and y′i represents safe neg-
ative responses. For any linear layer weight matrix
W ∈ Rdout×din , we obtain the corresponding input
matrix X̂ ∈ Rdin×n from Danchor. The objective of
the low-rank decomposition of θbase is to achieve a
low-rank approximation of W while maintaining
its safety performance. Specifically, we seek a rank-
r low-rank matrix Ŵ that minimizes the Frobenius
norm of the output changes, as described by the
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following formula:

Ŵ = argmin
rank( Ŵ )≤r

∥WX̂ − Ŵ X̂∥2F , (2)

where the optimal low-rank matrix Ŵ shares the
same low-rank subspace as the safe vector δsafe.
The proof is provided in Appendix A.

To eliminate the sensitivity differences of neu-
rons in the linear layer to different texts in the an-
chor dataset, we normalize the activation matrix
Z = WX̂ = [zij ]din×n as follows:

z̃ij =
zij − µj

δj
, (3)

where zi,j represents the activation value at (i, j),
µj and δj denote the mean and standard deviation
of each column, respectively. We perform a low-
rank matrix decomposition on the standardized ac-
tivation matrix Z̃ using SVD:

USV ⊤ ≈ Z̃, (4)

where S = diag(σ1, σ2, · · · , σn) is the singular
value diagonal matrix and U ∈ Rdout×n is an or-
thogonal matrix composed of the top n left singular
vectors. Due to the slow speed of SVD for large
matrices, we follow the method from Halko et al.
(2011), which uses a randomized algorithm to effi-
ciently calculate approximate solutions of SVD.

3.3 Low-Rank Projection Matrix
For matrix Z̃ in Equation 3, the square of the
Frobenius norm can be expressed as ∥Z̃∥2F =∑

i,j |z̃i,j |2. According to the SVD, we have
∥Z̃∥2F =

∑n
i=1 σ

2
i , where σi represents the i-th

singular value, the proof can be found in Appendix
B. This indicates that the energy of the matrix Z̃
is equal to the sum of the squares of its singular
values, which can be interpreted as a measure of
the overall complexity or information content of
the matrix. Therefore, we quantify each principal
component’s contribution to the total information
content using its squared singular value, defined as:

pi =
σ2
i∑n

j=1 σ
2
j

, (5)

where pi represents the information contribution
of the i-th principal component. Singular value
entropy is used to evaluate the complexity and in-
formation content of matrix, taking into account
not only the absolute magnitudes of the squared

singular values but also their relative distribution.
The formula for calculating singular value entropy
is as follows:

Hρ = −
ρ∑

i=1

σ2
i∑n

j=1 σ
2
j

log

(
σ2
i∑n

j=1 σ
2
j

)
, (6)

where Hρ represents the entropy of the singular
values of the top ρ ranks. We use the informa-
tion retention threshold η to determine the rank
preserved by the orthogonal projection:

Hr

Hn
> η, (7)

where r represents the rank to be retained. Accord-
ingly, we construct a low-rank projection matrix:

P (r) = U (r)
(
U (r)

)⊤
, (8)

where P (r) denotes the orthogonal projection ma-
trix onto the r most significant left singular sub-
spaces, where rank(P (r)) = r. The proof is pro-
vided in Appendix C.
To balance the utility and safety of LLMs, we apply
the scaling factor α to the singular vectors to en-
hance or diminish their drift in the corresponding
safety directions. The scaling factor αi correspond-
ing to the singular vector ui ∈ U (r) is calculated
as follows:

αi = 1 + (α1 − 1)× σi − σr
σ1 − σr

, (9)

where α1 represents the weighting factor for the
singular vector corresponding to the largest singu-
lar value, and subsequent weights decreasing pro-
portionally. This formulation effectively enhances
the weights of singular vectors corresponding to
larger singular values in a proportional manner.
The weighted singular vectors are:

U ′(r) = (u1, · · · , ur)



α1

. . .
αr


 . (10)

Therefore, the final low-rank projection matrix
corresponding to the safety vector is:

P ′(r) = U ′(r)
(
U ′(r)

)⊤
. (11)
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3.4 Linear Arithmetic
Let θDST represent the model parameters of θsafe
after fine-tuning for downstream task datasets. The
fine-tuning process may compromise the safety
guardrails of LLMs and it could be expressed as:

θDST = θsafe + δDST

= θsafe + τDST − τ safe + τ̂DST, (12)

were δDST represents the delta parameters obtained
from the SFT of θsafe. We decompose δDST into
the desired downstream task direction offset τDST,
an undesired offset in the safety direction −τ safe
and a redundant shift in other directions τ̂DST. Our
objective is to add a low-rank safety component
τ ′

safe to δDST to counteract the −τ safe offset while
minimizing impacts on shifts in other directions.
Our objective could be expressed as:

θ′
DST = θsafe + δDST + αP ′(r)δsafe

= θsafe + τDST − τ safe + ατ ′
safe + τ̂

≈ δ + τDST + τ̂ , (13)

where τ̂ denotes the drift in the redundant direc-
tion, which does not significantly affect τDST. Ad-
ditionally, τ safe and τ ′

safe share the same low-rank
subspace, as detailed in Section 3.3.

