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Abstract

Large language models (LLMs) have demon-
strated remarkable abilities in various natural
language processing areas, but they demand
high computation resources which limits their
deployment in real-world. Distillation is one
technique to solve this problem through ei-
ther knowledge distillation or task distillation.
Both distillation approaches train small mod-
els to imitate specific features of LLMs, but
they all neglect basic reading education for
small models on generic texts that are un-
related to downstream tasks. In this paper,
we propose basic reading distillation (BRD)
which educates a small model to imitate LLMs
basic reading behaviors, such as named en-
tity recognition, question raising and answer-
ing, on each sentence. After such basic ed-
ucation, we apply the small model on vari-
ous tasks including language inference bench-
marks and BIG-bench tasks. It shows that the
small model can outperform or perform com-
parable to over 20x bigger LLMs. Analysis re-
veals that BRD effectively influences the prob-
ability distribution of the small model, and has
orthogonality to either knowledge distillation
or task distillation.

1 Introduction

Large language models (LLMs) exhibit consistent
performance gains across various areas (Zhao et al.,
2023; Huang and Chang, 2023; Chang et al., 2023).
Nevertheless, their formidable size and high com-
putational requirements impede their real-world
applications. Distillation is one widespread ap-
proach to tackle this issue by distilling LLMs into
smaller language models. It is divided into mainly
two categories: knowledge distillation and task dis-
tillation. Both distillation approaches adopt the
teacher-student framework, in which the smaller
language models act as the student models, and are
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Figure 1: The illustration of BRD process.

trained to imitate specific features of LLMs, which
act as the teacher models. Specifically, knowledge
distillation (Hinton et al., 2015) usually trains the
student models to imitate implicit features inside
the teacher models, while task distillation (Chen
et al., 2020) usually trains the student models to
imitate explicit behaviors of the teacher models.

Different to both distillation approaches, we pro-
pose basic reading distillation (BRD) that teaches a
student model basic reading abilities such as named
entity recognition, question raising, and question
answering, on general sentences. It simulates hu-
man reading education via interactions including
raising questions about parts of a sentence, answer-
ing the questions, extracting important informa-
tion such as named entities. Such basic reading
education on every sentence is important before
application on downstream tasks, while is always
neglected in both knowledge distillation and task
distillation.

Our motivation is that LLMs should be educated
beyond just trained for next token prediction. The
education brings LLMs basic reading ability in text
comprehension. It is like that LLMs experience
the high school/college education on reading, then
is well prepared for the future test, while tradi-
tional LLMs training just consumes tokens, then
let LLMs directly participate in the future test. Re-
garding the distillation, we think that one well edu-
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cated student is more effective than the one without
reading education.

Furthermore, the benefits of BRD are two-fold:
Firstly, beyond only using texts for training next
token prediction, BRD educates the student model
to deeply understand the texts via interactions. All
available data such as web mined corpora can be
extended to be magnitudes larger by BRD, break-
ing the data scale and diversity limitation criticized
by Gudibande et al. (2023) in the task distillation.
Secondly, BRD also avoids the implicit nature of
knowledge distillation which imitates latent fea-
tures such as logits (Hinton et al., 2015), hidden lay-
ers (Jiao et al., 2020), and attention maps (Li et al.,
2020; Wang et al., 2021b). Such implicit nature
leads to the deficiency of learning interpretability,
while BRD demonstrates explicit reading behaviors
that are easy to interpret.

Figure 1 illustrates the process of BRD. It starts
by prompting LLMs to generate basic reading be-
haviors on general sentences, then proceeds with
training the student model to imitate these behav-
iors. Experiments on various NLP tasks, including
language inference benchmarks and Google Big-
bench tasks, show that although the student model
is trained on the general data that is irrelevant to
the downstream tasks, it can inherit teacher model
abilities, leading to excellent downstream perfor-
mances better than or comparable to those of larger
models. Furthermore, after this basic education of
the student model on general sentences, we fine-
tune the student model for downstream tasks, and
find that the basic reading education leads to fur-
ther improvement on downstream tasks, achieving
on par or better performances when compared to
the over 20x bigger teacher model. To analyze the
effect of BRD, we compute the cross entropy be-
tween the student model and the teacher model, and
find that the student model distribution approaches
closer to the teacher model distribution after BRD,
leading to better performances than non-educated
ones. In summary, the main contributions are:

• We propose BRD that educates the student
model to imitate basic reading behaviors of
the teacher model.

• Experiments show that the student model ex-
hibits excellent abilities distilled from the
teacher model on various downstream tasks,
achieving on par or even better performances
against the teacher model.

• The analysis reveals that BRD can drive
the student model distribution closer to the
teacher model distribution, resulting in signif-
icant performance improvements.

