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Abstract

Reading is a process that unfolds across space
and time, alternating between fixations where
a reader focuses on a specific point in space,
and saccades where a reader rapidly shifts their
focus to a new point. An ansatz of psycholin-
guistics is that modeling a reader’s fixations
and saccades yields insight into their online
sentence processing. However, standard ap-
proaches to such modeling rely on aggregated
eye-tracking measurements and models that
impose strong assumptions, ignoring much of
the spatio-temporal dynamics that occur dur-
ing reading. In this paper, we propose a more
general probabilistic model of reading behav-
ior, based on a marked spatio-temporal point
process, that captures not only how long fix-
ations last, but also where they land in space
and when they take place in time. The saccades
are modeled using a Hawkes process, which
captures how each fixation excites the probabil-
ity of a new fixation occurring near it in time
and space. The duration time of fixation events
is modeled as a function of fixation-specific
predictors convolved across time, thus captur-
ing spillover effects. Empirically, our Hawkes
process model exhibits a better fit to human sac-
cades than baselines. With respect to fixation
durations, we observe that incorporating con-
textual surprisal as a predictor results in only
a marginal improvement in the model’s predic-
tive accuracy. This finding suggests that sur-
prisal theory struggles to explain fine-grained
eye movements.

https://github.com/rycolab/
spatio-temporal-reading

1 Introduction

Reading is a cognitively complex skill. As we read,
our eyes move through an interdigitated sequence
of fixations, brief pauses that allow for the percep-
tion and processing of linguistic material, and sac-
cades, rapid movements that shift focus to the next

point of interest. A longstanding premise in psy-
cholinguistics is that eye movements during read-
ing provide a direct window into the cognitive pro-
cesses underlying language comprehension (Mc-
Conkie, 1979; Just and Carpenter, 1980; Rayner
et al., 1989; Findlay and Walker, 1999). Based
on this premise, eye-tracking experiments have
emerged as one of the most effective paradigms
for testing and refining theories of language pro-
cessing (Rayner, 1998; Frank et al., 2013).

Data collected in eye-tracking studies, termed
scanpaths, consist of sequences of the participants’
fixations on a text displayed on a two-dimensional
coordinate space, e.g., a screen placed in front of
the participant, along with the fixations’ durations
and onset time. In modern computational psy-
cholinguistic studies, such raw data is typically
aggregated into summary measurements, such as
total fixation duration, the summed duration of all
fixations on a chosen linguistic unit, and gaze dura-
tion, the summed duration of all fixations between
landing on a word and moving to another. These
summary measurements are then treated as depen-
dent variables in a (generalized) linear model dur-
ing analysis (Smith and Levy, 2013; Goodkind and
Bicknell, 2018; Wilcox et al., 2020).

Such aggregation, however, is an inherently
lossy process. From a temporal perspective, com-
bining multiple fixations in a single measurement
may conflate several factors that underlie the aggre-
gated behaviors. For example, total fixation time
includes first fixations as well as fixations where the
reader moves back to a previously fixated point (re-
gressive saccades), which are posited to correspond
to different cognitive processes (Wilcox et al.,
2024). From a spatial perspective, aggregations
inherently rely on pre-defined regions of interest
(Giulianelli et al., 2024a). Aggregating fixations,
which is most commonly done at the word level,
discards any information about where saccades
land within the boundaries of a word and hinders
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Figure 1: Illustration of how the intensity function of the saccade model evolves over time within a scanpath, and how model
predictions compare to held-out data. The intensity function is shown at selected timestamps and visualizes the predicted fixation
density of two models: our reader-specific effects (RSE) Hawkes process (in purple), which accounts for reader-specific effects
and directional saccade tendencies (e.g., forward shifts in reading), and a last-fixation baseline model (in blue), which concentrates
density around the most recent fixation location; see details in §3.1 and §4.1. Red dots indicate observed fixations prior to time ¢,
while green dots mark the fixation immediately following ¢. Note how the RSE model captures key reading behaviors, including
forward saccades (t = 51.80), backward regressions (f = 49.89), and re-fixations on the same word (¢ = 7.25).

investigations into smaller linguistic units, e.g., syl-
lables or morphemes. In sum, while aggregations
help simplify the challenge of modeling and inter-
preting the complex spatio-temporal dynamics of
fixations and saccades, they inevitably throw away
information compared to the raw reading data.

Moreover, the manner in which scanpaths are
aggregated also impacts the empirical support for
a given theory. E.g., surprisal theory (Hale, 2001;
Levy, 2008), the theory that the processing effort
for a linguistic unit depends on its in-context infor-
mation content, suggests that contextual word pre-
dictability should have a more pronounced effect on
gaze duration than total fixation time, because the
latter can be influenced by material from the right
context through regressive saccades. But, coun-
terintuitively, next-word surprisal has been found
empirically to be a stronger predictor of total fixa-
tion time than gaze duration (Wilcox et al., 2023).
Because both gaze and total duration are aggregate
measures, providing a precise explanation for such
results is challenging. Another theoretical concern
with aggregations is that they tend to conflate cogni-
tive and oculomotor control processes. While cog-
nitive processes, €.g., lexical access, contribute to
reading slowdowns (Mollica and Piantadosi, 2017),
the oculomotor system also imposes physiological
time delays between successive saccades, suggest-
ing that reading times may reflect an interplay of
both cognitive and mechanical constraints (Salt-
house and Ellis, 1980; Rayner et al., 1983).

In this paper, we advocate a unified approach
that jointly models when fixations occur, where
they land, and how long they last. We achieve
this by constructing a marked spatio-temporal

point process, which alternates between generating
saccades and fixations. To model saccade timing
and fixation locations (when and where), we
employ a spatio-temporal Hawkes (1971) process,
which captures how the density of future fixations
changes in response to preceding ones in both
time and space; Fig. 1 gives an illustration. To
model fixation durations (how long), we adopt a
log-normal distribution with a convolution-based
approach inspired by Shain and Schuler (2018,
2021). We evaluate our probabilistic model on a re-
processed (App. A) version of the English portion
of the MECO corpus (Siegelman et al., 2022), as-
sessing its ability to jointly model spatio-temporal
disaggregated fixation and duration patterns.
Empirically, we uncover several factors that
yield better models of saccade planning, including,
e.g., spatio-temporal dependencies on previous sac-
cades, the ability to model the tendency towards
a left-to-right progression of eye movement, and
reader-specific effects. Interestingly, these improve-
ments are the most prevalent when fixations that
occur outside of a character’s bounding box are
included in modeling. When additionally includ-
ing predictors like contextual surprisal, however,
we observe only tiny improvements in the model’s
ability to perform saccade planning. Furthermore,
in our experiments on fixation durations, we obtain
results that may have negative implications for es-
tablished theories on human language processing.
First, we observe little improvement when incor-
porating the effect of unboundedly many previous
fixations through the convolution-based technique
in comparison to a model that employs a Markov as-
sumption when modeling past fixations. This find-
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ing suggests that the effect of previous fixations on
subsequent ones may indeed be bounded. Second,
when incorporating predictors such as contextual
surprisal, unigram surprisal, and length, we obtain
effects that are an order of magnitude smaller when
modeling scanpaths as compared to modeling ag-
gregated measurements. This finding suggests that
some effects reported in the literature based on
aggregated scanpaths may appear larger than they
would if raw scanpath data were modeled directly.