4 Experiment

4.1 Experiment Setup
4.1.1 Models under testing
We perform experiments on two LLMs: Qwen2.5-
7B-Instruct (Qwen2.5) (Team, 2024) and Llama3.1-
8B-Instruct (Llama3.1) (AI@Meta, 2024). Due to
their strong safety and instruction-following ca-
pabilities, we adopt them as safety models and
base models for downstream fine-tuning. In Ap-
pendix G, we selected Qwen2.5-3B-Instruct and
Qwen2.5-14B-Instruct to validate the robustness of
our method across models with varying parameters.

4.1.2 Baselines
We classify baseline methods into two categories:
alignment during supervised fine-tuning (SFT) and
post-hoc alignment. The baselines include: Non-
Alignment SFT (NA-SFT), which does not enforce
safety alignment; VLGuard (Zong et al., 2024) and
Lisa (Huang et al., 2024), which implement safe
alignment during the fine-tuning process; RESTA
(Bhardwaj et al., 2024), which applies safety align-
ment after fine-tuning. For detailed information
on the baselines and specific experimental settings,
please refer to Appendix D.1.

4.1.3 Datasets
Calibration Dataset. We construct a calibration
dataset to obtain the safety-critical ranks of the
safety model. To ensure the harmfulness of the
queries, we selected samples from PKU-SafeRLHF
(Ji et al., 2024) where both the accept and reject
responses were labeled as unsafe. As demonstrated
in Appendix E, our method is robust to the number
of calibration data samples. Consistent with (Wei
et al., 2024), we ultimately chose a total of 128 such
samples. These harmful queries are then input into
the safety model to collect safe refusal responses.
Based on the pairs of harmful queries and safe
responses, we construct a calibration dataset.
Downstream Fine-Tuning Dataset. To better
demonstrate the effectiveness of our method in
downstream task fine-tuning experiments, we es-
tablished two distinct scenarios. The first scenario
involves LoRA fine-tuning, where we utilize AG’s
News and Yahoo Answers (Zhang et al., 2015) for
multi-class classification tasks. The second sce-
nario is full fine-tuning, which performs poorly
on LoRA since it not only requires knowledge in-
fusion but also focuses on dialogue-based ques-
tion answering. In this scenario, we emphasize the
medical knowledge question-answering dataset1,
specifically designed for question-answering and
text generation tasks. For detailed construction of
the SFT datasets, please refer to Appendix D.2.

4.1.4 Safety Vector Calculation
We calculate safety vectors by determining the off-
set between the aligned models and its unaligned
counterparts. To construct a harmful fine-tuning
dataset, we randomly select 500 harmful queries
and their corresponding harmful responses labeled
as unsafe from PKU-SafeRLHF (Ji et al., 2024).
The dataset is subsequently utilized to perform SFT
for 3 epochs on Qwen2.5 and Llama3.1 to get new
models that compromise safety guardrails.

4.1.5 Evaluation Metric
Measuring utility. For the text classification
task, we assess the model’s classification accu-
racy (ACC). For the text generation task, we em-
ploy BLEU (Papineni et al., 2002) ROUGE-L (Lin,
2004) as evaluation metrics. Details of each metric
could be found in the Appendix D.3.
Measuring Safety. We use three datasets to evalu-
ate the safety of the model: AdvBench (Zou et al.,

1https://github.com/Toyhom/Chinese-medical-dialogue-
data
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Methods
Qwen2.5-7B-Instruct Llama3.1-8B-Instruct

ACC ↑ AdvBench ↑ HarmfulQA ↑ CATQA ↑ ACC ↑ AdvBench ↑ HarmfulQA ↑ CATQA ↑
NA-SFT 0.91 0.09 0.50 0.19 0.86 0.04 0.49 0.12
VLGuard 0.92 0.78 0.54 0.13 0.85 0.92 0.56 0.21
RESTA 0.92 0.99 0.98 0.92 0.69 0.51 0.91 0.72
Lisa 0.90 0.99 0.98 0.94 0.80 0.96 0.92 0.96
Ours 0.92 1.00 0.98 0.93 0.85 1.00 1.00 1.00

Table 1: Performance of different safety alignment methods in the AG’s News LoRA SFT Task. ACC represents the
classification accuracy. AdvBench, HarmfulQA, and CATQA denote refusal rates for the corresponding datasets.

Methods
Qwen2.5-7B-Instruct Llama3.1-8B-Instruct

ACC ↑ AdvBench ↑ HarmfulQA ↑ CATQA ↑ ACC ↑ AdvBench ↑ HarmfulQA ↑ CATQA ↑
NA-SFT 0.68 0.20 0.52 0.12 0.63 0.04 0.49 0.12
VLGuard 0.68 0.96 0.58 0.21 0.64 0.87 0.51 0.15
RESTA 0.63 0.94 0.92 0.81 0.25 0.33 0.86 0.62
Lisa 0.67 0.98 0.97 0.93 0.45 0.89 0.97 0.89
Ours 0.68 1.00 0.99 0.99 0.64 1.00 0.99 0.99

Table 2: Performance of different safety alignment methods in the Yahoo Answers LoRA SFT Task . ACC represents
the classification accuracy. AdvBench, HarmfulQA, and CATQA denote refusal rates for the corresponding datasets.