2 Related Works

There are mainly two streams of distillation ap-
proaches: knowledge distillation and task distilla-
tion. Knowledge distillation focuses on teaching
implicit features inside the teacher model, while
task distillation focuses on teaching explicit behav-
iors of the teacher model on downstream tasks. In
addition, we introduce intrinsic task pre-training
that focuses on intrinsic task data derived from the
training plain texts.

2.1 Knowledge Distillation

The field is pioneered by Bucila et al. (2006); Hin-
ton et al. (2015), followed by works using vari-
ous types of internal information from the teacher
model, including attention maps (Li et al., 2020;
Wang et al., 2021b), output logits (Liu et al., 2020),
hidden layers (Jiao et al., 2020). In the era of LLMs,
GKD uses advanced memory optimization methods
to address the memory constraint problem in distill-
ing LLMs (Tan et al., 2023), MiniLLM uses reverse
KL divergence to prevent the student model from
overestimating the void regions of the teacher distri-
bution (Gu et al., 2023a). Agarwal et al. (2024) use
on-policy distillation that trains the student model
on its self-generated mistakes. In the case that inter-
nal information of LLMs is not accessible and only
decisions of LLMs are available, Zhou et al. (2023)
estimate logits from the decision distributions to
train the student model.

2.2 Task Distillation

The task predictions or reasoning rationales made
by the teacher model are used to train the student
model in task distillation. Despite the noisy pre-
dictions of the teacher model, the student model
achieves good imitation effects in performing the
tasks (Chen et al., 2020; Wang et al., 2021a; Il-
iopoulos et al., 2022; Agrawal et al., 2023). Besides
the task predictions, rationales for the answers gen-
erated by the teacher model show efficiency in train-
ing the student model with less data (Hsieh et al.,
2023; Wang et al., 2023; Ho et al., 2023; Magister
et al., 2023). Task distillation is closely related to
model imitation researches (Orekondy et al., 2019;
Wallace et al., 2020), which collect API outputs of
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a a proprietary LM for some tasks, then use the out-
puts to fine-tune an open-source LM. Gudibande
et al. (2023) criticize the data scale and the lim-
ited diversity in model imitation. Mukherjee et al.
(2023) address this criticism by using explanation
tuning, more task data, and instructions. In compar-
ison, BRD can perform on every sentence, leading
to unlimited data resource that breaks the limitation
on data scale and diversity.

In summary, task distillation focuses on the
data of specific downstream tasks, while our BRD
mainly focuses on general sentences unrelated to
any specific downstream tasks, and the basic read-
ing behaviors in BRD are basic education resource
not aiming at any specific applications.

2.3 Intrinsic Task Pre-training
Different to task distillation that utilizes down-
stream task data, intrinsic task pre-training uses
general training set to synthesize task data. PICL is
a framework focusing on intrinsic tasks (Gu et al.,
2023b). It posits that many paragraphs in the train-
ing set documents contain intrinsic tasks such as
sentiment analysis, and retrieves paragraphs of the
same intrinsic task to compose in-context learning
examples, but its retriever is trained on 37 down-
stream tasks, which are opposite to the “intrinsic
task” nature, and limit the scale and diversity of the
composed task data. In comparison, our BRD does
not refer to any downstream tasks, and focuses on
the contents of the training set texts, thus keeping
more freedom in curating the task data. In addition,
PICL aims to train the in-context learning ability,
while BRD is for the model distillation. The in-
trinsic task data in PICL may not have task labels
since the original paragraphs do not necessarily
have both task queries and answers simultaneously,
e.g., a sentiment expression paragraph may not
explicitly states its positive or negative label for
the sentiment analysis task. In comparison, BRD
always gets education queries and responses.

Zhang et al. (2023) propose a similar intrinsic
task pre-training approach that transforms frag-
mented sentences from babyLM training set into a
cohesive paragraph (Warstadt et al., 2023). Their
task is quite challenging to accomplish since the
sentences in the training set are sampled from di-
verse resources, and lack strong semantic ties with
each other, resulting in the hardness of composing
a cohesive paragraph. Such fiction data generation
are different to our BRD approach, which generates
solid basic education data on reading activities.

3 Approach

We use a subset of CommonCrawl (CC-100) cor-
pus, which is usually included in LLMs pre-
training, as the education resource to conduct the
basic reading education. The whole education pro-
cess contains two stages. In the first stage, for
each sentence in the corpus, the teacher model is
prompted to perform basic reading. In the second
stage, we collect all basic reading behavior data to
train the student model, and finally test the student
model ability on various tasks.

3.1 Basic Reading Behaviors of the Teacher
Model

We utilize the in-context learning ability of the
teacher model to elicit its basic reading behaviors
including named entity recognition, question rais-
ing and answering. Given the corpus, we set up
a prompt template consisting of task description,
task examples, and input sentence from the corpus.