2 Modeling Reading Data

While reading, our eyes make progress through the
text via brief, rapid movements called saccades.
Very little visual information is extracted during
any one saccade (Ishida and Ikeda, 1989). Instead,
most of the information is extracted during the
pauses that occur between saccades, where the eyes
remain (mostly) stationary.! These pauses, which
are generally much longer than saccades, are called
fixations. In these terms, reading can be thought
of as alternating between fixations and saccades.

Examining reading behavior is one method to
better understand the cognitive mechanisms that un-
derlie reading and language processing more gen-
erally. For example, fixations are known to reflect
lexical access (Lima and Inhoff, 1985), syntactic
parsing (Frazier and Rayner, 1982), and semantic
integration (Ehrlich and Rayner, 1983). A com-
mon way to measure reading behavior is through
eye-tracking studies (Rayner, 1998), which record
high-frequency gaze samples that are segmented
into discrete fixations.

Formalization. Formally, each fixation is char-
acterized as a triple (¢, s, d) consisting of an onset
time ¢, a spatial location s, and a duration d. The
onset time ¢ € R is the starting time of the fixa-
tion relative to some reference point, typically the
start of the recording. The spatial position lives
in a bounded two-dimensional coordinate space
Q c R2, for example, a screen. Finally, the dura-
tion d € R+ captures how long the eye remains
still before initiating the next saccade. We consider
a (full) scanpath 7 to be a set of N fixations, i.e.,

Td:Cf {(tnysnadn)}nN:Ia (1)

'The eyes do not remain completely stationary; there are
constantly minor movements in the form of tremors, small
drifts, and microsaccades (Rayner, 1998).

where t,,, < t, if m < n.Foreachn € {1,.., N},
we define the history H,, as

def

Hn = {(tmvsmadm) ’ tm < tn}- (2)

Note that in addition to fixations’ onset times,
locations, and durations, this sequence encodes
the onset times and durations of saccades as
well.2 Furthermore, we note that Eq. (1) includes
the full sequence of fixations and saccades that
occur in 2 during an eye-tracking session. This
includes fixations that do not land on any word,
i.e., those that land outside character bounding
boxes, re-fixations on different parts of the same
word, and regressive saccades. We also consider
filtered scanpaths, i.e., the subsequence of a
full scanpath that only contains fixations that fall
within the bounding box of some word.’

2.1 Modeling Details

Aggregations. In most sentence processing ex-
periments based on eye-tracking data, the raw data
are typically aggregated into reading time variables
at the word level; see (Frank et al., 2013).* Some
of the most common word-level aggregations are:

« first fixation duration, the duration of the first
fixation that lands on a word;

» gaze duration, the sum of the durations of all
fixations that land on a word before leaving it the
first time;

¢ total fixation duration, the summed duration of
all the fixations on a word; and

» scanpath duration, the summed duration of all
consecutive fixations that land on the same word.

Note that the first three aggregation strategies are
ordered in a nested fashion, i.e., each strategy
aggregates over at least as many fixations as the
previous; for more details, see Inhoff (1984),
Berzak and Levy (2023), and App. B.1. The final
aggregation strategy, scanpath duration, is not
nested in the sense above. Moreover, a sequence of
scanpath durations may contain multiple durations

*In particular, the onset of the n™ saccade can be inferred
by adding the n' duration to the n'™ fixation onset. The dura-
tion of the saccades can be inferred by taking the difference
between the fixation onsets and the saccade onsets.

3Fixations outside word bounding boxes account for 52.3%
of all fixations in our dataset. Note that both the size of a
bounding box and the strategy for assigning fixations to words
are determined at the discretion of the modeler.

*Aggregations into other regions of interest are also used
(Cook and Wei, 2019; Brodbeck et al., 2022)—especially
when studying specific types of reading behavior like skip
rates (Rayner et al., 2011; Giulianelli et al., 2024a).
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that correspond to the same word. See Shain and
Schuler (2021) for more details.

Statistical analysis. The standard approach to
analyzing aggregated measurements is to use linear
modeling (Kliegl, 2007; Giulianelli et al., 2024b;
Kuribayashi et al., 2024, 2025) or generalized ad-
ditive modeling (GAMs; Smith and Levy, 2013;
Goodkind and Bicknell, 2018; Wilcox et al., 2020,
2023; Gruteke Klein et al., 2024). When multi-
ple reading times per stimulus are available, e.g.,
when multiple participants read the same stimulus
in their respective trials, it is appropriate to apply a
mixed-effects model (e.g., Aurnhammer and Frank,
2019; Xu et al., 2023), using random effects to ac-
count for variability across participants. In §4, we
investigate whether incorporating reader-specific
effects improves the modeling of saccades and fix-
ation durations, estimating them as fixed effects
rather than random effects.

Spillover effects. Beyond aggregation, there is
another limitation of the above-mentioned model-
ing techniques worth noting. The effect that cog-
nitive processing of a unit has on reading time is
not necessarily instantaneous; it often leads to read-
ing slowdowns for units that occur later in the text
(Shain and Schuler, 2021). To incorporate such
effects, these models must include additional pre-
dictors describing previous units, which are called
spillover variables. We discuss the modeling of
spillover variables in more detail in §3.2.

Predictors. It is common to use predictors
derived from pre-trained language models when
modeling reading data in order to estimate the
effect that the prior context has on reading time
(e.g., Oh and Schuler, 2023). Here, we focus on
one such predictor called contextual surprisal.
Let X be a finite, non-empty set of linguistic units,
e.g., characters or words, called an alphabet, and
let X* be the set of all strings that can be formed
by concatenating units in ¥, including the empty
string €. We further employ a special symbol
EOS ¢ 3 to denote the end of a string, and define
Y & % U {Eos}. Following Shannon’s (1948)
formulation of information content, the contextual
surprisal of a unit w; € ¥ given a preceding
context of units w; € X* is defined as

st(we) £ —logy T (wy | wey), (3)

where (- | w<) is the true (albeit unknown)
distribution over > conditioned on the context w ¢,

defined using prefix probabilities; see, e.g., Opedal
et al., 2024, for further technical discussion.

