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Abstract
Machine unlearning (MU) has gained signifi-
cant attention as a means to remove the influ-
ence of specific data from a trained model with-
out requiring full retraining. While progress
has been made in unimodal domains like
text and image classification, unlearning in
multimodal models remains relatively under-
explored. In this work, we address the unique
challenges of unlearning in CLIP, a prominent
multimodal model that aligns visual and tex-
tual representations. We introduce CLIPErase,
a novel approach that disentangles and selec-
tively forgets both visual and textual associa-
tions, ensuring that unlearning does not com-
promise model performance. CLIPErase con-
sists of three key modules: a Forgetting Module
that disrupts the associations in the forget set, a
Retention Module that preserves performance
on the retain set, and a Consistency Module
that maintains consistency with the original
model. Extensive experiments on CIFAR-100,
Flickr30K, and Conceptual 12M across five
CLIP downstream tasks, as well as an eval-
uation on diffusion models, demonstrate that
CLIPErase effectively removes designated as-
sociations from multimodal samples in down-
stream tasks, while preserving the model’s per-
formance on the retain set after unlearning. The
project’s code is available at: https://tianyu-
yang-anna.github.io/ClipErase-ACL/ .

1 Introduction

Multimodal models (Kim et al., 2021; Liu et al.,
2024a; Yuan et al., 2021; Zhai et al., 2022; Li et al.,
2023, 2022) such as CLIP have shown powerful
representational capabilities in tasks such as image-
text retrieval and text-to-image generation. How-
ever, as these models continue to evolve and ex-
pand their applicability, the need for multimodal
machine unlearning (MU) becomes increasingly ur-
gent. This is because large-scale multimodal train-
ing datasets often contain sensitive or copyrighted
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Figure 1: Comparison of Stable Diffusion results using
original CLIP, unimodal unlearned CLIP (with Gradient
Ascent on the text modality), and our CLIPErase shows
that unimodal unlearning introduces distortions and fails
to remove targeted concepts, whereas CLIPErase selec-
tively erases them and preserves other details.

content whose influence must be removed from the
model’s learned representations, whether to com-
ply with new regulations, protect user privacy, or
address intellectual property concerns.

While MU has made notable progress in remov-
ing or altering features within single-modality do-
mains like images and text. However, its applica-
tion to multimodal models remains largely unex-
plored. These multimodal models learn from inter-
connected modalities, such as images and text, and
represent them in a shared embedding space. Con-
sequently, unimodal MU approaches, which per-
turb features in only one modality, can unintention-
ally disrupt crucial cross-modal relationships. This
disruption negatively impacts downstream tasks,
particularly those relying on precisely learned text-
image alignment, and can even render the resulting
embeddings unusable. As shown in the first three
rows of Figure 1, applying unimodal unlearning to
CLIP can compromise embeddings for tasks like
image generation with diffusion models, resulting
in either a failure to generate meaningful images or
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an inability to remove the targeted concept.
Moreover, multimodal data often exhibits com-

plex associations, where a single word may corre-
spond to multiple concepts across different modali-
ties. For example, the word "apple" could refer to
either the tech company or the fruit. Unimodal un-
learning methods lack the precision to selectively
forget a dedicated concept. Given "apple" as the
unlearning target, these approaches would erase
all meanings associated with "apple," as shown in
Row 4 of Figure 1, instead of targeting a specific
sense, such as the fruit.

To address these challenges, we introduce
CLIPErase, a novel multimodal unlearning frame-
work specifically designed for pretrained CLIP
models. Instead of indiscriminately erasing entire
concepts, CLIPErase selectively removes specific
associations while preserving other learned cross-
modal semantic correspondences, thereby prevent-
ing disruption of the shared embedding space. This
approach offers two key advantages, as demon-
strated in Figure 1. First, CLIPErase can "for-
get" designated concepts without harming unre-
lated ones like "chairs" or "Teddy Bears". This con-
trasts with unimodal methods, which often remove
these unrelated concepts inadvertently or even fail
to generate any concepts. Second, CLIPErase can
selectively remove specific associations within mul-
tiple mappings. For instance, it can remove the as-
sociation of "apple" with the fruit while preserving
its association with Apple products like iPhones.

