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Abstract

In spoken communication, information is trans-
mitted not only via words, but also through
a rich array of non-verbal signals, including
prosody—the non-segmental auditory features
of speech. Do these different communica-
tion channels carry distinct information? Prior
work has shown that the information carried
by prosodic features is substantially redundant
with that carried by the surrounding words.
Here, we systematically examine the time scale
of this relationship, studying how it varies with
the length of past and future contexts. We find
that a word’s prosodic features require an ex-
tended past context (3-8 words across differ-
ent features) to be reliably predicted. Given
that long-scale contextual information decays
in memory, prosody may facilitate communi-
cation by adding information that is locally
unique. We also find that a word’s prosodic
features show some redundancy with future
words, but only with a short scale of 1-2 words,
consistent with reports of incremental short-
term planning in language production. Thus,
prosody may facilitate communication by help-
ing listeners predict upcoming material. In tan-
dem, our results highlight potentially distinct
roles that prosody plays in facilitating integra-
tion of words into past contexts and in helping
predict upcoming words.

https://github.com/Chief-Buka/
contextual-redundancy

1 Introduction

Auditory features of speech such as pitch, loudness,
and tempo—collectively termed prosody—play a
crucial role in conveying meaning. Prosody influ-
ences sentence-level interpretation, encoding both
linguistic and para-linguistic cues relevant to the
communicative context (Cole, 2015; Wagner and
Watson, 2010; Breen et al., 2010). For example,
prosody can signal phrase boundaries, emphasize
key elements, transform statements into questions,
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Figure 1: Redundancy (MI) between prosody (Pt) and
linguistic context (Wn,m↔ ) as a function of the number
of words contained in the past (n) and/or future (m)
context. The values are averaged across 6 prosodic
features (see Fig. 3 for each of these features separately).
The first column is used to evaluate Hypothesis 1; the
first row, Hypothesis 2 (see section §1). Time scales are
defined as the time after which the MI does not increase.

and express sarcasm, excitement, or doubt. How-
ever, much of the information conveyed by prosody
is redundant with the information encoded in the
words themselves (Wolf et al., 2023)—that is, it is
possible to predict a word’s prosodic features from
its linguistic context, i.e., its surrounding words.1

Past work, however, only quantified the redun-
dancy between prosody and the entire linguistic
context. The question of the dynamics of this re-
dundancy is thus left open. Here, we investigate the
time scale of redundancy between prosodic features
of a given word and its linguistic context by system-
atically varying the length of past or future context
from 0 to 9 words in each direction (0 includes only
the word whose prosody is being tested).

1In both Wolf et al. (2023) and our study, text is used as a
proxy to measure information present in the words themselves,
which we refer to as "linguistic information"(also termed “seg-
mental information” in the phonology literature).
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A priori, what might one expect regarding the
time scale of redundancy between prosodic features
and past linguistic context? During language com-
prehension, context is often critical to interpreting
the current word and integrating it into the linguis-
tic representations built thus far (Hale, 2001; Levy,
2008). However, human memory is limited: contex-
tual information decays over time, and connecting
an incoming word to one far back is costly (Gib-
son, 1998; Lewis et al., 2006; Futrell et al., 2020).
Given these memory limitations, prosody may be
critically helpful in conveying information that is
redundant with past context but is locally unique,
such that if a listener’s representation of the past
context is imperfect, they would benefit from the
prosodic information contained by the word itself.
We therefore hypothesize that prosody carries in-
formation that is recoverable from long-term past
context, but not from the short-term past (see Hy-
pothesis 1 below).

With respect to future linguistic context, lexical
and syntactic planning in language production is
known to be relatively restricted (Brown-Schmidt
and Konopka, 2008; Bock et al., 1994): we may
have a general idea of what we want to say next,
but the particular words and constructions are se-
lected incrementally, often with revisions. As a
result, how we pronounce a current word and what
prosodic features we associate with it should not
be affected by long-term future linguistic context.
We therefore hypothesize that prosody carries in-
formation that is not recoverable from long-term
future context (see Hypothesis 2 below).

The above logic is laid out in terms of “short” vs.
“long” contexts, but what constitutes a short or long
time scale during language processing? Following
recent work in neuroscience (Jain and Huth, 2018;
Regev, Casto, et al., 2024; Shain, Kean, et al., 2024)
as well as work investigating intonational units in
prosody itself (Inbar et al., 2020), we set the cutoff
between “short” and “long” at roughly 1-2 words,
although see section §6.1 for more discussion.

We thus formulate two main hypotheses:

Hypothesis 1. Long-scale past redundancy. The
redundancy between prosody and past linguistic
context unfolds across a long time scale (longer
than 1-2 words).