Method
Qwen2.5-7B-Instruct Llama3.1-8B-Instruct

BLUE ↑ Rouge-L ↑ AdvBench ↑ HarmfulQA ↑ CATQA ↑ BLUE ↑ Rouge-L ↑ AdvBench ↑ HarmfulQA ↑ CATQA ↑
NA-SFT 0.44 0.52 0.21 0.54 0.15 0.44 0.53 0.11 0.49 0.12
VLGuard 0.44 0.52 0.88 0.62 0.21 0.42 0.50 0.98 0.62 0.34
RESTA 0.34 0.43 0.99 0.91 0.95 0.18 0.27 0.91 0.99 0.97
Lisa 0.31 0.41 0.99 0.91 0.95 0.21 0.31 0.94 0.99 0.98
Ours 0.42 0.50 0.99 0.94 0.95 0.42 0.50 0.99 0.99 0.99

Table 3: Performance of different safety alignment methods in the Medical QA Full SFT Task. BLUE and Rouge-L
assess the consistency between the generated text and the reference text. AdvBench, HarmfulQA, and CATQA
denote refusal rates for the corresponding datasets.

2023), HarmfulQA (Bhardwaj and Poria, 2023),
and CATQA (Bhardwaj et al., 2024). We employ
Llama-Guard3-8B 2 to evaluate the model’s safety
by measuring its refusal rate to harmful queries.
Compared to GPT-4, Llama-Guard3-8B demon-
strates superior performance with a lower false pos-
itive rate. For detailed information of the datasets
and Llama-Guard3-8B, please refer to D.3.

4.2 Experimental Results
4.2.1 Main Results on Downstream Tasks
LoRA SFT. As depicted in Table 1 and 2, our
method significantly improves the safety of LLMs
without compromising their classification perfor-
mance. As evidenced by VLGuard, when harmful
data is mixed into the training set, incorporating
safety alignment data has a limited effect on en-
hancing the safety of LLMs.

Compared to RESTA, our approach effectively
enhances the safety of the model while avoiding the

2https://huggingface.co/meta-llama/Llama-Guard-3-8B

impact of safety vectors on the performance of the
downstream task. During the fine-tuning process of
Lisa, the regularization of the proximal term limits
changes in the parameters of the models, thereby
inhibiting their performance on downstream tasks
to some extent. For experiments on varying mixing
ratios of toxic and safe data, as well as LLMs with
different parameter scales, please refer to Appen-
dices F and G.

Full SFT. According to Table 3, the model exhibits
increased sensitivity to parameter changes due to
full fine-tuning effects. For Llama3.1-8B-Instruct,
the baselines affect its BLEU and Rouge-L scores
by more than 0.2, while our method minimizes the
suppression of downstream capabilities while en-
suring the safety and consistency of LLMs. From
Tables 1, 2 and 3, it is evident that the low-rank
safety principal components consistently maintain
the safety alignment of LLMs across various fine-
tuning scenarios. In contrast, other baseline meth-
ods show significant variation in the safe rejection
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DoAnythingNow ↑ AdvBench ↑ MBPP ↑ GSM8K ↑ BBH ↑ MMLU ↑ IFEval ↑
Base Model 0.81 0.87 59.20 82.79 68.29 69.14 81.65
SafetyJ 0.92 0.98 57.40 80.97 20.03 69.14 35.01
DARE 0.92 0.98 57.40 80.97 20.03 69.14 45.87
Ours 0.92 0.98 59.40 84.52 68.52 69.17 81.88

Table 4: Performance of Safety Components in Full Fine-Tuning Settings. Base Model represents Llama3.1-8B-
Instruct, SafetyJ indicates the performance of the safety model after fine-tuning, and Ours signifies the performance
of the base model after linear arithmetic with safety principal components.

DoAnythingNow ↑ AdvBench ↑ MBPP ↑ GSM8K ↑ BBH ↑ MMLU ↑ IFEval ↑
Base Model 0.81 0.87 59.20 82.79 68.29 69.14 81.65
SafetyJ 0.91 0.99 56.80 82.56 31.42 67.28 45.79
DARE 0.89 0.99 56.80 82.41 31.89 67.45 56.91
Ours 0.92 0.99 60.40 83.78 68.20 69.18 82.42

Table 5: Performance of Safety Components in LoRA Fine-Tuning Settings. Base Model represents Llama3.1-8B-
Instruct, SafetyJ indicates the performance of the safety model after fine-tuning, and Ours signifies the performance
of the base model after linear arithmetic with safety principal components.

rate across different harmful query datasets, particu-
larly pronounced in the LoRA fine-tuning scenario.

4.2.2 Low-Rank Safety Principal Components
To verify the effectiveness of low-rank safety prin-
cipal components and demonstrate that principal
components and LLMs share the same low-rank
subspace, we perform linear operations between
the safety components and LLMs to enhance their
safety without significantly impacting their general
performance. Given that instruction-tuned LLMs
already exhibit a high degree of safety, we fur-
ther fine-tune them using a carefully curated jail-
break dataset to obtain a more safety robust model.
Specifically, we select JailJudge (Liu et al., 2024)
jailbreak dataset to perform SFT on Llama3.1-8B-
Instruct and use the AdvBench and DoAnything-
Now (Shen et al., 2024) datasets to assess the safety
of the LLMs. Additionally, we assess the model’s
general capabilities with the MBPP (Austin et al.,
2021), GSM8K (Cobbe et al., 2021), BBH (Suzgun
et al., 2022), MMLU (Hendrycks et al., 2021), and
IFEval (Zhou et al., 2023) datasets. To demonstrate
the superiority of low-rank safety principal compo-
nent merging, we compare it with DARE (Yu et al.,
2023) baseline. Details on the baseline, datasets,
and SFT can be found in Appendix D.4.