To precisely refine and control the knowledge
stored within CLIP models, CLIPErase consists of
three core components: (1) Forgetting Module
disrupts the associations between images and text
in the forget set by minimizing their cross-modal
similarity, effectively removing the targeted con-
nections; (2) Retention Module preserves perfor-
mance on the retain set by maintaining contrastive
alignment, preventing unintended damage to the
shared embedding space; (3) Consistency Module
maintains consistency by penalizing deviations in
the unimodal (text and image) distributions com-
pared to the original model. These three modules
work together to efficiently perform unlearning,
eliminating the need for retraining from scratch.
Our key contributions are highlighted as follows:

• We introduce CLIPErase, an innovative frame-
work designed for unlearning pretrained CLIP
models, enabling efficient removal of specific
multimodal associations without retraining.

• CLIPErase utilizes three modules to disrupt mul-
timodal data alignment for targeted unlearning
while preserving performance on the retain set.

• We demonstrate the impact and applicability of
CLIPErase through extensive experiments across
five downstream tasks, including zero-shot pre-
diction, retrieval, and integration with diffusion
models for image generation.

2 Related Works

As machine learning models continue to grow in
size and their training datasets become increasingly
vast and complex, the concept of MU has garnered
significant attention in academic and industry (Mc-
Connon, 2024; Pedregosa and Triantafillou, 2023)
to promoting AI for social welfare. MU aims to
selectively remove specific information—such as
private data (Zhang et al., 2023), outdated knowl-
edge (Wang et al., 2023), and harmful content (Liu
et al., 2024b) from a trained model without neces-
sitating a complete retraining from scratch (Bour-
toule et al., 2019). We next discuss these techniques
in the context of text and image modalities.
Machine Unlearning in Text: MU has been ex-
tensively studied in the text domain. Gupta et al.
(2021) first explored adaptive parameter tuning,
while Maini et al. (2024), Chen and Yang (2023),
and Jia et al. (2024) leveraged gradient-based meth-
ods, including second-order optimization and KL-
Divergence descent. Eldan and Russinovich (2023)
focused on preference optimization. To address
high computational costs, Kurmanji et al. (2024)
proposed scalable methods to approximate the un-
learning process, while Chen et al. (2023) aimed
to directly reduce overhead. Ullah et al. (2021)
employed differential privacy to enhance trust in
MU and derived theoretical guarantees.
Machine Unlearning in Vision: Previous works
on MU in vision focus on eliminating the influence
of specific visual data in classification models (Kur-
manji et al., 2024) and unlearning visual patterns
in diffusion models (Zhang et al., 2024; Gandikota
et al., 2024, 2023; Fuchi and Takagi, 2024).

Recently, a few studies emerged to study how to
unlearn multimodal embedding models. Cheng and
Amiri (2023) introduced a multi-deletion mecha-
nism via modality decoupling, but it relies on ran-
domly sampled unrelated pairs, which can fail on
small or imbalanced datasets. Similarly, Kravets
and Namboodiri (2024) used Lipschitz regulariza-
tion and synthetic data for zero-shot forgetting, but
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Figure 2: Overview of the CLIPErase framework, consisting of three key modules: (a) Forgetting Module: disrupts
cross-modal associations within the forget set to weaken the undesired image and text associations; (b) Retention
Module: preserves cross-modal associations within the retain set; (c) Consistency Module: maintains consistency
with the original model by aligning unimodal representations.

face high computational costs and data quality is-
sues. However, both methods are task-specific,
focusing on either retrieval or zero-shot tasks. In
contrast, our approach unlearns the targeted visual
and textual associations within CLIP itself, allow-
ing a wider range of downstream tasks to benefit,
such as zero-shot image classification, image/text
retrieval, and diffusion-based image generation.

3 Preliminary

The CLIP Model. CLIP is a multimodal pre-
trained model that learns to align images and their
text descriptions in a shared embedding space. It
consists of an image encoder fimg and a text en-
coder ftxt. Given a training dataset {(xni , xnt )}Nn=1,
where xni represents the n-th image and xnt its cor-
responding textual description, CLIP projects these
inputs into a common latent space: fimg(x

n
i ) ∈ Rd

and ftxt(x
n
t ) ∈ Rd, which are normalized feature

embeddings for images and texts, respectively.
CLIP is trained using a contrastive loss that opti-

mizes alignment between matched image-text pairs
while pushing apart mismatched pairs. For a batch
of N image-text pairs, the loss is defined as:

L = − 1

N

N∑

n=1

log softmax(fimg(x
n
i ) · ftxt(x

n
t )/τ) (1)

where τ is a temperature parameter, and the soft-
max function normalizes the similarity scores
across all text samples in the batch, converting
them into a probability distribution.
Problem Definition. Consider a pre-trained CLIP
model Θ trained on a dataset D. Our goal is to

design an unlearning algorithm that removes the in-
fluence of a specified forget set Df from Θ without
degrading the model’s performance on the remain-
ing data, referred to as the retain set Dr = D−Df .
Let Θu be the model undergoing this unlearning
process. We aim to achieve that in the unlearned
model Θu, images and their corresponding text de-
scriptions in Df should no longer be aligned. This
means that in downstream tasks like image retrieval,
an image from Df will no longer be retrieved by
its original associated text description, and vice
versa. Meanwhile, the unlearning process should
not compromise the model’s ability to effectively
align images and text from the retain set Dr.

4 Proposed Method CLIPErase

Unlearning in multimodal models like CLIP
presents unique challenges. Unlike unimodal mod-
els, where information is encoded in a single modal-
ity, CLIP relies on the intricate interplay between
visual and textual features within a shared embed-
ding space. Consequently, removing the influence
of specific data necessitates more than simply ad-
justing one encoder in isolation. We need a mech-
anism to precisely disrupt the cross-modal associ-
ations learned from the forget set Df while leav-
ing the associations from the retain set Dr intact.
Traditional MU methods, primarily designed for
unimodal settings, are ill-equipped for this task, as
they fail to account for the complex relationship
between image and text representations in CLIP.

To address the unique challenges of unlearning
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in CLIP, we introduce CLIPErase, a novel unlearn-
ing algorithm designed specifically for pre-trained
CLIP models. As illustrated in Figure 2, CLIPErase
modifies both the image and text encoders of the
original CLIP model, Θ, by integrating three core
modules: Forgetting Module, Retention Module,
and Consistency Module.

4.1 Forgetting Module

Pre-trained CLIP models capture rich semantic re-
lationships between images and text, making it
challenging to induce forgetting of specific con-
cepts without disrupting other learned associations.
To address this, we introduce a forget module de-
signed to selectively weaken the image-text binding
within the forget set Df . This module operates in-
tentionally by misaligning the visual and textual
representations corresponding to Df , ensuring that
the model no longer recognizes the cross-modal
relationships present in the discarded data.

The forget module is guided by the following
optimization objective, LFM, which minimizes the
similarity between image and text features within
the forget set. Specifically, LFM is defined as:

LFM =
1

Nf

Nf∑

n=1

(
fimg(x

n
i ) · ftxt(x

n
t )
)

(2)

where Nf is the number of samples in Df . By
minimizing the raw dot product between the im-
age and text embeddings, we directly disrupt their
alignment. This simple approach effectively drives
the dot product towards zero or negative values,
ensuring that images and text from Df no longer
retrieve each other in downstream tasks.

4.2 Retention Module

While the forget module focuses on disrupting the
alignment of image-text pairs in the forget set, this
process can inadvertently affect the model’s per-
formance on the retain set Dr. This is because
adjustments to the model’s parameters can affect
the overall cross-modal representation space, influ-
encing the model’s understanding and processing
of the retain set.

To mitigate this, we introduce a retention module
designed to preserve the model’s performance on
Dr during the unlearning process by minimizing
the alignment loss:

LRM = − 1

Nr

Nr∑

n=1

log softmax(fimg(x
n
i ) ·ftxt(x

n
t )/τ) (3)

where Nr is the number of samples in Dr. This
is the same as the original CLIP contrastive loss
function. This choice is motivated by the fact that
the contrastive loss effectively maintains the de-
sired image-text alignments within Dr. Other loss
functions, such as mean squared error (MSE) on
the embeddings, would not adequately preserve the
structured, pairwise relationships that are funda-
mental to CLIP’s functionality. With contrastive
loss, we ensure that each image in Dr remains
closely aligned with its corresponding text, while
being distinct from other image-text pairs. This
strategy effectively preserves the model’s intended
behavior on the retain set. Furthermore, by lever-
aging CLIP’s original training objective, we avoid
introducing conflicting learning signals that could
hinder the retention of the desired associations.