Hypothesis 2. Short-scale future redundancy.
The redundancy between prosody and future lin-
guistic context unfolds across a short time scale (of
1-2 words).

To test these hypotheses, we quantify the redun-
dancy between prosody and linguistic context as
their mutual information, which we estimate using
pre-trained language models, following Wolf et al.
(2023). Notably, we extend their approach to inves-
tigate the time scale of this redundancy by jointly
varying context lengths parametrically, from 0 to
9 words for both past and future contexts.2 We
then analyze how redundancy changes across time
for several commonly discussed prosodic features:
pitch, loudness, duration, pause, and prominence.

Our main results, averaged across all prosodic
features considered are shown in Fig. 1 (see Fig. 3
for feature-specific results). In line with our hy-
potheses, these results demonstrate that prosody is
redundant with relatively long-term past linguistic
context (up to 8 words), but is only redundant with
short-term future context (up to 2 words). This find-
ing advances our understanding of the dynamics
of the redundancy between linguistic context and
prosody, with potential implications for the role of
prosody in natural spoken communication.

2 Prosodic Features

Prosodic information is conveyed through multi-
ple acoustic features of speech. Here, we exam-
ine the redundancy between linguistic context and:
pitch, loudness, duration, pause and two versions of
prominence (as detailed in section §4.1). We chose
these prosodic features as they have been com-
monly investigated in prior prosody research (e.g.,
Breen et al., 2010; Gibson, 1998; Cole, 2015).

Pitch Pitch is the perceptual dimension over
which listeners order sounds on a scale from low to
high. The acoustic correlate giving rise to this per-
ception is the periodicity of sound signals; pitch is
thus often measured as the fundamental frequency
(f0) of the sound. Pitch is (arguably) the hallmark
feature of prosody, having been extensively studied
and characterized (Pierrehumbert, 1980; Silverman
et al., 1992; Jun, 2006). In stress-accent languages
like English, pitch contours carry contextual in-
formation that can signal a wealth of information,
including emphasizing specific words, signaling
boundaries, speech act type, and the speaker’s in-
tent (e.g., interrogation, sarcasm, or affective state).
Some typical pitch curves are the rise of pitch to-

2In addition to examining the effects of the length of the
past and future contexts separately, we also considered differ-
ent combinations of past and future context lengths in order to
identify the most predictive combination.
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wards the last word of a question in yes/no ques-
tions in American English, the rise and then fall
of pitch on a specific word to emphasize it, and a
fall toward the end of phrases. Note that we do not
study here the relationship between pitch and lex-
ical identity, as in tonal-languages. However, see
Wilcox et al. (2025), who use similar methods to
study typological pitch variation across languages.

Loudness Loudness is the perceptual dimension
over which listeners can order sounds on a scale
from quiet to loud. The acoustic correlate giving
rise to this perception is sound pressure, being mea-
sured as the intensity of acoustic energy. The loud-
ness of speech can be used to transmit information,
such as to emphasize important words or convey
emotion. The correlation between pitch and loud-
ness is partly explained by vocal production con-
straints; producing speech with higher energy helps
raise and better control the fundamental frequency.
However, loudness variations may also convey in-
dependent information from pitch.

Duration A word’s duration is the difference be-
tween its offset (end) and onset (start) times. The
relationship between word duration and linguistic
information has long been studied as a signature
of efficiency in communication, such that more
predictable words are reduced to a shorter dura-
tion (Jurafsky et al., 1998; Bell et al., 2009; Sey-
farth, 2014; Coupé, Oh, et al., 2019; Pimentel et al.,
2021). Further, elongating a word is a common way
to emphasize it, or signal prosodic boundary. Du-
ration is thus also highly correlated with pitch and
loudness in natural speech, but it can also be used
independently to convey meaning, or to compress
words of low information content.

Pause A pause following a word is the time dif-
ference between the word’s offset (end) time and
the next word’s onset (start), being another way
to emphasize an important word in context, or to
signal phrase boundaries (Hawkins, 1971). In con-
trast to phrase boundaries, within the phrase speech
tends to be ‘connected’ such that there are usually
no pauses between words; i.e., most pauses are of
zero seconds (see section §4.1).

Prominence Prosodic prominence is a term that
describes how salient a linguistic entity—in our
case, a single word—is perceived relative to the
words surrounding it in an utterance (Terken and
Hermes, 2000). Unlike the previously described

prosodic features, prominence is a higher-level per-
cept in the sense that it is not elicited by a single
acoustic dimension. The perception of prominence
is affected by multiple acoustic features (Cole et al.,
2010)—elongating a word, increasing the speech
energy or modulating the f0 contour of the word
can all make this word be perceived as more promi-
nent in context. Although other acoustic features,
like timbre, can also affect prominence, and factors
like word frequency influence it as well (Cole et al.,
2010), a combination of duration, loudness and
pitch has been proposed as an effective acoustic
measure to quantify prosodic prominence (Talman
et al., 2019), which we use here.