Table 1 lists the named entity recognition prompt
and the response from the teacher model. We can
see that, given the few-shot examples including en-
tities and their types, the teacher model responses
with more detailed contents of the entities, such as
the price or size of the entities, which are beneficial
for educating the student model to grasp the impor-
tant information contained in the input sentence.
Table 2 lists the question raising and answering
prompt and the response from the teacher model.
In the task instruction, question is constrained to
be about the content, structure, or attitude of the
input sentence. The question raising and answering
embody the teacher model’s reading ability, which
is targeted to be transferred to the student model.

3.2 Training the Student Model

The student model is initialized by a released
smaller pre-trained language model. We continue
training the student model based on the basic read-
ing behavior data generated by the teacher model.
To stabilize the training process, we mix the basic
reading behavior data with the original sentences
of the corpus to avoid the catastrophic forgetting of
the pre-trained model.

Suppose we have a passage consisting of three
sentences s1, s2, and s3, we constitute the named
entity recognition passage: s1 <sep> NER(s1)
<sep> s2 <sep> NER(s2) <sep> s3 <sep> NER(s3),
where NER denotes the named entity recognition
result of the teacher model for each sentence, and

30491



Perform named entity recognition on a given sentence without recognizing personal pronouns in the
input sentence as human names.
Enter a sentence:
Barack Obama was the 44th President of the United States.
Output:
In this sentence, "Barack Obama" is a person name entity, and "United States" is a geopolitical entity.
Enter a sentence:
I just bought a new MacBook Pro from Apple.
Output:
In this sentence, "Apple" is an organization name entity, and "MacBook Pro" is a product name entity.
Enter a sentence:
The Eiffel Tower is a famous landmark in Paris, France.
Output:
In this sentence, "Eiffel Tower" is a landmark name entity, and "Paris" and "France" are geopolitical
entities.
Enter a sentence:
Belmont Estate is on the market for $63 million and boasts roughly 22,000 square feet of luxurious
finishes and elaborate architecture on 1.28 acres.
Output:
In this sentence, "Belmont Estate" is a geographic entity, "63 million" is a numerical entity representing
the price of the estate, and "1.28 acres" is a geographic entity representing the size of the estate.

Table 1: The prompt for the teacher model to extract named entity information from an input sentence. Each
example consists of a sentence and its named entity information. The response from the teacher model is listed in
the bottom.

<sep> is the delimiter. Similarly, we constitute the
question raising and answering passage: s1 <sep>
QRA(s1) <sep> s2 <sep> QRA(s2) <sep> s3 <sep>
QRA(s3), where QRA denotes the question rais-
ing and answering result of the teacher model for
each sentence. The original passage is formatted as
s1 <sep> s2 <sep> s3. We use passage instead of
sentence to be consistent with the usual language
model pre-training that utilizes long contexts.

In this way, we build all original passages, de-
noted as DORI , all named entity recognition pas-
sages, denoted as DNER, and all question rais-
ing and answering passages, denoted as DQRA.
We mix them together to build the training set
DTRAIN , on which we train the student model
to minimize the loss in an autoregressive manner:

L = − 1

N

N∑

i=1

T∑

t=1

logP (yt|y<t)

where y is the passage with length T , and N is the
number of passages in DTRAIN .

3.3 Testing

For predicting the answers of the downstream tasks
when testing the student model, we use the average
of per-token log-probabilities of candidate answers
as the scoring function for all downstream tasks:

P̄ =
1

n

n∑

i=1

logPi(yi|xprompt)

where xprompt denotes the input to the student
model, y denotes the candidate answer for xprompt,
and n is the total number of words in y. We select y
with the maximal P̄ as the final answer for xprompt.
This average computation is to cover tasks such as
Google BIG-bench 1 (bench authors, 2023), whose
candidate answers are phrases/sentences rather than
single words.

4 Experiment

We use the well-known LLM Vicuna-13B 2 (Chi-
ang et al., 2023) as our teacher model due to its high
efficiency in generating large volume of texts for
teaching. We use XGLM-564M (Lin et al., 2022)
3, which is the smaller language model of the same
decoder-only family, to initialize our student model.
To compare the student model with larger model
pre-trained on the same data origin, we also include
XGLM-7.5B for comparison. In BRD, we use five
million sentences from CC-100 corpus to collect
the basic reading data generated by Vicuna-13B.

4.1 Baselines

We consider three baselines in our experiments:

• Knowledge distillation (KD): We use two KD

1https://github.com/google/BIG-bench
2https://github.com/lm-sys/FastChat
3https://github.com/facebookresearch/fairseq/

tree/main/examples/xglm
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Ask a question to the input sentence, you can ask questions about the content, structure or attitude of the
sentence, and then find the answer to the corresponding question in the original sentence. Output in the
format "Question: Answer:".
The sentence:
In order to graduate with honors, he needed to maintain a high GPA throughout college.
Question:
What did he need to do in order to graduate with honors?
Answer:
Maintain a high GPA throughout college.
The sentence:
Belmont Estate is on the market for $63 million and boasts roughly 22,000 square feet of luxurious
finishes and elaborate architecture on 1.28 acres.
Question:
How much does Belmont Estate cost?
Answer:
Belmont Estate costs $63 million.

