
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 30572–30593
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

SubLIME: Subset Selection via Rank Correlation Prediction for
Data-Efficient LLM Evaluation

Gayathri Saranathan1*, Cong Xu1*, Mahammad Parwez Alam1, Tarun Kumar2,
Martin Foltin3, Soon Yee Wong1, Suparna Bhattacharya2

Hewlett Packard Labs, 1Singapore, 2Bangalore, 3US
gayathri.saranathan@hpe.com, cong.xu@hpe.com

Abstract

The rapid expansion of Large Language Mod-
els (LLMs) and natural language processing
datasets has made exhaustive benchmark eval-
uations computationally prohibitive. Inspired
by high-stakes competitions like the Interna-
tional Mathematical Olympiad—where a few
well-chosen problems suffice to differentiate
top performers—we present SubLIME, which
reduces evaluation costs by 80% to 99% while
preserving ranking fidelity. It trains a Rank
Correlation Prediction (RCP) model that com-
bines limited performance data from only 5–20
anchor LLMs with dataset intrinsic metrics—
Difficulty, Quality, and Distributional Disper-
sion—to predict how closely a candidate subset
reflects full-benchmark rankings. Guided by
these predictions, SubLIME selects a “winning”
subset (1–20% of full set data) for evaluating
new LLMs, preserving global rankings signif-
icant better than other data-efficient methods
across ten diverse benchmarks.

1 Introduction

The exponential growth of large language models
(LLMs) has made evaluation increasingly resource-
intensive. With over 1 million open-source mod-
els available on HuggingFace (including more
than 170,000 text generation models) and promi-
nent leaderboards such as the Open LLM Leader-
board and AlpacaEval tracking over 100,000 mod-
els, there is a pressing need for scalable evalu-
ation methodologies. Meanwhile, the existence
of over 2,500 NLP benchmarks on PapersWith-
Code and nearly 200,000 NLP datasets on Hugging-
Face makes it impractical to evaluate every LLM
on every benchmark. For example, the HELM
project (Liang et al., 2023) spent $50,0001 to as-
sess 30 models on 13 tasks. Scaling this to eval-
uate just 10% of existing text-generation LLMs

** Equal contribution
1Actual cost breakdown: $38,001 for commercial APIs,

plus 19,500 A100 GPU hours at $1/hr

on 100 benchmarks could approach $100M. These
costs are further exacerbated by inference-time scal-
ing, where advanced LLMs (e.g., OpenAI’s O1,
DeepSeek R1) generate over 10 times more tokens
per response than their base models.

In response to these escalating challenges, we
introduce SubLIME (Subset-centric Less Is More
Evaluation), a framework that achieves data-
efficient evaluation by identifying highly represen-
tative subsets. Recent approaches (Vivek et al.,
2024; Polo et al., 2024; Perlitz et al., 2024; Prabhu
et al., 2024) explored benchmarking without the
full dataset; however, the warm-up phase poses a
significant challenge for most. LLM leaderboards
often add new benchmarks before many models
have been evaluated on them, creating a bootstrap
problem for data-efficient methods that typically
need extensive prior knowledge.

Our key solution is the Rank Correlation Predic-
tion (RCP) model, which integrates partial eval-
uations from 5–20 anchor LLMs with intrinsic
benchmark metrics—Difficulty (D), Quality (Q),
and Distributional Dispersion (DD)—to select an
optimal subset that preserves the full-benchmark
ranking (Details provided in Appendix A.4.1). Ta-
ble 1 demonstrates that examples with higher diffi-
culty and lower quality tend to exhibit higher Ora-
cle Difficulty—a measure defined as the fraction
of models failing to solve a datapoint — which
in turn signals potential performance degradation.
This observation motivates our strategy of leverag-
ing intrinsic benchmark characteristics to predict
rank correlation and select an efficient evaluation
subset without requiring exhaustive assessment.

Inspired by high-stakes competitions such as
the International Mathematical Olympiad (IMO),
where a handful of carefully chosen problems effec-
tively differentiate top performers, SubLIME har-
nesses these universal “meta-principles” to design
representative subsets comprising only 1–20% of
the full data. Unlike approaches that rely on a fixed

30572

mailto:gayathri.saranathan@hpe.com
cong.xu@hpe.com

Category Input Text D Q DD Oracle D

High Oracle D
Find a movie similar to The Sword in the Stone, Fantasia, The Jungle
Book, Willy Wonka & the Chocolate Factory: Options: (A) The Wizard
of Oz (B) Captain Corelli’s Mandolin (C) Timecrimes (D) Arlington Road

0.747 0.269 0.559 0.805

Find a movie similar to The Shawshank Redemption, Saving Private Ryan,
Braveheart, The Matrix: Options: (A) Dracula 2000 (B) 1492 Conquest
of Paradise (C) Schindler’s List (D) Auto Focus

0.739 0.168 0.59 0.859

Low Oracle D
I have a cow, three mice, a dog, a duck, and two snakes. How many
animals do I have?

0.09 0.729 0.65 0.09

I have a goat, a frog, five pigs, and a bear. How many animals do I have? 0.08 0.665 0.68 0.054

Table 1: Demystifying Input text’s Difficulty (D), Quality (Q), Distributional Dispersion (DD) correlation with
Oracle Difficulty (Oracle D) - BBH benchmark

strategy or necessitate full benchmark evaluations,
SubLIME adapts to each benchmark’s unique char-
acteristics by combining partial evaluations with
dataset-level D, Q, and DD metrics. This integra-
tion allows us to predict a subset that yields model
rankings closely aligned with those from the com-
plete dataset. Extensive experiments on 10 diverse
benchmarks and over 100 LLMs—demonstrate that
SubLIME preserves rank correlations more effec-
tively than random sampling and other baseline
methods. Our key contributions include:
1.RCP model that combines 3 intrinsic dataset met-
rics and evaluation results of 5 to 20 anchor LLMs
to guide the selection of optimal subset.
2.Framework for efficient evaluation on new
benchmarks without requiring extensive results.

2 Related Work

Data-efficient training has been widely studied
for model training on image data (Ding et al., 2023;
Sorscher et al., 2023) and language tasks (Marion
et al., 2023; Xie et al., 2023). Methods include core-
set selection, importance sampling, and difficulty
sampling to use smaller, representative datasets (Za-
yed et al., 2023; Guo et al., 2022). SubLIME
explores diverse sampling strategies in LLM and
text-to-image model evaluation, aiming to maintain
model rankings and score distributions.

Efficient LLM evaluation was recently intro-
duced in techniques like AnchorPoints (Vivek et al.,
2024) and TinyBenchmarks (Polo et al., 2024),
which use coreset and item response theory (IRT)
to select a subset of evaluation instances, closely
estimating full benchmark scores. These meth-
ods align with Lifelong Benchmarks (Prabhu et al.,
2024), which expands candidate examples and se-
lects a subset based on difficulty. FlashHELM (Per-
litz et al., 2024) optimizes evaluation resources
based on estimated leaderboard positions, prioritiz-

ing higher-ranked models. However, these compet-
itive approaches often assume the availability of ex-
tensive evaluation data across benchmarks, which
may not be practical during the warm-up phase of a
new benchmark. They don’t address the challenge
of initializing evaluations on new datasets with lim-
ited initial results. Our work uniquely addresses
this gap by proposing a prediction model that can
operate effectively with minimal initial data.

3 Analogy and Intuition of Our Approach

Figure 1: Inverse correlation Subset to Fullset (BBH
Benchmark) Distribution Distance and Rank correlation
Six carefully chosen IMO problems differentiates
contestants through several factors: (a) a structured
difficulty gradient, allowing more nuanced discrim-
ination among contestants; (b) diversity of prob-
lem types (e.g., geometry, combinatorics, and num-
ber theory) for comprehensive assessment; and (c)
Quality and clarity of language, ensuring problem
statements are unambiguous and robust indicators
of mathematical ability. These principles ensure
that a few well-selected problems can approximate
the ranking of a much larger exam. Similarly, our
RCP model selects a subset of data that preserves
the overall ranking of LLMs relative to the full
benchmark. To achieve this, we combine three in-
trinsic metrics: (a) Difficulty captures a gradient of
challenge levels, ensuring the subset includes exam-
ples that effectively distinguish between stronger

30573

and weaker models. (b) Quality measures the clar-
ity and precision of the examples, akin to the unam-
biguous language of well-crafted IMO problems.
(c) Distributional Dispersion ensures comprehen-
sive coverage of the benchmark’s content by repre-
senting different “topics” or regions of the data dis-
tribution. In addition to dataset metrics, our method
leverages empirical performance data from a small
set of anchor LLMs—analogous to pilot testing
problems on a sample of contestants to identify
features that truly distinguish model performance.

Figure 1 illustrates that subsets with similar "dif-
ficulty ladder" might preserve rank well. Each
point on the scatter plot represents a different sub-
set. We calculate the distributional distance Ds of
the difficulty indicators (y-axis), which will be dis-
cussed in detail in the next section, to see how well
that subset’s ranking aligns with the full set’s rank-
ing (x-axis). A clear negative correlation emerges:
as the subset distance increases (i.e., it diverges
from the full set’s difficulty profile), the resulting
Spearman coefficient decreases.

What Does the Model Learn? During training,
the RCP model acquires meta-knowledge about
D, Q, DD’s effect on rank preservation. Rather
than merely labeling benchmarks as “hard”/“easy”,
the model learns to interpret nuanced signals such
as text complexity, distance-based diversity, rank
alignment ambiguity— similar to an IMO organizer
refining problem selection based on pilot testing.

Generalizing to New Benchmarks: Trained
across diverse benchmarks, the RCP model inter-
nalizes that evaluation problems should be both
representative and discriminative to effectively pre-
serve overall rankings. When applied to a new
benchmark, the model leverages its learned priors
to assess the distribution of D, Q, DD, recommend-
ing a subset that closely mirrors the full distribu-
tion. As long as the goal remains to rank models in
cost-effective evaluation setup, RCP model is well
equipped to generalize to new benchmarks.

4 Our Solution - SubLIME

SubLIME consists of three key components:
Adaptive Subset-Selection (SubMS): with multi-
ple sampling methods to select metric-based sub-
sets at a given sampling rate.
Feature Matrix Generation & RCP Model
Training (λ): RCP trained with feature matrix con-
sisting of D,Q,DD metrics and evaluation results of
a set of anchor LLMs to predict rank correlation.