Notably, the prosodic features above present a
high degree of correlation in natural speech (Ladd,
1996). For instance, as noted above, producing a
higher pitch generally requires greater vocal effort,
resulting in increased intensity; similarly, it may
take longer to reach a higher pitch target, creating
dependencies between pitch, loudness, and dura-
tion. Furthermore, prominence is strongly corre-
lated to pitch, loudness and duration, as it is directly
computed using a combination of these acoustic
measures. We did not model these correlations ex-
plicitly; instead, we quantified the redundancy of
each feature with linguistic context separately. This
design choice does not affect our central research
question, which concerns the time scale of these re-
dundancies. Furthermore, although these prosodic
features are correlated, the differences observed
across them in our results may indicate that they
also carry distinct information.

3 Redundancy between Prosody and
Linguistic Context

This paper concerns the time scale of the redun-
dancy between prosody and linguistic context,
where ‘linguistic context’ here refers to the seg-
mental information of an utterance, represented in
our experiments as text. In this section, we first
explain how this redundancy can be formalized as
a mutual information, following Wolf et al. (2023).
We then expand on this framework by discussing
how context-length manipulations allow us to in-
vestigate the time scale of this redundancy.

3.1 Redundancy as Mutual Information

Let Pt be a prosody-valued random variable, which
takes values pt ∈ R. Further, let W be a words-
valued random variable, which takes values w∈W∗,
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where W is a language’s lexicon. We follow Wolf
et al. (2023) in formalizing the redundancy between
prosody and linguistic context as the mutual infor-
mation: MI(Pt;W). Under a few technical as-
sumptions (e.g., the good mixed-pair assumption,
see Wolf et al. for details), we can write this as:

MI(Pt;W) = H(Pt)−H(Pt | W) (1)

In this equation, unconditional entropy H(Pt)
serves as a baseline, representing how much un-
certainty there is about Pt, in general. In turn,
conditional entropy H(Pt | W) represents how
much uncertainty remains about Pt once we know
W. Their difference then represents how much
information W contains about Pt (and vice versa).

We are now left with the problem of estimating
these entropies. While these values are unknown,
we only require two things to estimate them: a
corpus of prosodic values coupled to linguistic con-
texts, sampled from the ground-truth distribution,

Dtst = {p′t,w′}Nn=1, p′t,w
′ ∼ p(pt,w)

and models pθ of distributions p(pt) and p(pt |
w). We can then use a cross-entropy upper-bound
(Pimentel et al., 2019) to estimate these entropies:

H(Pt | W) ≤ Hθ(Pt | W) (2)

≈ 1

|Dtst|
∑

p′t,w′∈Dtst

log
1

pθ(p
′
t | w′)

where pθ(pt | w) is replaced with pθ(pt) when
estimating H(Pt). We describe our dataset Dtst

and how to estimate pθ in section §4.

3.2 Manipulating Context Length
To analyze the time scale of the redundancy be-
tween prosody and linguistic context, we will es-
timate MI (Pt; W) while systematically manipu-
lating the amount of context, i.e. the number of
words, in W. We thus quantify ‘time’ in units of
words, as opposed to seconds, acknowledging the
discrepancy between these concepts due to varying
duration of words and speaking rates. To this end,
we define Wn,m↔ as the linguistic context compris-
ing n words before and m words after word Wt,
including the word itself:

wn,m↔ = ⟨wt−n, · · · ,wt, · · ·wt+m⟩ (3)

Thus, for instance, W0,0↔ corresponds to the word
Wt by itself, and W5,3↔ corresponds to the word

can  you  give  me  a  few  hints  suppose  you  spoke 

Current word:

Past context: wt

Bidirectional LLM
(e.g., BERT large)

Pt Fine tune 
to predict

Prosody of current word:

Loss function:

Input
n words Future context: m words

Estimating the conditional entropy

Figure 2: Estimation procedure for H(Pt | Wn,m↔ ). A
span of words Wn,m↔ which includes word Wt is used as
input to a model which predicts that word’s prosody Pt.
The loss function that the model minimizes estimates
the conditional entropy.

Wt with 5 words in its past context and 3 words in
its future context (see Fig. 2).