Table 2: The prompt for the teacher model to perform question raising and answering on an input sentence. Ques-
tion is limited to be about the input sentence. The response from the teacher model is listed in the bottom.

models released in Gu et al. (2023a)4 for the
comparison. One is the standard KD (SKD)
that uses teacher distribution to supervise the
student model. The other is SOTA KD model
MiniLLM that uses reverse Kullback-Leibler
divergence for the distillation.

• Task distillation (Wang et al., 2021a; Iliopou-
los et al., 2022): The teacher model generates
the answers given the downstream task inputs,
and these generated pseudo answers are used
to supervise the student model.

• Supervised Fine-tuning(SFT): Directly fine-
tunes the student model on the downstream
tasks supervised by the gold labels.

4.2 Evaluation

We adopt a spectrum of downstream tasks for the
evaluation, including natural language inference
(XNLI(Conneau et al., 2018), CB(de Marneffe
et al., 2019), RTE(Wang et al., 2018)) , paraphras-
ing (PAWS-X(Zhang et al., 2019)) , Boolean QA
(BOOLQ(Clark et al., 2019)) , sentiment analy-
sis (SST-2(Socher et al., 2013)), and Google BIG-
bench(bench authors, 2023). In Google BIG-bench
tasks, we only consider multiple choice QA tasks
which have the fixed answers easy for the evalu-
ation, resulting in a total of 73 tasks. The results
are evaluated by the accuracy of the predicted an-
swers. The prompts for the downstream tasks are
presented in the appendix A.2.

4https://github.com/microsoft/LMOps/tree/main/
minillm

4.3 Results

The main results are grouped into three parts as
shown in Table 3. The top part presents the accura-
cies of the original models, including the teacher
model Vicuna-13B, the student model XGLM-
564M, the large model XGLM-7.5B which has
same origin to the student model, plus an exten-
sion model XGLM-564M-FURTHER, which fur-
ther trains the student model on the original one
million passages from CC-100 corpus. The number
of the further training steps is set 18,000.

The middle part and the bottom part list the ac-
curacies of various distillation or fine-tuning ap-
proaches under two scenarios: without downstream
task supervision and with downstream task supervi-
sion, respectively. The difference between the two
scenarios is the availability of the downstream task
gold answers.

Results Without Downstream Task Supervision.
In this scenario, the downstream task gold answers
are not available. It is further divided into two
conditions. One is the blind test setting, in which
any task training set data is NOT accessible. It
is for applications of the student model on fairly
new tasks. The other is the relaxed test setting, in
which only the training set input data (without gold
answers) are accessible. It is for applications on
tasks that manual labeling for the training set input
data is not available.

• In the blind test setting, we compare our
XGLM-BRD with the two released KD works:
SKD and MiniLLM. In the multiple student
models of the two KD works, we select their
GPT-2 760M version student models for the
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Task

Model XNLI RTE CB PAWS-X BOOLQ SST-2 BIG-bench-Avg Average
Vicuna-13B 59.1 78.3 71.4 62.9 84.3 81.5 35.6 67.6
XGLM-7.5B 36.6 50.9 60.7 56.8 57.2 69.5 34.3 52.34
XGLM-564M 35.5 46.2 53.6 51.3 51.2 63.9 34.0 48.0
XGLM-564M-FURTHER 34.9 46.6 51.8 51.6 51.5 59.4 34.0 47.1

Without Downstream Task Supervision
SKD 33.7 53.8 51.8 43.0 49.1 60.7 34.2 46.6
MiniLLM 34.2 58.1 73.2 44.1 55.9 62.4 34.6 51.8
XGLM-BRD 36.2 53.8 58.9 56.7 61.0 78.1 34.8 54.2
TaskDistillation 57.1 58.1 60.7 64.8 74.8 77.2 41.6† 62.0
XGLM-BRD2 59.2 62.5 82.1 64.8 75.0 81.9 44.1† 67.1

With Downstream Task Supervision
SFT 81.4 67.1 83.9 92.4 77.5 91.5 68.3† 80.3
XGLM-BRD2-SFT 81.6 69.3 91.1 91.5 77.8 92.2 69.1† 81.8

Table 3: Main results of the teacher models, student models, and various distillation and fine-tuning approaches.
Unless otherwise specified, the student models are all initialized by XGLM-564M. BIG-bench-Avg is the accuracy
averaged over the 73 bench tasks(† denotes the averaged accuracy on the reduced set of BIG-bench tasks), and
detailed accuracies are reported in the appendix A.3.

comparison due to the similar model size. The
results show that XGLM-BRD performs sig-
nificantly better than SKD and MiniLLM in
most tasks, demonstrating that XGLM-BRD
has better generalization ability to various un-
seen tasks. We also combine BRD with the
two KD works, and the results are listed in the
orthogonal analysis section 5.1 and Table 4.