From Table 4 and Table 5, it can be observed
that after applying SFT to Llama3.1-8B-Instruct
(SafetyJ), its safety performance on AdvBench and
DoAnythingNow improved significantly. However,
its general capabilities show a varying degree of de-

cline, particularly concerning the BBH and IFEval
metrics. It indicates that the safety vector not only
contains desired changes in the safety direction
but also includes undesirable drift that adversely
affects general capabilities.

Ours results show that applying linear opera-
tions between low-rank principal components and
the Base Model enhances the model’s safety ro-
bustness without significantly affecting its general
capabilities. This suggests that the safety princi-
pal components of safety vectors share the same
low-rank subspace as the primary safety drift in
LLMs while remaining independent of the general
capabilities direction, which is consistent with the
perspective presented in Wei et al. (2024). Com-
pared to DARE, our method causes less disruption
to the model’s general ability, showing superior
safety realignment over traditional model fusion
methods.

4.2.3 Impact of Safety Singular Value Entropy
To investigate the impact of safety singular value
entropy on low-rank principal components, we
conduct a visualization analysis of the safety
vector and its low-rank principal components
with different singular value entropy ratios in
the model.layers.5.mlp.down_proj layer of the
Llama3.1-8B-Instruct model.

In particular, we perform random down-
sampling with a fixed seed corresponding to the
delta parameter matrix of the safety vector and the
projection matrix of the low-rank principal com-

30627



0 10 20 30 40

0

10

20

30

40

8

6

4

2

0

2

4

6

81e 5

(a) safety vector

0 10 20 30 40

0

10

20

30

40

8

6

4

2

0

2

4

6

81e 5

(b) η = 0.9
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(c) η = 0.5

Figure 3: Visualization of safety vector (a) and low-rank safety principal components (b, c) with different η at the
layer model.layers.5.mlp.down_proj, where α = 1. Visual representations of 2500 random sample positions are
provided.
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Figure 4: Impact of different singular value entropy
thresholds on the performance of downstream fine-
tuning models, with left singular vector weight α = 1.0

ponents. The results of the down-sampling were
visualized using heatmaps. As shown in Figure
3, as the singular value entropy ratio η decreases,
the matrix corresponding to the low-rank principal
components gradually becomes smoother, with its
values tending towards zero. This indicates that the
safety singular value entropy can effectively regu-
late the information content of low-rank principal
components, thereby eliminating the interference
of redundant directional information. As shown
in Figures 3(b) and 3(c), our method does not sup-
press individual delta parameters but rather iden-
tifies a significant structured subnetwork from the
global network. This aligns with our analysis of
the low-rank safety subspace in Section 3.2.

For experiments on the relationship between sin-
gular value entropy and retained rank, please refer
to Appendix H. For visualizations of the safety vec-
tors and low-rank principal components of other
layers, please refer to Appendix I.
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Figure 5: Impact of different left singular vector weights
on the performance of downstream fine-tuning models,
with singular value entropy ratio threshold of η = 0.5

4.3 Ablation Study
4.3.1 Importance of Singular Value Entropy
We conducted ablation experiments on the singular
value entropy ratio threshold η to systematically
investigate its impact on the performance of the
fine-tuned model. As shown in Figure 4, increasing
η results in a gradual improvement in the safety
of the merged fine-tuned model. When η > 0.8,
the safe refusal rate of the downstream fine-tuned
model approaches 1.0, which is very close to the
performance of the safety model, while the model’s
BLEU score is only slightly affected.

It indicates that by adjusting the threshold of the
singular value entropy ratio, we modify the trunca-
tion rank of the low-rank projection matrix. This al-
lows us to control the amount of safety information
retained in the principal components after project-
ing the safety vector, thereby balancing the utility
and safety of the downstream fine-tuned model.

4.3.2 Importance of Left Singular Vector
To assess how safety low-rank principal compo-
nents, obtained from orthogonal projection matri-
ces using left singular vectors, influence the perfor-
mance of fine-tuned LLMs, we conducted ablation
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experiments by adjusting the weights of the left
singular vectors. In particular, as illustrated in Fig-
ure 4, we set η = 0.5 in the ablation experiment
to achieve more pronounced results, ensuring that
fine-tuned LLMs exhibit lower safety when the left
singular value weight α = 1. From Figure 5, it
can be observed that as the weight corresponding
to the left singular vectors gradually increases, the
safety of the fine-tuned model also progressively
improves. When α > 2.5, the model’s safety is
close to the safety model, while its BLEU score
is only slightly affected. This indicates that the
projection matrix constructed from the left singu-
lar vectors accurately captures the main direction
of safety drift in the safety vector, and increasing
the drift in the corresponding direction can further
enhance the model’s safety.

5 Conclusion

Recent studies indicate that fine-tuning can compro-
mise the safety guardrails of LLMs. In this paper,
we propose the LSSF safety realignment frame-
work to address the safety alignment issues caused
by fine-tuning LLMs. Our experiments demon-
strate that the low-rank safety subspace of LLMs
remains largely unchanged during fine-tuning and
is isolated from the direction of the model’s general
capabilities. Building on this, we utilize the low-
rank principal components of the safety vector to
rectify the safety drift of LLMs within the low-rank
safety subspace, thereby restoring their safety align-
ment without compromising their performance on
downstream tasks. Given that our method is inde-
pendent of specific model architectures, we plan
to extend it to multimodal and mixture of experts
(MoE) models for further exploration in the future.