4.3 Consistency Module

The distinct optimization objectives applied to the
forget set Df and the retain set Dr may introduce
unexpected errors or biases in the model’s predic-
tions on Dr. To mitigate this risk, we introduce a
consistency module that encourages the unlearned
model Θu to maintain similar behavior to the orig-
inal model Θ on the retain set. This is achieved
by adding a consistency regularization term, LCM,
defined as the Kullback-Leibler (KL) divergence
between the output distributions of Θu and Θ on
Dr:

LCM =
1

Nr

Nr∑

n=1

[
KL

(
pimg
o ∥ pimg

u

)
+KL

(
ptxt
o ∥ ptxt

u

) ]

(4)

where p
img
o and p

img
u are the probability distribu-

tions derived from the image embeddings produced
by the original model Θ and the unlearned model
Θu after the softmax, respectively. Similarly, ptxt

o

and ptxt
u represent the distributions derived from

the text embeddings of Θ and Θu, respectively.
Combing these three modules, our overall un-

learning loss is:

L = λ1LRM + λ2LFM + λ3LCM (5)

where λ1, λ2, and λ3 are hyperparameters con-
trol the relative importance of each module in the
overall unlearning process. These hyperparameters
allow us to fine-tune the balance between forgetting
the information in Df , retaining performance on
Dr, and ensuring consistency between the original
and unlearned models.
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Task Dataset Metric
Zero-shot Prediction & Retrieval CIFAR-100,Conceptual 12M Accuracy of Df↓, Dr↑

Image & Text Retrieval Flickr30k Recall (R@1, R@5, R@10) of Df↓, Dr↑
Diffusion Flickr30k Detection Rate

Table 1: Experimental Setup: Evaluation Tasks, Datasets, Metrics

Dataset Method ZS Prediction (%) ZS Retrieval (%)

Acc.Df ↓ Acc.Dr ↑ Acc.Df ↓ Acc.Dr ↑

CIFAR-100

CLIP 86.08 72.85 88.61 73.43
CLIP+GA 4.43 5.22 0.63 5.39

CLIP+GradDiff 0.00 89.96 0.00 90.64
CLIP+KL 91.88 80.88 91.77 81.51

CLIP+ENMN 0.00 12.46 0.00 17.94
CLIPErase (ours) 0.00 90.99 0.00 91.85

Conceptual 12M

CLIP 96.20 93.60 94.48 92.77
CLIP+GA 38.22 4.15 1.17 5.38

CLIP+GradDiff 4.96 97.01 5.64 97.46
CLIP+KL 99.04 98.41 98.83 98.02

CLIPErase (ours) 0.74 97.10 0.74 97.62

Table 2: Experiment results on CIFAR-100 and Con-
ceptual 12M datasets for Zero-shot (ZS) Prediction and
Retrieval tasks.

5 Experimental Evaluation

5.1 Experiments Setting

Table 1 summarizes our experimental settings, in-
cluding tasks, datasets, and evaluation metrics. We
refer readers to Appendix A for more experiments
setting details.
Tasks: To evaluate the effectiveness of our method,
we conducted experiments on five tasks:
1. Zero-shot Image Prediction: CLIP predicts im-
ages by comparing their embeddings with text em-
beddings of class names and selecting the most
similar one. The unlearned model should misclas-
sify images from Df , demonstrating its forgetting
ability.
2. Zero-shot Text Retrieval: Given an image, CLIP
retrieves the most relevant text from a predefined
set of class names or concepts based on similarity
scores, evaluating its zero-shot semantic alignment.
3. Image Retrieval (IR): Given a text query, CLIP
retrieves images by ranking them based on similar-
ity to the text embedding.
4. Text Retrieval (TR): Given an image, CLIP re-
trieves text descriptions by ranking them based on
similarity to the image embedding.
5. Diffusion-based Image Generation: Using Sta-
ble Diffusion (Rombach et al., 2022), CLIP’s text
encoder should fail to generate images containing
forgotten content while preserving accuracy for
retained elements.
Implementation Details: In our experiments, we
use three datasets: CIFAR-100 (Krizhevsky et al.,

2009), Conceptual 12M (Changpinyo et al., 2021)
and Flickr30K (Bojchevski and Günnemann, 2017).
For CIFAR-100 and Conceptual 12M, we randomly
select one or more classes as the forget set. The
model is trained for 20 epochs with a batch size of
16, using the Adam optimizer and an initial learn-
ing rate of 1× 10−6. For Flickr30K, the forget set
consists of all image-text pairs containing a specific
concept (approximately 1% of the dataset). The
same training setup is used, except with a lower
learning rate of 1 × 10−8. All datasets are split
into 70% training and 30% testing. The balance
hyperparameters are set as λ1 = 1, λ2 = λ3 = 3.
Experiments use the best checkpoint from the vali-
dation set. Our model is implemented in PyTorch
and trained on an NVIDIA V100.