Given this definition, we can then explore the
time scale we are interested in by estimating the
mutual information MI(Pt,Wn,m↔ ) while varying
n and m. This amounts to estimating H(Pt) and
H(Pt | Wn,m↔ ). The unconditional entropy does
not depend on context; thus, to estimate it, we
only need to compute a distribution over the do-
main of each prosodic feature. On the other hand,
estimating the conditional entropy requires comput-
ing a family of conditional distributions for each
prosodic feature, with one distribution for each
n,m combination. In other words, we need a
model pθ(pt | wn,m↔ ) that works for any n,m pair.
We elaborate on this model in section §4.2.

Importantly, the MI(Pt;Wn,m↔ ) is a monotoni-
cally increasing function of both m and n; larger
contexts must contain at least as much (but maybe
more) information about prosody than smaller con-
texts.3 However, at some value of m and some
value of n, the MI might reach a plateau. We con-
sider the time scale of the redundancy between
prosody and linguistic context to be the value from
which increasing context length does not signifi-
cantly increase the MI.

4 Methods

4.1 Dataset
Our data-extraction process uses Wolf et al.’s
(2023) proposed and publicly available pipeline
(see their paper for more details).

Speech Data We use the LibriTTS spoken lan-
guage corpus (Zen et al., 2019),4 which contains

3We note that—while the MI is monotonically increasing
in theory—it is not necessarily the case that this underlying
monotonicity will be reflected by our estimation methods.

4This dataset is derived from LibriSpeech audiobooks cor-
pus (Panayotov et al., 2015), which is itself derived from
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public domain audiobook materials (audio and text)
recorded by volunteer narrators. This dataset con-
tains 585 hours of English speech data at a 24kHz
sampling rate, and includes recordings from 2,456
speakers reading aloud books which are paired with
the corresponding transcripts. We filtered out texts
from LibriTTS that contained less than three words
(such as book and chapter titles) and we eliminated
punctuation marks, since these can be very infor-
mative regarding prosody, and are not explicitly
present in spoken communication.

Prosody Feature Extraction For extracting
prosodic features we began by aligning the au-
dio and text using the Montreal Forced Aligner
(MFA; McAuliffe et al., 2017). With the align-
ment in place, both the duration and pause of each
word can be easily computed from the words’ off-
set and onset times. Notably, 89.4% of the words
in our dataset have a pause of 0 seconds. Duration
was normalized by the number of syllables (from
CELEX; Baayen et al., 1996) to obtain duration per
syllable, reducing variability across word identities.

Pitch and loudness were extracted using the algo-
rithms from Suni et al. (2017). These yield pitch—
measured as fundamental frequency, f0—curves
that we z-scored per speaker to normalize for inter-
speaker pitch range and avoid bimodal pitch dis-
tributions due to sex. For each word, we analyzed
pitch in a window of up to 250ms (or the word’s
full duration, if shorter) centered on the primary
(stressed) syllable, as identified using CELEX. This
choice reflects the fact that English pitch accents
typically align with stressed syllables (Pierrehum-
bert, 1980) and reduces phonological variability
due to word length. However, this approach focuses
on lexical stress and may underrepresent boundary
tones. We then averaged the pitch values within
the selected window to yield a single mean pitch
value per word. Loudness, measured as energy,
was similarly extracted, with energy curves being
averaged per word.

Prominence was computed using a composite
acoustic measure from Suni et al. (2017), which
integrates time-frequency variation across duration,
energy, and f0. This measure has been validated
in prior work as capturing prosodic prominence
(Suni et al., 2017; Talman et al., 2019; Terken
and Hermes, 2000). In addition to the absolute
prominence values, we also computed relative
prominence by subtracting the mean prominence

LibriVox (Kearns, 2014).

of the preceding three words from the current
word’s value, emphasizing local contrast. We used
the word-level prominence scores released with
this dataset (Talman et al., 2019).

Splitting the Data into Train, Validation and
Test The dataset was divided into train, valida-
tion and test sets, following standard practice in
machine learning. We used splits of the dataset
provided by Talman et al. (2019). For training, we
used a data split (termed train-360) containing 904
speakers, 11,262 sentences and 2,076,289 words.
For validation, we used a data split (termed dev)
containing 40 speakers, 5,726 sentences and 99,200
words. For testing, we used two data splits (both
non-overlapping with the Train and Validation sets):
one (termed train-100) containing 247 speakers,
33,041 sentences and 570,592 words, and the other
(termed test) containing 39 speakers, 4,821 sen-
tences and 90,063 words. We used the train-100
split as the main test set, except when analyzing
prominence; for those analyses, we combined the
two test sets in order to obtain more stable results.

4.2 Estimating the Cross-Entropies

We now explain how we model the probability dis-
tributions pθ(pt) and pθ(pt | wn,m↔ ), which serve
to estimate the unconditional and conditional cross-
entropies, respectively.