Surprisal theory. Surprisal theory (Hale, 2001;
Levy, 2008) predicts that the cognitive processing
effort for a linguistic unit w is a function of its
contextual surprisal. This theory has received
empirical support across several datasets and
languages (Kuribayashi et al., 2021; Wilcox et al.,
2023), and there is evidence suggesting that the
linking function between surprisal and different
aggregated measurements of processing effort is
well-approximated by an affine function (Smith
and Levy, 2013; Xu et al., 2023; Shain et al., 2024).
Such studies typically include additional baseline
predictors, like unigram frequency and word length
(Opedal et al., 2024). Importantly, surprisal theory
is a theory about computational demand, situated at
the computational level of Marr’s (1982) hierarchy.
Thus, it neither makes direct predictions about
the underlying cognitive mechanisms nor about
eye movement control.’> In our empirical study
presented in §4.1, we explore whether surprisal and
other predictors are predictive of more fine-grained
eye movements than the theory itself considers,
i.e., whether they are useful for saccade planning
(Zingale and Kowler, 1987). App. B.2 gives a brief
overview of related cognitive models of reading.

3 Modeling Fine-Grained Reading Data

To capture the fine-grained dynamics of human
reading, we now propose a probabilistic model of
scanpaths. At the core of our approach is the goal of
generating the three key components of a fixation:
when it begins, where it lands on the screen, and
how long it lasts. Our probabilistic model takes the
form of a spatio-temporal marked point process,
consisting of two components.

* A spatio-temporal point process for fixation
onsets and locations, characterized by a density
function f(t,,,$n | Hn—1) that models the like-
lihood that the n™ fixation in the scanpath 7~
occurs at time ¢, on screen location s,, given
the history of preceding fixations up to time
tn—1. See §3.1 for details.

* A probability distribution for (non-negative)
fixation durations (marks), which is charac-
terized by a density function g(d,, | Hn—1,tn)

3For more discussion, see Ohams et al. (2025) who propose

a mechanistic model of human sentence processing based on
predictive coding (Friston and Kiebel, 2009).

30521



that models the likelihood of the n™ fixation in
the scanpath having duration d,, given the last
fixation onset t,, and the history of preceding
fixations up to time ¢,,_;. See §3.2 for details.

Under this model, a scanpath is iteratively sampled
as follows. Note that Ho = {}.

(a) Sample a fixation’s onset time and location:

(tn,Sn) ~ f(? ‘ Hn—l): “4)

according to the spatio-temporal point process;
see Eq. (13) for more details.

(b) Sample a fixation’s duration:

dp, ~ g(’ | /anlatn)v (5

according to the density of fixation durations;
see Eq. (15) for more details.®

(c) Update the history with new fixation: The
full fixation (t,,, S,, d,,) is added to the history:

Hy = Hoo1 U{(tn;Sn,dn)}. (6)

Steps (a)—(c) are iterated until a predefined reading
horizonT" € R>q is reached.” Thus, our model can
be viewed as a stopped spatio-temporal marked
point process (Daley and Vere-Jones, 1988).

3.1 Modeling Fixation Onsets and Locations

We model f(t,,s, | Hp—1) with a spatio-
temporal Hawkes process (Hawkes, 1971).8 A
Hawkes process is a special case of a spatio-
temporal non-homogeneous Poisson point pro-
cess, which assumes that the probability that a
new event occurs in the (infinitesimal) region
[tn,tn + dty) X [Sn,sn + ds,) is approximately
A(tn, Sn; Hp—1)dtpdsy,, where A\: R>g x @ —
R>q is called the intensity function. A Hawkes
process allows past fixations to influence the prob-
ability of new fixations in an additive manner. This

®The density g(- | Hn—1,tn) could also have been condi-
tioned on the n™ screen location Sn; we chose not to do so
based on results obtained from preliminary experiments.

7 An application of our model that we do not emphasize
here is generating synthetic scanpaths. Besides being interest-
ing for cognitive modeling, synthetic scanpaths have been used
both to enhance language representations (Barrett et al., 2018;
Sood et al., 2020b) and to probe the internal behavior of neural
NLP models (Sood et al., 2020a; Hollenstein et al., 2022).

8Spatio-temporal Hawkes processes (Reinhart, 2018) have
several other applications, e.g., modeling earthquakes and
their aftershocks (Ogata, 1999), urban crime (Mohler et al.,
2011), and spread of infectious diseases (Meyer et al., 2012).

influence is often termed self-excitation in the liter-
ature. The intensity function of a spatio-temporal
Hawkes process is defined as

def

)\<tnasn§Hn—1) = @)

n—1
v+ Z ¢m (t” —tm — 5(77’7 m)) wm(sn)7
m=1

where v € R is the base intensity, ¢, : R>g —
R>¢ are exponentially decaying temporal kernels
governing the influence of past events, 1, : 2 —
R> is a density over the coordinate space (2, and

n—1 m—1
S(n,m) =3 dj— > d; (8)
j=1 j=1

is the cumulative duration between t,, and ¢,,,. No-
tationally, we suppress the dependence of ¢y, ¥y,
and § on the history H,_; for simplicity. Sub-
tracting 0 (n, m) from the time difference in Eq. (7)
ensures that the kernel ¢,,(-) only captures the in-
tervals between saccades. Furthermore, we remark
that, when generating the n™ fixation, the Hawkes
process conditions on all past fixations H,_1,
which is what enables the self-exciting behavior.

Temporal kernel. Our choice of ¢,,, allows each
past fixation indexed by m to contribute to the in-
tensity of future fixations. However, that influence
decays exponentially the farther back it looks, as
determined by ¢,, — t,,, — 6(n, m) from Eq. (7). We
consider an exponential kernel, parameterized as

Sm (L) = h(xpa) exp(—h(x,8) - A), ()

where x,,, € RP is a column vector of predictor val-
ues associated with the m™ fixation (e.g., surprisal),
a and @ are column vectors in RP of learnable
parameters, and h: R — R>q is a function that
ensures the non-negativity of the dot product,
e.g., a ReLU. Note that h(x,, a) quantifies how
much a fixation increases the probability of
subsequent fixations, its excitation strength, while
h(x,.,3) determines how quickly the influence of
the fixation diminishes over time, its decay rate.
Because excitation strength and decay rate depend
on an event-specific vector of predictor values X,
the strength of excitation and decay rate may vary
across different spatio-temporal conditions.