Algorithm 1 SubMS: Experiment Design
Require: Initialize
1: Full benchmark data db where b is a benchmark in B -

representing the collection of benchmarks
2: Collect sample-level results forMb LLMs
3: Specify Sampling methods S {Readability, Quality, Clus-

tering, Difficulty}
4: db ⊂ b∀ ∈ B; (db is full data of given benchmark b)

Ensure: Adaptive Sampling for each Benchmark
5: for each benchmark b ∈ B do
6: for each sampling technique s ∈ S do
7: for sampling rate x% from 1 to 100 at step size 1%

do
8: Is,x ← apply s to get indices of x% subset of

db
9: Subs,x ← db[Is,x] (subset using Is,x)

10: scores,x ← {eval(m,Subs,x) | m ∈Mb}
11: ranks,x ← argsort(scores,x)
12: ρs,x ← ρ(ranks,x, rankfull) ▷ Spearman
13: rs,x ←r(scores,x, scorefull) ▷ Pearson
14: Rs[x]← (ρs,x, rs,x)
15: end for
16: end for
17: criteria← Analyze Rs to find minimal x where ρ ≥

0.9 and r ≥ 0.9
18: end for
19: s∗b ← criteria met bys ∈ S at min(x%)
20: return Optimal subset Sub← {(s∗b , x∗

b)}10b=1

Winner Subset Selection and Testset Evalua-
tion: Identify the "winner subset" SubWin which
achieves high rank correlation across different
LLMs using RCP inference. Evaluating SubWin

subset on unseen LLMs to ensure preservation
of rank order and score distribution. For evalu-
ation, we select 10 Benchmarks B from Hugging-
Face Open LLM Leaderboards v1 and v2 (Hug-
ging Face, 2022) including TruthfulQA (Lin et al.,
2022), ARC (AI2 Reasoning Challenge) (Clark
et al., 2018), Winogrande (Sakaguchi et al., 2021),
GSM8k (Grade School Math) (Cobbe et al., 2021),
Hellaswag (Zellers et al., 2019), GPQA (Rein et al.,
2024), MUSR (Sprague et al., 2024), BBH (Suz-
gun et al., 2022), MATH (Hendrycks et al., 2021),
MMLU-Pro (Wang et al., 2024). In addition, we
collected sample-level results of LLMs that is eval-
uated on v1 and v2 Leaderboards. We obtained
results for 313 Models (provided in Appendix A).
Out of these, 213 LLMs were used to train (Mtrain

the RCP model (λ), while the remaining 100 (Mtest

served as a held-out set for Testset Evaluation.

4.1 Adaptive Subset Selection (SubMS)

SubMS is aimed at preserving rank and score distri-
bution of LLMs. We consider the following metric-
based sampling approaches: Random Sampling,
Clustering-based Sampling, Quality-based Sam-
pling, and Difficulty-based Sampling. Detailed

30574

Figure 2: Feature Matrix Fsi & Subset Ii Generation at Iteration i

Figure 3: SubLIME: RCP (λ) model training with m combinations. Trained RCP selects Winner Subset SubWin

during Test-time for a given Benchmark

descriptions of these methods can be found in Ap-
pendix section A.1.1. With each subset d obtained
from respective sampling methods S, we evaluate
it based on Rank and Score Preservation w.r.t full
set results of the same list of LLMs. The Spearman
Coefficient (Sedgwick, 2014) ρ is used for assess-
ing the rank correlation and Pearson Coefficient r
is used for assessing Score Distribution Preserva-
tion. The implementation of SubMS is described
in Algorithm 1.(SubMS Subset Rank and Score
correlation at different sampling rate for Hellaswag
is shown in Figure 8. Evaluation of SubMS with
TinyBenchmarks is provided in Appendix A.3).

4.2 Rank Correlation Prediction Model

To efficiently guide the selection of optimal subset
during the warm-up phase of new benchmarks, we
introduce a RCP model to select a winner subset
(SubWin) of a given a benchmark. SubLIME in-
corporate four following phases for RCP Model
Training and Evaluation, as shown in Figure 2 and
3. (i) The phases includes unified D, Q, DD met-
ric selection; (ii) Feature Matrix Generation with
selected D,Q, DD; (iii) RCP Model Training; (iv)
SubWin Selection for unseen/new benchmarks.

4.2.1 Unifying D, Q, and DD Metrics

To construct the feature matrix, we identify unified
metrics for D, Q and DD. For each metric, we use
the Kolmogorov–Smirnov(KS) test to select the
measure that best exhibits normal distribution prop-
erties. Specifically, we adopt Flesch Readability
for Q, Gunning Fog for D, and BERT-based clus-
tering for DD These unified metrics are applied
consistently across all benchmarks,(see Figure 11
in the Appendix for GPQA benchmark, ablation
studies are also included in Section A.4.1)

4.2.2 Feature Matrix Generation

The feature matrix is constructed in a structured
to train RCP model, multi-step process to encode
intrinsic dataset characteristics and partial model
performance(Rm) for each candidate subset. Step-
by-step approach of generating feature matrix F
(∀b ∈ B) in Algorithm 2. The feature matrix is
designed for two aspects of subset effectiveness.
Intrinsic Characteristics: D, Q, DD metrics
are benchmark-agnostic, & are computed without
model evaluations. They provide a proxy for dis-
criminative power: A good subset should have high-
quality, diverse, appropriately difficult samples.

30575

Algorithm 2 Feature Matrix Generation
1: Split M (313 models) into Mtrain (213 models) and
Mtest (100 models)

Require:
2: S: Sampling techniques {Readability, Quality, Clustering,

Difficulty}
3: C ← [5, 10, 20]: Select Model combinations
4: k ← 100: Clusters per benchmark
5: niter ← 1000: Number of iterations
6: db is the full data of given benchmark b∀ ∈ B;

Ensure: Feature matrix F, training correlations {ρtrainm,i},
subset indices I.

7: Initialize F← ∅, I ← ∅.
8: Select optimal feature set {D,Q,DD} by ensuring

db(D,Q,DD) ∼ N (µ, σ2).
9: for each benchmark b ∈ B do

10: Fb ← ∅, FSs ← ∅.
11: for each sampling technique s ∈ S do
12: Fs ← ∅.
13: for i = 1 to niter do
14: for each m ∈ C do
15: Select unique m models fromMtrain.
16: Rm ← evaluation results for m models.
17: end for
18: Subm,i, ρtrainm,i ← SubMS(m,s,b,dbs,20%)
19: Normalize Subm,i on Di, Qi, DDi

20: Store indices I ← I ∪ {Subm,i.indices}
21: Cluster Subm,i{D∗, Q∗, DD∗} into k
22: Construct Fsi ∈ m× k × 4 where:
23: si[m, :] = [Di, Qi, DDi,Rm]
24: Fs ← Fs∥si, ρtrainm,i

25: end for
26: FSs← Fs

27: end for
28: Fb ← FSs
29: end for
30: Aggregate F← ⋃

b Fb

31:
32: return F ∈ B × S × niter × m × k ×
{D,Q,DDRm}, ρtrain; I

Partial Model Performance: First we split split
of LLMs the into 213 models as Mtrain (used in
different model combinations in training) and 100
models as Mtest (reserved for testing) from the 313
LLMs we use in this work.
The test models are used as global evaluation of
(SubWin) selected by the RCP model across di-
verse set of B Benchmarks. A small combination
of models is sampled from this Mtrain to create
the Performance Patterns Rm. F includes Q, D,
DD data from subset obtained using SubMS with
x=20% data, and Rm from a small set (m) of ini-
tially evaluated models, where m← C ∈ [5,10,20].
This allows the RCP model to learn the relationship
between partial evaluations and data characteris-
tics.The F matrix is generated by sampling subsets
using multiple sampling techniques s ∈ S.
We fix the sampling rate x=20% in the RCP model
feature generation to perform benchmark agnos-
tic training and evaluation. This is because the

Algorithm 3 Winner Subset Selection and Leader-
board Evaluation
Require:
1: F: Feature matrix for training RCP model λ
2: Feature Matrics containing intrinsic metrics: Difficulty

(D), Quality (Q), Distribution Dispersion (DD)
3: Partial Evaluations Rm of m anchor models’ performance

patterns, where m ∈ C ← [5, 10, 20]
4: I: Subset indices
5: 10 B split with 5-fold CV B

(p)
train, B

(p)
val}5p=1

6: Mtest: 100 test models
7: Sampling methods S

Ensure: Winning subset SubWin, Leaderboard forMtest

8: Subbwin ← ∅
{Phase 1: RCP Model Training}

9: for each fold p ∈ {1, ..., 5} do
10: Btrain ← B

(p)
train(8), Bval ← B

(p)
val(2)

11: Xtrain ← F[FBtrain] {D, Q, DD, Rm Features}
12: ytrain ← FBtrain [ρtrain] {ρ values}
13: Train RCP λp: B8 → B with l-layers:
14: h1 = σ(W1XD,Q,DD +W2XRm + b1)

15:
...

16: ρ̂ = Wlhl−1 + bl
17: Validate on Bval

18: Compute Accuracyval ← 1− ∥yval−λp(Xval)∥2
∥yval−ȳval∥2

19: end for
{Phase 2: Selecting Winning Subset for every benchmark}

20: for each benchmark b ∈ B do
21: Load Full-Benchmark D, Q, DD Data: db
22: λ← λp : b /∈ B

(p)
train {Make sure b is not in p-CV}

23: for each indices ∈ I do
24: subsets← db.indices
25: end for
26: Compute Sinkhorn distance matrix:
27: Ds = Sinkhorn(subsets,db)
28: Cs ← subsets[argmin(DS)] {Candidates with low

distance/S 9 in our experiment}
29: Obtain the Fb,s, ρs of Cs
30: ρ̂s = λp(Fb,s, ρs)
31: idxb

Win ← maxEs[Ls]
32: SubbWin ← subsets[idxb

Win]
33: Store the SubbWin

34: end for
{Phase 3: Evaluation on Mtest with SubbWin}

35: for each benchmark b ∈ B do
36: ρbMtest

← Spearman(MSub
branks
win

test ,Mdbranks
test)

37: rbMtest
← Pearson Correlation(MSub

bscore
win

test ,Mdbscores
test)

38: Populate Leaderboardb with Subbwin results
39: end for
40: return Subwin = {Subbwin}10b=1; Leaderboard10b=1

size of each benchmark varies hugely as shown in
Table 8 in A. In order to train generalizable RCP
model, we need feature vectors that are benchmark
agnostic. To get this, we sample 20% subset from a
benchmark such that it has at least 100 datapoints.
These are then clustered into fixed k (1̄00) clusters
to achieve benchmark agnostic features.
The feature matrices are generated for multiple iter-
ations (niter) for every s per benchmark b, such that

30576

we get: Fb ← S×niter×m×k×D,Q,DD,Rm

Along with this we also generate the rank corre-
lation ρ of m models used in creating the feature,
using Spearman Coefficient. We then aggregate
Fb across all B, S, and niter to form the final fea-
ture matrix (F) containing about 9000 candidate
subsets for training per benchmark.