Metrics: Following prior work (Kim et al., 2021),
we use two metrics to assess MU efficacy: (1) Re-
tain Set Performance (Dr ↑): evaluates the accu-
racy for Zero-shot tasks and the Image Diffusion
task, as well as recall@1, @5, and @10 for Re-
trieval tasks. Higher values indicate minimal im-
pact on the retain set after unlearning. (2) Forget
Set Performance (Df ↓): evaluates the same accu-
racy with (1) but in forget set Df . Lower values
indicate more effective unlearning.

Baselines: Besides the original CLIP model (Kim
et al., 2021), we include the following unlearning
methods for comparison:

1. Gradient Ascent (GA) (Yao et al., 2023): In-
creases prediction errors on the forget set, forcing
the model away from its original predictions.

2. Gradient Difference (GradDiff) (Liu et al.,
2022): Increases errors on the forget set while
preserving performance on the retain set.

3. KL Minimization (KL) (Maini et al., 2024):
Aligns prediction distributions between unlearned
and original models for the retain set while increas-
ing errors on the forget set.

4. Error Minimization–Maximization Noise
(EMMN) (Chundawat et al., 2023): Removes class
information using noise-based minimization and
maximization of prediction errors.
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Task Method R@1 (%) R@5 (%) R@10 (%)

Df ↓ Dr ↑ Df ↓ Dr ↑ Df ↓ Dr ↑

Image Retrieval

CLIP 28.61 22.76 56.75 50.14 66.73 60.67
CLIP+GA 0.00 0.00 0.00 0.00 0.00 0.00

CLIP+GradDiff 2.67 16.26 6.21 37.49 7.82 47.13
CLIP+KL 26.30 22.94 53.63 48.56 63.17 58.52

CLIP+ENMN 12.54 19.00 24.81 33.23 49.72 38.64
CLIPErase (ours) 3.37 17.71 8.36 40.24 10.55 50.35

Text Retrieval

CLIP 25.04 19.11 58.87 48.82 68.33 59.17
CLIP+GA 0.00 0.00 0.00 0.00 0.00 0.01

CLIP+GradDiff 2.05 14.10 6.05 37.58 7.28 47.19
CLIP+KL 19.91 17.17 49.81 44.85 59.52 54.85

CLIP+ENMN 13.53 14.90 24.50 30.01 29.31 35.66
CLIPErase (ours) 2.35 13.82 7.21 37.06 8.84 46.52

Table 3: Experiment results on the Flickr30K dataset
for Retrieval tasks.

5.2 Zero-shot Prediction and Retrieval

As shown in Table 2, CLIPErase preserves CLIP’s
robust performance and achieves superior results
after accurately deleting specific information. On
the Forget Set, it attains 0% accuracy in both
tasks, confirming complete unlearning. CLIP+GA,
CLIP+GradDiff, and CLIP+KL leave residual
accuracy, while CLIP+ENMN also reaches 0%,
but drastically reduces retention performance to
12.46% in prediction and 17.94% in retrieval. In
contrast, CLIPErase excels on the Retain Set with
90.99% in prediction and 91.85% in retrieval, an
improvement of 18.14% and 18.42% over the origi-
nal CLIP. This success arises from CLIPErase’s Re-
tention and Consistency Modules, which safeguard
knowledge of retained data and enhance alignment
between visual and textual features.

To achieve finer-grained unlearning on larger,
open-domain datasets, we test CLIPErase on Con-
ceptual 12M. Table 2 shows that CLIPErase re-
duces the Forget Set accuracy to 0.3% in prediction
and 0.4% in retrieval, while preserving strong per-
formance on the Retain Set at 94.78% in prediction
and 94.81% in retrieval. These findings confirm
CLIPErase’s ability to generalize to open-domain
data, deliver precise unlearning for the Forget Set,
and maintain robust performance on the Retain Set,
underscoring its potential for broader applications
across diverse datasets. In Appendix B, we analyze
forget set classes by computing mean and variance,
confirming CLIPErase’s consistent unlearning.