Spatial density. We model the spatial component
1 as a bivariate spherical Gaussian distribution
centered at ji,,(S,,), where f,,: R? — R? is a
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fixation-specific transformation function; we de-
scribe specific choices of y,, in the paragraph be-
low. These choices result in the following density

ef ]- — 2
Yim(sa) & 5 exp (= LemtimfenlD) - (10)

where || - || denotes the Euclidean (L2) norm. This
design choice allows us to interpret the intensity
function introduced in Eq. (7) as a conical combina-
tion of Gaussian densities, each corresponding to a
past fixation event. Thus, the intensity function can
be seen as proportional to the density of a multi-
modal distribution over 2. We contend that this
property aligns well with what is known about hu-
man reading behavior because it captures that eye
fixations may jump either forward or backward in
the text with varying probabilities (Rayner, 1998).
We consider three different choices of the trans-
formation function ,,,. As a baseline, we first con-
sider pP (s) = s, i.e., the identity function. How-
ever, this baseline yields an overly simple model:
(1) it predicts that saccades are most likely to oc-
cur around previous fixations, and (ii) it does not
incorporate other predictors that may influence the
location of the next fixation. To address (i), we
parameterize fi,, as an affine transformation of the
previous fixation location s. Mathematically, this
means that j,,(s) takes the following affine form

an

where A € R?*? is amatrix and b € R? is a vector.
To address (ii), we consider the same vector of pre-
dictors x,, € R? applied into the temporal kernel
and incorporate predictor-specific effects, yielding
the fully parameterized transformation function

2, (s) £ As+b,

pl(s) = 12, (s) + Cxip, (12)

where C € R2*P is a matrix.

The density function. Given the intensity func-
tion defined in Eq. (7), the corresponding probabil-
ity density function of a Hawkes process is given by

f(tn,sn | Hn—1) (13)

def A(tna Sn;s /anl)
exp(A(tn; Hn-1))

The indicator function ensures that no probability
mass is distributed to preceding time points and

A(tn; Hn—l)

tn
o / / AMu, 25 Hp—1)dzdu.
tnfl"l‘dnfl Q

ﬂ{tn Ztp-1+ dn—l}-

(14)

See Daley and Vere-Jones (1988, §7.2) for a
detailed technical discussion.

3.2 Modeling Fixation Durations

Fixation durations are modeled as non-negative ran-
dom variables with a conditional density denoted
by g(dn | Hn-1,tn). Let d, > 0 be the dura-
tion of the n'" fixation. We assume a log-normal

distribution for fixation durations,’ i.e.,
9(dn | Hn—1,tn) & (15)
1 < (log dp, — §n(tn))2>
————exp | — 5 ,
d,V2mo? 20

where &,(t,) is a fixation-specific function of
the fixation onset t,, and the past fixation history
‘H,,—1. For clarity, again, we suppress the explicit
dependence of &, (t,) on H,_1 in the notation.
Note that 02 > 0 is a fixed variance parameter,
different than o2 in Eq. (10).

Conditional log-mean of duration. Similar
to Shain and Schuler (2018, 2021), we model
temporally delayed spillover effects through
a convolution over past predictor values. Let
Xm € RP be a column vector of predictor
values corresponding to the m™ fixation and
K C{1,...,p} be a set of indices representing the
predictors for which we model spillover effects.
We then define the convolution function
&ltn) & xyw (16)
n—1
+ Z w, Z Tk (b — tm | o, Br, Ok)

keK m=1

where w € RP is a column vector of parameters,
Tmi denotes the value of predictor k at fixation
m, wy, € R is the spillover coefficient of predictor
k, and the kernel v(- | ax, Sk, 0x) is the density
function of a shifted gamma distribution, defined as

def

’7(7— |O‘k7ﬁka‘9k) = (17)
F(sz) (7 + 0r) ™ exp (= Br(7 + 0k))

with parameters ap € Ry, S € Ry and
0 € R>0; I'(+) denotes the gamma function.

“We evaluated several candidate distributions using & -fold
cross-validation and found that the log-normal distribution
offers a good trade-off between interpretability and goodness-
of-fit; it outperformed alternatives such as the Weibull, expo-
nential, and Rayleigh distributions. See App. D for details.
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Markovian spillovers. Most previous work (see
§2.1) incorporates spillover effects as additional
predictors in a linear model or GAM. In our frame-
work, this corresponds to replacing the gamma ker-
nel in Eq. (16) with spillover parameters w/ , € R,
yielding the Markov model:

n—1
Mt Exw+ Z Z Tk Wi, (18)

ke K m=n—I

where [ denotes the number of previous fixations
that contribute to the spillover effect, i.e., the
model’s Markov order. Each predictor x,,; rep-
resents the value of feature £ € K at time step m,
and w] , € Ris the corresponding weight applied
to that feature and lag. The double subscript em-
phasizes that the model learns distinct weights for
each combination of feature and lag.

4 Experiments and Results

We employ the modeling framework introduced in
§3 to run two suites of experiments distinguished
by the scanpath components they target, i.e., sac-
cade planning (§4.1) and fixation durations (§4.2).
The experimental setup is detailed in App. A. In
each of the subsequent subsections, we introduce
the hypotheses we are testing, the model specifica-
tions we use, and present experimental results.

4.1 Modeling Saccade Planning

In this section, we empirically study how well the
spatio-temporal Hawkes process fits to saccades
in reader scanpaths. We are interested in a num-
ber of different questions. First, we ask which
components of the model are useful for modeling
saccades. To this end, we introduce several model
specifications, including a learned constant spatial
shift and reader-specific effects. We also introduce
two simple baseline models. Second, we are inter-
ested in whether saccades can be modeled using
filtered scanpaths, or whether this requires more
fine-grained data. Finally, we turn our attention
towards the predictors. We investigate whether in-
corporating word and character-level quantities as
predictors associated with past fixations helps de-
termine where and when the next saccade will land,
beyond what is captured by constant displacements
from past fixations and individual reader effects.

4.1.1 Model Specifications

Baseline models. We obtain baseline models by
simplifying the intensity function from Eq. (7). The

main baseline model is a standard Hawkes pro-
cess. It defines the excitation strength « and de-
cay rate 3 in Eq. (9) as scalar values, and (")
from Eq. (10) as the identity function. We also in-
clude two simpler models: a last-fixation baseline
which models each fixation as normally distributed
around the previous one with constant variance,
and a Poisson baseline which assumes fixations
to be uniformly and independently distributed in
space and time. Further details are given in App. C.