Regarding the comparison between XGLM-
BRD and XGLM-564M, BRD significantly
improves the performance of the small
model, indicating that basic reading educa-
tion does enhance the ability of the small
model. Moreover, XGLM-564M-FURTHER
performs much worse than XGLM-BRD, re-
vealing that only using the original passages
for further training does not yield enhance-
ments and may even leads to decreases in
some tasks. It is the basic reading data for fur-
ther training that advance the student model.
XGLM-BRD also approaches or even sur-
passes XGLM-7.5B, which is 15x bigger, on
the downstream tasks. There is still a gap
between XGLM-BRD and the teacher model
Vicuna-13B, but this gap is significantly re-
duced or disappeared when we conduct re-
laxed test.

In some tasks such as CB and RTE, there
is comparison variance between MiniLLM
and BRD. This may be because MiniLLM
was instruction tuned on databricks-dolly-15k,
which is a task instruction following dataset
that may cover some traditional downstream
tasks such as CB and RTE, leading to the
performance better than our BRD approach.

In comparison, our BRD model was not in-
struction tuned, but was trained on general
domain to improve its general reading ability,
leading to the overall performance superior to
MiniLLM on wide variety of 79 downstream
tasks.

• In the relaxed test setting, we compare
our BRD with the task distillation ap-
proach(TaskDistillation in Table 3), which
uses the teacher model to generate pseudo
answers on the task training set for supervis-
ing the student model XGLM-564M. Because
BIG-bench tasks do not divide training, tun-
ing, and test sets, we only consider tasks each
of whom has more than 2K instances in the
relaxed test, and finally select tasks that rank
top-5 according to the number of instances as
the reduced set of BIG-bench tasks(denoted
by † in Table 3). For each task, we save
ten percent of instances as test set, ten per-
cent of instances as tuning set, and other in-
stances as training set. Our approach in this
setting uses BRD twice, that is, on the general
data we conduct BRD to obtain the student
model XGLM-BRD, then on the downstream
task data, we conduct BRD again to contin-
ual training the new student model, denoted
as XGLM-BRD2. The results show that the
task distillation approach establishes a strong
baseline that significantly outperforms both
XGLM-564M and KD models, demonstrating
that even pseudo answers can supervise the
student model to perform well on the down-
stream tasks. When BRD is introduced into
this process, the improvement is even more
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Model Approach Task
XNLI RTE CB PAWS-X BOOLQ SST-2 Average

GPT-2 120M

SKD 35.9 44.4 57.1 52.1 47.6 68.8 51.0
+BRD 37.0 54.5 66.1 56.8 62.2 76.9 58.9

MiniLLM 35.9 48.0 67.9 57.0 53.1 53.8 52.6
+BRD 35.1 51.6 71.4 48.5 60.9 79.1 57.8

GPT-2 340M

SKD 33.6 46.9 51.8 54.2 48.8 63.3 49.8
+BRD 34.2 55.2 67.9 53.8 64.6 78.1 59.0

MiniLLM 32.8 46.6 50.0 57.0 56.9 55.3 49.0
+BRD 32.7 56.3 67.9 53.4 64.1 74.4 58.1

GPT-2 760M

SKD 33.7 53.8 51.8 43.0 49.1 60.7 48.7
+BRD 34.7 52.3 64.3 56.4 62.1 68.5 56.7

MiniLLM 34.2 58.1 73.2 44.1 55.9 62.4 54.7
+BRD 35.2 52.0 76.8 50.8 60.5 67.3 57.1

XGLM-564M TaskDistillation 57.1 58.1 60.7 64.8 74.8 77.2 65.5
+BRD 58.1 61.0 71.4 63.1 74.4 81.1 68.2

Table 4: Results of combining BRD with various distillation approaches. The models for initializing the student
models are listed in the model column.

XNLI RTE CB PAWS-X BOOLQ SST-2 BIG-bench-Avg
XGLM-564M 461.7 64.8 13.2 1065.6 1098.7 55.6 145.1
XGLM-BRD 407.5 66.2 12.8 892.4 1001.1 37.0 112.2

Table 5: Cross entropy between the distributions of the teacher model and small models. The lower the better for
measuring the consistency.

pronounced by XGLM-BRD2. The compari-
son between basing on XGLM-BRD and bas-
ing on XGLM-564M in this test setting is pre-
sented in Appendix A.4.

When comparing XGLM-BRD2 with the
teacher model Vicuna-13B, it shows that
XGLM-BRD2 outperforms Vicuna-13B in
some tasks, and in the other tasks, the per-
formance gap is significantly reduced. This
comparison proves the effectiveness of BRD,
that leads to comparable or superior perfor-
mance to the 26x bigger teacher model.

