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Abstract

Recently, GraphRAG systems have achieved
remarkable progress in enhancing the perfor-
mance and reliability of large language mod-
els (LLMs). However, most previous bench-
marks are template-based and primarily fo-
cus on few-entity queries, which are mono-
typic and simplistic, failing to offer compre-
hensive and robust assessments. Besides, the
lack of ground-truth reasoning paths also hin-
ders the assessments of different components
in GraphRAG systems. To address these limita-
tions, we propose M3GQA, a complex, diverse,
and high-quality GraphRAG benchmark focus-
ing on multi-entity queries, with six distinct
settings for comprehensive evaluation. In or-
der to construct diverse data with semantically
correct ground-truth reasoning paths, we intro-
duce a novel reasoning-driven four-step data
construction method, including tree sampling,
reasoning path backtracking, query creation,
and multi-stage refinement and filtering. Exten-
sive experiments demonstrate that M3GQA ef-
fectively reflects the capabilities of GraphRAG
methods, offering valuable insights into the
model performance and reliability. By pushing
the boundaries of current methods, M3GQA
establishes a comprehensive, robust, and reli-
able benchmark for advancing GraphRAG re-
search. Our code and dataset are available at
https://github.com/pengboci/M3GQA.

1 Introduction

In recent years, Retrieval-Augmented Generation
(RAG) (Fan et al., 2024) has demonstrated signif-
icant potential in enhancing the performance and
mitigating hallucinations in LLMs by retrieving
relevant external knowledge. However, traditional
RAG methods often struggle to answer global-level
or complex questions effectively (Edge et al., 2024),
as they fail to capture essential relational and con-
textual knowledge. To address these limitations,
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Figure 1: Comparison of examples between multi-entity
queries and few-entity queries.

GraphRAG methods (Edge et al., 2024; Guo et al.,
2024b; Li et al., 2024; Peng et al., 2024b) are pro-
posed to enhance LLMs by incorporating relational
and contextual knowledge between key entities, in-
tegrating relevant structural information to improve
response accuracy and comprehension.

As the field of GraphRAG continues to advance
rapidly, effectively evaluating the capabilities of
GraphRAG methods has become essential for driv-
ing further research. However, previous bench-
marks, as listed in Table 1, are monotypic and
simplistic, failing to offer comprehensive and ro-
bust assessments: (1) They lack complex, multi-
entity queries, which are common in real-world
scenarios and challenging to models. Although
CWQ (Talmor and Berant, 2018), GrailQA (Gu
et al., 2021), and LC-QUAD 2.0 (Dubey et al.,
2019) include few multi-entity queries, they mainly
focus on cases with only three entities, and the
quantity is quite limited. (2) The reliance on tem-
plates or manually annotated QA pairs in these
benchmarks leads to high labor costs and restricted
query formats, which may cause the model over-
fitting to specific query structures, limiting the mod-
els’ robustness and adaptability. (3) These bench-
marks lack ground-truth reasoning paths, which
impedes a comprehensive evaluation of various
components in GraphRAG systems. While earlier
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Multi
Hop

Multi
Entity

Multi
Setting

Non-Template
or Automic

Reasoning
Paths

WebQ (Berant et al., 2013) ✓ ✗ ✗ ✗ ✗

SimpleQ (Bordes et al., 2015) ✗ ✗ ✗ ✗ ✗

WebQSP (Yih et al., 2016) ✓ ✗ ✓ ✗ ✗

MetaQA (Zhang et al., 2018) ✓ ✗ ✗ ✗ ✗

GrailQA (Gu et al., 2021) ✓ ✓✗ ✓ ✗ ✗

LC-QUAD2.0 (Dubey et al., 2019) ✓ ✓✗ ✓ ✗ ✗

QALD10-en (Perevalov et al., 2022) ✓ ✗ ✗ ✗ ✗

CWQ (Talmor and Berant, 2018) ✓ ✓✗ ✓ ✗ ✗

TextGraphs2024 (Sakhovskiy et al., 2024) ✓ ✗ ✗ ✗ ✓✗

M3GQA (ours) ✓ ✓ ✓ ✓ ✓

Table 1: Comparisons between M3GQA and previous
datasets. In “Multi Entity” column, “✓✗” indicates the
data contains less than 10% multi-entity queries or only
contains queries with no more than three entities. “Rea-
soning Paths” indicates whether the dataset provides
the ground-truth reasoning paths, and “✓✗” denotes that
using heuristic rules to generate reasoning paths.

studies (Sakhovskiy et al., 2024) use shortest paths
between query and answer entities as the ground-
truth, these approaches have inherent limitations:
First, reasoning paths for a given query may not
necessarily be the shortest. Second, multiple short-
est paths with different semantics may exist, mak-
ing it difficult to ensure the semantic correctness.

To solve these challenges, we propose M3GQA,
a complex, diverse, and high-quality GraphRAG
benchmark, with six distinct settings to comprehen-
sively evaluate GraphRAG systems. Unlike pre-
vious query-first data construction methods, we
propose a novel reasoning-first approach. Here,
we first sample two sets of nodes with certain rela-
tions, serving as query and answer entities. Then
we construct the ground-truth reasoning paths with
a backtracking algorithm. After that, an LLM is
utilized to generate corresponding queries based
on previous information. Due to the flexibility of
sampling, this method generates more complex and
diverse QA data, while ensuring the semantic cor-
rectness of reasoning paths. Moreover, our method
is independent of specific graph schemas or expert
knowledge, making it easily adaptable to new do-
mains. During the query generation process, since
the factual information, such as the reasoning path,
query entity, and answer entity, is derived directly
from knowledge graphs, issues such as hallucina-
tion and bias in LLMs are effectively mitigated.
Nevertheless, to further improve the data quality,
we introduce a multi-stage refinement and filtering
process, and manually curate the validation and test
sets. In this way, M3GQA offers a comprehensive
and reliable evaluation for GraphRAG systems.

Extensive experimental results across six set-
tings, focusing on two key aspects: the effec-
tiveness and efficiency of graph retrieval, and the
quality of answer generation, demonstrate that our
benchmark accurately reflects the capabilities of
GraphRAG methods, providing valuable insights
into the model performance and reliability, thereby
advancing the GraphRAG research.

Our contributions can be summarized as follows:

• To the best of our knowledge, M3GQA is the
first GraphRAG benchmark focusing on multi-
entity queries, a highly practical yet challeng-
ing aspect in GraphRAG systems.

• To automatically generate complex, diverse,
high-quality multi-entity query data with se-
mantically correct reasoning paths, we pro-
pose an innovative four-step reasoning-first
data construction method. The method is also
easily adaptable to other domains.

• Extensive experiments show that M3GQA ac-
curately reflects the capabilities of GraphRAG
methods, providing valuable insights into the
model performance and reliability, thereby ad-
vancing GraphRAG research.

2 Related Work

GraphRAG Methods. GraphRAG is an emerg-
ing technique that enhances Vallina RAG by incor-
porating graph data, with three main steps: graph-
based indexing, graph-guided retrieval, and graph-
enhanced generation (Peng et al., 2024b). The
indexing phase focuses on constructing and in-
dexing knowledge graphs from text corpus (Edge
et al., 2024; Guo et al., 2024b). This paper pri-
marily focuses on the latter two stages, i.e. the
retrieval of relevant graph information and the an-
swer generation. Early methods for retrieval and
generation mainly rely on GNNs (Lin et al., 2019;
Yasunaga et al., 2021; Dong et al., 2023; Taunk
et al., 2023) or small language models (Sun et al.,
2019; Zhang et al., 2022; Jiang et al., 2023b; Huang
et al., 2023; Li et al., 2023; Peng et al., 2024a) (e.g.,
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019)). Recently, due to the outstanding reason-
ing and text generation capabilities of LLMs (Ope-
nAI, 2024; Zhao et al., 2024), various LLM-based
GraphRAG methods have been proposed. Some
methods (Jiang et al., 2023a; Sun et al., 2024;
Luo et al., 2024; Jin et al., 2024; Jiang et al.,
2024a) utilize LLMs for both graph retrieval and
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answer generation, while others leverage graph al-
gorithms (Salnikov et al., 2023; He et al., 2024;
Wang et al., 2024; Jiang et al., 2024b; Wen et al.,
2024) or smaller models (Wu et al., 2023; Guo
et al., 2024a; Hu et al., 2024; Mavromatis and
Karypis, 2024) as graph retrievers, considering the
time costs and expenses. Previous methods have
achieved remarkable success on traditional datasets
and a more challenging benchmark is needed for
further development of GraphRAG.

GraphRAG Datasets. Various benchmarks (Be-
rant et al., 2013; Bordes et al., 2015; Yih et al.,
2016; Mihaylov et al., 2018; Talmor and Berant,
2018; Zhang et al., 2018; Talmor et al., 2019;
Dubey et al., 2019; Gu et al., 2021; Perevalov
et al., 2022; Cao et al., 2022; Sen et al., 2022;
Mallen et al., 2023; Sakhovskiy et al., 2024) have
been introduced to evaluate the performance of
GraphRAG systems. Table 1 lists several widely
used datasets along with their features, showing
that current datasets mainly focus on few-entity
queries. Although CWQ (Talmor and Berant,
2018), GrailQA (Gu et al., 2021), and LC-QUAD
2.0 (Dubey et al., 2019) contain several multi-entity
queries, the number is relatively small and primar-
ily concentrated in the case of three entities. Fur-
thermore, previous datasets are created based on
templates or manually annotated QA pairs, which
may cause restricted query formats and model over-
fit. Also, reasoning paths corresponding to the QA
pairs are not available in previous datasets. There-
fore, we propose a novel reasoning-first data con-
struction method and create a multi-entity multi-
hop multi-setting benchmark named M3GQA.