More sophisticated models. Next, we introduce
models that are more expressive than our baselines.
Our first model is the constant spatial shift (CSS)
model, which predicts new fixation locations based
on a constant displacement from previous fixations.
This term captures a baseline tendency for gaze to
progress linearly across the text, independent of
specific word content or surrounding linguistic con-
text. It uses the spatial mean from Eq. (11). This
model and our baseline models treat all scanpaths
as if a single average reader generated them; how-
ever, this treatment deviates from the reality that
all individuals exhibit distinct reading styles. To
capture such variations, we include reader-specific
fixation effects in both the temporal and spatial
parameters for each of the R € Z~ readers. We
consider a vector of predictors

X Z 1@ Uy, (19)

where 1 € R! is the 1-dimensional column vec-
tor with value 1 corresponding to the intercept,
u,, € {0,1}* is a unit vector with a single non-
zero value that corresponds to a particular reader;
@ denotes column-wise concatenation. As a result,
the dot products x, o and x|, 3 will be the sum of
a global effect and a reader-specific effect. Note
that this influences both the temporal (Eq. 9) and
the spatial kernel (Eq. 12). We refer to this model as
the reader-specific effects (RSE) model. Finally,
we treat each predictor associated with a fixation as
an effect that modulates both the temporal kernel
and the spatial mean. In the case of a single effect
z, we let the predictor vector be equal to

Xm = 1B Uy D 2ml B 2mm.  (20)
Here, 2,1 captures a global effect and z,,u,,
captures its interaction with the reader identity
encoded in u,,. For saccades that do not land on
a word and therefore lack a corresponding effect
value, we include binary indicators denoting the
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Figure 2: Bootstrapped distributions of per-fixation log-likelihood gains for different saccade models, evaluated relative to the
Poisson baseline (left) and the RSE model (right). Higher values indicate better predictive performance in modeling saccade
behavior. The models in the left-hand panel are described in §4.1, while the models in the right panel include the predictors
introduced in App. A. We distinguish between whether the model was trained and evaluated on the full or the filtered scanpaths.
The right-hand panel reports results only for the full dataset; an extended version is given in Fig. 4 (App. E). For the predictors,
we write “word” for word-level surprisal, “char” for character-level surprisal, and “freq” for unigram surprisal.

presence of the effect, along with their reader
interactions, in Eq. (12).

4.1.2 Results

Fig. 2 shows bootstrapped estimates of per-fixation
log-likelihood improvements for the various sac-
cade models evaluated on the held-out test set, as
specified in App. A. In the left panel, we show
the results when using the Poisson process as a
baseline. The results demonstrate that the increas-
ingly expressive models specified above, i.e., those
resulting from the incorporation of temporal de-
pendencies, the constant spatial shift, and reader-
specific modeling, help the model to better gener-
alize to held-out data. The best-performing model
in the left panel, obtained by inserting Eq. (19)
into Eq. (9) and Eq. (12), achieves an average per-
fixation log-likelihood gain of 2.44 nats over the
Poisson baseline. This corresponds to the model
assigning approximately (exp(2.44) — 1) x 100 ~
1047% higher likelihood to the true next fixation on
average. Parameter estimates from this model sug-
gest a consistent global rightward shift of roughly
~ 10.61 characters (including white spaces) fur-
ther to the right, a pattern consistent with the left-to-
right progression of (English) writing. There is also
evidence of self-excitation. Given estimates & and
B of the parameters in Eg. (9), we find h(x,) @) =
12.64 + 2.69 and h(x,,,3) = 16.24 + 3.44, with
values corresponding to the mean and standard de-
viation across individual readers, and x,, as de-
fined in Eq. (19). However, the lower magnitude of

h(x &) in comparison to h(x, B) suggests that,
although recent fixations do influence the likeli-
hood of another fixation in short succession, this
influence decays relatively quickly over time.

The right panel of Fig. 2 shows the marginal ef-
fect of adding lexical predictors on top of the RSE
model. While improvements are statistically signif-
icant, they are modest in magnitude: most predic-
tors yield under 2% relative gain in per-fixation log-
likelihood, a much smaller increase than what can
be observed in the left panel. Word length displays
the highest predictive power, leading to perfor-
mance improvements by approximately 4%. This
may be due to the fact that a longer word, in general,
requires a longer saccade to move to future words.

Finally, in Fig. 2, we observe that models
trained on full scanpaths place a higher probability
on held-out data than those trained on filtered
scanpaths. This pattern suggests that it is useful to
preserve the full sequence of preceding fixations,
rather than only those associated with words. See
Fig. 4 for an extended comparison.

4.2 Modeling Fixation Durations

In this section, we focus on modeling fixation
durations through the log-normal, convolution-
based model given in Eq. (16), comparing it to the
linear Markov model given in Eq. (18). In addition
to modeling the full scanpaths, we also fit linear
models to the three aggregated datasets described
in App. A. We are interested in whether surprisal
and other predictors are effective across several
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levels of aggregation, or whether the empirical
support for, e.g., surprisal theory, depends on the
aggregation strategy. For the linear models, we
log-transform the response variable.

4.2.1

Similarly to in §4.1.1, we introduce reader-specific
effects and the predictors described in App. A into
the predictor vector x,,. Specifically, we define
X, analogously to Egs. (19) and (20), respectively,
where each predictor is associated with the n™ fixa-
tion. Each predictor vector is then used in Eq. (16)
and Eq. (18). When applying Eq. (18), we set the
number of previous fixations [ = 2. The baseline
models contain intercepts, including reader-specific
ones when modeling non-aggregated data, as well
as durations of the fixations in the history. The lat-
ter are included as controls in order not to attribute
the effects of past durations to the predictors. We
also perform experiments in which the baseline ex-
cludes the prior fixation durations to get a sense of
how much the effect sizes reduce.

Model Specifications

4.2.2 Results

Fig. 5 (in App. E) plots bootstrapped distributions
of per-fixation log-likelihood improvements for
models that incorporate spillover effects via a
convolution term, evaluated on the full and filtered
scanpath datasets. Note that these are the only
datasets that retain fixation-level timing. We
observe very small and mostly insignificant effect
sizes: With the exception of the model combining
length, unigram suprisal, and character-level
surprisal, none of the intervals exclude zero, and
all average effect sizes remain below 0.004. Com-
paring the same models on the full versus filtered
scanpaths, we generally observe slightly larger av-
erage improvements for the filtered scanpaths. This
raises the question of whether different data ag-
gregation strategies could recover the larger effect
sizes previously reported (e.g., Wilcox et al., 2023).