4.2.3 Model Formulation & Training
The RCP model (λ) is trained to predict the Spear-
man rank correlation (ρ) between subset and full-
benchmark rankings using a Rank Correlation Pre-
diction model λ. Input to the RCP is Standardized
feature matrix combining (i) Intrinsic metrics D, Q,
DD, and (ii) Partial evaluations on anchor models’.
As a result, the model captures meta-knowledge
about how different dataset characteristics affect
ranking preservation, enabling accurate predictions
on new benchmarks. By training on thousands of
candidate subsets across diverse benchmarks, the
RCP model internalizes the relationship between
these intrinsic characteristics and the resulting rank
correlations. This learned mapping enables the
model to predict the quality of a candidate subset
on unseen benchmarks without the need for the
expensive and time-consuming full warm-up phase
employed in recent approaches. More information
about this is tabulated in Table 4. λ is the N -layer
neural network (N=6) with ReLU activations and
a final sigmoid layer RCP model, transforming
the input F of dimension to a scalar prediction ρ̂.
The network progressively reduces dimensional-
ity through layers of size 210, 28, 27, 25, and 1.
From the feature matrices, we split them into train
and validation set to train our RCP model. In our
case, using Weighted Adam optimizer (LR=1e-3)
over 150–300 epochs to minimize regression loss
on predicted rank correlation. RCP model aims to
extrapolate performances of unseen/test models in
the leaderboard using RCP selected subset at infer-
ence time. This reduces evaluation effort, and helps
select a generalizable subset, by training on cross
benchmark characteristics. The model minimizes
Mean Squared Error(MSE) Loss L between pre-
dicted rank coefficient ρ̂ and true rank corefficient ρ
using 5-fold cross-validation, ensuring generaliza-
tion across 8 training benchmarks and 2 unseen test
benchmarks. During inference, candidate subsets
are filtered via Sinkhorn distance Ds to ensure dis-
tributional alignment with the full benchmark on D,
Q, and DD metrics. The RCP model(λ) predicts ρ̂s
for each subset, and the winning subset is selected

Figure 4: Accuracy Degradation of Benchmark (from
Train to Test) for RCP Model Trained with C5

based on the lowest prediction error estimates.

4.2.4 Inference on New Benchmarks
When introducing a new benchmark, we first com-
pute Q, D, and DD metrics for the full dataset.
Next, we generate candidate subsets (Subm,i) from
a small set of fully evaluated models using SubMS
(e.g., m 5–20) under various sampling strategies.
We then identify each candidate subset that mini-
mizes the Sinkhorn distance (Ds) to the reference
set, use a trained model to estimate rank preserva-
tion for each subset, and select the one with the
smallest estimated error. This approach enables
the efficient selection of sampling strategies even
with limited warm-up data. Typically, it requires
only 5 to 20 fully evaluated anchor LLMs to make
accurate predictions. As demonstrated in the next
section, it achieves stronger rank preservation com-
pared to baselines on most benchmarks.

5 Experiments and Results

In this section, we present results for RCP model
train and test, including distance-based filtering of
candidate subsets and winner subset (SubWin) se-
lection via RCP inference, followed by test set eval-
uation. To validate the effectiveness of SubLIME,
we have performed comparisons with TinyBench-
marks and Random baseline.

5.1 RCP Model Training Results
The training accuracy remains high
(92.63%–96.50% ref Table 5 for C10), indi-
cating the model effectively learns dataset
characteristics (D, Q, DD) for ranking preservation.
On test benchmarks, it achieves over 98% rank
correlation for most, with GSM8K (99.62%), ARC
(99.48%), and MMLU-Pro (99.71%) showing
near-perfect rank preservation. We observe
performance variation across benchmarks. BBH,
despite 92.69% training accuracy, drops to 87.09%
on test data, suggesting complexity. GPQA records
the lowest accuracy (89.96%), likely due to high
distributional dispersion, and GPQA consists of

30577

very complex scientific problems, making metric-
based selection harder. MUSR (92.62%) also
sees a moderate drop. The accuracy degradation
aligns with their high diversity distances (Figure
25). The overall performance of benchmarks like
MUSR, Math and GPQA was relatively lower
than others. The degradation observed in certain
benchmarks, particularly GPQA and MUSR,
prompted an investigation into the underlying
causes. We assessed the average Euclidean
distance across Q, D, and DD metric-based
distribution distances between all benchmark pairs
(Figure 25 in Appendix A). We show the D,Q,DD
distribution preservation of the winner subset
w.r.t fullset based on Subwin of GSM8K and
GPQA in Figure 13 in Appendix A.4. Benchmarks
like Math and MUSR exhibited relatively higher
diversity distances. Math benchmark’s complexity
in readability resulted in elevated difficulty and
distance metrics, while MUSR data comprised
narrative and input text with higher context lengths
and readability challenges.
Figure 4 in shows a proportional relationship
between the diversity distance of a benchmark and
the performance degradation observed from the
training set to the test. Overall, the RCP model
reliably predicts rank correlation, excelling on
structured benchmarks like GSM8K and ARC.
However, for very diverse datasets like GPQA and
MUSR, more anchor models or refined sampling
may enhance performance. RCP model performs
better than TinyBenchmark in these complex
benchmarks as well (ref Table 5,7), confirming
SubLIME’s effectiveness in efficient evaluation.

5.2 Test Set Evaluation with Winner Subset

Tables 2 compare the rank correlation and score
preservation when evaluating 100 unseen LLMs
on subsets chosen by SubLIME (SWin selected by
RCP Model trained on C5, C10, and C20), Tiny-
Bench, and Random-sampling selected through
SubLIME RCP denoted as Random (RCP), and
absolute randomly selected subset denoted as Ran-
dom (Absolute). The Random (RCP) subset is se-
lected through is a two stage process - (i) We gener-
ate 1000 candidate subsets using random sampling.
(ii) These candidates are then filtered using our dis-
tance–based metric to retain the top 9 candidates,
and finally, the RCP model selects the best subset
based on its predicted rank correlation. This was de-
signed to ensure consistency with SubLIME’s eval-

uation framework. Each row-group corresponds
to an RCP model trained with different anchor set
sizes (5, 10, 20). Across most benchmarks, Sub-
LIME achieves higher rank correlation than Tiny-
Bench. For example, in C5, it attains 97.2% corre-
lation on Winogrande (vs. 90.6% for TinyBench)
and 62.0% on GPQA (vs. 56.0%), and 74.55%
on MUSR (vs 63.04%). Even where TinyBench
performs well, such as Hellaswag, the difference
remains small. With more anchor models (C10 and
C20), the correlation for harder benchmarks like
MUSR improves from 74.6% (C5) to 82.8% (C10),
while GPQA increases from 62.0% to 66.9%.
Random sampling achieves high correlation in
some benchmarks like GSM8K and Hellaswag
(99.4% and 99.8% with C5), showing that in large
datasets, even naive selection can be effective.
However, for tasks with higher linguistic diversity,
such as GPQA and MUSR, its correlation drops to
58.2% and 76.9% with C5, lower than both Sub-
LIME and TinyBench. However in C10 we can
see that Random (RCP), has 62%, performs bet-
ter than Random (Absolute), has 53%, in GPQA
benchmark. A high variance in random sam-
pling results is observed, suggests it may not gen-
eralize well across different benchmark types. Us-
ing more anchor models improves results across
harder benchmarks. For instance, MUSR’s rank
correlation increases from 74.6% (C5) to 82.8%
(C10), and GPQA improves from 62.0%(C5) to
74.3% (C20) leading to our study (5.3) on mini-
mum required anchor LLMs for a given benchmark
to achieve acceptable rank correlation.
For benchmarks with high inherent redundancy,
even a random subset tends to perform well. The
apparent minor differences between our approach
and the random in these cases reflect the dataset
characteristics rather than a lack of efficacy of
our method. Improvements observed in less-
redundant benchmarks like GPQA and MUSR.
They exhibit low redundancy and high diversity
in intrinsic characteristics. In such scenarios, Sub-
LIME’s guided subset selection via the RCP model
is crucial for achieving representative evaluation
subsets & offers advantages over existing methods.