3 Task Formulation

Graph Question Answering (GQA) requires mod-
els to answer natural language queries according to
a given graph, which is an important application of
GraphRAG. The graph can be formally defined as
G = (V,E, {xv}, {xe}), where V and E are node
and edge sets, {xv} and {xe} represent their corre-
sponding test attributes. In this paper, for the con-
venience of data construction, we use Knowledge
Graphs to provide structured information, where at-
tributes of nodes and edges are their names. Given
a query q and a graph G, models need to first locate
the nodes Vq ⊂ V in the query (query entities),
and then determine a node or a node set Va ⊂ V
(answer entities) in the graph G as the answer.

In M3GQA, we focus primarily on multi-entity

queries, which are defined here as queries that
involve at least three nodes from the graph, i.e.
|Vq| ≥ 3. We first introduce 4 general settings with
different complexities, which are as follows:

Single-hop Setting: Queries in the single-hop
setting can be answered with a single reasoning
step. We ensure there is only one answer node,
meaning that in the reasoning path, the answer
node va is at a distance of 1 from all query nodes.
Therefore, the reasoning path can be shaped like:
{vq e−→ va|vq ∈ Vq}. This setting is theoretically
the simplest, designed to assess the model’s basic
ability to handle multi-entity queries.

Multi-hop Setting: Queries in this setting re-
quire starting from multiple query entities and
reaching a single answer node using multi-hop
reasoning. The number of reasoning steps from
different query entities may vary, so the reasoning
path can be defined as: {vq e1−→ vm

e2−→ · · · ek−→
va|vq ∈ Vq}, where k > 1 represents the hop count,
which may vary with different query entities. The
answering process can be intuitively understood as
starting from the child nodes at different levels of
a tree (query entities) and searching for the root
node (answer entity). Due to the highly variable
number and distribution of query entities, the rea-
soning process can be significantly more complex
than few-entity multi-hop questions.

Set Setting: The main difference between the
set setting and the two settings mentioned above
is that the answer to each query is a set of nodes,
that is |Va| > 1. The primary focus of the setting
is to assess the model’s ability to obtain a complete
answer without any omissions.

Aggregation Setting: Building on the set set-
ting, we introduce additional constraints (e.g., max-
imum value, minimum value, etc.) to the set of an-
swer nodes, so that the final answer is a single node
from the node set satisfying the given conditions.
In this setting, the model first needs to identify
the original answer set, and then, by incorporat-
ing information from neighbor nodes, compare and
reason across multiple similar entities. Therefore,
the reasoning path in the aggregation setting can
be denoted as: {vq e1−→ vm

e2−→ · · · ek−→ va
e←−

vn |vq ∈ Vq, vn ∈ Vn}, where k ≥ 1 and Vn is a
subset of va’s neighbor nodes.

Beyond the general settings above, we innova-
tively propose other two special settings:

Editing Setting: Considering that many queries
can be answered by LLMs solely based on their
parameterized knowledge, we introduce the editing
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setting. Specifically, based on the single-hop set-
ting and multi-hop setting, we modify the answer
node va in the original graph, replacing it with a
new node v′a generated by LLMs that have different
textual attributes. The model needs to respond with
the new answer node v′a, rather than the original
one. The performance under this setting highly de-
pends on the retrieval quality. It also enables us to
investigate the potential applications of GraphRAG
in the context of knowledge updating for LLMs.

Answerability Setting: In the answerability set-
ting, we first construct the data following single
and multi-hop settings, and then randomly select
a subset of the data, remove the answer nodes and
their neighbors from G to create a new graph G′.
Given a query q and graph G′, the model is required
to determine whether G′ contains the answer to the
query. This setting accesses the model’s ability to
perform graph retrieval and evaluate its sensitivity
to the information in the retrieved subgraphs.

4 Data Construction

In this section, we will introduce our reasoning-first
data construction method. Our ultimate goal is to
obtain diverse queries with multiple entities, their
corresponding answers, and reasoning paths. To
achieve this, we first obtain the graphical represen-
tation of the query, i.e., reasoning paths, and then
map it to the textual representation, i.e., QA pairs
of natural language. Specifically, we first propose
a tree sampling algorithm to sample two sets of
nodes with certain relations, serving as query and
answer nodes respectively. Since directly generat-
ing queries from query and answer nodes is chal-
lenging, we then utilize a backtracking algorithm to
obtain the original reasoning paths. Afterward, an
LLM is leveraged to create queries based on query
nodes, answer nodes, and corresponding reason-
ing paths. Finally, we refine reasoning paths and
filter low-quality data with a multi-stage strategy.
Figure 2 shows the overview of our method.

4.1 Tree Sampling

To sample query nodes and answer nodes1 with
certain relationships, we propose a novel tree sam-
pling method. Specifically, we randomly select a
node va ∈ V as the starting point and perform a
constrained breadth-first search (C-BFS), where
both the search width and depth are limited. All

1For simplicity, we first consider the case where there is
only a single answer node.

search paths form a tree with the selected node va
as the root node, which then serves as the answer
node. The process can be formulated as:

GTva = C-BFS(va, G,Dmax,Wmax), (1)

where Dmax is the maximum search depth and
Wmax is the maximum search width. GTva =
(VTva , ETva ) denotes the search tree with va as the
root node, which is a subgraph of G.

Next, we randomly sample n (n ≥ 3) nodes
from the non-root nodes of the tree, serving as the
query nodes. Afterwards, we can obtain multiple
(va, Vq) pairs, where Vq = {vqi}ni=1 denotes the
query node set. This process can be further for-
mulated as {(va, Vq)|va ∈ V, Vq ⊂ VTva\{va}}.
Considering that each setting in M3GQA has its
unique characteristics and constraints, we then se-
quentially explain how to adapt the tree sampling
algorithm to these different settings. A detailed in-
troduction with strict definitions and mathematical
notation can be found in the Appendix D.

Single-hop Setting: The main characteristic of
the single-hop setting is that the hop count is single,
that is Dmax = 1. Besides, to ensure the uniqueness
of the answer node, we examine all other common
neighboring nodes of query nodes to ensure that no
other node is linked to query nodes with the same
relations.

Multi-hop Setting: In the multi-hop setting, the
search depth must be at least 2, i.e. Dmax > 1.
Additionally, to ensure the answer’s uniqueness,
we examine the first level ancestor nodes (the root
node at level 0) of each query node, using the same
detection method as the single-hop setting.

Set Setting: The data construction method in
the set setting is more complex. Since the an-
swer is a node set, we need to consider the ini-
tialization of the answer nodes and the process
for conducting the search. For answer node selec-
tion, we first adopt the same searching approach
as the single-hop setting. Here, we additionally
restrict that the relation remains consistent during
the search process. Then we treat the query node
in the single-hop setting as the answer nodes in
the set setting, ensuring that answer nodes share
some similar properties. As for the search process,
a straightforward approach is to use the answer
nodes as the starting points and apply multi-source
BFS. However, this may result in a disconnected
search tree, which makes it hard to form a query.
To address this issue, we first detect all the shared
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Figure 2: The overview of our four-step data construction method: tree sampling, reasoning path backtracking,
query creation, and multi-stage refinement and filtering.

neighboring nodes of the answer nodes and then
start the multi-source BFS from these nodes.

Aggregation Setting: Based on the set setting,
the aggregation setting imposes further constraints
on answer nodes. Specifically, we examine all com-
mon neighbors of answer nodes in the reverse di-
rection of the BFS process and construct the data
using two strategies. The first strategy is to iden-
tify a common relation shared by all answer nodes.
Then neighboring nodes connected by this relation
are included in the search tree for subsequent pro-
cesses. The second strategy is to obtain the relation
that is unique to one of the answer nodes. In this
case, we add the edge to the search tree and treat
that special answer node as the final answer.

Editing Setting: To construct data in the edit-
ing setting, we first modify the graph using the
approach mentioned in Section 3 and then apply
the tree sampling algorithm using the same method
as the single-hop and multi-hop settings.

Answerability Setting: In contrast to the steps
in the editing setting, here we first apply the tree
sampling algorithm and then modify the graph. In
this way, we can determine whether the query con-
structed based on the reasoning path can be an-
swered using the given graph.

4.2 Reasoning Path Backtracking

After obtaining the query and answer nodes, we
construct possible reasoning paths based on the
search tree. Considering that the search tree may
contain a lot of irrelevant information, we propose

a backtracking method to prune it. Specifically, we
take each query node vq as the starting point and
trace back along the search tree until we reach each
answer node va. This process can be denoted as:

pvq ,va = BackTrack(vq, va, GTva ). (2)

The resulting reasoning paths can be represented
as P = {pvq ,va |vq ∈ Vq, va ∈ Va}. To provide
an intuitive understanding, we include examples of
reasoning paths in six settings in Appendix A.3.