In Fig. 6 (App. E), we present results for the
Markov linear models introduced in Eq. (18) across
differently aggregated datasets and across pre-
dictors. First, comparing the log-likelihood im-
provements with those in Fig. 5 shows that the
convolution-based model and the linear Markov
model achieve similar fit. Notably, the convolution-
based model, despite its greater expressiveness,
does not yield larger improvements than the lin-
ear model. These results suggest that it is effective
in practice to model fixation durations with a lin-

ear model and Markov assumption on the spillover
effects, at least on the MECO dataset.

Comparing across aggregation schemes, we
find that averaging gaze durations across readers
leads to substantially larger mean log-likelihood
improvements across folds, ranging from approx-
imately 0.023 to 0.037 when the baseline includes
duration spillovers (see Fig. 6); this is indeed con-
sistent with the effect sizes reported in Fig. 1 from
Wilcox et al. (2023). In contrast, disaggregated
(reader-specific) models yield improvements that
are more than an order of magnitude smaller, with
effect sizes of up to only 0.003 relative to the same
spillover baselines. Aggregation also introduces
greater variance, with the effect sizes in the ag-
gregated setting ranging from 0.01 to 0.05 across
folds, when accounting for duration spillovers. As
for the filtered and full scanpaths, the effect sizes
reduce even further. Furthermore, we find that
effects are consistently lower when past durations
are included in the baseline model (cf. §4.2.1). We
thus advocate for the continued use of such more
stringent baselines in future studies. Finally, we
note that the absolute effects on aggregated data
are somewhat smaller than what has been reported
in previous studies on MECO data (Figs. 4 and 5,
Opedal et al., 2024). This may be due to differences
in preprocessing: while we map fixations to words
via bounding boxes (see App. A), Siegelman et al.
(2022) appear to have used a different method.

5 Conclusion

We introduced a probabilistic model of reading
behavior, through which we investigate modeling
strategies for saccade planning and evaluate
whether fine-grained models of individual fixation
durations outperform approaches based on aggre-
gated gaze measurements. With respect to saccade
planning, our findings highlight the importance of
including the complete fixation history while also
accounting for systematic rightward tendencies in
gaze as well as reader-specific behavior. We also
observe that surprisal-based predictors contribute
minimal additional predictive power. When model-
ing fixation durations, we similarly observe that in-
corporating surprisal-based predictors in unfiltered
scanpath models only yields marginal improve-
ments in predictive power. Taken together, our
findings suggest that commonly used aggregation
and data processing procedures can substantially
influence the outcomes of reading time analyses.
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Limitations

This study contributes to the literature on modeling
techniques for psycholinguistic data, but several
limitations warrant discussion. First, in terms of
data, our analysis is restricted to the English portion
of MECO, leaving the other ten languages unexam-
ined. Cross-linguistic validation is needed to assess
whether our findings generalize to languages with
distinct orthographic or syntactic properties (e.g.,
languages that are read from right to left). In ad-
dition, the relationship between the predictors and
the responses was intentionally constrained to be
affine, consistent with findings from previous work;
see §2.1. This may oversimplify the relationship
between cognitive processes and eye movements
compared to more expressive modeling choices.

With respect to modeling choices, another
limitation—raised during the reviewer discussion—
concerns our assumption of isotropic variance in
the kernel for the spatial density function (Eq. 10).
While this assumption was made out of simplic-
ity, it may limit the model’s ability to capture
directional biases in eye movements. A natural
extension would be to replace the isotropic kernel
with an anisotropic one, or to apply non-linear
warping functions to better accommodate complex
spatial patterns in fixation behavior.

One reviewer also raised the importance of cap-
turing structured spatial effects, particularly those
related to line transitions, and we explored one
such direction. Specifically, we experimented with
augmenting the model with a feature encoding the
distance from the current fixation to the right mar-
gin, activated via a ReL.U function to signal likely
transitions to a new line. However, we encountered
difficulties during training, as this feature failed to
produce stable non-zero gradients, possibly due to
the sparsity of fixations near line endings. For this
reason, we chose not to include this model variant
in the final set of results presented here.

Additional directions for extending the modeling
framework can be drawn from existing literature.
For instance, the framework could be extended to
support neural Hawkes processes (Mei and Eisner,
2017), including for the modeling of individual
reader effects (Boyd et al., 2020). Another inter-
esting direction would be to study counterfactual
reading scenarios—for example, asking questions
about how scanpaths are influenced by external
disturbances that may disrupt reading. There
already exist techniques to estimate causal effects

under temporal point processes (Gao et al., 2021;
Noorbakhsh and Rodriguez, 2022; Zhang et al.,
2022), which could be applied and extended to the
setting considered here.

Regarding the experimental results, when train-
ing the PyTorch models, we conducted a grid
search over a range of hyperparameters to iden-
tify the best-performing configurations. However,
we cannot guarantee that these configurations cor-
respond to globally optimal parameter estimates.
We also note that the character- and word-level
surprisal estimates are derived from different lan-
guage models. Thus, any performance differences
between them cannot be attributed solely to the
granularity of representation, i.e., character- vs.
word-level. Additionally, the standard Hawkes
process baseline and the last-fixation baseline ex-
hibited comparable performance. While we ex-
tended the Hawkes model to capture spatial gaze
patterns, we did not apply similar enhancements
to the last-fixation baseline. A more balanced
comparison—where both models are equipped with
spatial effects—could offer clearer insights into
their relative strengths.
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Avg SD  Min Max
Lines 10.5 1.2 8.0 12.0
Characters 1093.0 1252 831.0 1231.0
BBox width 12.0 00 120 12.0
BBox height 223 22 180 24.0

Table 1: Summary statistics of raw MECO data, including the number of lines and characters per text and bounding box (BBox)
dimensions.