Modeling pθ(pt) To model this unconditional
distribution over prosodic values, we simply fol-
low Wolf et al. (2023) in using a Gaussian kernel
density estimator (KDE). Given a training set Dtrn,
sampled from p(pt,w), this model is defined as:

pθ(pt) =
1

|Dtrn|
∑

p′t∈Dtrn

N (pt;µ=p′t, σ= σ̂) (4)

where N are Gaussian distributions, each centered
at a prosodic value µ=p′t and all having the same
variance σ = σ̂. We choose σ̂ that achieves the
highest likelihood on our validation set.

Modeling pθ(pt | wn,m↔ ) To model this condi-
tional distribution, we again follow Wolf et al. in
finetuning a language model (LM), with an added
linear layer on top, to predict the parameters of a
conditional distribution over pt. Using language
models to represent text offers greater expressiv-
ity than traditional regression-based approaches.
Unlike Wolf et al., however, we limit our model’s
input to include only wn,m↔ instead of the entire w
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(Wolf et al. used the entire available context in the
segments from the LibriTTS corpus, which varied
in length between 4 and 60 words).

We assume the conditional distribution over
prosody follows a parametric distribution Z , and
use a LM to predict this distribution’s parameters
ϕ̂:5

ϕ̂ = LM(wn,m↔ ) (5)

pθ(pt | wn,m↔ ) = Z(pt;ϕ = ϕ̂) (6)

We finetune this model by minimizing its cross-
entropy on a training set Dtrn; which amounts to
minimizing the right-hand side of Eq. (2). As the
cross-entropy is an upper bound on the entropy,
the lower its value (and consequently the better
our model) the tighter the estimate we get for
the entropy. Due to compute time considerations,
we estimate all n,m combinations using a single
finetuned LM: During training, we sampled inputs
of varying lengths, spanning 1 to 10 words. These
inputs were obtained by first sampling an item
from the dataset, and then randomly cutting it
into the desired length (between 1-10 words). For
each sample, the model then predicts the prosody
of each of the words in this span in parallel; in
a 7-word span, thus, the first word’s prosody is
predicted as pθ(pt | w0,6↔) and the 5th word’s
prosody is predicted as pθ(pt | w4,2↔). Importantly,
we made sure that the models saw an equal number
fo samples for each n,m combination. For each
prosodic feature, we tested several models, namely
BERT, BERT-large and RoBERTa-large, and
selected the model that gave the best results. In
most cases, this was BERT-large, except for pauses
and pitch where it was BERT. An early stopping
criterion was applied, such that if the loss did not
decrease for 3 epochs the model stopped training.

5 Results

We present our main results in Figs. 1 and 3.
Namely, Fig. 1 displays the average mutual infor-
mation (MI) across the 6 prosodic features tested
here (pitch, loudness, duration, pause, absolute
prominence, relative prominence), while Fig. 3 dis-
plays those results for each feature separately. See
section App. A for the values of the unconditional
entropies comprising those MIs.

5We evaluate models with Gaussian, Gamma and Laplace
distributions, choosing the distribution that leads to the lowest
cross-entropy on a validation set. Parameters ϕ are, e.g., the
mean and standard deviation for a Gaussian.

The overall trend is consistent with the hypothe-
ses outlines above. In line with the long-scale past
redundancy hypothesis (Hypothesis 1), the mutual
information between prosody (averaging across all
prosodic features used here) and past context (first
column in Fig. 1) increases as a function of context
length until up to about 5-8 words, at which point it
plateaus. In line with the short-scale future redun-
dancy hypothesis (Hypothesis 2), the MI between
prosody (averaging across all features) and future
context (first row in Fig. 1) increases only until up
to one or two words and then plateaus. Further-
more, at context lengths above one word, the MI
with the past context tends to be higher than the MI
with the future context, with this trend becoming
more pronounced at longer contexts.

We also empirically explore other combination
of past and future contexts (i.e., n > 0 and m > 0;
the n-th column and m-th row in Fig. 1). This anal-
ysis revealed that prosodic features at the current
word are best predicted by a combination of 5-8
words in the past and about one word in the fu-
ture. Notably, this n,m combination led to higher
mutual information than even other combinations
with larger context (i.e., with n′,m′, n′ ≥ n, and
m′ ≥ m). While this is theoretically impossible
(adding more context can never decrease mutual
information), this is likely due to our models’ train-
ing procedure not being able to ignore unhelpful
contributions of long-scale contexts.