5.3 Model Stability Analysis

We evaluated ranking stability by varying the num-
ber of anchor LLMs in our SubMS procedure from
5 to 50, repeating the sampling 40 times per setting
with independent seeds. Using the unified D, Q,
and DD metrics on a 20% subset, we computed the

30578

RCP
Model

Method Correlation ARC GSM8K Hellaswag Truthfulqa Winogrande MUSR GPQA MMLU_Pro Math BBH

C5

SubLIME
RC (ρ) 97.80% 99.48% 99.36% 98.42% 97.16% 74.55% 62.00% 99.46% 97.23% 98.72%

SDC (ρ) 99.08% 99.72% 99.65% 99.37% 97.88% 75.82% 65.22% 99.85% 98.20% 99.32%

TinyBench
RC 97.57% 99.02% 98.58% 97.88% 90.59% 63.04% 56.03% 96.55% 96.32% 98.66%

(Baseline) SDC 97.11% 99.46% 97.43% 97.61% 89.57 69.69% 59.94% 96.77% 92.67% 99.10%

Random
RC 97.8% 99.35% 99.75% 98.91% 97.00% 76.96% 58.21% 99.34$ 96.95% 99.06%

(RCP) SDC 99.08% 99.78% 99.84% 99.6% 97.70% 77.4% 59.5% 99.7% 97.48% 99.48%

C10

SubLIME
RC (ρ) 98.95% 99.46% 99.72% 99.6% 96.38% 82.75% 66.91% 99.07% 97.02% 98.31%

SDC (ρ) 99.43% 99.71% 99.96% 99.38% 99.06% 83.96% 66.63% 99.84% 97.78% 99.02%

TinyBench
RC 97.44% 98.01% 98.55% 95.98% 93.77% 73.20% 59.80%% 97.05% 96.93% 98.56%

(Baseline) SDC 97.84% 99.34% 97.00% 97.56% 92.34% 73.37% 61.94% 97.27% 92.32% 99.13%

Random
RC 99.31% 99.38% 98.85% 99.57% 96.38% 72.33% 61.14% 99.54% 97.00% 98.81%

(RCP) SDC 99.07% 99.7% 99.98% 99.66% 99.06% 75.01% 66.6% 99.85% 97.5% 99.08%

Random
RC 98.82% 99.49% 99.6% 98.58% 95.31% 73.73% 52.82% 99.4% 97.31% 98.70%

(Absolute) SDC 99.53% 99.73% 99.95% 99.11% 99.03% 74.71% 64.51% 99.78% 98.5% 99.3%

C20

SubLIME
RC (ρ) 99.01% 99.34% 99.51% 98.95% 97.68% 77.89% 74.35% 99.37% 96.28% 99.03%

SDC (ρ) 99.52% 99.80% 99.96% 99.46% 99.10% 79.71% 71.39% 99.83% 98.18% 99.24%

TinyBench
RC 95.85% 98.95% 98.18% 96.25% 94.07% 69.69% 64.33%% 99.06% 95.80% 98.70%

(Baseline) SDC 97.39% 99.45% 96.76% 97.79% 93.81% 73.05% 73.78% 98.14% 91.59% 98.74%

Random
RC 99.30% 99.68% 99.34% 99.22% 97.63% 76.95% 59.32% 99.16% 96.22% 98.57%

(RCP) SDC 99.52% 99.74% 99.95% 99.05% 98.87% 77.57% 57.68% 99.8% 98.15% 99.13%

Random
RC 98.95% 99.11% 98.85% 99.57% 87.61% 75.28% 64.87% 99.56% 96.52% 98.89%

(Absolute) SDC 99.43% 99.71% 99.97% 99.48% 98.56% 76.34% 66.94% 99.83% 98.53% 99.27%

Table 2: Evaluation on 100 Mtest LLMs across Benchmarks for SubLIME vs TinyBench vs Random. SubLIME
evaluates Rank Correlation(RC) and Score Distribution Correlation (SDC) on Winner Subset SubWin (20%)

Figure 5: Model Stability Analysis & Variance - GPQA(left) & GSM8K(right)

ρ and variance for each configuration. As shown in
Figure 5, increasing the number of anchor LLMs
improves rank consistency and reduce variance.
For challenging benchmarks like GPQA (left), 20
anchor models yield stable correlations, and for
structured benchmarks such as GSM8K (right), 5
models are sufficient. These results guide the opti-
mal selection of anchor models for RCP model.

6 Conclusion

We introduced SubLIME, a data-efficient LLM
evaluation framework that preserves ranking fi-
delity while reducing computational costs by up
to 99%. Inspired by mathematical olympiad prob-
lem selection, SubLIME employs a RCP model to
guide subset selection using limited anchor LLM

evaluations and thre intrinsic dataset metrics. Sub-
LIME achieves over 98% rank correlation with
full benchmark rankings across ten diverse LLM
benchmarks, outperforming existing baselines like
TinyBench. Model stability analysis reveals that as
few as 5–20 anchor models suffice for robust rank
correlation predictions. While SubLIME excels
in structured benchmarks, performance degrades
on datasets with extreme distributional dispersion,
highlighting future work in uncertainty quantifi-
cation and hybrid selection strategies. As LLMs
and benchmarks grow exponentially, scalable eval-
uation methodologies like SubLIME are essential
for cost-effective benchmarking. By enabling ef-
ficient assessments, our approach advances auto-
mated evaluation and leaderboard curation.

30579

7 Limitations

While SubLIME demonstrates promising results in
data-efficient evaluation of LLMs, several limita-
tions remain that warrant discussion:

Anchor Model Evaluation Overhead: Al-
though our method substantially reduces the eval-
uation cost for newly added LLMs by requiring
full evaluation results for only 5 to 20 anchor mod-
els, it does not eliminate the need for complete
evaluations of these anchor models. In scenarios
where evaluating even a small number of models
is expensive, this requirement may still represent a
significant computational and time overhead.

Indicator Robustness: Our approach relies on
intrinsic dataset metrics—Difficulty (D), Quality
(Q), and Distributional Dispersion (DD)—to guide
subset selection. However, these indicators do not
always capture the nuanced characteristics of every
benchmark perfectly. In some cases, more modern
or domain-specific indicators might be necessary
to fully characterize the benchmark’s complexity
and improve the rank preservation performance.

Assumptions on Benchmark Representative-
ness: SubLIME assumes that the anchor mod-
els’ performance is representative of the overall
model population. This assumption may not hold in
rapidly evolving leaderboards or in domains where
new models exhibit significantly different behavior
from those used during the warm-up phase, poten-
tially affecting the generalizability of the selected
subset.

Applicability to specialized benchmarks: The
applicability of SubLIME to emerging benchmark
types and highly specialized domains may face
challenges, which is an inspiration to our work in
assessing intrinsic metrics that are scalable to any
benchmark type and size. By considering a metric
generalizable across all benchmarks, such as grade
level requirement, or cognitive functionalities to
solve a problem, helps us expand it to specialized
domains.

Addressing these limitations in future work
could further enhance the robustness and applica-
bility of SubLIME across a wider range of bench-
marks and evaluation scenarios.

References
Vladimir Bochkarev, Anna Shevlyakova, and Valery

Solovyev. 2012. Average word length dynamics as
indicator of cultural changes in society. Social Evo-
lution and History, 14:153–175.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question
answering? try arc, the ai2 reasoning challenge.
Preprint, arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Tianyu Ding, Tianyi Chen, Haidong Zhu, Jiachen Jiang,
Yiqi Zhong, Jinxin Zhou, Guangzhi Wang, Zhihui
Zhu, Ilya Zharkov, and Luming Liang. 2023. The
efficiency spectrum of large language models: An
algorithmic survey. Preprint, arXiv:2312.00678.

Chengcheng Guo, Bo Zhao, and Yanbing Bai. 2022.
Deepcore: A comprehensive library for core-
set selection in deep learning. arXiv preprint
arXiv:2204.08499.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. NeurIPS.

Wenhao Hu, Dong Xu, and Zhihua Niu. 2021. Im-
proved k-means text clustering algorithm based on
bert and density peak. In 2021 2nd Information Com-
munication Technologies Conference (ICTC), pages
260–264.

Yifei Hu, Xiaonan Jing, Youlim Ko, and Julia Taylor
Rayz. 2024. Misspelling correction with pre-trained
contextual language model.

Hugging Face. 2022. Open llm leaderboard. https:
//huggingface.co/open-llm-leaderboard. Re-
trieved February 3, 2022.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, Benjamin Newman, Binhang Yuan, Bobby Yan,
Ce Zhang, Christian Alexander Cosgrove, Christo-
pher D Manning, Christopher Re, Diana Acosta-
Navas, Drew Arad Hudson, Eric Zelikman, Esin
Durmus, Faisal Ladhak, Frieda Rong, Hongyu Ren,
Huaxiu Yao, Jue WANG, Keshav Santhanam, Laurel
Orr, Lucia Zheng, Mert Yuksekgonul, Mirac Suzgun,
Nathan Kim, Neel Guha, Niladri S. Chatterji, Omar
Khattab, Peter Henderson, Qian Huang, Ryan An-
drew Chi, Sang Michael Xie, Shibani Santurkar,
Surya Ganguli, Tatsunori Hashimoto, Thomas Icard,
Tianyi Zhang, Vishrav Chaudhary, William Wang,
Xuechen Li, Yifan Mai, Yuhui Zhang, and Yuta Ko-
reeda. 2023. Holistic evaluation of language models.
Transactions on Machine Learning Research. Fea-
tured Certification, Expert Certification.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
Truthfulqa: Measuring how models mimic human
falsehoods. Preprint, arXiv:2109.07958.

30580

https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2312.00678
https://arxiv.org/abs/2312.00678
https://arxiv.org/abs/2312.00678
https://doi.org/10.1109/ICTC51749.2021.9441505
https://doi.org/10.1109/ICTC51749.2021.9441505
https://doi.org/10.1109/ICTC51749.2021.9441505
https://doi.org/10.1123/acl.2024.12345
https://doi.org/10.1123/acl.2024.12345
https://huggingface.co/open-llm-leaderboard
https://huggingface.co/open-llm-leaderboard
https://openreview.net/forum?id=iO4LZibEqW
https://arxiv.org/abs/2109.07958
https://arxiv.org/abs/2109.07958

H. P. Luhn. 1958. The automatic creation of literature
abstracts. IBM Journal of Research and Develop-
ment, 2(2):159–165.

Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex
Wang, Marzieh Fadaee, and Sara Hooker. 2023.
When less is more: Investigating data pruning for pre-
training llms at scale. Preprint, arXiv:2309.04564.

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and
Nils Reimers. 2022. Mteb: Massive text embedding
benchmark. arXiv preprint arXiv:2210.07316. Ver-
sion 3.

Yotam Perlitz, Elron Bandel, Ariel Gera, Ofir Arviv,
Liat Ein-Dor, Eyal Shnarch, Noam Slonim, Michal
Shmueli-Scheuer, and Leshem Choshen. 2024. Ef-
ficient benchmarking of language models. Preprint,
arXiv:2308.11696.

Felipe Maia Polo, Lucas Weber, Leshem Choshen,
Yuekai Sun, Gongjun Xu, and Mikhail Yurochkin.
2024. tinybenchmarks: evaluating llms with fewer
examples. Preprint, arXiv:2402.14992.