Results With Downstream Task Supervision.
In this scenario, the downstream task gold answers
are available. We compare BRD with SFT, which
fine-tunes the student model XGLM-564M based
on the task supervision data. Table 3 shows that
with the gold supervision, SFT significantly im-
proves the ability of the student model, and beats
the 26x bigger model Vicuna-13B with a large mar-
gin in certain tasks. In comparison to this strong
baseline, we conduct BRD on the task data with
gold answer, then continue training XGLM-BRD
on the data mixing this basic reading data and the
original task data. The trained model is denoted as
XGLM-BRD2-SFT. The results show that XGLM-
BRD2-SFT surpasses SFT in most tasks, demon-
strating the effectiveness of the basic reading edu-

cation for the student model when the downstream
task supervision is available.

5 Analysis

5.1 Orthogonality of BRD to Knowledge
Distillation and Task Distillation

Since BRD focuses on basic reading education for
the student model without referring to any implicit
model features or downstream tasks, it is orthog-
onal to either knowledge distillation or task dis-
tillation. So, we combine BRD with knowledge
distillation by further training the student model of
knowledge distillation on our general basic reading
data, or combine BRD with task distillation by fur-
ther training the student model of task distillation
on the basic reading data of the downstream tasks.
Table 4 lists the combination results.

It shows that combining BRD in most cases sig-
nificantly improves the performances of the two
distillation approaches, which proves the orthogo-
nality of BRD to either knowledge distillation or
task distillation.

5.2 Effectiveness Verification Based on Cross
Entropy Evaluation

BRD educates the student model via explicit basic
reading behaviors. We study if such education can
effectively influence the probability distribution of
the student model. We compute the cross entropy,
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Task

Model XNLI RTE CB PAWS-X BOOLQ SST-2 Average
Llama3.1-8B 49.6 79.8 73.2 66.0 84.4 92.0 74.2
Vicuna-13B 59.1 78.3 71.4 62.9 84.3 81.5 72.9
XGLM-564M 35.5 46.2 53.6 51.3 51.2 63.9 50.3
XGLM-BRD-Llama 32.0 57.0 69.6 52.8 58.5 71.9 57.0
XGLM-BRD-Vicuna 33.7 56.0 60.7 54.4 59.8 69.0 55.6

Table 6: Comparison between using Llama3.1-8B and Vicuna-13B as the teacher models on the reduced dataset of
one million sentences.

which is often used to measure the consistency
between the teacher distribution and the student
distribution, for the teacher model Vicuna-13B and
the student model XGLM-BRD:

−
N∑

i=1

p(y)logq(y′)

where p is the teacher model probability, q is the
student model probability, y and y′ are subword
sequences of the same text according to the teacher
model and the student model, respectively. N is
the number of the texts. Since y and y′ have dif-
ferent lengths, we set p and q as sequence-level
probabilities averaged over y and y′, respectively.
We use the instances from the downstream tasks for
computing the cross entropy. For the considered
73 tasks in BIG-bench, we randomly choose 1K
instances from each task for the computation, and
report the cross entropy averaged over the tasks.
We include the original XGLM-564M to compute
q for comparison.

Table 5 shows the comparison result in the blind
test. Lower cross entropy means better consistency
between the teacher model and the student model.
It shows that on most downstream tasks, XGLM-
BRD approaches more closer to the teacher model
than the original XGLM-564M does, demonstrat-
ing significant advantage in shaping the student
model probability distribution towards that of the
teacher model.

5.3 Extension to Using Llama as The Teacher
Model

In addition to using Vicuna-13B as the teacher
model, we explore setting Llama3.1-8B-
Instruct(abbreviated as Llama3.1-8B) as the
teacher model in the blind test, and compare both
based on a subset of the data used in section 4. The
subset consists of one million sentences, on which
we conduct BRD. For each teacher model, we use
XGLM-564M as the student model.

Tasks

XNLI RTE CB PAWS-X BOOLQ SST-2 Avg

XGLM-564M 35.5 46.2 53.6 51.3 51.2 63.9 50.3
PassageLevel 36.2 53.8 58.9 56.7 61.0 78.1 57.5

SentenceLevel 34.1 55.6 55.4 53.6 58.9 76.0 55.6

Table 7: The comparison between the passage level
training and the sentence level training evaluated by the
blind test.

Table 6 lists the comparison results. XGLM-
BRD-Llama/Vicuna denotes the model distilled
from Llama3.1-8B/Vicuna-13B. It shows that BRD
is effective for using either Llama3.1-8B or Vicuna-
13B as the teacher model, achieving significant
improvements over XGLM-564M in most tasks.
Regarding the comparison between Llama3.1-8B
and Vicuna-13B as the teacher model, Llama3.1-
8B averagely performs better than Vicuna-13B as
the teacher in BRD.