Interestingly, individual prosodic features show
somewhat distinct patterns (see Fig. 3). The long-
scale past hypothesis (Hypothesis 1) is supported
for most prosodic features individually, but not
for duration and pauses. For pitch, loudness, and
prominence, the MI with past context (red curves in
the lower plot for each feature in Fig. 3) increases
until up to at least 3 words (although the curve for
absolute prominence is a little noisy). For duration,
however, the MI with past context never rises sig-
nificantly above the 0, 0 point, indicating the past
context does not add information beyond the word
identity itself; and for pauses, the past MI saturates
after two words.

The short-scale future hypothesis (Hypothesis 2)
is also supported for most individual prosodic fea-
tures, except for duration and pause. For pitch,
loudness, and prominence, the MI with future con-
text is shorter than with past context, saturating
between 1 and 3 words (blue curves in the lower
plot in each feature in Fig. 3). For duration, the MI
with future context saturates after 1 word, which is

30481



DurationLoudnessPitch

Pause Relative prominenceAbsolute prominence

0.5
0.2

0.3

0.9 0.5

0.6

(nats)

0.3

0.1

0.2

0

0.5

0.7

W
or

ds
 to

 th
e 

le
ft 

(n
)

Words to the right (m)

0

2

4

6

8

0 2 4 6 8

(n
at

s)

Words (n or m)
0 2 4 6 8

0

0.8

MI with long context

MI with past context (m=0)
MI with future context (n=0)

Figure 3: For each of the 6 tested prosodic features, two plots are presented. The upper plots are similar to Fig. 1,
and display the redundancy, quantified as mutual information between a prosodic feature at a given word pt and
the linguistic context wn,m↔ , which includes the word itself and a varying length context, n words before, and m
words after it. The lower plots display either: (a) in red, just the first column from the upper plots (corresponding to
past linguistic context, which includes the word itself and a gradually increasing number of previous words, red
curve) and (b), in blue, the first row from the upper plots (corresponding to future linguistic context, which includes
the word itself and a gradually increasing number of future words, blue curve). Details displayed only for Pitch or
Duration (labels, numbers, legend) are the same for all features. The MI values correspond to the mean across all
test data. Error bars correspond to standard errors of the mean. Dashed horizontal gray lines corresponds to the MI
with the longest available context, taken from Wolf et al. (2023) (between 6 and 60 words into the past or future).
See section App. B for the distributions of these features in our dataset.
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longer than with past context (the past curve shows
no increasing trend). For pauses, the future MI
saturates after about 4 words, which is longer than
with past context—although these MI estimates
are noisy for this feature, likely due to data spar-
sity. Notably however, the MI with past context
is higher than with future context for all prosodic
features except for duration. We thus conclude that
the results from these individual prosodic features
generally support the short-scale future hypothesis.

6 Discussion

This work aimed to characterize the time scale of
the redundancy between prosodic and linguistic in-
formation. We built on the foundation of past work,
which established that linguistic information is par-
tially redundant with prosodic features (Wolf et al.,
2023), to systematically manipulate the length of
past and future context, from 1 to 10 words. Our
extension of this pipeline is publicly available for
researchers wishing to extend our analysis, poten-
tially exploring the time scale of redundancy be-
tween other communication channels of interest.

Based on what is known about human memory
limitations and linguistic planning, we hypothe-
sized that redundancy between linguistic informa-
tion and prosodic features extends over a relatively
long time scale into the past, and a relatively short
time scale into the future (see section §1). We find
support for these hypotheses: For most prosodic
features we tested (apart from duration and pause,
see section §6.4), redundancy with past linguistic
context unfolds across a long time scale (of 3-8
words), whereas redundancy with future linguistic
context is shorter-scale (of 1-2 words). We next dis-
cuss the implications of these results with respect
to the previous literature.

6.1 The Time Scales of Linguistic and
Prosodic Information

Sentence comprehension is constrained by cog-
nitive demands such as attention and working
memory, leading to lossy representations of past
linguistic context (Gibson, 1998; Vasishth et al.,
2010; Futrell et al., 2020; Kuribayashi et al., 2022).
It is, however, challenging to estimate the precise
number of words maintained in working memory
during language processing, as this likely depends
on many factors. Neural evidence suggests that
language-selective neural populations6 integrate

6Language-selective neural populations are clusters of neu-
rons in the human brain that respond selectively to linguis-

linguistic information across time scales varying
between 1-6 words (Jain and Huth, 2018; Shain,
Kean, et al., 2024; Regev, Casto, et al., 2024).
Moreover, work in prosody has put forward
the notion of "intonation units", which follow a
rhythmic structure of about 1 Hz (Inbar et al.,
2020). Given the average speech rate of 200 words
per minute (Yuan et al., 2006), each intonation unit
contains about 3-4 words, which aligns with the
relatively short context of linguistic processing.7

Our findings are generally in accord with these
previous studies, and suggest that redundancy with
past context spans around 3-8 words—a scale com-
parable to both the time scale of linguistic integra-
tion and prosodic segmentation.