Ameya Prabhu, Vishaal Udandarao, Philip Torr,
Matthias Bethge, Adel Bibi, and Samuel Albanie.
2024. Lifelong benchmarks: Efficient model eval-
uation in an era of rapid progress. Preprint,
arXiv:2402.19472.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R. Bowman. 2024. GPQA:
A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: an adver-
sarial winograd schema challenge at scale. Commun.
ACM, 64(9):99–106.

Philip Sedgwick. 2014. Spearman’s rank correlation
coefficient. Bmj, 349.

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya
Ganguli, and Ari S. Morcos. 2023. Beyond neural
scaling laws: beating power law scaling via data
pruning. Preprint, arXiv:2206.14486.

Zayne Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri,
and Greg Durrett. 2024. Musr: Testing the limits
of chain-of-thought with multistep soft reasoning.
Preprint, arXiv:2310.16049.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, , and Jason Wei. 2022. Challenging big-bench
tasks and whether chain-of-thought can solve them.
arXiv preprint arXiv:2210.09261.

Rajan Vivek, Kawin Ethayarajh, Diyi Yang, and Douwe
Kiela. 2024. Anchor points: Benchmarking models
with much fewer examples. In Proceedings of the

18th Conference of the European Chapter of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1576–1601, St. Julian’s, Malta.
Association for Computational Linguistics.

Tomasz Walkowiak and Mateusz Gniewkowski. 2019.
Evaluation of vector embedding models in clustering
of text documents. In Proceedings of the Interna-
tional Conference on Recent Advances in Natural
Language Processing (RANLP 2019), pages 1304–
1311, Varna, Bulgaria. INCOMA Ltd.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni,
Abhranil Chandra, Shiguang Guo, Weiming Ren,
Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max
Ku, Kai Wang, Alex Zhuang, Rongqi Fan, Xiang Yue,
and Wenhu Chen. 2024. Mmlu-pro: A more robust
and challenging multi-task language understanding
benchmark. Preprint, arXiv:2406.01574.

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and
Percy Liang. 2023. Data selection for language mod-
els via importance resampling. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Abdelrahman Zayed, Prasanna Parthasarathi, Gonçalo
Mordido, Hamid Palangi, Samira Shabanian, and
Sarath Chandar. 2023. Deep learning on a healthy
data diet: finding important examples for fair-
ness. In Proceedings of the Thirty-Seventh AAAI
Conference on Artificial Intelligence and Thirty-
Fifth Conference on Innovative Applications of
Artificial Intelligence and Thirteenth Symposium
on Educational Advances in Artificial Intelligence,
AAAI’23/IAAI’23/EAAI’23. AAAI Press.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can
a machine really finish your sentence? Preprint,
arXiv:1905.07830.

Fred Zenker and Kristopher Kyle. 2021. Investigating
minimum text lengths for lexical diversity indices.
Assessing Writing, 47:100505.

A Appendix

A.1 Additional Description and Results of
SubMS

A.1.1 Sampling Methods in SubMS
Below are the sampling methods used in SubMS:
Random Sampling serves as the baseline, wherein
we select 1% to 100% of the dataset in 1% incre-
ments (using fixed random seeds). This straight-
forward approach offers a simple, unbiased way
to compare performance across LLMs and helps
calibrate more sophisticated methods.
Clustering-based Sampling including both topic
modeling and spectral clustering techniques are
explored to ensure diverse coverage of semantic

30581

https://doi.org/10.1147/rd.22.0159
https://doi.org/10.1147/rd.22.0159
https://arxiv.org/abs/2309.04564
https://arxiv.org/abs/2309.04564
https://arxiv.org/abs/2210.07316
https://arxiv.org/abs/2210.07316
https://arxiv.org/abs/2308.11696
https://arxiv.org/abs/2308.11696
https://arxiv.org/abs/2402.14992
https://arxiv.org/abs/2402.14992
https://arxiv.org/abs/2402.19472
https://arxiv.org/abs/2402.19472
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
https://arxiv.org/abs/2206.14486
https://arxiv.org/abs/2206.14486
https://arxiv.org/abs/2206.14486
https://arxiv.org/abs/2310.16049
https://arxiv.org/abs/2310.16049
https://aclanthology.org/2024.eacl-long.95
https://aclanthology.org/2024.eacl-long.95
https://doi.org/10.26615/978-954-452-056-4_149
https://doi.org/10.26615/978-954-452-056-4_149
https://arxiv.org/abs/2406.01574
https://arxiv.org/abs/2406.01574
https://arxiv.org/abs/2406.01574
https://openreview.net/forum?id=uPSQv0leAu
https://openreview.net/forum?id=uPSQv0leAu
https://doi.org/10.1609/aaai.v37i12.26706
https://doi.org/10.1609/aaai.v37i12.26706
https://doi.org/10.1609/aaai.v37i12.26706
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/1905.07830
https://doi.org/10.1016/j.asw.2020.100505
https://doi.org/10.1016/j.asw.2020.100505

structures. Topic modeling employs Non-Negative
Matrix Factorization (NMF) and Latent Dirich-
let Allocation (LDA) over TF-IDF representations
(Luhn, 1958) to extract topical clusters, from which
we stratify samples to capture broad thematic va-
riety. Spectral clustering leverages embeddings
such as MTEB (Muennighoff et al., 2022), BERT
(Walkowiak and Gniewkowski, 2019), and simple
TFIDF embedding based K-means (Hu et al., 2021)
to cluster data points in a latent space and sample
representatives from each cluster to preserve distri-
butional properties of original benchmark.
Quality-based Sampling A high-quality subset pri-
oritizes instances with clearer and more coherent
text, reducing noise and ambiguity. This includes
indicators to minimize spelling errors (Hu et al.,
2024) for text clarity, maintain an optimal average
word length (Bochkarev et al., 2012) to balance
complexity with readability, and promote lexical
diversity (Zenker and Kyle, 2021) by selecting text
segments rich in vocabulary. These methods ensure
that only high-quality items are retained, reducing
confounding factors and improving the stability of
model comparisons.
Difficulty-based Sampling considers input text
complexity measures such as Gunning Fog and
SMOG. The Gunning Fog Index estimates readabil-
ity based on sentence length and the proportion of
complex words (three or more syllables), indicat-
ing how difficult a passage is to comprehend. The
SMOG grade estimates the education level needed
to understand a text. By selecting subsets that span
a range of these scores, this approach ensures a
balanced distribution of difficulty levels.

A.1.2 SubMS Results

In this section, we assessed various sampling tech-
niques’ effectiveness in reducing the benchmark
time while maintaining rankings using a subset of
the complete dataset. Using our proposed method
outlined in 1, we aim to dynamically pinpoint the
best sampling approach for each benchmark.

A.2 SubMS: Rank Preservation and Score
Distribution Preservation for V1 and V2
Benchmarks

The results for all benchmarks combined is de-
picted in Figure 6.

(a) TruthfulQA, MC2, Spectral BERT

(b) GSM8k, Accuracy, Spectral MTEB

(c) Winogrande, Accuracy, Lexical Diversity

(d) Hellaswag, Accuracy Norm, Spectral BERT, Quality Spelling Error

(e) ARC, Accuracy Normalized, Clustering NMF, and Spectral MTEB

Figure 6: Rank and Score Preservation of all V1 Bench-
marks across multiple sampling techniques

Figure 7: Adaptive Sampling (denoted in Solid Red)
achieving stable performance for MMLU Benchmark
(V1)

30582

10% 30% 50% 70% 90%
Sample Intervals

0.992

0.994

0.996

0.998

1.000

Sp
ea

rm
an

 C
oe

ffi
cie

nt

Hellaswag Rank: Spearman Coefficient

difficult_Flesch_Readability
difficult_Gunning_Fog
random
clustering_Spectral_BERT

10% 30% 50% 70% 90%
Sample Intervals

0.0

0.2

0.4

0.6

0.8

1.0

1.2

W
as

se
rs

te
in

 D
ist

an
ce

Hellaswag Acc_norm: Wasserstein Distance
difficult_Flesch_Readability
difficult_Gunning_Fog
random
clustering_Spectral_BERT

Figure 8: SubMS results on Hellaswag

10% 30% 50% 70% 90%
Sample Intervals

0.988

0.990

0.992

0.994

0.996

0.998

1.000

Sp
ea

rm
an

 C
oe

ffi
cie

nt

Mmlu_pro Rank: Spearman Coefficient

difficult_Flesch_Readability
difficult_Gunning_Fog
random
clustering_Spectral_BERT

10% 30% 50% 70% 90%
Sample Intervals

0.2

0.4

0.6

0.8

1.0

1.2

W
as

se
rs

te
in

 D
ist

an
ce

Mmlu_pro Acc: Wasserstein Distance
difficult_Flesch_Readability
difficult_Gunning_Fog
random
clustering_Spectral_BERT

Figure 9: SubMS results on MMLU Pro

A.2.1 Analysis of Rank Preservation and
Score Distribution

For SubMS, we evaluated 9 sampling approaches
across 50 LLMs on 10 benchmarks listed in A
in Table 9. Rank preservation was assessed us-
ing the Pearson correlation coefficient, and score
distribution discrepancy was measured with the
Wasserstein Distance (WD). Figures 7 illustrate
these metrics. We selected the best strategies from
the results in Quality - Lexical Diversity, Cluster-
ing - BERT, and Difficulty - Gunning Fog for our
experiments as shown in Figure 8 for Hellaswag
and 9 for MMLU Pro.

A.3 SubMS Evaluation with Tiny
Benchmarks

We conducted experiments comparing a 20% sub-
set selected by our baseline SubMS (without the
Rank Correlation Prediction model) against the
TinyBenchmarks baseline. In these experiments,
the winner subset was selected from 213 LLMs
as the train set, and tested with 100 unseen LLMs
to compute the Spearman coefficients for various
benchmarks. The results in Table 3 indicate that
when sample-level results are available for hun-
dreds of LLMs, TinyBenchmarks generally per-
forms very well—in many cases even outperform-
ing SubMS on several benchmarks (e.g., bbh, gpqa,
musr, winogrande). This confirms that TinyBench-
marks leverages extensive evaluation data effec-
tively. However, the key point is that TinyBench-
marks relies on having large-scale sample-level
results. In many practical settings, especially dur-
ing the warm-up phase of a new benchmark, only
limited data (typically from 5–20 anchor LLMs) is
available. In this low-data regime, our proposed
RCP approach (even random baseline) outperforms
TinyBenchmarks. Our RCP model is specifically

designed to work effectively with limited anchor
evaluations, yielding much higher rank correlation
and score preservation.