4.3 Query Creation
In this section, we aim to create the correspond-
ing queries according to query nodes Vq, answer
nodes Va, and reasoning paths P . Thanks to the
powerful text generation capabilities of LLMs, we
can generate diverse, and fluent queries with care-
fully designed prompts. Besides, since the factual
information, such as the reasoning path, query en-
tity, and answer entity, is derived directly from the
knowledge graph, issues such as hallucination and
bias in LLMs are effectively mitigated during the
question generation process. The query creation
process can be formalized as:

q = LLMc(Vq, Va,P). (3)

Queries in majority settings of M3GQA can be
directly generated using Equation 3, with the only
exception of the aggregation setting. This is be-
cause queries in this setting not only need to repre-
sent the relationship between the query and answer
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nodes but also impose additional constraints to en-
sure that the final answer is one of the nodes with
similar attributes, which is too complex for LLMs.
Therefore, we employ a two-step method to gen-
erate queries in the aggregation setting. We first
create queries whose answer is a node set, ignoring
the additional constraints. Subsequently, we incor-
porate the constraints into prompts and call LLMs
again to rewrite the queries in the previous step.

Additionally, to make created queries more nat-
ural and fluent, and better resemble the questions
humans would ask in real-world scenarios, we add
an additional LLM call for query refinement, which
can be formulated as:

q = LLMr(q, Vq). (4)

We provide all prompts in Appendix F.

4.4 Multi-Stage Refinement and Filtering

Considering that LLMs may not incorporate all
sampled query nodes when generating queries, we
also need to refine the initial reasoning paths, align-
ing them with actual query nodes included in the
final queries. Specifically, we first employ text
matching to identify the included query nodes, and
then apply the same backtracking algorithm out-
lined in Section 4.2 to refine the reasoning paths.

To further ensure the data quality, we implement
diverse filtering methods, including rule-based fil-
tering, LLM-based filtering, and manual filtering,
which are carried out in sequence.

Rule-based Filtering. We design the following
rules to remove low-quality data: (1) The number
of nodes in each query must be no less than 3. (2)
The queries must not contain answer nodes. (3)
The query must be a standalone problem. (4) The
reasoning paths must include the answer nodes.
(5) To prevent data leakage, for each setting, we
use random deduplication to avoid multiple entries
sharing the same answer.

LLM-based Filtering. We employ LLMs to ver-
ify the correctness of the generated data. Specifi-
cally, we feed the query, reasoning paths, and the
answer into LLMs, and ask LLMs to determine
whether the answer is correct. We retain the data
deemed correct by LLMs. The prompt used in this
stage is shown in Appendix F.

Manual Filtering. We manually review and cor-
rect the data in validation and test sets, focusing on

Entry
Count

Avg.
Token

Avg.
Entities

Avg.
Hops

Avg.
Triplets

Avg.
Nodes

Single-hop 1,542 29.68 4.00 1.00 3.92 4.92
Multi-hop 1,430 39.93 3.43 2.66 5.23 6.23

Set 1,335 41.59 3.36 2.83 10.17 9.53
Aggregation 1,136 37.22 3.65 2.12 11.07 9.16

Editing 926 39.98 3.45 2.70 5.31 6.31
Answerability 1,997 40.40 3.35 - - -

Total 8,366 38.06 3.54 2.20 7.00 7.14

Table 2: Data analysis across six settings.

the clarity of query expressions, the correctness of
answers, and the accuracy of reasoning paths.

Appendix B demonstrates more details of the
filtering stage, including detailed guidelines for
manual filtering and additional data statistics.

4.5 Data Analysis

Our M3GQA dataset consists of 8,366 instances,
with an average of 3.54 entities in each query. We
conduct a statistical analysis of the data quantity
in six settings and examine the average number
of query tokens, entities, reasoning hops, as well
as the average number of triplets and nodes in the
reasoning paths for each setting. Relevant results
are presented in Table 2. We additionally visualize
the number of query entities and the inference hops
of queries in the dataset, as shown in Figure 4.

5 Experiments

5.1 Experimental Settings

Benchmark Settings. We construct M3GQA
based on Freebase (Bollacker et al., 2008) and ran-
domly split the data into train/validation/test sets
by 6/1/3 for each setting.

Baselines. We evaluate baselines on M3GQA,
which can be divided into 3 classes:
LLM-only Methods: We adopt GPT-4 (model: gpt-
4-turbo), ChatGPT (model: gpt-3.5-turbo), and
Claude-3.5 (model: claude-3.5-sonnet) to answer
queries directly.
Traditional Methods: We first retrieve all shortest
paths between query nodes as a rule-based baseline
(abbrev. SP). Besides, we leverage sparse retriever
(BM25 (Robertson and Zaragoza, 2009)) and dense
retriever (paraphrase-multilingual-MiniLM-L12-
v2 (Wang et al., 2021)) to retrieve relevant triplets,
and feed the triplets with similarity scores from
high to low into GPT-4 to generate answers.
GraphRAG Methods: We reproduce several state-
of-the-art GraphRAG methods on M3GQA, includ-
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Baselines
Single-hop Setting Multi-hop Setting Set Setting Aggregation Setting

MacF1 MicF1 Hit Hit@1 MacF1 MicF1 Hit Hit@1 MacF1 MicF1 Hit Hit@1 MacF1 MicF1 Hit Hit@1

LLM-Only Methods
GPT4 33.41 34.10 35.85 33.26 11.87 12.20 12.82 11.66 21.92 24.79 44.75 28.00 25.65 26.98 26.03 24.93

ChatGPT 29.64 30.35 32.18 28.94 7.73 7.90 8.39 6.99 16.72 19.02 34.75 19.00 21.01 21.59 23.46 21.99
Claude3.5 30.71 31.78 34.77 31.32 10.14 10.76 12.12 8.86 17.24 19.40 40.25 21.50 24.75 24.05 27.57 25.51

Traditional Methods
SP 82.48 83.96 87.47 80.13 10.68 10.83 11.19 10.26 26.49 28.22 43.00 33.00 43.19 44.21 47.21 41.64

Sparse 65.06 66.28 69.33 64.15 14.82 15.48 16.78 14.22 34.57 37.51 54.50 37.75 36.68 37.70 40.47 35.78
Dense 69.04 70.54 74.30 65.66 25.20 28.26 35.20 22.61 43.30 47.16 70.00 45.00 49.01 50.57 55.13 44.57

GraphRAG Methods
ToG 71.33 71.94 74.00 68.00 19.00 19.31 20.00 20.00 23.13 25.42 44.00 30.00 28.67 28.97 30.00 26.00
RoG 57.05 58.15 61.12 56.59 16.78 17.59 19.58 15.38 27.94 31.21 50.75 34.50 35.72 36.75 39.59 33.72

RoG-SFT 68.54 69.74 73.00 67.60 17.10 18.29 20.75 16.32 31.14 34.81 58.00 37.00 34.01 34.66 36.36 32.26
G-Retriever 55.97 56.92 59.40 55.08 21.74 23.05 25.87 21.21 36.97 41.45 69.75 47.50 38.78 39.59 41.64 38.71

Table 3: Performance of different methods across four general settings of M3GQA. We randomly sample 50 entries
from each setting for the evaluation of ToG considering the time and expenses.

ing: G-Retriever (He et al., 2024), ToG (Sun et al.,
2024), RoG (Luo et al., 2024). We additionally
replace the retriever of RoG with Qwen2.5-7B-
Instruct, which is trained with SFT on the training
set of M3GQA (abbrev. RoG-SFT), as a baseline.

The introduction of these methods and details of
their reproduction are presented in Appendix C.1.

Evaluation Metrics. We evaluate the perfor-
mance of baselines from two aspects. For graph
retrieval, we utilize two metrics to measure the
effectiveness, including: recall of triplets in reason-
ing paths (Recall) and whether all answer nodes
have been retrieved (Acc). In addition, we also
report the total number of triplets contained in the
subgraphs retrieved (Num) by different baselines.
For answer generation, we utilize Macro-F1 (ab-
brev. MacF1), Micro-F1 (abbrev. MicF1), Hit, and
Hit@1 to measure the quality of predictions. For
the answerability setting, since it is essentially a
binary classification task, we use Accuracy, Preci-
sion, Recall, and F1 as evaluation metrics.