5.4 Comparison to Sentence Level Training

In building the BRD training data presented in sec-
tion 3.2, we divide a passage into sentences, then
annotate each sentence with basic reading behav-
iors by using the teacher model, and finally com-
pose all sentences and their annotations into a pas-
sage according to the original sentence order. To
check whether this passage level training has the
positive effect, we abandon the last composing step
and leave the sentences and their annotations un-
ordered. Then we conduct the sentence level train-
ing on this dataset to compare with the passage
level training. Table 7 presents the comparison
result.

It shows that the sentence level training gener-
ally performs worse than the passage level training.
Since the downstream tasks are mostly the tasks
with multiple sentences as input, the passage level
training is more suitable for the downstream tasks
than the sentence level training due to its multiple
sentence training nature.
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Tasks

XNLI RTE CB PAWS-X BOOLQ SST-2 Avg

XGLM-BRD2 59.2 62.5 82.1 64.8 75.0 81.9 70.9
−NER 58.0 61.4 71.4 64.1 74.3 81.4 68.4
−QRA 58.3 61.0 67.9 63.9 74.9 80.5 67.8

Table 8: The effects of deleting different basic reading
behaviors for XGLM-BRD2 in the relaxed test.

Figure 2: The performance curve along with different
BRD data sizes (in million passages).

5.5 Ablation of Different Basic Reading
Behaviors.

We test the contribution of the different basic read-
ing behaviors by deleting either NER or QRA data
of the downstream tasks in training XGLM-BRD2.
Table 8 lists the ablation results in the relaxed test.
It shows that deleting the QRA data impacts the
performance more significantly than deleting the
NER data in most tasks. QRA focuses on the sen-
tence understanding, thus contributing more in the
basic reading education.

The coordination between NER and QRA is re-
lated to the multi-task learning (Chen et al., 2024)
that boosts the model ability through training on
multiple tasks with potential generalization to other
tasks. Different to the multi-task learning that pre-
defines a fixed set of tasks, BRD focuses only on
the basic reading education that has flexible con-
tents changing from sentence to sentence. This
flexibility empowers the distilled model to perform
well on various downstream tasks.

5.6 The Impact of BRD Data Size

We investigate how performance varies along with
different BRD data sizes in the blind test. Figure
2 shows the curve. Most tasks exhibit a steady
improvement as BRD data gets bigger, and the
performance plateaued when BRD data size arrives
at more than one million passages.

6 Conclusion

In this paper, we propose to distill the basic reading
abilities of LLMs into small models. In particular,
we collect basic reading behaviors of LLMs such as
NER or question raising and answering about parts
of an input text at first, then we train small models
based on the collected behaviors. Through such
basic education on general texts, the small models
are well educated to perform better on the down-
stream tasks. Experiments on various tasks includ-
ing language inference benchmarks and Google
Big-Bench tasks show that the small models after
such distillation can surpass or perform compara-
ble to LLMs that are 20x bigger. Verification by
the cross entropy shows that such basic reading
education can drive small model distribution closer
to its teacher model distribution, leading to better
performances than non-educated ones. Analysis
also reveals that BRD has orthogonality to either
knowledge distillation or task distillation.

7 Acknowledgements

We would like to thank the anonymous reviewers
for the helpful comments. This work was supported
by National Natural Science Foundation of China
(Grant No. 62261160648, 62276179), and Project
Funded by the Priority Academic Program Devel-
opment of Jiangsu Higher Education Institutions.

Limitations

In the distillation approach, we acknowledge cer-
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A Appendix

A.1 Training Configuration

The student model is trained with learning rate =
0.0003, batch size = 8, and max input length =
2048, for a maximum of 40000 steps. We save
the model every 1000 steps. Four A100 GPUs are
used in both the data synthesis and the distillation
training.

A.2 Prompts for The Downstream Tasks

The prompt templates for the downstream tasks are
listed in table 9. For the 73 tasks in BIG-bench, we
follow the general instruct with the task prefix and
input as the prompt.

A.3 Detailed Accuracies on BIG-bench

Figure 3 presents the accuracy comparison between
the distilled model XGLM-BRD and the baseline
model XGLM-564M on the 73 tasks in BIG-bench
in the blind test. The results of ten tied tasks are not
listed in the figure. It shows that XGLM-BRD im-
proves the performances on about 2/3 tasks, demon-
strating better ability generalized to a wide range
of tasks than the baseline.

In the relaxed test and the setting with the down-
stream task supervision, we select tasks that rank
top-5 according to the number of instances for the
sufficiency consideration of dividing training, tun-
ing, and test sets on these tasks. The five tasks are
movie dialogue, formal fallacies and syllogisms
with negation, Shakespeare dialogue, VitaminC,
and WinoWhy. Table 10 presents the results on this
reduced BIG-bench set. It shows that BRD models
perform superior to the corresponding baselines no
matter the supervisions are available or not.