6.2 Prosody as an Audience-Design Tool in
Communication

A longstanding debate in linguistics concerns the
extent to which language production is shaped by
audience design considerations, with speakers tai-
loring their utterances to facilitate comprehension.
Some evidence suggests that syntactic choices are
not strongly adapted for listener needs but rather re-
flect the speaker’s own constraints (Ferreira, 2008;
Morgan and Ferreira, 2022). This apparent lack
of audience design in syntax may stem from the
rigid structural constraints imposed by the rules
of the language (at least in English, which is used
in much past work). In contrast, prosodic choices
may offer greater flexibility for accommodating
audience-centered considerations, allowing speak-
ers to dynamically modulate pitch, loudness, and
rhythm in real time. This flexibility may afford
prosody a larger role in audience design (Clark
et al., 2025), serving as a communicative channel
that facilitates comprehension. For example, prior
work shows a trade-off between a word’s duration
and its information content (Jurafsky et al., 1998;
Bell et al., 2009; Coupé, Oh, et al., 2019; Pimentel
et al., 2021), which is typically interpreted as aris-
ing to facilitate comprehension by more evenly

tic experimental manipulations, but not to manipulations in
other perceptual or cognitive domains such as math and music.
These populations are thought to constitute a brain network
specialized for language processing (Fedorenko et al., 2024).

7To be precise about the generality of the claims above,
we note that: the claims in (Gibson, 1998; Vasishth et al.,
2010; Futrell et al., 2020; Kuribayashi et al., 2022) are in-
tended as universal and were shown for English, German, and
Japanese; the experiments in (Jain and Huth, 2018; Shain,
Kean, et al., 2024; Regev, Casto, et al., 2024) are in English;
the experiments in (Inbar et al., 2020) cover 6 typologically
diverse languages; the experiments in (Yuan et al., 2006) are
in English and Chinese.
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distributing information across time (known as the
uniform information density hypothesis; Fenk and
Fenk, 1980; Genzel and Charniak, 2002; Levy and
Jaeger, 2007; Meister et al., 2021). Our findings
may be taken as further evidence for the audience-
design view of prosody: the fact that its redundancy
with past context extends over long time scales sug-
gests that prosody may help clarify the relationship
between the current word and the broader preced-
ing context, thus facilitating the extraction of the
intended meaning. Given that prosody appears to
carry locally unique information, prosodic features
may aid comprehension when representations of
longer-scale past are lossy.

6.3 The Relationship Between Prosody and
Future Words

Our findings indicate that the redundancy between
prosody and future words is overall lower com-
pared to past words. However, prosody still ex-
hibits a strong relationship with the upcoming word
or two. This short-range relationship may arise
from motor constraints on prosodic articulation,
from local linguistic dependencies such as fixed ex-
pressions, or from short-scale prosodic planning—
consistent with theories of language production
that emphasize incremental, short-term planning
(Brown-Schmidt and Konopka, 2008; Bock et al.,
1994). In addition, prosody may help listeners
form expectations about upcoming words through
cues such as duration, pauses, or pitch modula-
tions. This interpretation aligns with recent find-
ings that humans are better at predicting upcoming
words given spoken, compared to written, context
(Botch and Finn, 2025). Relatedly, prior research
has shown that a word’s duration correlates with
its predictability given future context (Bell et al.,
2009). Along similar lines, reading times also seem
to correlate with features of upcoming words (such
as frequency, predictability and entropy; Roark
et al., 2009; Angele et al., 2015; van Schijndel
and Schuler, 2017). Future work should investigate
these potential mechanisms to clarify the role of
prosody in forward-looking processing.

6.4 Duration and Pause Show Weak Past,
Strong Future Redundancy

Compared to the other prosodic features, dura-
tion and pause stand out in their relatively short
time scale of redundancy with both past and future
words, as well as in their relatively high MI with
future words. This pattern may suggest that length-

ening a word and pausing after it primarily serves
to prepare for the upcoming word, facilitating its
processing by slowing the rhythm of speech. Al-
ternatively, this pattern may stem from sentence
boundaries: As discussed above, pauses are most
common after sentence-final words, which are also
often elongated (Seifart et al., 2021; Paschen et al.,
2022). The high predictability of duration and
pause from future context may therefore partly re-
flect our models’ ability to detect a sentence-final
vs. sentence-medial word, an important structural
cue which could, in turn, help predict the values of
these prosodic features. While we removed punctu-
ation from the input, therefore preventing sentence-
boundary information from being conveyed explic-
itly through punctuation marks, we did not low-
ercase all the data and therefore sentence-initial
words are clearly detectable by their capitalization.
Furthermore, sentence boundary cues could be in-
ferred from the lexical content itself, since certain
words tend to occur more frequently at the begin-
ning or end of sentences.