5.2 Overall Performance
We evaluate the baselines across six settings from
answer prediction and graph retrieval aspects,
which are shown in Table 3, 4 and 5, we summarize
our findings about M3GQA as follows:

Comparison between different settings Al-
though M3GQA overall presents a significant chal-
lenge, there are still noticeable differences in the
difficulty of six settings. From the results, the
single-hop setting appears to be the simplest, while
the multi-hop setting is the toughest, possibly due
to the complex reasoning involved in multi-entity
multi-hop queries. Meanwhile, the set and aggre-
gation settings also demonstrate a considerable de-

Baselines
Editing Setting Answerability Setting

MacF1 MicF1 Hit Hit@1 Acc Precision Recall F1

Traditional Methods
SP 5.90 5.98 6.12 5.76 47.25 60.59 43.70 50.78

Sparse 8.92 9.50 10.79 8.63 50.58 65.98 42.63 51.79
Dense 17.95 19.94 24.46 17.63 52.92 62.96 59.25 61.05

GraphRAG Methods
ToG 20.00 20.00 20.00 20.00 48.00 68.42 39.39 50.00
RoG 8.19 9.25 11.51 7.19 46.41 61.40 37.53 46.59

RoG-SFT 8.82 10.13 12.59 8.27 48.75 63.10 42.63 50.88
G-Retriever 11.82 12.80 15.47 12.59 54.26 62.28 67.29 64.69

Table 4: Performance of different methods across two
special settings of M3GQA.

gree of difficulty. Considering there are multiple
answer entities in the set setting, we additionally
introduce the Exact Match (EM) metric to reflect
the model’s ability to provide complete answers,
which is shown in Table 10 in Appendix C.3. It
appears that the current model’s performance in
this regard is not satisfying.

Comparison between different Baselines Since
GraphRAG requires the model to select entities
from the graph as answers, the performance of
LLM-only methods is not ideal. Compared to the
current GraphRAG approaches, traditional retrieval
methods still show strong competitiveness, likely
due to the more comprehensive content retrieved
by these methods. In addition, current state-of-the-
art GraphRAG models perform suboptimally on
M3GQA, indicating that our dataset is relatively
complex and presents challenges to the retrieval
and answering strategies of previous methods. A
detailed analysis of the performance of state-of-the-
art methods can be found in Appendix C.2.

Correlation between retrieval and generation
By analyzing the results of graph retrieval and an-
swer prediction simultaneously, we can see a clear
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Baselines
Single-hop Setting Multi-hop Setting Set Setting Aggregation Setting Editing Setting

Recall Acc Num Recall Acc Num Recall Acc Num Recall Acc Num Recall Acc Num

Traditional Methods
SP 92.00 95.03 51.31 61.86 10.72 34.26 40.78 15.25 43.95 45.53 55.13 52.60 60.59 8.63 32.28

Sparse 41.60 79.27 100.00 32.68 24.01 100.00 26.90 39.00 100.00 23.92 59.24 100.00 31.84 19.42 100.00
Dense 67.73 88.55 100.00 51.34 66.43 100.00 46.50 53.75 100.00 45.53 82.99 100.00 51.35 59.71 100.00

GraphRAG Methods
ToG 41.87 74.00 4.89 32.82 16.00 5.64 12.60 4.00 5.98 8.81 38.00 5.76 34.92 24.00 5.60
RoG 38.17 62.42 58.06 13.36 24.01 41.33 12.31 30.75 77.47 12.07 56.89 76.50 14.56 23.38 41.71

RoG-SFT 43.83 70.41 19.26 12.11 25.87 48.10 13.10 34.50 124.64 9.56 48.68 58.32 11.07 31.65 45.66
G-Retriever 50.15 82.94 208.53 41.72 75.76 236.10 29.44 60.50 207.25 31.88 79.47 199.60 40.43 67.99 226.91

Table 5: Evaluation of graph retrieval in different models across five settings. Since a considerable portion of queries
in the answerability setting could not retrieve subgraphs, we do not report the results in that setting.

correlation between them, indicating that improv-
ing the performance of the retrievers is crucial to
the overall performance. In M3GQA, we provide
ground-truth reasoning paths, which are believed to
be helpful in enhancing the retriever’s capabilities.
We also identify some special cases from the results.
For example, in some settings (e.g., set setting), the
retrieval accuracy (Acc) of RoG is lower than the
Hit value in answer prediction. This suggests that
some queries might be correctly answered relying
solely on the knowledge in LLMs. Moreover, al-
though G-retriever shows high retrieval accuracy,
the answer prediction performance is relatively av-
erage. We believe this may be due to incomplete
retrieval paths, as the recall score of the retriever
is relatively low. Furthermore, we believe that be-
sides recall, accuracy, and triplet number, the or-
der in which the retrieved triplets are fed into the
LLMs can also affect the model’s answer predic-
tion performance. We validate this idea through
experiments in Appendix C.5.

5.3 Difficulty of M3GQA
We further construct two additional settings: simple
single-hop and simple multi-hop settings, by reduc-
ing the number of entities in queries. We evaluate
the models’ performance from both perspectives of
answer prediction and graph retrieval to show the
difficulty of M3GQA, with results in Table 6 and 7.
We do not report the results of SP because it is
not applicable to queries that involve only a single
entity. By comparing these results with the orig-
inal single-hop and multi-hop settings in Table 3
and 5, we can observe that increasing the number
of entities can significantly improve the difficulty
of queries, which further highlights the challenges
and importance of multi-entity queries. We also
compare M3GQA with classical datasets such as
WebQSP and CWQ. Due to the lack of ground-

Baselines
Simple Single-hop Simple Multi-hop

MacF1 MicF1 Hit Hit@1 MacF1 MicF1 Hit Hit@1

LLM-Only Methods
GPT4 34.83 35.65 37.98 35.19 23.84 24.61 26.65 22.98

ChatGPT 30.55 31.25 32.83 30.69 19.99 20.68 22.25 19.56
Claude3.5 30.15 31.45 34.76 31.33 20.10 20.95 23.23 20.05

Traditional Methods
Sparse 62.44 62.95 64.16 62.88 35.72 36.49 38.14 34.47
Dense 84.50 85.30 87.34 84.12 50.95 53.25 58.19 48.17

GraphRAG Methods
ToG 81.47 82.21 84.00 82.00 54.00 54.00 54.00 54.00
RoG 58.69 59.34 60.73 59.01 32.04 33.55 36.67 31.05

RoG-SFT 69.38 69.83 70.82 68.88 35.15 36.27 38.63 33.99
G-Retriever 67.50 68.33 70.39 68.24 43.40 44.68 47.43 41.56

Table 6: Difficulty comparison of M3GQA against other
two simple settings.

Baselines
Simple Single-hop Simple Multi-hop

Recall Acc Num Recall Acc Num

Traditional Methods
Sparse 29.94 64.81 100.00 24.63 36.92 100.00
Dense 88.84 96.35 100.00 61.53 70.17 100.00

GraphRAG Methods
ToG 83.00 90.00 2.88 45.20 36.00 4.90
RoG 33.80 48.07 20.90 23.96 14.42 20.44

RoG-SFT 43.78 56.22 5.45 24.69 14.67 14.99
G-Retriever 62.12 88.63 217.99 43.26 71.15 213.55

Table 7: Evaluation of the graph retrieval process of
different models on two simple settings.

truth reasoning paths in WebQSP and CWQ, we
only evaluate the model’s ability to predict answers,
which are shown in Table 8. We can see that com-
pared to CWQ and WebQSP, the models’ perfor-
mance on M3GQA shows a significant decline, in-
dicating that our dataset presents a considerable
challenge to current models.

6 Conclusion

In this paper, we introduce the challenge of multi-
entities queries and construct a Multi-Entity Multi-
Hop Multi-Setting Graph Question Answering
Benchmark, named M3GQA, to evaluate the ca-
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Baselines
WebQSP CWQ M3GQA

MacF1 Hit MacF1 Hit MacF1 Hit

ToG - 82.60 - 67.60 37.72 43.72
RoG 70.26 86.67 54.63 61.94 38.81 48.34

G-Retriever 53.41 73.46 - - 38.73 49.68

Table 8: Difficulty comparison of M3GQA against We-
bQSP and CWQ.

pabilities of GraphRAG methods. To ensure the
quality and diversity of the data, we introduce a
non-template approach for data construction and
classify the data into six settings according to query
types and complexity. We reproduce the state-of-
the-art methods and assess their performance focus-
ing on both graph retrieval and answer prediction.
Experimental results show that M3GQA is highly
challenging and holds significant implications for
the future development of the field.

Ethical Consideration

In this paper, we construct M3GQA based on Free-
base, with carefully designed methods to minimize
the ethical risks. As Freebase contains publicly
available knowledge, no private or sensitive indi-
vidual data is included, ensuring compliance with
data privacy standards. M3GQA is intended strictly
for academic research and educational purposes,
with clear guidelines to prevent misuse in harmful
applications. Furthermore, the dataset adheres to
Freebase’s licensing terms, with proper attribution
required. In summary, M3GQA poses low ethical
risk while enabling advancements of both retrieval
and reasoning processes in GraphRAG systems.

Limitations

In this paper, we propose the first GraphRAG
benchmark named M3GQA consisting of multi-
entity queries. To facilitate the construction of
the dataset, we utilize the knowledge graph (Free-
base) as the primary source of graph-structured
information. We believe that extending this ap-
proach to more general graph data, multilingual
data (Zhao and Zhang, 2024), and other vertical
domains (e.g., biomedical (Jiang et al., 2024b), aca-
demic (Jin et al., 2024), and financial (Arslan and
Cruz, 2024)) represents a promising direction for
future improvements. Besides, due to time and ex-
pense constraints, we only reproduce a subset of the
state-of-the-art methods. Expanding the reproduc-
tion to include more baselines would undoubtedly

contribute to further advancements in the field. Ad-
ditionally, this work primarily focuses on graph
question answering scenarios, which is currently
the most widely applied task for GraphRAG meth-
ods. Designing benchmarks for other GraphRAG
tasks (e.g., long context summary) is also a direc-
tion worth exploring.
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A Data Analysis of M3GQA

A.1 Statistics of WebQSP and CWQ

We calculate the number of multi-entity queries in
WebQSP and CWQ respectively. The results are
presented in Figure 3 below.