A Experimental Setup

Data. We use the English portion of the MECO dataset (Siegelman et al., 2022) as a source of reading
data. The MECO dataset provides scanpaths for multiple readers over 12 short text excerpts from
Wikipedia; the English portion of the dataset includes scanpaths for 46 readers. The texts were displayed
on a 1920x 1080 screen in monospaced Consolas 22pt font. As summarized in Tab. 1, the number of
characters per text ranges from 831 to 1230 (arithmetic mean 1093), and the number of lines from 8 to 12
(arithmetic mean 10.5). We use the Tesseract OCR library'? in Python to identify characters and their
bounding boxes; see the paragraph below for more details. For each session, we consolidated the gaze
measurements into a scanpath sequence 7 for each reader. This process resulted in 97,742 fixations across
texts and readers. Each fixation is then associated with the character whose bounding box contains its
location coordinates or flagged as having landed outside the bounding box of any character. To facilitate
comparison with coarser targets, we derived three additional datasets: (i) the filtered scanpath-duration
dataset (§2), obtained by removing fixations outside word bounding boxes and merging consecutive
fixations on the same word (46,511 data points); (ii) the per-reader word-level gaze-duration dataset,
in which each record captures the gaze duration of a single reader on a single word (34,368 data points);
and (iii) the averaged word-level gaze-duration dataset, produced by averaging gaze durations across
readers for each word (2,097 data points). Gaze duration is defined in §2.1.

Optical character recognition (OCR). We applied the Python Tesseract OCR library!! to each image
in the MECO dataset (Siegelman et al., 2022) to identify textual characters and their bounding boxes. The
number of characters per text, the number of lines, and bounding box information are summarized in
Tab. 1. Tesseract provides the position and dimensions of each recognized character. We set the heights
to a constant value by adjusting them to match the tallest character in the image, and the widths to the
90" percentile of character widths. This ensures a consistent character grid for subsequent analysis.
Because Tesseract does not detect whitespace as distinct regions, we identified whitespace ourselves by
comparing gaps between adjacent character boxes. Whenever the horizontal gap was at least 80% of a
typical single-character width, we considered the gap to be a whitespace and assigned it a bounding box
of the same constant height.

Model training and evaluation. Our models were implemented in PyTorch and trained with gradient-
based optimization using stochastic gradient descent (Robbins and Monro, 1951), with Nesterov momen-
tum (Nesterov, 1983). The models were trained on a fixed split of 80% training, 10% validation, and
10% test data over 30 epochs, using early stopping with a patience of 5 epochs (i.e., training stopped if
the validation loss did not improve for 5 consecutive epochs). The best hyperparameter configuration
was selected based on validation performance and then evaluated on the held-out test set. For the models
related to fixation onsets and locations, we performed a grid search over batch sizes {64, 128,256},
learning rates {0.1,0.01,0.001}, and weight-decay coefficients {0, 10~4}, for a total of 18 runs for each
model and dataset type. For the convolutional model of fixation durations, the batch size was fixed at 128,
while learning rates {0.01,0.001,0.0001} and weight-decay values {0,10~*} were explored. We further
varied the initial parameters of the Gamma distribution that defines the convolution kernel in Eq. (16),
testing (o, Br) € {(2,3), (3,4), (3,6)} and an initial 6 of 0.5, for all predictors k = {1, ..., K'}. These

10https ://pypi.org/project/pytesseract/
Yhttps://pypi.org/project/pytesseract/
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values were selected empirically so that the resulting distributions would have means that align with
different inter-arrival times (from 0.5 to 0.75 seconds). Durations were recorded in milliseconds, but onset
times were rescaled to seconds before being passed to the convolution and saccade models. This scaling
keeps inter-arrival values within a range that avoids gradient explosion. We employed warm-starting to
help in the search for a good set of parameter values. More specifically, we trained the models sequentially,
starting with the simpler models used as baselines and using those for initialization in more complex
models. For the more complex models, we initialized shared parameters with the best values from the
corresponding simpler model. We also performed additional analyses using a linear model. For those
analyses, we employed five-fold cross-validation: on each fold, the model was fit using 80% of the data
and evaluated on the remaining 20%. Goodness of fit was quantified by the log-likelihood ratio (i.e.,
delta log-likelihood) with respect to predefined baselines, specified in §4.1 and §4.2. For experiments
evaluated on the fixed test split, predictive uncertainty was estimated via bootstrap resampling of the
test-set predictions.

Predictor values. Each fixation that lands in a character’s bounding box can be adorned with linguistic
attributes the character itself and the unit, e.g., the word, it belongs to. We consider the following attributes:
(i) the character-level surprisal given the context, (ii) the word-level surprisal of the corresponding word,
(iii) the number of characters in the corresponding word, i.e., its length, and (iv) the unigram surprisal,
i.e., the log frequency, of the corresponding word. For bounding boxes associated with whitespaces we
can only compute character-level surprisal; fixations that do not land in any bounding box remain adorned
with these attributes.!”> We distinguish character- and word-level surprisal as both have been considered
as predictors in past work (Giulianelli et al., 2024a). To obtain the surprisal values, we must estimate
?( | w<;) from Eq. (3) using an autoregressive language model. Because most modern language models
learn a distribution over foken sequences, we use Vieira et al.’s (2024) algorithm to convert the language
models to the character level. Word-level surprisal is obtained by summing the surprisal values of the
subword tokens that comprise the word; this algorithm is correct when no subword token crosses a word
boundary, which is the case in the language models we experiment with. Word-level surprisal estimates
are derived from mGPT (Shliazhko et al., 2024), while character-level surprisal estimates are derived from
GPT-2 (Radford et al., 2019). Finally, word lengths and word frequencies are obtained from Speer (2022).

B Discussion on Related Work

The below subsections give more context on aggregated eye-tracking measurements (App. B.1) and
cognitive models of reading (App. B.2).

B.1 Common Aggregations of Reading Data and their Interpretation

We defined first fixation duration, gaze duration, and total fixation duration in §2.1. These are generally
thought to reflect progressively later stages of language processing (Inhoff, 1984; Berzak and Levy, 2023).
We describe them here, along with their standard interpretations. First-fixation time, the duration of only
the first fixation that lands on a word, is associated with word identification and lexical processing (Clifton
et al., 2007; Berzak and Levy, 2023) and tends to exhibit smaller surprisal effects (Wilcox et al., 2023;
de Varda et al., 2024). Gaze duration (also called first-pass time), the summed duration of all fixations
between landing on a word’s region and leaving it, is thought to be indicative of early syntactic and
semantic processing, and typically considered the aggregate to be most strongly associated with processing
difficulty (e.g., Smith and Levy, 2013; Goodkind and Bicknell, 2018; Wilcox et al., 2020). Total fixation
time, the summed duration of all the fixations on the word, including refixations of the region after it was
left, is thought to be indicative of integrative processes (e.g., Demberg and Keller, 2008; Roberts and
Siyanova-Chanturia, 2013) and sometimes exhibits, somewhat unexpectedly, stronger surprisal effects
than first-fixation and first-pass time (Wilcox et al., 2023; Giulianelli et al., 2024a). Scanpath durations,
the summed duration of all consecutive fixations on a word, are different from the above aggregated
measurements in that they may contain several measurements for a given word if the word was fixated

12An alternative approach would be to assign each fixation to the predictor values associated with either the previous or the
closest bounding box; we do not explore these options.
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on multiple times, excluding consecutive re-fixations. Thus, fixation events are ordered according to the
temporal order in which the words were fixated on, rather than the sequential order in which they are
written out in the text. They have been modeled, e.g., by Shain and Schuler (2021).