6 Limitations and Ethics Statements

Limitations Despite observing the widespread ap-
plicability of LSSF in downstream tasks, budget
constraints prevented us from evaluating larger
models such as Llama-3.1-405B-Instruct. Given
that our method is independent of specific model
architectures, we plan to extend it to multimodal
and mixture of experts (MoE) models for further
exploration in the future.
Ethics Statements Our study highlights the vulner-
abilities in aligning large language models. It is un-
deniable that we used toxic data in our experiments
to compromise model safety, which may have some
negative impact on the safety of open-source mod-

els. However, considering that all datasets used in
our experiments have been extensively studied in
numerous academic works, this research does not
amplify the inherent negative effects of the datasets
themselves. Despite these concerns, we assert that
analyzing the harmful aspects of large language
models LLMs and exploring potential mitigation
strategies have the potential to drive progress in
enhancing the safety of LLMs.
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A Proof of Shared Low-Rank Subspace

Given that X̂ ∈ Rdin×n is the corresponding input
matrix computed by weight matrix W ∈ Rdout×din

of θsafe based on the calibration dataset Danchor,
specifically:

Z = WX̂ (14)

where Z denotes the activation matrix the linear
layer corresponding to W . Assume that W is ob-
tained by safety fine-tuning an unsafe model, which
can be expressed as:

W =θunsafe + δsafe

=θunsafe + τ safe + τ̂ safe, (15)

where θsafe represents the safety-related shift in
the safety vector θsafe and τ̂ safe denotes the direc-
tional drift that suppresses general capabilities. The
Frobenius norm minimization of the low-rank Ŵ
is given by

Ŵ = argmin
Ŵ

∥WX̂ − Ŵ X̂∥2F

= argmin
Ŵ

n∑

i=1

∥Wx̂i − Ŵ x̂i∥2

= argmin
Ŵ

n∑

i=1

∥θunsafex̂i + τ safex̂i+ (16)

τ̂ safex̂i − Ŵ x̂i∥2

According to the Eckart-Young theorem (Eckart
and Young, 1936), for a given matrix W , the opti-
mal low-rank approximation of rank r is obtained
by retaining the top r singular values and their cor-
responding singular vectors from its singular value
decomposition. Therefore, the optimal solution
Ŵ should preserve the most significant variations,
specifically those associated with τ base. Since τ̂ safe,
which suppresses general capabilities, does not im-
pact the model’s safety, it does not become a prin-
cipal component in WX̂ . Consequently, the low-
rank approximation Ŵ does not include the τ̂ safe
component. For the corresponding experiments,
please refer to 4.2.2.

B Proof of The Singular Value Entropy

The definition of the Frobenius norm is the square
root of the sum of the squares of all elements in a
matrix. Specifically, if A is an m× n matrix, then
the Frobenius norm is defined as:

∥A∥2F =
m∑

i=1

n∑

j=1

|aij |2 (17)

On the other hand, the Singular Value Decomposi-
tion (SVD) of a matrix provides a decomposition
of A as follows:

A = UΣV ⊤ (18)

where U and V are unitary orthogonal matrices,
and Σ = diag(σ1, σ2, · · · , σn) is the singular value
diagonal matrix.
The Frobenius norm has the property:

∥A∥2F = Tr(A⊤A) (19)

After computing A⊤A, we have:

A⊤A = (UΣV ⊤)⊤(UΣV ⊤)

= V Σ⊤U⊤UΣV ⊤

= V Σ2V ⊤ (20)

Since V is a unitary orthogonal matrix, it follows
that:

Tr(V Σ2V ⊤) = Tr(Σ2) (21)

Σ2is a diagonal matrix, and Tr(Σ2) is the sum of
its diagonal elements:

Tr(Σ2) =
r∑

i=1

σ2
i (22)

Thus, we ultimately have:

∥A∥2F =
r∑

i=1

σ2
i (23)

Therefore, it is proven that ∥A∥2F =
∑r

i=1 σ
2
i .

C Proof of The Optimality of SVD

Let X̂ ∈ Rdin×n and Ŵ denote the solution to
the following rank-constrained approximation prob-
lem:

Ŵ = argmin
rank( Ŵ )≤r

∥WX̂ − Ŵ X̂∥2F (24)

Perform a low-rank matrix decomposition of Ŵ X̂
using Singular Value Decomposition (SVD):

USV ⊤ ≈ Ŵ X̂ (25)

where U ∈ Rdout×r is an orthogonal matrix com-
posed of the first r left singular vectors. The mini-
mum of the constrained problem is achieved by:

Ŵ = UU⊤W (26)
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Let Xin denote the input corresponding to the
weight matrix W , and Z = WXin. According
to the Eckart–Young theorem (Eckart and Young,
1936), the singular value decomposition (SVD)
Ẑ = USV ⊤ provides the optimal rank-r approxi-
mation of Z. Substituting Z = WXin, we obtain:

Ẑ = UU⊤WXin (27)

By setting Ŵ = UU⊤W , it follows that:

∥Ẑ − Z∥2F is minimized ⇒
∥Ŵ X̂ −WX̂∥2F is minimized (28)

Furthermore, since UU⊤ is a rank-r projection
matrix, it holds that rank(Ŵ ) ≤ r. Therefore,
Ŵ is the optimal solution to the rank-constrained
minimization problem.