1 2 3 40
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Figure 3: Statistics on the number of query entities in
the WebQSP and CWQ datasets.

A.2 Visualization of the Data

We visualize the number of query entities and the
number of reasoning hops for each query under six
settings, and present the results in Figure 4.

A.3 Pattern of Reasoning Paths

To provide a clearer understanding of the various
settings discussed in this paper, we present exam-
ples of reasoning path patterns for each setting,
which are presented in Figure 5.

B Details of Filtering

B.1 Guidelines of Manual Filtering

We assign samples from the validation and test sets
of M3GQA randomly to five volunteers for manual
inspection. Each volunteer identify any samples
they consider unreasonable, and then all five vol-
unteers judge these samples individually, with a
majority vote determining whether each sample
should be retained or discarded. The guidelines for
determining whether a sample is reasonable are as
follows:
• Clarity of the question: Check if the query in-
cludes any extraneous query entities, if the question
is ambiguous, if it is likely to have a clear answer,
and exclude subjective questions.
• Manual reasoning path and answer validation:
For each question, we manually track the reasoning
path and compare the answer with the ground-truth
provided in the dataset.

B.2 Data Statistics
We show the proportions of data filtered out in each
filtering stage in Table 9.

From the results, we can observe that (1) Each
filtering stage is capable of eliminating a portion of
low-quality data, which validates the necessity of
every filtering stage. (2) The entire data construc-
tion pipeline is reliable because the proportion of
manually filtered out unreasonable data is relatively
small.

Furthermore, to ensure the reliability of the
manual filtering process, we calculate the inter-
annotator agreement using Fleiss’ Kappa, which
measures the level of agreement among multiple
annotators. The Fleiss’ Kappa score for our anno-
tators is 0.74, indicating substantial agreement.

C Additional Experiments

C.1 Implementation Details
For traditional methods, we retrieve the top 100
triplets according to similarity scores and feed them
into GPT-4 as additional inputs for question an-
swering. For GraphRAG methods, we leverage the
open-source codes and first reproduce them on the
WebQSP dataset, ensuring that the reproduction re-
sults are consistent with those reported in original
papers. Then we evaluate them on M3GQA and
adjust hyper-parameters according to the perfor-
mance on the validation set. For fair comparison,
we use GPT-4 as the base generator.

C.2 Introduction and Analysis of Baselines
In this section, we will provide a detailed introduc-
tion to the current state-of-the-art GraphRAG meth-
ods and thoroughly analyze the potential issues that
may arise when applying them to M3GQA.

ToG This method2 (Sun et al., 2024) proposes
utilizing LLMs to perform graph retrieval starting
from query entities, iteratively selecting edges and
neighboring nodes related to the current node until
the model can answer the question. Applying the
method to M3GQA may face the following chal-
lenges:
• Error Propagation in Iterative Search: Since the
method employs a BFS-like iterative retrieval ap-
proach, any errors occurring at a particular search
layer will render subsequent searches invalid.
• Complexity in Handling Nodes with High Con-
nectivity: If a node in the search process is con-

2https://github.com/IDEA-FinAI/ToG
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(a) Number of query entities across six settings.
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(b) Number of reasoning hops across five settings.

Figure 4: Visualization of query entities and reasoning hops in M3GQA.

(a) Single-hop Setting (b) Multi-hop Setting (c) Set Setting

(d1) Aggregation Setting (d2) Aggregation Setting

Reasoning PathAnswer Node Intermediate Answer Node Query Node Start Node Other Node

Figure 5: Pattern of reasoning paths under single-hop setting, multi-hop setting, set setting, and aggregation setting.

Single-hop Multi-hop Set Aggregation Editing Answerability

Rule-Based 4.75% 7.41% 8.44% 8.57% 7.96% 6.47%
LLM-Based 5.11% 15.88% 19.09% 23.40% 17.47% 9.72%
Manual (test) 2.94% 4.46% 5.44% 7.59% 3.14% 3.54%
Manual (val) 2.57% 4.19% 5.83% 7.21% 3.19% 3.41%

Table 9: Data statistics of each filtering stage.

nected to many or highly complex relationships, the
model may struggle to correctly select the relevant
edges and neighboring nodes.

• Over-confidence of Large Language Models:
Due to the tendency of large language models to
be overly confident, this approach might lead to
the model answering the question prematurely be-
fore reaching the correct answer entity node, which
would degrade answer prediction performance.

RoG This method3 (Luo et al., 2024) proposes
to train an LLM to generate several relation chains
as reasoning plans, and then parsing out reasoning
paths from the graph that match the relation chains.
During the reasoning phase, since the trained lan-
guage model has not seen the relations in the graph
from the test set in advance, it becomes difficult
to parse out reasoning paths from the graph that
match the reasoning plan generated by the LLM.

3https://github.com/RManLuo/
reasoning-on-graphs
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Figure 6: Number of API Calls of ToG on six settings.

G-Retriever This method4 (He et al., 2024)
proposes using the Prize-Collected Steiner Tree
(PCST) algorithm to retrieve subgraphs relevant to
the query. However, the method’s performance on
M3GQA is not ideal, possibly due to the following
reasons:
• The subgraphs retrieved using the PCST algo-
rithm typically have low recall values, indicating
that the retrieved reasoning paths may not be com-
prehensive enough, posing a high requirement for
the answer reasoning ability of LLMs.
• The subgraphs retrieved using this algorithm are
relatively large, which poses a challenge to the con-
text comprehension ability of LLMs for subsequent
answer prediction.
• Since this retrieval algorithm cannot obtain the
relevance scores for the corresponding triplets, it
is difficult to determine an appropriate triplet order
as input for the answer generator, which could also
impact the model’s performance.

C.3 EM Results on Set Setting

We additionally introduce the EM metric to evalu-
ate the models’ ability to answer the queries with-
out any omission. By analyzing the results in Ta-
ble 10, we can find that the model’s ability in this
regard still requires improvement.

C.4 Statistics of API Calls in ToG

ToG proposes using LLMs to retrieve relevant in-
formation from the graph, which introduces sig-
nificant API expenses, especially for multi-entity
queries. We calculate the average number of API
calls per query for ToG across six settings, and the
results are shown in Figure 6.

4https://github.com/XiaoxinHe/G-Retriever

C.5 Retrieval Factors Affecting the Answer
Performance

In the previous section, we evaluate the retrieval
quality of the retriever using Recall, Acc, and Num,
and briefly analyze the relationship between the
retrieval quality and the final answer prediction per-
formance. Here, we conduct an in-depth analysis
of the impact of the number and order of retrieved
triplets on the prediction results. Relevant results
analysis are as follows.

C.5.1 Order of Retrieved Triplets

In this paper, we further investigate the impact of
the concatenation order of triplets retrieved by the
dense retriever on the model’s answer prediction
performance. Specifically, we randomly shuffle
the retrieved triplets and compare them with the
original Dense method. Table 11 and 12 show a
comparison of the results from the two methods
across six settings. Through analysis, we can ob-
serve that the order of the triplets does have an
impact on the model’s prediction performance.

C.5.2 Number of Retrieved Triplets

To facilitate control over the number of retrieved
triplets, we use the dense retriever-based approach
as the backbone model for GraphRAG. We explore
the model’s task performance under six different
settings when the number of retrieved triplets is
50, 100, 200, and 300. We evaluate the model
performance using the same metrics described in
the main text, focusing both on the retrieval and
answer prediction process. Corresponding results
can be found in Figure 7, 8 and 9. Through the
experiments, we can find a rough positive correla-
tion between the answer prediction performance
and the number of retrieved triplets.

C.6 Performance of Hybrid Baselines

We additionally incorporate a hybrid baseline that
combines the top 100 results based on the dense re-
trieval with the shortest paths between query nodes.
The results are shown in Table 13, 14, and 15.

From the results above, we can observe that SP
performs relatively well in simpler scenarios (such
as single-hop setting), but they perform poorly in
more complex scenarios (such as multi-hop setting).
Furthermore, the hybrid method effectively com-
bines the advantages of the SP method and dense
retrieval, achieving good results in scenarios that
involve both single-hop and multi-hop reasoning.
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Set Setting GPT4 ChatGPT Claude3.5 MiniLM BM25 ToG RoG RoG-SFT G-Retriever

EM 6.25 4.00 3.75 22.25 17.00 6.00 9.00 9.50 10.25

Table 10: EM results of different models on the set setting.