A.4 SubLIME & RCP Model

A.4.1 Describing Benchmark Intrinsic D, Q,
DD Metrics

Difficulty D: We use the Gunning Fog Index to
quantify textual complexity. In our experiments,
this metric provided a well-distributed measure
across multiple benchmarks, effectively capturing
text complexity (see Table 1). For different bench-
mark types (multiple-choice vs open-ended), the
index is applied directly to the "Question" or "Input
Prompt." Once computed, these scores are normal-
ized across benchmarks.

Quality Q: Although Flesch is a traditional read-
ability metric, we interpret it as a proxy for text clar-
ity and coherence—key aspects of quality. In Sub-
LIME, we also considered additional quality met-
rics (e.g., lexical diversity and duplication rates).
We selected the Flesch score because its subset
distribution best represented the full benchmark
distribution.

Distributional Dispersion DD: The input texts
are embedded using a BERT model and clustered to
capture data diversity. For each datapoint, we com-
pute the distance from its cluster centroid, which
serves as a measure of how well the datapoint rep-
resents the overall distribution. As with D and Q,
these values are calculated on the "Question" or
"Input Prompt" and normalized across benchmarks.
These procedures ensure that the RCP model accu-
rately learns the contributions of difficulty, quality,
and distributional dispersion to model performance.
Ablation study of D, Q, DD metrics: As sug-
gested the individual contributions of Difficulty
(D), Quality (Q), and Distributional Dispersion
(DD) is important. We performed metric corre-
lations for GPQA benchmark, shown in Figure
10 which indicates some weak correlations with
model performance. The integrated/combined ap-
proach of using of all three (D, Q, DD) metrics
yields better correlations. Some of the readabil-
ity not always correlate with model performance,
which upon further experimentation we found that,
this occurs due to lack of clarity in the benchmark.
The weak correlation of Q metric when analysed
showed that some question having easier vocabu-
lary was chosen as higher quality but they lacked
clarity which might have led to higher model dif-

30583

Method ARC BBH GPQA GSM8K HELLASWAG MATH MMLU_PRO MUSR TRUTHFULQA WINOGRANDE

SubMS 99.14% 81.64% 31.62% 99.31% 99.18% 96.16% 97.61% 63.39% 98.41% 87.99%

TinyBenchmarks 98.27% 98.11% 43.77% 98.66% 99.76% 98.08% 98.92% 78.51% 96.40% 96.79%

Table 3: Subset Rank correlation of SubMS versus TinyBenchmarks across various benchmarks.

Figure 10: Correlation of D, Q, DD - Invidual and com-
bined metric

Figure 11: Unified D, Q, DD Selection for GPQA
Benchmark based on K-S Test

ficulty. This inspires for additional metrics that
could be added to the feature matrix. Which is
why we also planning to expand this 3-dimensional
intrinsic metrics to a multi-dimensional matrix to
provide additional characteristic information indi-
cating the performance, including prompt-based
model-based metrics.

A.4.2 RCP model training

Winner subset selection for Oracle-difficulty Metric
in 16. These the selected winner subset distribu-
tions across different benchmarks, demonstrating
preservation of the D, Q, DD metrics with respect
to full benchmark data.

Pair-wise distance computed across Benchmark
to analyse benchmark diversity:

Figure 12: 20% Subset Distribution Preservation on D,
Q, DD wrt Fullset - GSM8K (left) and GPQA (right)

Figure 13: Training Loss for C5, C10, C20 Trained RCP
λ Model

Figure 14: Accuracy Degradation of Benchmark (from
Train to Test) for RCP Model Trained with C10

Figure 15: Accuracy Degradation of Benchmark (from
Train to Test) for RCP Model Trained with C20

30584

Figure 16: Min vector distance-based Ds filtration
of candidate subsets Cs(Red markers) using Oracle-
difficulty as "D" - GSM8K(top) and MUSR(bottom)
Benchmarks

Figure 17: 20% SubWin D, Q, DD Distribution Preser-
vation wrt Fullset - Winogrande Benchmark

Figure 18: 20% SubWin D, Q, DD Distribution Preser-
vation wrt Fullset - Hellaswag Benchmark

Figure 19: 20% SubWin D, Q, DD Distribution Preser-
vation wrt Fullset - ARC Benchmark

Figure 20: 20% SubWin D, Q, DD Distribution Preser-
vation wrt Fullset - GPQA Benchmark

Figure 21: 20% SubWin D, Q, DD Distribution Preser-
vation wrt Fullset - Math Benchmark

30585

Figure 22: 20% SubWin D, Q, DD Distribution Preser-
vation wrt Fullset - BBH Benchmark

Figure 23: Latent Space Before and After Fixed k Clus-
tering to 100 Clusters for BBH Benchmark

Figure 24: Latent Space Before and After Fixed k Clus-
tering to 100 Clusters for MUSR Benchmark

Figure 25: Pair-wise Diversity Distance across Bench-
marks

Figure 26: Min vector distance-based Ds filtration of
candidate subsets Cs(Red markers) across sampling
techniques (9) s ∈ S - GSM8K(top) and MUSR(bottom)
Benchmarks

A.4.3 RCP Model vs Baseline Approaches
A.4.4 SubLIME results
A.5 Model Lists for the experiments
The following models are the overlapping LLMs
from the V1 and V2 leaderboard, which were used
in our experiments:

A.6 Experiment Setup
LLMs used in Training RCP Model Mtrain - 213
Models:

1. allknowingroger/Neuralmultiverse-7B-slerp

2. microsoft/Phi-3-mini-4k-instruct

3. 01-ai/Yi-1.5-9B-Chat-16K

30586

Table 4: Comparison of SubLIME (RCP) vs. Baseline Methods

Component SubLIME (RCP) Baseline Methods

Initialization 5–20 anchor models + D/Q/DD
metrics

Requires 100+ model evaluations

Feature Source Benchmark intrinsic metrics + par-
tial evaluations

Full historical leaderboards

Generalization Adaptable to new benchmarks and
leaderboards

Per-benchmark optimization

Compute Fewer compute resources as we
only train an MLP layer and evalu-
ate partial responses

Comparatively higher as full evalu-
ation and anchor weight training is
required

Training Test
Benchmarks Avg. Train

Accuracy
Benchmarks SubLIME

Test Accu-
racy

Tiny Bench-
mark Accu-
racy

arc, hellaswag, truthfulqa,
winogrande, musr, gpqa,
mmlu_pro, bbh

92.69% gsm8k 99.62% 96.81%

math 91.25% 91.37%
gsm8k, hellaswag, truth-
fulqa, winogrande, gpqa,
mmlu_pro, math, bbh

94.81% arc 99.48% 95.76%

musr 92.62% 76.06%
arc, gsm8k, truthfulqa,
winogrande, musr, gpqa,
math, bbh

92.88% hellaswag 98.94% 99.39%

mmlu_pro 99.71% 96.99%
arc, gsm8k, hellaswag,
truthfulqa, musr, gpqa,
mmlu_pro, math

92.63% winogrande 98.89% 92.59%

bbh 87.09% 96.58%
arc, gsm8k, hellaswag,
winogrande, musr,
mmlu_pro, math, bbh

96.50% truthfulqa 98.18% 93.55%

gpqa 89.96% 61.22%

Table 5: Train and Test Accuracy for RCP Model
Trained with MtrainC10 Model Combinations

Training Test
Benchmarks Avg. Train

Accuracy
Benchmarks SubLIME

Test Accu-
racy

Tiny Bench-
mark Accu-
racy

arc, hellaswag, truth-
fulqa, winogrande,
musr, gpqa, mmlu_pro,
bbh

91.26% gsm8k 98.38% 94.67%

math 92.71% 90.00%
gsm8k, hellaswag,
truthfulqa, winogrande,
gpqa, mmlu_pro, math,
bbh

93.49% arc 97.84% 93.05%

musr 89.22% 59.55%
arc, gsm8k, truthfulqa,
winogrande, musr, gpqa,
math, bbh

91.01% hellaswag 98.76% 98.85%

mmlu_pro 99.04% 96.53%
arc, gsm8k, hellaswag,
truthfulqa, musr, gpqa,
mmlu_pro, math

91.31% winogrande 96.64% 87.75%

bbh 76.68% 94.65%
arc, gsm8k, hellaswag,
winogrande, musr,
mmlu_pro, math, bbh

94.24% truthfulqa 99.12% 94.45%

gpqa 87.53% 66.41%

Table 6: Training and Test Benchmark Accuracy for
RCP Model Trained with MtrainC5 Model Combina-
tions

4. SanjiWatsuki/Silicon-Maid-7B

5. shadowml/Mixolar-4x7b

Training Test
Benchmarks Avg. Train

Accuracy
Benchmarks SubLIME

Test Accu-
racy

Tiny Bench-
mark Accu-
racy

arc, hellaswag, truth-
fulqa, winogrande,
musr, gpqa, mmlu_pro,
bbh

93.30% gsm8k 99.8% 97.66%

math 93.08% 93.96%
gsm8k, hellaswag,
truthfulqa, winogrande,
gpqa, mmlu_pro, math,
bbh

95.03% arc 99.21% 94.36%

musr 96.40% 74.70%
arc, gsm8k, truthfulqa,
winogrande, musr, gpqa,
math, bbh

93.60% hellaswag 99.25% 99.51%

mmlu_pro 99.21% 98.47%
arc, gsm8k, hellaswag,
truthfulqa, musr, gpqa,
mmlu_pro, math

93.26% winogrande 99.40% 94.39%

bbh 93.49% 98.08%
arc, gsm8k, hellaswag,
winogrande, musr,
mmlu_pro, math, bbh

97.21% truthfulqa 92.96% 94.46%

gpqa 84.54% 58.27%

Table 7: Training and Test Benchmark Accuracy for
RCP Model Trained with MtestC20 Model Combina-
tions