D Experimental Details

D.1 Baseline Setup

To mitigate fine-tuning risks, we select baseline
methods encompassing both in-fine-tuning align-
ment and post-alignment approaches, including:

• NA-SFT: Utilizes only the fine-tuning dataset
without enforcing safety alignment.

• VLGuard (Zong et al., 2024): A defensive
solution against harmful fine-tuning attacks
during the fine-tuning phase, which integrates
safety-aligned data into the fine-tuning pro-
cess to continuously reinforce the model’s
alignment knowledge. Originally applied to
visual-LLM fine-tuning, in this paper, we
employ the SafeInstr (Bianchi et al., 2023)
dataset for safety alignment.

• Lisa (Huang et al., 2024): Separates the fine-
tuning phase into two states to independently
optimize alignment and user datasets, thereby
mitigating jailbreak effects. Additionally, it
introduces a proximal term to constrain the
drift of each state.

• RESTA (Bhardwaj et al., 2024): Combines the
safety vector with the weights of the compro-
mised model through simple arithmetic com-
bination and employs DARE (Yu et al., 2023)
to merge with the original model, thereby alle-
viating the suppression impact on the general
capabilities of the safety vector.

The detailed hyperparameter settings for each
method are as follows:

• VLGuard: For VLGuard, we utilize the Safe-
Instr safety calibration dataset. To align with
NA-SFT, we randomly select 500 samples
from Insfer.

• Lisa: For Lisa, we set align_step = 100,
finetune_step = 900, and the proximal
penalty ρ = 1. As described in Section Ap-
pendix, the training set comprises the down-
stream task fine-tuning dataset and 500 harm-
ful samples, while the alignment dataset con-
sists of 500 safe samples.

• RESTA: For RESTA, we assign weights of 1,
1, and −1 to the compromised model, base
model, and unaligned model, respectively.

Consistent with our training hyperparameters, we
set the number of training epochs to 10 and the
learning rate to 1× 10−5 for all tasks. For LoRA
fine-tuning, we set r = 16. All fine-tuning tasks
were conducted on 8 Nvidia A100 GPUs.

D.2 Dataset

In our downstream fine-tuning experiments, we
established two distinct scenarios:
LoRA Fine-Tuning. For text classification, we
utilize two multi-class datasets: AG’s News and
Yahoo Answers (Zhang et al., 2015). AG’s News
is primarily utilized for news classification tasks
and comprises news article snippets from various
sources. The dataset is divided into four categories:
World, Sports, Business, and Sci/Tech. We ran-
domly selected 50K samples from the training set
to perform supervised fine-tuning of the LLM and
randomly chose 1K samples from the test set to
evaluate the classification accuracy of the fine-
tuned model. The Yahoo Answers dataset is a
large-scale multi-class dataset derived from Q&A
dialogues on the Yahoo Answers platform, encom-
passing ten categories. Similarly, we randomly
chose 50K training samples for fine-tuning and 1K
test samples for evaluation.
Full Fine-Tuning. For the text generation task,
we utilized the Medical Dialogue Dataset 3, which
includes Chinese medical dialogue data from six
departments, such as andrology, internal medicine,

3https://github.com/Toyhom/Chinese-medical-dialogue-
data
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and obstetrics and gynecology. We randomly se-
lected 50K samples from the internal medicine cat-
egory as the training set and randomly chose 1K
samples to evaluate the text generation accuracy of
the fine-tuned model.
Harmful and safe dataset. To simulate real-world
fine-tuning scenarios (Bianchi et al., 2023), we ran-
domly selected 500, 2,500, and 25,000 Q&A pairs
from the PKU-SafeRLHF dataset in which both
accept and reject are labeled as unsafe to construct
harmful dataset. Similarly, we randomly selected
500 and 2,500 harmful queries and prompt the
safety model to generate safe negative responses
to construct safe dataset. These datasets were then
mixed into the fine-tuning dataset in various com-
binations for supervised fine-tuning.

D.3 Metric
D.3.1 Measuring utility
For the text classification task, we use classification
accuracy ACC, calculated as follows:

ACC =
Ncorrect

Ntotal

where Ncorrect represents the number of correctly
predicted samples and Ntotal denotes the total num-
ber of samples. For the text generation task, we em-
ploy BLEU (Papineni et al., 2002) and ROUGE-L
(Lin, 2004) as evaluation metrics. BLEU assesses
the quality of generated text by computing the pre-
cision of n-gram matches between the candidate
text and the reference text. ROUGE-L, based on
the Longest Common Subsequence (LCS), eval-
uates the consistency between the generated text
and the reference text in terms of word order and
content, reflecting the overall similarity of sentence
structures.

D.3.2 Measuring Safety
Safety Evaluation Dataset. We employ three
datasets to evaluate the model’s safety:

• AdvBench (Zou et al., 2023): This dataset
comprises 520 harmful requests along with
their corresponding target strings, covering a
wide range of malicious topics such as profan-
ity, threats, discrimination, and cybercrime.

• HarmfulQA (Bhardwaj and Poria, 2023):
Sourced from harmful dialogues in ChatGPT,
this dataset encompasses 10 safety themes,
from which 196 questions are extracted across
various subtopics.

• CATQA (Bhardwaj et al., 2024): This dataset
consists of 550 harmful questions spanning 11
categories, each containing 5 harmful subcat-
egories.