Baselines
Single-hop Multi-hop Set Aggregation

Macro-F1 Micro-F1 Hit Hit@1 Macro-F1 Micro-F1 Hit Hit@1 Macro-F1 Micro-F1 Hit Hit@1 Macro-F1 Micro-F1 Hit Hit@1

Dense 69.04 70.54 74.30 65.66 25.20 28.26 35.20 22.61 43.30 47.16 70.00 45.00 49.01 50.57 55.13 44.57
Dense

+Shuffle
69.96 71.34 74.95 67.39 23.28 25.75 31.24 22.14 43.57 47.49 71.00 48.75 45.55 46.91 50.73 42.23

Table 11: Effect of triplets order for answer prediction on four general settings.
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Figure 7: The answer prediction performance of dense retriever-based methods varies with the number of retrieved
triplets across four settings.
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Figure 8: The graph retrieval performance of dense retriever-based methods varies with the number of retrieved
triplets across four settings.
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Figure 9: The performance of dense retriever-based methods varies with the number of retrieved triplets across two
special settings.

Baselines
Editing Answerability

Macro-F1 Micro-F1 Hit Hit@1 Acc Precision Recall F1

Dense 17.95 19.94 24.46 17.63 52.92 62.96 59.25 61.05
Dense

+Shuffle
17.81 19.92 25.18 16.19 54.76 64.01 62.47 63.23

Table 12: Effect of triplets order for answer prediction
on two special settings.

Additionally, the retrieval performance further sup-
ports the correlation between retrieval quality and
generation quality.

C.7 Generalization of Query Structures

To investigate the generalization of different query
structures, we train RoG using training data from
both single-hop and multi-hop settings and evaluate
it across all settings (abbrev. RoG-subset). Further-
more, for a fair comparison, we randomly sample
an equivalent amount of training data as the former
from all settings (abbrev. RoG-general). We show
results in Table 16, 17, and 18.

From the results, we observe that RoG-subset
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Baselines
Single-hop Setting Multi-hop Setting Set Setting Aggregation Setting

MacF1 MicF1 Hit Hit@1 MacF1 MicF1 Hit Hit@1 MacF1 MicF1 Hit Hit@1 MacF1 MicF1 Hit Hit@1

SP 82.48 83.96 87.47 80.13 10.68 10.83 11.19 10.26 26.49 28.22 43.00 33.00 43.19 44.21 47.21 41.64
Dense 69.04 70.54 74.30 65.66 25.20 28.26 35.20 22.61 43.30 47.16 70.00 45.00 49.01 50.57 55.13 44.57
Hybrid 79.07 80.67 84.67 77.11 24.81 27.43 33.10 22.61 45.85 50.04 71.50 47.75 52.39 53.89 58.06 49.85

Table 13: Performance of the hybrid baseline across four general settings.

Baselines
Editing Setting Answerability Setting

MacF1 MicF1 Hit Hit@1 Acc Precision Recall F1

SP 5.90 5.98 6.12 5.76 47.25 60.59 43.70 50.78
Dense 17.95 19.94 24.46 17.63 52.92 62.96 59.25 61.05
Hybrid 17.20 19.26 23.38 16.19 55.26 62.90 68.63 65.64

Table 14: Performance of the hybrid baseline across two
special settings.

and RoG-general outperform vanilla RoG in the
vast majority of scenarios. This is attributed to the
fact that vanilla RoG is trained on WebQSP and
CWQ, which have a significantly different data dis-
tribution from that of M3GQA. Furthermore, we
find that RoG-subset surpasses RoG-general in the
single-hop and multi-hop settings; however, the op-
posite is true for other settings. This indicates that
there are substantial differences in query structures
across various settings.

C.8 Ablation Studies

We further conduct ablation studies on reasoning
path lengths, query entities count, and reasoning
path construction.

Reasoning Path Lengths We first conduct an
ablation study on reasoning path lengths, select-
ing Dense, Sparse, and G-Retriever as baselines
for experiments across three general settings (the
single-hop setting, having only one hop by defi-
nition, is excluded from this analysis). The path
lengths are categorized into four groups (1-4 hops),
with results as shown in Table 19, Table 20, and
Table 21. We can observe that: (1) In the vast ma-
jority of cases, the longer the reasoning path, the
more difficult the query becomes, and the lower the
performance of the baselines. The set setting is an
exception when the reasoning paths reach 4, as the
relatively small number of test samples leads to sig-
nificant fluctuations in the results. (2) Compared to
the semantic matching-based retrieval methods of
Dense and Sparse, G-Retriever performs relatively
poorly in single-hop scenarios but demonstrates
better performance in multi-hop queries. This high-
lights G-Retriever’s advantage in retrieving sub-
graphs for capturing higher-order information.

Query Entities Count We conduct an ablation
study on the number of entities in the query, divid-
ing them into three groups: 3, 4, and ≥ 5. The
results are as shown in Table 22, Table 23, and
Table 24. We can observe that: Except for the
single-hop setting, the model’s performance de-
creases as the number of entities increases in all
other settings. This indicates that a higher number
of entities leads to greater problem difficulty. In
the single-hop setting, the results across the three
groups are comparable. A possible reason is that
the model tends to retrieve one-hop neighbors, pre-
venting a decline in performance. However, it is
worth noting that this observation does not contra-
dict the conclusions in Section 5.3, because when
the number of entities is 1 or 2, the task only in-
volves examining neighbors of a single entity or
paths of length 2 between two entities. Thus, when
the number of entities ≥ 3, the difficulty increases
significantly.

Reasoning Path Construction We implement
an approach in the multi-hop setting where all
shortest paths between the answer entities and
query entities are used as reasoning paths. We
find that only 66.43% of the samples had iden-
tical reasoning paths between the tree sampling
method and the shortest-path method. We then
compute the average recall of the shortest-path
method (treating tree sampling reasoning paths as
ground truth), which is 83.56%. This indicates
that the shortest-path method fails to retrieve all
reasoning paths—meaning some reasoning paths
are not the shortest paths between the two sets
of entities. Additionally, we measure the average
precision, which is 32.54%, suggesting that the rea-
soning paths obtained via the shortest-path method
contain substantial redundant information.

D Algorithm and Formalization

D.1 Algorithm

We show the algorithm pseudo code of the data
construction pipeline in Algorithm 1.
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Baselines
Single-hop Setting Multi-hop Setting Set Setting Aggregation Setting Editing Setting

Recall Acc Num Recall Acc Num Recall Acc Num Recall Acc Num Recall Acc Num

SP 92.00 95.03 51.31 61.86 10.72 34.26 40.78 15.25 43.95 45.53 55.13 52.60 60.59 8.63 32.28
Dense 67.73 88.55 100.00 51.34 66.43 100.00 46.50 53.75 100.00 45.53 82.99 100.00 51.35 59.71 100.00
Hybrid 97.93 99.78 132.94 79.00 69.00 124.17 66.78 60.25 130.80 67.18 90.62 137.89 77.87 61.51 121.49

Table 15: Graph retrieval performance of the hybrid baseline in different models across five settings.

Baselines
Single-hop Setting Multi-hop Setting Set Setting Aggregation Setting

MacF1 MicF1 Hit Hit@1 MacF1 MicF1 Hit Hit@1 MacF1 MicF1 Hit Hit@1 MacF1 MicF1 Hit Hit@1

RoG 57.05 58.15 61.12 56.59 16.78 17.59 19.58 15.38 27.94 31.21 50.75 34.50 35.72 36.75 39.59 33.72
RoG-SFT 68.54 69.74 73.00 67.60 17.10 18.29 20.75 16.32 31.14 34.81 58.00 37.00 34.01 34.66 36.36 32.26

RoG-subset 58.74 60.05 62.63 57.67 16.45 17.35 19.11 15.62 28.02 31.05 51.25 34.75 33.50 34.85 35.19 31.67
RoG-general 57.34 58.10 61.99 56.80 15.97 16.81 18.64 15.15 29.12 32.85 55.75 35.78 33.92 34.96 36.07 31.96

Table 16: Performance of different RoG versions across four general settings.

Baselines
Editing Setting Answerability Setting

MacF1 MicF1 Hit Hit@1 Acc Precision Recall F1

RoG 8.19 9.25 11.51 7.19 46.41 61.40 37.53 46.59
RoG-SFT 8.82 10.13 12.59 8.27 48.75 63.10 42.63 50.88

RoG-subset 8.32 9.53 11.87 7.91 46.74 62.26 41.23 49.61
RoG-general 8.67 9.75 12.23 7.91 47.25 62.90 42.76 50.91

Table 17: Performance of different RoG versions across two special settings.

Baselines
Single-hop Setting Multi-hop Setting Set Setting Aggregation Setting Editing Setting

Recall Acc Num Recall Acc Num Recall Acc Num Recall Acc Num Recall Acc Num

RoG 38.17 62.42 58.06 13.36 24.01 41.33 12.31 30.75 77.47 12.07 56.89 76.50 14.56 23.38 41.71
RoG-SFT 43.83 70.41 19.26 12.11 25.87 48.10 13.10 34.50 124.64 9.56 48.68 58.32 11.07 31.65 45.66

RoG-subset 42.05 65.87 20.90 12.47 24.24 43.96 12.27 32.75 101.94 9.23 47.50 59.94 10.45 26.25 42.37
RoG-general 41.21 64.57 20.15 11.88 22.84 46.15 13.08 33.50 111.40 9.41 48.09 63.21 10.88 26.98 48.74

Table 18: Evaluation of graph retrieval in different RoG versions across five settings.