6. Ba2han/Llama-Phi-3_DoRA

7. Eric111/CatunaMayo-DPO

8. bigscience/bloom-7b1

9. NousResearch/Hermes-2-Theta-Llama-3-8B

10. EleutherAI/pythia-160m

11. VAGOsolutions/SauerkrautLM-Gemma-2b

12. mlabonne/Daredevil-8B

13. mistralai/Mixtral-8x22B-v0.1

14. vicgalle/Configurable-Yi-1.5-9B-Chat

15. allknowingroger/LimyQstar-7B-slerp

16. fblgit/UNA-ThePitbull-21.4B-v2

17. lmsys/vicuna-7b-v1.3

30587

18. SeaLLMs/SeaLLM-7B-v2.5

19. databricks/dolly-v2-3b

20. OpenBuddy/openbuddy-mixtral-7bx8-v18.1-
32k

21. facebook/opt-1.3b

22. NTQAI/Nxcode-CQ-7B-orpo

23. VAGOsolutions/SauerkrautLM-SOLAR-
Instruct

24. TencentARC/LLaMA-Pro-8B

25. adamo1139/Yi-34B-200K-AEZAKMI-v2

26. failspy/llama-3-70B-Instruct-abliterated

27. saltlux/luxia-21.4b-alignment-v1.2

28. Felladrin/Minueza-32M-UltraChat

29. uukuguy/speechless-code-mistral-7b-v1.0

30. princeton-nlp/Sheared-LLaMA-2.7B

31. 01-ai/Yi-1.5-6B-Chat

32. cognitivecomputations/dolphin-2.9-llama3-
8b

33. Deci/DeciLM-7B

34. 01-ai/Yi-1.5-34B-32K

35. togethercomputer/RedPajama-INCITE-7B-
Chat

36. huggyllama/llama-65b

37. automerger/YamshadowExperiment28-7B

38. dreamgen/WizardLM-2-7B

39. Deci/DeciLM-7B-instruct

40. Qwen/Qwen1.5-32B

41. fblgit/UNA-SimpleSmaug-34b-v1beta

42. google/recurrentgemma-2b

43. paloalma/ECE-TW3-JRGL-V1

44. mistralai/Mistral-7B-v0.1

45. Kukedlc/NeuralSynthesis-7B-v0.3

46. gradientai/Llama-3-8B-Instruct-Gradient-
1048k

47. google/gemma-1.1-7b-it

48. kevin009/llamaRAGdrama

49. TIGER-Lab/MAmmoTH2-7B-Plus

50. Eric111/CatunaMayo

51. VAGOsolutions/SauerkrautLM-Gemma-7b

52. 0-hero/Matter-0.2-7B-DPO

53. allenai/OLMo-7B-hf

54. EleutherAI/gpt-neo-1.3B

55. mlabonne/NeuralBeagle14-7B

56. EleutherAI/pythia-12b

57. Intel/neural-chat-7b-v3

58. deepseek-ai/deepseek-moe-16b-base

59. Qwen/Qwen1.5-7B

60. euclaise/ReMask-3B

61. SanjiWatsuki/Kunoichi-DPO-v2-7B

62. Kukedlc/NeuralSynthesis-7B-v0.1

63. abhishek/autotrain-llama3-orpo-v2

64. Weyaxi/Einstein-v6.1-Llama3-8B

65. allknowingroger/Strangecoven-7B-slerp

66. 01-ai/Yi-9B-200K

67. allknowingroger/WestlakeMaziyar-7B-slerp

68. HuggingFaceH4/zephyr-7b-gemma-v0.1

69. anakin87/gemma-2b-orpo

70. databricks/dolly-v2-12b

71. bigcode/starcoder2-15b

72. mlabonne/Daredevil-8B-abliterated

73. upstage/SOLAR-10.7B-v1.0

74. pankajmathur/orca_mini_v3_7b

75. CohereForAI/c4ai-command-r-plus

76. argilla/notux-8x7b-v1

77. stabilityai/stablelm-zephyr-3b

30588

78. NousResearch/Nous-Hermes-2-SOLAR-
10.7B

79. huggyllama/llama-7b

80. flammenai/Mahou-1.2a-mistral-7B

81. DeepMount00/Llama-3-8b-Ita

82. vicgalle/Configurable-Hermes-2-Pro-Llama-
3-8B

83. google/gemma-7b

84. facebook/opt-30b

85. togethercomputer/GPT-NeoXT-Chat-Base-
20B

86. iRyanBell/ARC1

87. deepseek-ai/deepseek-llm-7b-chat

88. saishf/Fimbulvetr-Kuro-Lotus-10.7B

89. openchat/openchat_3.5

90. awnr/Mistral-7B-v0.1-signtensors-1-over-2

91. Qwen/Qwen2-0.5B

92. cloudyu/Yi-34Bx2-MoE-60B-DPO

93. jsfs11/MixtureofMerges-MoE-4x7b-v5

94. google/gemma-7b-it

95. meta-llama/Meta-Llama-3-70B

96. 01-ai/Yi-34B-Chat

97. 4season/final_model_test_v2

98. cognitivecomputations/dolphin-2.9.1-yi-1.5-
9b

99. microsoft/phi-1_5

100. bigscience/bloom-560m

101. nbeerbower/llama-3-gutenberg-8B

102. Weyaxi/Einstein-v4-7B

103. PygmalionAI/pygmalion-6b

104. togethercomputer/GPT-JT-6B-v1

105. Qwen/Qwen1.5-MoE-A2.7B-Chat

106. 01-ai/Yi-34B

107. 01-ai/Yi-34B-200K

108. EleutherAI/pythia-410m

109. Qwen/Qwen1.5-4B

110. deepseek-ai/deepseek-llm-67b-chat

111. zhengr/MixTAO-7Bx2-MoE-v8.1

112. MaziyarPanahi/Llama-3-8B-Instruct-v0.8

113. tiiuae/falcon-7b-instruct

114. togethercomputer/RedPajama-INCITE-7B-
Base

115. BEE-spoke-data/Meta-Llama-3-8Bee

116. CausalLM/34b-beta

117. mistralai/Mixtral-8x7B-Instruct-v0.1

118. argilla/notus-7b-v1

119. stabilityai/stablelm-2-1_6b-chat

120. CohereForAI/c4ai-command-r-v01

121. Weyaxi/SauerkrautLM-UNA-SOLAR-
Instruct

122. stabilityai/stablelm-3b-4e1t

123. Intel/neural-chat-7b-v3-1

124. vicgalle/CarbonBeagle-11B-truthy

125. Qwen/Qwen1.5-1.8B-Chat

126. mistral-community/Mistral-7B-v0.2

127. vicgalle/ConfigurableHermes-7B

128. Changgil/K2S3-v0.1

129. AI-Sweden-Models/gpt-sw3-40b

130. awnr/Mistral-7B-v0.1-signtensors-1-over-4

131. shadowml/BeagSake-7B

132. allknowingroger/MultiverseEx26-7B-slerp

133. meta-llama/Llama-2-70b-hf

134. EleutherAI/gpt-neox-20b

135. pankajmathur/orca_mini_v3_13b

136. Sao10K/Fimbulvetr-11B-v2

30589

137. stabilityai/stablelm-2-12b

138. huggyllama/llama-13b

139. tiiuae/falcon-7b

140. Qwen/Qwen1.5-32B-Chat

141. NucleusAI/nucleus-22B-token-500B

142. togethercomputer/Llama-2-7B-32K-Instruct

143. TinyLlama/TinyLlama-1.1B-Chat-v1.0

144. VAGOsolutions/SauerkrautLM-7b-
LaserChat

145. Artples/L-MChat-Small

146. Qwen/Qwen2-72B

147. 01-ai/Yi-1.5-34B-Chat

148. Nexusflow/NexusRaven-V2-13B

149. openai-community/gpt2-large

150. MaziyarPanahi/Llama-3-8B-Instruct-v0.9

151. uukuguy/speechless-zephyr-code-
functionary-7b

152. pankajmathur/orca_mini_v5_8b_dpo

153. princeton-nlp/Sheared-LLaMA-1.3B

154. 01-ai/Yi-6B

155. teknium/OpenHermes-7B

156. tenyx/Llama3-TenyxChat-70B

157. oobabooga/CodeBooga-34B-v0.1

158. refuelai/Llama-3-Refueled

159. allknowingroger/MultiCalm-7B-slerp

160. lightblue/suzume-llama-3-8B-multilingual

161. openchat/openchat-3.6-8b-20240522

162. Qwen/Qwen1.5-14B

163. abacusai/Llama-3-Smaug-8B

164. ibivibiv/multimaster-7b-v6

165. TencentARC/LLaMA-Pro-8B-Instruct

166. openchat/openchat-3.5-1210

167. Qwen/Qwen1.5-0.5B

168. VAGOsolutions/SauerkrautLM-Mixtral-
8x7B-Instruct

169. LLM360/K2

170. fblgit/una-cybertron-7b-v2-bf16

171. vicgalle/CarbonBeagle-11B

172. IDEA-CCNL/Ziya-LLaMA-13B-v1

173. ValiantLabs/Llama3-70B-Fireplace

174. uukuguy/speechless-llama2-hermes-orca-
platypus-wizardlm-13b

175. mistralai/Mistral-7B-Instruct-v0.2

176. pankajmathur/orca_mini_v5_8b

177. Artples/L-MChat-7b

178. uukuguy/speechless-mistral-dolphin-orca-
platypus-samantha-7b

179. microsoft/Orca-2-7b

180. Qwen/Qwen2-7B

181. allknowingroger/NeuralWestSeverus-7B-
slerp

182. Yuma42/KangalKhan-RawRuby-7B

183. 01-ai/Yi-1.5-34B

184. jsfs11/MixtureofMerges-MoE-4x7b-v4

185. mosaicml/mpt-7b

186. 01-ai/Yi-1.5-9B

187. teknium/OpenHermes-2.5-Mistral-7B

188. openchat/openchat-3.5-0106

189. NousResearch/Hermes-2-Pro-Mistral-7B

190. Kquant03/CognitiveFusion2-4x7B-BF16

191. Intel/neural-chat-7b-v3-2

192. spmurrayzzz/Mistral-Syndicate-7B

193. senseable/WestLake-7B-v2

194. yam-peleg/Hebrew-Mistral-7B

195. togethercomputer/RedPajama-INCITE-
Instruct-3B-v1

30590

196. google/gemma-2b

197. pankajmathur/orca_mini_v5_8b_orpo

198. Qwen/Qwen1.5-0.5B-Chat

199. Danielbrdz/Barcenas-Llama3-8b-ORPO

200. 01-ai/Yi-1.5-9B-Chat

201. meraGPT/mera-mix-4x7B

202. google/gemma-2b-it

203. togethercomputer/RedPajama-INCITE-Chat-
3B-v1

204. mlabonne/AlphaMonarch-7B

205. Open-Orca/Mistral-7B-OpenOrca

206. togethercomputer/RedPajama-INCITE-7B-
Instruct

207. ibm/merlinite-7b

208. meta-llama/Meta-Llama-3-8B-Instruct

209. microsoft/DialoGPT-medium

210. EleutherAI/gpt-neo-125m

211. RubielLabarta/LogoS-7Bx2-MoE-13B-v0.2

212. NousResearch/Nous-Hermes-2-Mistral-7B-
DPO

213. bigcode/starcoder2-7b

The Original Benchmark size, and Subset size
we used in RCP Model Training:

Benchmarks Fullset Size 20% Subset Size
MUSR 756 151
GPQA 564 112
MMLU_PRO 12032 2406
MATH 1324 264
BBH 5761 1152
arc 1172 234
gsm8k 1319 263
hellaswag 10042 2008
truthfulqa 817 163
winogrande 1267 253

Table 8: Benchmark Sizes with Fullset and 20% Subset

LLMs used in Testing Mtest evaluated on
SubWin subset from RCP Model Inference - 100
Models:

1. meta-llama/Meta-Llama-3-70B-Instruct

2. Qwen/Qwen1.5-110B

3. microsoft/Phi-3-medium-4k-instruct

4. abacusai/Smaug-72B-v0.1

5. MTSAIR/MultiVerse_70B

6. davidkim205/Rhea-72b-v0.5

7. altomek/YiSM-34B-0rn

8. Kukedlc/NeuralLLaMa-3-8b-ORPO-v0.3

9. abacusai/Smaug-34B-v0.1

10. failspy/Phi-3-medium-4k-instruct-
abliterated-v3

11. NousResearch/Nous-Hermes-2-Mixtral-
8x7B-DPO

12. MaziyarPanahi/Calme-4x7B-MoE-v0.1

13. Kukedlc/NeuralSynthesis-7b-v0.4-slerp

14. MaziyarPanahi/Calme-4x7B-MoE-v0.2

15. dzakwan/dzakwan-MoE-4x7b-Beta

16. mlabonne/Beyonder-4x7B-v3

17. allknowingroger/limyClown-7B-slerp

18. allknowingroger/Neuralcoven-7B-slerp

19. rwitz/go-bruins-v2

20. microsoft/Phi-3-mini-128k-instruct

21. allknowingroger/ROGERphi-7B-slerp

22. 01-ai/Yi-1.5-34B-Chat-16K

23. NousResearch/Hermes-2-Pro-Llama-3-8B

24. 152334H/miqu-1-70b-sf

25. fblgit/UNA-TheBeagle-7b-v1

26. beowolx/CodeNinja-1.0-OpenChat-7B

27. Kukedlc/NeuralExperiment-7b-MagicCoder-
v7.5

28. Azure99/blossom-v5.1-34b

29. jeonsworld/CarbonVillain-en-10.7B-v4

30591

30. invalid-coder/Sakura-SOLAR-Instruct-
CarbonVillain-en-10.7B-v2-slerp

31. AbacusResearch/Jallabi-34B

32. kekmodel/StopCarbon-10.7B-v5

33. VAGOsolutions/Llama-3-SauerkrautLM-8b-
Instruct

34. upstage/SOLAR-10.7B-Instruct-v1.0

35. nlpguy/StarFusion-alpha1

36. vicgalle/ConfigurableBeagle-11B

37. vicgalle/ConfigurableSOLAR-10.7B

38. berkeley-nest/Starling-LM-7B-alpha

39. saltlux/luxia-21.4b-alignment-v1.0

40. ycros/BagelMIsteryTour-v2-8x7B

41. OpenBuddy/openbuddy-llama3-8b-v21.1-8k

42. Intel/neural-chat-7b-v3-3

43. stabilityai/stablelm-2-12b-chat

44. mistralai/Mixtral-8x7B-v0.1

45. rhysjones/phi-2-orange-v2

46. uukuguy/speechless-instruct-mistral-7b-v0.2

47. Qwen/Qwen2-1.5B

48. microsoft/phi-2

49. allknowingroger/Meme-7B-slerp

50. tiiuae/falcon-11B

51. Gryphe/Pantheon-RP-1.0-8b-Llama-3

52. 01-ai/Yi-1.5-6B

53. 01-ai/Yi-9B

54. Josephgflowers/Cinder-Phi-2-V1-F16-gguf

55. mlabonne/OrpoLlama-3-8B

56. meta-llama/Meta-Llama-3-8B

57. CohereForAI/aya-23-8B

58. failspy/Llama-3-8B-Instruct-abliterated

59. microsoft/Orca-2-13b

60. teknium/CollectiveCognition-v1.1-Mistral-
7B

61. stabilityai/stablelm-2-zephyr-1_6b

62. mistralai/Mistral-7B-v0.3

63. TencentARC/Mistral_Pro_8B_v0.1

64. Qwen/Qwen1.5-1.8B

65. LeroyDyer/Mixtral_AI_SwahiliTron_7b

66. Qwen/Qwen1.5-14B-Chat

67. Qwen/Qwen1.5-110B-Chat

68. HuggingFaceH4/zephyr-7b-beta

69. meta-llama/Llama-2-13b-hf

70. tiiuae/falcon-40b

71. Josephgflowers/TinyLlama-Cinder-Agent-v1

72. bigcode/starcoder2-3b

73. uukuguy/speechless-coder-ds-6.7b

74. stabilityai/stablelm-2-1_6b

75. Qwen/Qwen1.5-MoE-A2.7B

76. jebcarter/psyonic-cetacean-20B

77. mistralai/Mistral-7B-Instruct-v0.1

78. openchat/openchat_v3.2

79. Qwen/Qwen1.5-7B-Chat

80. openchat/openchat_v3.2_super

81. teknium/OpenHermes-13B

82. google/recurrentgemma-2b-it

83. pszemraj/Mistral-v0.3-6B

84. lmsys/vicuna-7b-v1.5

85. NousResearch/Nous-Hermes-llama-2-7b

86. togethercomputer/LLaMA-2-7B-32K

87. EleutherAI/gpt-j-6b

88. Qwen/Qwen1.5-4B-Chat

89. allenai/OLMo-1B-hf

90. EleutherAI/gpt-neo-2.7B

30592

91. togethercomputer/RedPajama-INCITE-Base-
3B-v1

92. databricks/dolly-v2-7b

93. BEE-spoke-data/smol_llama-101M-GQA

94. BEE-spoke-data/smol_llama-220M-GQA

95. openai-community/gpt2

96. OpenAssistant/oasst-sft-1-pythia-12b

97. bigscience/bloom-1b1

98. 01-ai/Yi-1.5-9B-32K

99. Felladrin/Llama-160M-Chat-v1

100. Yash21/TinyYi-7B-Test

Overlapping LLMs from V1 and V2 Leader-
board

Benchmarks from V1 and V2
Leaderboard

tenyx/Llama3-TenyxChat-70B arc
mistralai/Mixtral-8x22B-Instruct-v0.1 gsm8k
meta-llama/Meta-Llama-3-70B hellaswag
SeaLLMs/SeaLLM-7B-v2.5 truthfulqa
mlabonne/Daredevil-8B-abliterated winogrande
fblgit/UNA-SimpleSmaug-34b-v1beta musr
openchat/openchat-3.6-8b-20240522 gpqa
jsfs11/MixtureofMerges-MoE-4x7b-v4 mmlu_pro
Kukedlc/NeuralSynthesis-7b-v0.4-slerp math
dzakwan/dzakwan-MoE-4x7b-Beta bbh
vicgalle/Configurable-Yi-1.5-9B-Chat
Eric111/CatunaMayo-DPO
allknowingroger/Neuralmultiverse-7B-slerp
Artples/L-MChat-7b
meta-llama/Meta-Llama-3-8B-Instruct
Ba2han/Llama-Phi-3_DoRA
Qwen/Qwen1.5-14B
4season/final_model_test_v2
mlabonne/AlphaMonarch-7B
Weyaxi/Einstein-v6.1-Llama3-8B
openchat/openchat-3.5-1210
jeonsworld/CarbonVillain-en-10.7B-v4
kekmodel/StopCarbon-10.7B-v5
cognitivecomputations/dolphin-2.9-llama3-8b
vicgalle/ConfigurableBeagle-11B
vicgalle/ConfigurableSOLAR-10.7B
Yuma42/KangalKhan-RawRuby-7B
lightblue/suzume-llama-3-8B-multilingual
Intel/neural-chat-7b-v3-3
NousResearch/Nous-Hermes-2-Mistral-7B-
DPO
CausalLM/34b-beta
0-hero/Matter-0.2-7B-DPO
abacusai/Llama-3-Smaug-8B
microsoft/phi-2
google/gemma-7b
01-ai/Yi-1.5-6B
Deci/DeciLM-7B
Deci/DeciLM-7B-instruct
spmurrayzzz/Mistral-Syndicate-7B
google/gemma-1.1-7b-it
BEE-spoke-data/Meta-Llama-3-8Bee
oobabooga/CodeBooga-34B-v0.1
stabilityai/stablelm-2-zephyr-1_6b
TencentARC/Mistral_Pro_8B_v0.1
01-ai/Yi-34B-Chat
google/gemma-7b-it
openchat/openchat_3.5
meta-llama/Llama-2-13b-hf
Intel/neural-chat-7b-v3-1
TencentARC/LLaMA-Pro-8B

Table 9: Overlapping LLMs and Benchmarks from V1
and V2 Leaderboards Used in Testing Mtest (100 Mod-
els)

30593