7 Conclusion

Our findings reveal a fundamental asymmetry in
the time scale of redundancy between prosody and
linguistic information: while prosody exhibits re-
dundancy with both past and future words, this rela-
tionship extends across a longer span for past words
(3–8 words) than for future words (1–2 words).
This suggests that prosody’s relationship with fu-
ture words primarily reflects short-term effects such
as next-word prediction, local word dependencies,
or other production factors—future work should try
to distinguish those explanations. In contrast, its re-
lationship with past words operates over a broader
scale, potentially serving to reinforce or highlight
information that may be cognitively demanding for
listeners to process in real-time communication.
These results provide new insights into the role of
prosody in spoken language.

Limitations

Our study has several limitations that should be
considered when interpreting the results.

Data-related Limitations. The first set of lim-
itations relates to the dataset used. Our dataset
consists of audiobooks, which do not necessarily
reflect natural prosody in real time communica-
tion, potentially affecting the generalizability of
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our findings. Redundancy may be higher in au-
diobooks than in spontaneous speech, because the
text is written with the assumption that it must
convey all necessary information without relying
on prosody. We address this concern to some ex-
tent by removing punctuation marks, which serve
as a substitute for prosody in written text. An-
other dataset-related limitation is the sample size.
Furthermore, the syntactic structures used in au-
diobooks may differ from those in spontaneous
speech. Because pause and duration often signal
syntactic boundaries, they may be particularly sen-
sitive to such structural differences. This may help
explain why pause and duration did not follow our
hypotheses. Larger datasets may be required for
more stable estimations, especially given that we
compute 55 different values (for wn,m↔ , n and m
from 0 to 9). Furthermore, our dataset is limited
to the English language. Therefore, our findings
are English-specific and may not generalize across
languages, given known cross-linguistic variation
in prosody. Future work should generalize this
work to other typologically distinct languages (see
Wilcox et al., 2025, for work using similar methods
to study diversity in prosodic typology).

Estimation-related Limitations. The second set
of limitations has to do with the estimation proce-
dure. The mutual information we compute tries to
approximate the true value, and is constrained by
the quality of our models pθ(pt | wn,m↔ ). One of
our modeling assumptions is the functional form
of the conditional distribution of prosody given
a context (namely, Gaussian, Gamma or Laplace
distributions depending on the prosodic feature).
However, this parametric assumption may limit the
model’s performance and future work should ex-
plore alternative conditional distributions which
may improve results (as done by, e.g., Wilcox et al.,
2025). This assumption is particularly violated for
features that manifest different distributions; pause,
for instance, takes a 0 value in 89.4% of the data
and may therefore be better modeled by a zero-
inflated distribution. Indeed, our results for pause
seem particularly noisy. Additionally, to estimate
wn,m↔ , we provided the models with short segments
of 1 to 10 words. However, the language models
used here (e.g., BERT) were not pretrained on such
short segments, but rather on longer spans of text;
this might have impacted their efficiency in extract-
ing the information from short segments. While
finetuning likely mitigates this issue, it remains a

potential limitation. Furthermore, we train a single
model for all combinations of n,m, which does
not guarantee that the model is optimal for each
combination separately. Finally, we observed cases
where the mutual information decayed for longer
contexts, which contradicts expectations from in-
formation theory, as additional context can never
reduce information. This phenomenon likely stems
from issues in training the models, which could be
biased toward under-utilizing the available context
for longer spans. Future work should address these
limitations to refine our understanding of redun-
dancy between prosody and linguistic information.
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A Unconditional Entropies

Prosodic Feature Unconditional Entropy

Absolute Prominence 0.536
Relative Prominence 1.355
Energy 0.815
Duration -0.920
Pause -5.193
f0 3.469

Table 1: Unconditional entropies of each prosodic fea-
ture.

B Prosodic Features’ Histograms
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Figure 4: Histogram of prosodic features. All y-axes
correspond to probability densities. (top-left) Pitch (fun-
damental frequency), units are arbitrary (z-scored); (top-
center) Loudness, units are arbitrary (z-scored); (top-
right) Duration, units are seconds per syllable; (bottom-
left) Pause, units are seconds; (bottom-center) Absolute
prominence, units are arbitrary; (bottom-right) Relative
prominence, units are arbitrary.
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