Path Lengths 1 2 3 4

MacF1 MicF1 Hit Hit@1 MacF1 MicF1 Hit Hit@1 MacF1 MicF1 Hit Hit@1 MacF1 MicF1 Hit Hit@1

Multi-hop - - - - 28.78 32.38 41.41 24.67 23.47 26.09 30.83 22.50 17.23 19.35 24.05 16.46
Set 79.96 82.39 92.00 92.00 38.95 42.43 69.70 42.42 41.04 44.88 67.96 41.32 40.90 45.78 87.50 62.50

Aggregation 69.61 70.47 73.53 64.71 47.68 49.42 54.47 42.28 42.90 44.02 47.54 42.62 - - - -

Table 19: Ablation study of dense retriever on reasoning path lengths.

Path Lengths 1 2 3 4

MacF1 MicF1 Hit Hit@1 MacF1 MicF1 Hit Hit@1 MacF1 MicF1 Hit Hit@1 MacF1 MicF1 Hit Hit@1

Multi-hop - - - - 15.07 15.81 17.18 14.54 15.45 16.17 17.50 15.00 12.45 12.78 13.92 11.39
Set 80.13 81.61 88.00 84.00 33.60 37.13 57.58 36.36 30.92 33.77 51.20 34.43 48.53 53.94 75.00 37.50

Aggregation 66.18 67.99 73.53 61.76 33.57 34.63 37.40 33.33 32.79 33.15 34.43 31.15 - - - -

Table 20: Ablation study of sparse retriever on reasoning path lengths.

Path Lengths 1 2 3 4

MacF1 MicF1 Hit Hit@1 MacF1 MicF1 Hit Hit@1 MacF1 MicF1 Hit Hit@1 MacF1 MicF1 Hit Hit@1

Multi-hop - - - - 22.08 23.46 26.43 21.59 25.16 26.51 29.17 25.00 15.14 16.15 18.99 13.92
Set 79.43 82.11 96.00 96.00 32.04 38.08 66.67 27.27 34.85 39.19 68.86 46.41 13.11 16.76 37.50 25.00

Aggregation 57.84 58.68 61.76 55.88 39.60 40.50 42.68 40.24 24.86 25.24 26.23 22.95 - - - -

Table 21: Ablation study of G-Retriever on reasoning path lengths.
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Entities Count 3 4 ≥ 5

MacF1 MicF1 Hit Hit@1 MacF1 MicF1 Hit Hit@1 MacF1 MicF1 Hit Hit@1

Single-hop 70.38 71.96 75.66 68.14 61.95 63.10 66.36 57.94 72.53 74.18 78.46 67.69
Multi-hop 26.15 29.52 37.81 23.32 23.56 26.31 31.53 21.62 22.72 23.66 25.71 20.00

Set 44.91 48.84 70.95 46.96 41.93 45.99 70.24 44.05 25.22 27.06 55.00 20.00
Aggregation 49.26 50.80 55.23 44.77 52.45 54.19 59.09 49.24 35.59 36.59 40.54 27.03

Table 22: Ablation study of dense retriever on query entities count.

Entities Count 3 4 ≥ 5

MacF1 MicF1 Hit Hit@1 MacF1 MicF1 Hit Hit@1 MacF1 MicF1 Hit Hit@1

Single-hop 62.67 63.76 66.37 62.39 68.13 69.36 72.90 64.49 66.68 68.11 71.54 66.92
Multi-hop 15.91 16.59 18.02 15.19 14.30 15.06 16.21 14.41 7.62 7.79 8.57 5.71

Set 35.68 38.71 57.09 39.19 34.69 36.76 50.00 35.71 17.67 22.72 35.00 25.00
Aggregation 37.08 38.45 42.44 35.47 37.87 38.53 40.15 38.64 30.63 31.02 32.43 27.03

Table 23: Ablation study of sparse retriever on query entities count.

Entities Count 3 4 ≥ 5

MacF1 MicF1 Hit Hit@1 MacF1 MicF1 Hit Hit@1 MacF1 MicF1 Hit Hit@1

Single-hop 54.17 55.16 57.52 54.42 56.04 57.04 59.81 53.27 59.93 59.88 62.31 57.69
Multi-hop 22.19 23.51 26.50 21.20 21.01 22.50 25.23 22.52 20.48 21.06 22.86 17.14

Set 38.66 43.26 72.30 47.39 33.82 37.44 64.29 51.19 25.09 30.87 55.00 35.00
Aggregation 37.54 38.41 40.70 37.21 42.19 43.10 45.45 42.42 32.43 32.43 32.43 32.43

Table 24: Ablation study of G-Retriever on query entities count.

D.2 Formalization of Tree Sampling under
Different Settings

In order to facilitate the understanding of tree sam-
pling algorithms under different settings, we pro-
vide formalization in this section.

Single-hop Setting We first perform C-BFS start-
ing from node va ∈ V , setting Dmax = 1:

GTva = C-BFS(va, G,Dmax = 1,Wmax). (5)

Then we randomly select n non-root nodes as
query nodes, that is Vq = {vq1 , vq2 , . . . , vqn} ⊆
VTva\{va}. To ensure the uniqueness of the an-
swer, we check all common neighbors of the query
nodes to ensure no other node shares the same re-
lation. Formally, letR(u, v) represent the relation
between nodes u and v in the graph G. To ensure
that no other node shares the same relation with the
query nodes, we define the condition as follows:

∀v ∈ Nq,∃vqi ∈ Vq,R(v, vqi) ̸= R(va, vqi), (6)

where Nq = ∩ni=1Nvqi
denotes the common neigh-

bors of query nodes.

Multi-hop Setting We first perform C-BFS start-
ing from node va ∈ V , setting Dmax ≥ 2:

GTva = C-BFS(va, G,Dmax ≥ 2,Wmax). (7)

Then we randomly select n non-root nodes as
query nodes, that is Vq = {vq1 , vq2 , . . . , vqn} ⊆
VTva\{va}. We check the children nodes (level 1
nodes) of the answer node to ensure its uniqueness.
Specifically, let va be the answer node, and C(v)
denote the set of children nodes (level 1 nodes) of
node v. Specifically, the parent nodes of the answer
node va are those nodes that are directly connected
to va at depth 1 in the tree GTva . We define the
condition as follows:

∀v ∈ Ncv , ∃vc ∈ C(v),R(v, vc) ̸= R(va, vc),
(8)

where Ncv = ∩vc∈C(v)Nvc denotes the common
neighbors of the children nodes.

Set Setting We first adopt the same searching
approach as the single-hop setting:

GTv = C-BFS(v,G,Dmax = 1,Wmax). (9)

To obtain the answer node set, we set relation con-
sistency constraints to ensure the answer nodes
share some similar properties:

Va = {va1 , va2 , . . . , van} ⊆ VTv\{v},
∀vai , vaj ∈ Va,R(vai , v) = R(vaj , v).

(10)
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Algorithm 1 The pipeline of data construction
Input: Knowledge graph G = (V,E), construction itera-

tions T
Output: Constructed data D = {(q, Vq, va,P)}, including

query q, query nodes Vq , answer nodes Va, and reasoning
paths P

1: D ← {}
2: for i = 1 to T do
3: va ← Sample(V, 1) # Sample one node as the answer
4: GTva

← C-BFS(va, G,Dmax,Wmax), where
GTva

= (VTva
, ETva

)
5: Vq ← Sample(VTva

\{va}, k) # Sample query nodes
6: P ← {}
7: for vq ∈ Vq do
8: pvq,va ← BackTrack(vq, va, GTva

)
9: P ← P ∪ {pvq,va}

10: end for
11: q ← LLMc(Vq, va,P) # Query creation
12: q ← LLMr(q, Vq) # Query refinement
13: Vq ← EntityMatching(q, Vq)
14: P ← {}
15: for vq ∈ Vq do
16: pvq,va ← BackTrack(vq, va, GTva

)
17: P ← P ∪ {pvq,va}
18: end for
19: D ← D ∪ {(q, Vq, va,P)}
20: end for
21: D ← Filtering(D)
22: return D

Finally, we use the common neighbors of the an-
swer nodes as the starting points for multi-source
BFS to ensure the connectivity of the search tree:

GTA = Multi-source BFS(S, G,Dmax,Wmax),
(11)

where S =
⋂

va∈Va
Nva denotes the common

neighbors.

Aggregation Setting We first obtain the node set
Va = {va1 , va2 , . . . , van} and search tree GTA =
(VTA , ETA) using the same strategy as the set set-
ting. Then we construct the final answer node using
two strategies:

For the first strategy, we identify common rela-
tions shared by all answer nodes and find neighbor-
ing nodes connected.

∃r, s.t.∀va ∈ Va, ∃v ∈ Nva ,R(va, v) = r. (12)

Then we add the newly retrieved nodes and edges
to original search tree GTA and obtain G′

TA :

E′
TA = ETA ∪ {(v, r, va)|va ∈ Va, v ∈ Nva},

V ′
TA = VTA ∪ {v|v ∈ Nva , va ∈ Va,R(va, v) = r},

G′
TA = (V ′

TA , E
′
TA).