Llama-Guard3-8B. We use Llama-Guard3-8B 4

to assess the model’s safety against harmful queries.
Compared to GPT-4, Llama-Guard3-8B performs
better with a lower false positive rate. Addition-
ally, Llama-Guard3-8B outperforms GPT-4 in En-
glish proficiency, multilingual capabilities, and tool
usage, exhibiting a significantly lower false posi-
tive rate. For the specific prompts used in Llama-
Guard3-8B, please refer to Table 6.

D.4 Low-Rank Safety Principal Components
We select Llama3.1-8B-Instruct as the base model
and perform SFT fine-tuning using the sampled
JailJudge (Liu et al., 2024) dataset to obtain the
safety model. JailJudge is a comprehensive bench-
mark that features diverse risk scenarios, including
synthetic, adversarial, in-the-wild, and multilingual
prompts, along with high-quality human-annotated
datasets. To minimize the impact of data distribu-
tion on the experiment, we use DoAnythingNow
(Shen et al., 2024) and AdvBench to evaluate the
safety of the LLM. DoAnythingNow is a jailbreak
dataset that includes 13 disabled scenarios, from
which we randomly selected 1000 instances for test-
ing. To demonstrate the effectiveness of low-rank
safety principal components, we compare it with
the model fusion method DARE (Yu et al., 2023).
DARE reduces the number of effective parameters
in task vectors by removing the delta parameter and
proportionally scaling the remaining values. This
intuitive approach helps alleviate parameter inter-
ference when integrating multiple models. Even
for a single task-specific model, pruning certain pa-
rameters can mitigate interference and potentially
enhance safety. To evaluate the general capabilities
of the LLM, we use the following datasets:

• MBPP (Austin et al., 2021): MBPP com-
prises approximately 1,000 Python program-
ming problems, covering fundamental pro-
gramming knowledge and standard library
functions. Each problem includes a task de-
scription, a code solution, and three automated
test cases.

• GSM8K (Cobbe et al., 2021): GSM8K
contains 8.5K high-quality, linguistically di-

4https://huggingface.co/meta-llama/Llama-Guard-3-8B
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Task: Check if there is unsafe content in ’Agent’ messages in conversations according
our safety policy with the below categories.

<BEGIN UNSAFE CONTENT CATEGORIES>
S1: Violent Crimes.
S2: Non-Violent Crimes.
S3: Sex Crimes.
S4: Child Exploitation.
S5: Defamation.
S6: Specialized Advice.
S7: Privacy.
S8: Intellectual Property.
S9: Indiscriminate Weapons.
S10: Hate.
S11: Self-Harm.
S12: Sexual Content.
S13: Elections.
S14: Code Interpreter Abuse.
<END UNSAFE CONTENT CATEGORIES>

<BEGIN CONVERSATION>

User: {}

Agent: {}

<END CONVERSATION>
Provide your safety assessment for Agent message in the above conversation:
- First line must read ’safe’ or ’unsafe’.
- You only need to output ’safe’ or ’unsafe’, nothing else.

Table 6: Specific prompts for safety classification using Llama-Guard3-8B in our experiments
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Num 16 32 64 128 256 512

ACC 0.54 0.63 0.64 0.64 0.63 0.64
AdvBench 1.00 1.00 1.00 1.00 1.00 1.00
HarmfulQA 0.94 0.99 0.99 0.99 0.99 1.00
CATQA 0.93 0.99 0.99 0.99 0.99 0.99

Table 7: Sensitivity analysis for the Yahoo Answers
LoRA task with varying amounts of calibration datasets.

verse elementary school math word problems.
These problems typically require 2 to 8 steps
to solve, primarily involving basic arithmetic
operations.

• BBH (Suzgun et al., 2022): BIG-Bench Hard
(BBH) is a subset of BIG-Bench, focusing on
23 challenging tasks within BIG-Bench that
previous language model evaluations have not
surpassed the performance of average human
scorers.

• MMLU (Hendrycks et al., 2021): MMLU
specifically assesses the knowledge acquired
during pre-training in zero-shot and few-shot
settings. It covers 57 subjects across disci-
plines such as humanities and social sciences.

• IFEval (Zhou et al., 2023): IFEval evalu-
ates the instruction-following capabilities of
large language models, containing over 500
prompts.

These datasets collectively provide a comprehen-
sive assessment of the model’s general proficiency
across various domains and tasks. During the train-
ing process, we set the number of epochs to 3 and
the learning rate to 1e-5. The fine-tuning was con-
ducted on 8 Nvidia A100 GPUs.

E Robustness Against the Number of
Calibration Datasets

To validate the sensitivity of our method to the num-
ber of samples in the calibration dataset, we ran-
domly selected varying numbers of samples from
the PKU-SafeRLHF dataset to conduct ablation
experiments. Specifically, we performed safety re-
alignment for Yahoo Answers LoRA fine-tuning
on Llama3.1-8B-Instruct. As shown in Table 7,
when the calibration dataset size reaches 64, our
method achieves optimal performance without sig-
nificant fluctuations as the dataset size increases.
Nevertheless, to align with the experimental setup

in reference (Wei et al., 2024), we have chosen 128
as the default calibration dataset size.