A.4 Basing on XGLM-BRD is better than
basing on XGLM-564M

In the relaxed test setting, further BRD in training
XGLM-BRD2 on the downstream tasks is based on
XGLM-BRD. We also test further BRD based on
XGLM-564M, which is denoted as XGLM-564M-
FBRD. Table 11 lists the comparison result. It
shows that XGLM-BRD2 generally outperforms
XGLM-564M-FBRD across various downstream
tasks, highlighting that basing on XGLM-BRD is
more effective. These results emphasize the impor-
tance of BRD as a prerequisite step in improving
the adaptability and efficacy of models in down-
stream applications.

A.5 Layer-wise Probing

Inserting probes can reveal the interpretable aspects
hidden in the neural networks (Belinkov, 2022).
We insert probes layer-wisely to check the effi-
cacy of the distilled student model. In particular,
for each downstream task, we extract the repre-
sentation by averaging vectors per layer for each
sentence in the training set, and train the probing
classifier per layer based on the representation. The
training loss is the regularized cross-entropy loss
of the task prediction against the true label of the
sentence. Through inserting probes layer-wisely,
we can check how well each layer prepares for the
downstream tasks.

Figure 4 presents the results of probing XGLM-
564M and XGLM-BRD in the blind test. It is clear
that XGLM-BRD outperforms XGLM-564M on al-
most all layers for all downstream tasks. Although
XGLM-BRD is trained on the general corpus that
is not related to the downstream tasks, basic read-
ing education influences deep layers of the model,
empowering each layer with enhanced downstream
task prediction ability.

A.6 The Impact of Sentiment-related
Questions and Answers

Since our QRA data include questions and answers
about the attitude of a sentence, which are related
to the SST-2 task, we exclude such data for training
XGLM-BRD by deleting the questions about the
attitude or the answers containing words of pos-
itive/negative/neutral. The objective is to check
whether the performance improvement is due to
the presence of such data.

Table 12 shows the result in the blind test. Ex-
cluding the sentiment-related data does influence
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Task Template Candidate Answers

XNLI

{premise}

Yes | No | MaybeQuestion: Does this imply that "{hypothesis}"?
Yes, no or maybe?
Answer:

RTE Question: Can we infer that "{hypothesis}" ?

CB {premise}
Yes | No | MaybeAnswer:

PAWS-X

Sentence 1: {sentence1}

Yes | No
Sentence 2: {sentence2}
Question: Do Sentence 1 and Sentence 2 express
the same meaning?
Answer:
{passage}

BOOLQ Question: {question} Yes | No
Answer:

SST-2

Question: Does the following sentence have a
positive or negative sentiment? positive | negativeSentence: {sentence}
Answer:

Table 9: The prompt templates for the downstream tasks.

Figure 3: The accuracy comparison between BRD and the baseline on BIG-bench tasks.

SST-2 performance significantly, resulting in a de-
crease of 4 points compared to training XGLM-
BRD on full data. Thanks to the remaining data for
training XGLM-BRD, it still performs significantly
better than XGLM-564M by a large margin on SST-
2 task. On XNLI task, excluding the sentiment-
related data obtains a significant improvement over
XGLM-BRD trained on full data. This indicates
that the sentiment-related data is not fit for the lan-
guage inference task.
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Task

Model MovieDialog FormalFallacies ShakespeareDialogue VitaminC WinoWhy Average
Relaxed Test

TaskDistillation 46.7 50.0 42.2 13.6 55.2 41.6
XGLM-BRD2 50.1 50.0 49.8 13.8 56.9 44.1

With Downstream Task Supervision
SFT 69.2 69.9 69.3 55.9 76.9 68.3
XGLM-BRD2-SFT 70.6 69.3 70.2 56.0 79.1 69.1

Table 10: Results on the reduced BIG-bench set.

Figure 4: The results of probing XGLM-564M and XGLM-BRD layer-wisely on the downstream tasks in the blind
test. The horizontal axis represents the specific layer in the model, and the vertical axis is the prediction accuracy
(%) for each task.

XNLI RTE CB PAWS-X BOOLQ SST-2

XGLM-564M-FBRD 58.1 61.0 71.4 63.1 74.4 81.1
XGLM-BRD2 59.2 62.5 82.1 64.8 75.0 81.9

Table 11: The comparison between basing on XGLM-
BRD and basing on XGLM-564M for further BRD on
the downstream tasks.

Tasks

XNLI RTE CB PAWS-X BOOLQ SST-2 Avg

XGLM-564M 35.5 46.2 53.6 51.3 51.2 63.9 50.3

XGLM-BRD 36.2 53.8 58.9 56.7 61.0 78.1 57.5
−SentData 39.2 54.5 57.1 51.5 59.1 74.2 55.9

Table 12: The result of training XGLM-BRD based on
the data excluding the sentiment-related questions and
answers, denoted by −SentData, in the blind test.
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