B.2 Cognitive Models of Reading

Several cognitive models of eye movement control during reading have been proposed. Among the
most prominent are the E-Z Reader (Reichle et al., 2003) and SWIFT (Engbert et al., 2005), which are
probabilistic models of eye movements that can also be framed as point processes. However, these models
are not designed to capture the influence of linguistic processing on gaze behavior in a data-driven way.
The Bayesian Reader (Norris, 2006), for instance, focuses on explaining effects such as the increased
difficulty of processing low-frequency words. Beyond these, other approaches have used machine learning
to predict which words are fixated during reading, i.e., skip rates (Nilsson and Nivre, 2009; Hahn and
Keller, 2016; Wang et al., 2019; Bolliger et al., 2023). Some models also predict fixation durations directly
(Bicknell and Levy, 2010; Bolliger et al., 2025). In this article, we model the scanpaths at a more granular
level, considering the exact spatial locations of fixations rather than just the words they land on. Although
our model can learn effects that are related to both cognitive and oculomotor control processes, it is not
meant to provide a plausible explanation of the mechanisms underlying such effects.

C Intensity Functions for Baseline Models

In this section, we provide more details on the Poisson and last-fixation baselines. Similarly to how we
characterized the Hawkes process through Eq. (7), we characterize each of these models through their
intensity function. The density function from Eq. (13) is changed accordingly.

Poisson process. The Poisson process model assumes that every fixation is equally likely regardless of
spatial location or temporal history, which implies fixations that are independent in space and time. Its

intensity function is
def

)\(tnasn;Hn—l) = V7 (21)
where v € R is the only learnable parameter. This serves as the simplest baseline, ignoring any spatial
or temporal dependencies.

Last-fixation baseline. The last-fixation model introduces a basic spatial dependency by assuming that
each new fixation is normally distributed around the most recent fixation. Let s,,_; denote the location of
the last fixation. Then, the intensity function is given by

Aty Sns Hno1) E v+ Pn1(sn), (22)

where 1,1 (sy,) is the probability density function of a normal distribution centered at s,,_; with variance
2. This corresponds to the spatial distribution in Eq. (10) when using u%(s) s, ie., the identity function.

D Modeling Duration: Distribution Selection

In this section, we elaborate on our choice of the conditional density function for modeling fixation
durations, as introduced in §3.2. We evaluated six candidate distributions commonly used for modeling
right-skewed time-to-event data: Rayleigh, exponential, Weibull, normal, log-normal, and gamma. The
evaluation was performed using 10-fold cross-validation on the training and validation data. While
the log-normal and gamma distributions demonstrated comparable predictive performance (see Fig. 3),
we selected the log-normal distribution as its parameters directly correspond to moments of the log-
transformed durations, enabling more intuitive interpretation. Moreover, these parameters can also be
interpreted as those of a normal distribution fitted to the log-durations, facilitating analysis through least
squares estimators.
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Comparison of Distributions for Duration Modeling
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Figure 3: Goodness-of-fit comparison of candidate distributions for fixation durations. Both log-normal and gamma distributions
showed superior performance compared to other alternatives; higher log-likelihood indicates better fit. The log-normal was
ultimately selected for its enhanced parameter interpretability.

E Further Results

In this section, we provide additional plots and analyses to complement the main results: Fig. 4 expands
upon Fig. 2, Fig. 5 shows outcomes from the convolution model of fixation durations, and Fig. 6 reports
results for Markov linear models across various duration aggregation strategies.
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Bootstrap Estimates of Log-Likelihood Gains on Test Set Across Saccade Models (Extended)
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Figure 4: Bootstrapped distributions of per-fixation log-likelihood gains across saccade models computed relative to the RSE
model. The models correspond to those specified in §4.1. The “Raw” and “Filtered” labels indicate whether the model was
trained and evaluated on the raw or filtered scanpath dataset, respectively. We write “word” for word-level surprisal, “char” for
character-level surprisal, and “freq” for unigram surprisal. Higher values indicate better predictive performance in modeling
saccade durations. A shortened version of the plot can be found in Fig. 2.
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Bootstrap Estimates of Log-Likelihood Gains on Test Set Across Fixation Duration Models
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Figure 5: Bootstrapped distributions of per-fixation log-likelihood gains across duration models, as defined in Eq. (16). The
base model includes reader-specific intercepts and duration spillovers via a convolution term. The full models incorporate the set
of predictors indicated on the z-axis. For each predictor, the model includes its value at the current fixation, its interaction with
the reader, and its spillovers through the convolution term. The models correspond to those described in §4.1. The labels “Raw’
and “Filtered” indicate whether the model was trained and evaluated on the raw or filtered scanpath dataset, respectively. We
write “word” for word-level surprisal, “char” for character-level surprisal, and “freq” for unigram surprisal. For models trained
on the raw dataset, an additional binary predictor indicates whether the fixation occurs on a word. Higher values reflect better
predictive performance in modeling fixation durations.
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5-Fold CV Estimates of Log-Likelihood Gains on Test Set across Linear Models on
Fixation Duration

With base model containing reader intercepts and duration spillovers as predictors
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Figure 6: Bootstrapped distributions of per-fixation log-likelihood gains across linear Markov models of fixation duration, as
defined in Eq. (18). Each delta log-likelihood is computed relative to a baseline model that includes: (i) reader-specific intercepts
and spillover effects from previous fixation durations (models in the top panel of the figure), and (ii) only reader-specific
intercepts (models in the bottom panel). The models with spillovers include them from the previous two fixations. The x-axis
labels specify the set of predictors included in each model variant. Each full model incorporates the specified predictors with
corresponding spillovers, as well as the predictors in the corresponding baseline model. We write “word” for word-level surprisal,
“char” for character-level surprisal, and “freq” for unigram surprisal. Gaze duration is abbreviated as “GD”. Each plot corresponds
to one of the datasets introduced in App. A. Error bars represent the range—from minimum to maximum—observed across
the five folds, with the central point indicating the arithmetic mean. We use asterisks (*) on the x-axis to highlight models that
achieved a positive delta log-likelihood in all data folds.
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