F Robustness Against Data Composition

To verify the robustness of our method, we con-
duct LoRA SFT on the Yahoo Answers training set
for Llama3.1-8B-Instruct by mixing harmful and
safe data in varying proportions. Both harmful and
safe data were sourced from the PKU-SafeRLHF
dataset, as described in Appendix D.2. As shown
in Figure 6(a), the LLM generated by our method
exhibit no significant changes in ACC and rejec-
tion rates as the proportion of harmful data in-
creases in the training dataset. This demonstrates
the high robustness of our method when facing
training sets with different proportions of harmful
data. Similarly, Figure 6(b) illustrates that mixing
varying proportions of safe data into the training
set does not significantly affect the performance of
aligned LLMs, further confirming the robustness
of our method. However, from empirical evidence
(Bianchi et al., 2023), it is necessary to incorporate
safe data into training dataset. Adding safe data to
the training set not only enhances the lower bound
of safety performance in downstream fine-tuning
models but also suppresses excessive drift in safety
direction during fine-tuning, which is beneficial for
improving the effectiveness of our method.

G Robustness Against Model Parameters

To demonstrate the effectiveness of our method
across models with varying parameter sizes, we
conducted ablation experiments. We conducted
LoRA SFT on Qwen2.5 with varying parameter
sizes using the AG’s News and Yahoo Answers
datasets. Additionally, we applied our method for
safety realignment. As shown in Table 8, for mod-
els with 3B, 7B, and 14B parameters, our method
consistently achieves a safety refusal rate of 0.99.
This demonstrates the effectiveness of our method
across different parameter sizes in LLMs.

H Singular Value Entropy and Rank

To verify the impact of singular value entropy on
the retention rank of the weight matrix, we calcu-
lated the relationship between the singular value en-
tropy ratio η and the retained rank ratio of the corre-
sponding weight matrix for Llama3.1-8B-Instruct.
From Figure 7, it can be observed that as the pro-
portion of singular value entropy increases, the
number of retained ranks in the weight matrix also
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(a) Robustness to varying proportions of harmful
data, with a mixture of 500 safe instances.
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(b) Robustness to varying proportions of safe data,
with a mixture of 2500 harmful instances.

Figure 6: Our method’s robustness on Llama3.1-8B-Instruct against varying proportions of harmful or safe data in
the Yahoo Answers training dataset.

Base Model
AG’s News Yahoo Answers

ACC AdvBench CATQA HarmfulQA ACC AdvBench CATQA HarmfulQA

Qwen2.5-3B-Instruct 0.92 0.99 0.97 0.93 0.67 0.98 0.99 0.93
Qwen2.5-7B-Instruct 0.92 1.00 0.98 0.93 0.68 1.00 0.99 0.99
Qwen2.5-14B-Instruct 0.92 1.00 0.99 0.95 0.69 0.99 0.99 0.99

Table 8: Our method’s robustness across models with different parameter sizes on Qwen2.5. Base Model denotes
various sizes of the Qwen2.5 model. The hyperparameters are set as η = 0.9 and α = 1.5.
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(b) layer-15
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Figure 7: Influence of the singular value entropy threshold η on the safety retained rank r of weight matrices across
various layers in Llama3.1-8B-Instruct.

increases. This demonstrates that we can control
the amount of information retained in the low-rank
safety principal components through singular value
entropy. Within a single layer, different weight ma-
trices exhibit varying encoding densities for safety
information. For instance, in layer − 15, when η
is 0.9, the difference in the proportion of retained
ranks between v_proj and q_proj exceeds 30%.
Across different layers, the relative encoding den-
sity of safety information by different weight matri-
ces also changes. In the shallower layers, q_proj
exhibits the highest encoding density, whereas in
the deeper layers, o_proj becomes the matrix with
the highest encoding density. This analysis demon-
strates that safety singular value entropy allows
for precise quantification of safety information en-
coding density in weight matrices across different

layers, thereby facilitating the dynamic determina-
tion of the rank retention during low-rank pruning.

I Visualization

To analyze the relationship between the safety vec-
tor and low-rank safety principal components, we
visualized these elements. Figures 3, 8, and 10
illustrate as the singular value entropy decreases,
the rank of low-rank safety principal components
in different layers also decreases, resulting in pro-
gressively smoother images. This result is con-
sistent with our preliminary analysis. Compar-
ing Figures 8 and 9, we note that due to the
higher density of safety information encoding
in model.layers.15.self_attn.q_proj, its low-rank
safety components exhibit a lower rank when ex-
tracting an equivalent proportion of information,

30637



0 10 20 30 40

0

10

20

30

40

8

6

4

2

0

2

4

6

81e 5

(a) safety vector
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(b) η = 0.9
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(c) η = 0.5

Figure 8: Visualization of safety vector (a) and low-rank safety principal components (b, c) with different η at the
layer model.layers.15.self_attn.v_proj, where α = 1. Visual representations of 2500 random sample positions are
provided.
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(a) safety vector
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(b) η = 0.9
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Figure 9: Visualization of safety vector (a) and low-rank safety principal components (b, c) with different η at the
layer model.layers.15.self_attn.q_proj, where α = 1. Visual representations of 2500 random sample positions are
provided.

0 10 20 30 40

0

10

20

30

40

8

6

4

2

0

2

4

6

81e 5
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Figure 10: Visualization of safety vector (a) and low-rank safety principal components (b, c) with different η at the
layer model.layers.25.self_attn.v_proj, where α = 1. Visual representations of 2500 random sample positions are
provided.

producing smoother images. This suggests that, for
matrices with high encoding density, a lower rank
can effectively represent the safety information cor-
responding to the safety vector.
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