(13)
For the second strategy, we construct the edge

set E by taking all the edges adjacent to va:

E = {(va, r, v) | v ∈ Nva}. (14)

For each edge (va, r, v) in E, iterate over all other
nodes v′ ∈ Va (i.e., v′ ̸= va) and check whether
the edge (v′, r, v) exists. If such an edge exists,
remove the edge (va, r, v) from E.This condition
can be formally expressed as:

E′ = {(va, r, v) ∈ E | ∄v′ ∈ Va, v
′ ̸= va}. (15)

Finally, we randomly select one edge (va, r, v)
from the remaining edge set E′ and add the edge
to the search tree GTA = (VTA , ETA).

Editing Setting First, we modify the graph G
according to the specified editing method:

G′ = edit(G). (16)

Next, we construct the tree based on the tree sam-
pling method used in the single-hop or multi-hop
settings.

Answerability Setting We first construct the rea-
soning tree, query and nodes using the same strat-
egy as the single-hop or multi-hop settings. Then
we sample some of the data and modify the graph
structure G:

V ′ = V \{va},
E′ = {(u, r, v) ∈ E | u ̸= va, v ̸= va},
G′ = (V ′, E′).

(17)

E Examples

Examples in six settings of our constructed dataset
M3GQA can be found in Table 25 and 26.

F Prompts

Prompts used in our paper are listed below.
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Table 25: Cases of data in four general settings.

Question Answer Reasoning Paths

Single-hop

Which film production company
produced the movies {The Pink Panther},

{A League of Their Own},
and {Awakenings}?

Columbia Pictures

[A League of Their Own,
film.film.production_companies,

Columbia Pictures], [The Pink Panther,
film.film.production_companies,

Columbia Pictures], [Awakenings,
film.film.production_companies,

Columbia Pictures]

Multi-hop
Which river, flowing through {Myanmar}

and near {Phou Khe}, was partially affected
by {Typhoon Mirinae} in {Asia}?

Mekong

["Laos",
"location.location.partially_contains",

"Mekong"],[Vietnam,
location.location.partially_contains,

Mekong],[Phou Khe,
location.location.partially_containedby,

Laos],[Typhoon Mirinae,
meteorology.tropical_cyclone.affected_areas,

Vietnam],[Myanmar,
location.location.partially_contains,

Mekong],[Asia,
base.locations.continents.countries_within,

Vietnam]

Set

What languages are spoken in a country
with a {Presidential system}, located in the

same region as where {Juba Arabic}
and {Algerian Arabic} are spoken?

Swahili Language,
English Language,
Arabic Language

[Tanzania,
location.country.languages_spoken,

English Language],[Africa,
base.locations.continents.countries_within,

Tanzania],[Tanzania,
location.country.languages_spoken,

Swahili Language],[Tanzania,
location.country.languages_spoken,
Arabic Language],[Algerian Arabic,
language.human_language.region,

Africa],[Presidential system,
government.form_of_government.countries,

Tanzania],[Juba Arabic,
language.human_language.region,

Africa]

Aggregation

Which female literary figure
influenced both {Sherwood Anderson} and
{Ralph Ellison}, and subsequently impacted

the works of {Ray Bradbury}, {William Faulkner},
{John Steinbeck}, and {Thomas Wolfe}?

Mark Twain,
Gertrude Stein,
Walt Whitman

[Sherwood Anderson,
influence.influence_node.influenced_by,
Gertrude Stein],[Sherwood Anderson,

influence.influence_node.influenced_by,
Walt Whitman],[Ralph Ellison,

influence.influence_node.influenced_by,
Mark Twain],[Thomas Wolfe,

influence.influence_node.influenced_by,
Sherwood Anderson],[Walt Whitman,

people.person.gender,
Male],[Gertrude Stein,
people.person.gender,

Female],[Ralph Ellison,
influence.influence_node.influenced_by,

Gertrude Stein],[William Faulkner,
influence.influence_node.influenced_by,

Sherwood Anderson],[Ralph Ellison,
influence.influence_node.influenced_by,

Walt Whitman],[John Steinbeck,
influence.influence_node.influenced_by,

Sherwood Anderson],[Sherwood Anderson,
influence.influence_node.influenced_by,

Mark Twain],[Ray Bradbury,
influence.influence_node.influenced_by,

Sherwood Anderson],[Mark Twain,
people.person.gender,

Male]
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Table 26: Cases of data in two special settings.

Question Answer Reasoning Paths

Editing

Who is a notable person born in the region
that includes {Alameda County}, served by the

{San Francisco Chronicle}, and covered
by {Cairn Marketing}?

Spike Lee

[San Francisco Chronicle,
book.newspaper.circulation_areas,

San Francisco Bay Area],[San Francisco Bay Area,
location.location.containedby,

Northern California],[Alameda County,
location.location.containedby,

San Francisco Bay Area],[Northern California,
location.location.people_born_here,

’Spike Lee],[Cairn Marketing,
organization.organization.geographic_scope,

San Francisco Bay Area]

Answerability
Which {Taylor Swift} concert tour

featured performances of {"The Lucky One"},
{"Shake It Off"}, and {"If This Was a Movie"}?

No None
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The prompt for query generation.

Please help me design a multi-entity (multi-hop) reasoning question. The question must include at
least 3 of the following entities: {entities}

And the answer of this question must be: {answer entity}

You can create the question according to the following knowledge graph. The question must be
natural and close to reality

The question needs to include the relationships in the knowledge graph. Just need to output the
question, no need to output additional explanatory statements

Knowledge graph: {reasoning paths}

Question:

The prompt for query paraphrase.

Please polish the following question to make it more natural and more close to reality.
Just need to output the question, no need to output additional explanatory statements.

Question:
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The prompt for the first strategy of aggregation setting.

I will give you a question and its answer. I am now providing you with an additional edge related
to the answer on the knowledge graph. Please help me modify the original question into a question
involving further reasoning according to the additional edge, that is, further reasoning on the
answer set.

For example, the original question is, which scientists in the field of deep learning have won the
Turing Award? The answer if Hinton, Bengio, Lecun. We can modify it into a question for further
reasoning about the answer: Who among the Turing Award winning scientists in the field of deep
learning graduated from the University of Cambridge?

You should only output the modified question, no need to output an additional statement. If
rewriting is not possible, output "No"

Original question: {original question}

The answer of the original question: {answer entities}

The additional edge related to the answer: {constrained edges}

The answer to the modified question must be: {final answer}

Modified question:
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The prompt for the first strategy of aggregation setting.

I will give you a question and its answer. I am now providing you with the answer set of all
neighboring nodes on the knowledge graph. Please help me modify it into a question involving
further reasoning, that is, further reasoning on the answer set. Additionally, you also need to
provide the answer of modified question to me.

The output format is a binary (question, answer), where the first item represents the modified
question and the second item represents the answer to the question. If the answer is a set, please
write the answer part in the form of a list, such as (question, [a1, a2, a3, a4]).

If rewriting is not possible, output "No"

For example, the original question is, which famous rivers pass through China? The answer is
Yangtze River, Yellow River, the Yarlung Zangbo River, etc. We can transform it into a question
for further reasoning about the answer: ("Among all the famous rivers that pass through China,
which one is the longest?", "Yangtze River")
For example, the original question is, which scientists in the field of deep learning have won the
Turing Award? The answer if Hinton, Bengio, Lecun. We can modify it into a question for further
reasoning about the answer: ("Who among the Turing Award winning scientists in the field of
deep learning graduated from the University of Cambridge?", "Hinton")

The answer to the modified question can also be a collection. For example: ("which deep learning
scientists who have won the Turing Award are Canadian?", "[Hinton, Bengio]")

Please strictly follow the form: (question, answer)! No need to output additional explanatory
statements.

Original question: {original question}

The answer of the original question: {answer entities}

Edges and neighbors related to the answer: {constrained edges}

Modified question:

The prompt for replacing the answer node in editing setting.

Give you an entity: {original answer entity}, please provide another entity that belongs to the
same category as it.

You should only output the entity, no need to output additional explanatory statements.

New entity:
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The prompt for LLM-based filtering.

Given a question and an answer, please use the given knowledge graph to determine if the answer
is correct.

If the answer is correct, please output ’yes’, otherwise, output ’no’. No need to output additional
statement.

Question: {question}

Answer: {answer}

Knowledge graph: {reasoning paths}

Judgement:

The prompt for answer generation of LLM-only methods.

Given a question, please use one or more entities to answer it.

Please directly output the entity (entities) that meet(s) the requirements, without the need to output
additional statements.

If the answer is multiple entities, please separate them with commas.

Question: {question}

Answer:

The prompt for answer generation of other baselines.

Given a question and a relevant knowledge graph, please use one or more entities to answer the
question.

Please directly output the entity (entities) that meet(s) the requirements, without the need to output
additional statements.

If the answer is multiple entities, please separate them with commas.

Question: {question}

Knowledge graph: {knowledge graph}

Answer:
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The prompt for answer generation of answerability setting.

Given a question and a relevant knowledge graph, please check whether the question is answerable
according to the knowledge graph.

If the question is answerable, please output ’yes’, otherwise output ’no’, without the need to output
additional statements.

Question: {question}

Knowledge graph: {knowledge graph}

Answer:
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