5.3 Image Retrieval and Text Retrieval

As shown in Table 3, CLIPErase delivers strong
performance in both image and text retrieval tasks
for multimodal unlearning, surpassing prior meth-
ods on the Flickr30K dataset. In image retrieval,
CLIPErase significantly outperforms CLIP+GA,
CLIP+GradDiff, and CLIP+KL, with notable gains

FM RM CM Accuracy (%) Improvement (%)

↓ Df ↑ Dr ↓ Df ↑ Dr

✗ ✗ ✗ 86.08 72.85 - -
✓ ✗ ✗ 18.57 64.12 ↓ 67.5 ↓ 8.73
✓ ✓ ✗ 9.40 73.14 ↓ 76.68 ↑ 0.56
✓ ✓ ✓ 0 90.80 ↓ 86.08 ↑ 17.95

Table 4: Ablation studies on the Forgetting Module
(FM), Retention Module (RM), and Consistency Mod-
ule (CM).

in R@1 (17.71%), R@5 (40.24%), and R@10
(50.35%). Similarly, it achieves competitive re-
sults in text retrieval, reaching 46.52% in R@10,
which is 8.33% higher than CLIP+KL.

These results highlight the effectiveness of
CLIPErase’s Forgetting, Retention, and Consis-
tency Modules. The Forgetting Module success-
fully reduces model reliance on forgotten data,
while the Retention and Consistency Modules pre-
serve performance on the retain set, ensuring robust
multimodal unlearning without retraining.

5.4 Ablation Studies

As shown in Table 4, we performed ablation studies
on the CIFAR-100 dataset to quantitatively eval-
uate the impact of the Forgetting Module (FM),
Retention Module (RM), and Consistency Module
(CM) on the zero-shot prediction task.
Effectiveness of FM: Activating the Forgetting
Module led to a significant drop in accuracy on
the forget set, from 86.08% to 18.57%, indicating
that FM effectively disrupted the correspondence
between images and texts in the forget set. How-
ever, relying solely on FM negatively impacted the
retain set performance, reducing its accuracy from
72.85% to 64.12%.
Effectiveness of RM: When both the Forgetting
Module and Retention Module were activated, the
accuracy on the retain set recovered to 73.14%,
demonstrating that RM successfully protected the
retain set’s performance. Simultaneously, the
model’s accuracy on the forget set further de-
creased to 9.40%, showing that RM plays a critical
role in balancing the task of forgetting specific data
while preserving the retain set performance.
Effectiveness of CM: When the Consistency Mod-
ule (CM) was activated alongside FM and RM,
the retain set accuracy significantly improved to
90.80%, while the accuracy on the forget set
dropped to 0%. This indicates that the model suc-
cessfully forgot the specified data while maintain-
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Figure 3: Performance across different numbers of For-
get Set classes.

ing high performance on the retain set. Consis-
tency Module ensures consistency throughout the
unlearning process, preventing potential errors or
biases introduced by the unlearning process.

5.5 Robustness and Utility

Figure 3 shows experiments with CLIPErase, Grad-
Diff, GA, and the original CLIP across various
proportions of forget classes (0%, 3%, 10%, 20%,
30%) on the CIFAR-100 dataset for the zero-shot
image classification task. Figure 3 (left) shows the
forget accuracy, where CLIPErase demonstrates a
significant unlearning effect at different proportions
of forget classes. However, for GradDiff and GA,
forget accuracy increases as the number of forget
classes grows, indicating a worsening unlearning
effect. Figure 3 (right) presents the retain accuracy,
where CLIPErase maintains performance compara-
ble to CLIP, particularly at lower proportions, while
GA shows a sharp decline in retain accuracy as the
forget proportion increases. Overall, CLIPErase
exhibits strong robustness and utility against the
number of forget classes, effectively balancing both
forget accuracy and retain accuracy. We further val-
idate CLIPErase’s robustness with experiments on
Conceptual 12M, detailed in Appendix D.

5.6 Extending CLIPErase to Other VLMs

Although our main study focuses on CLIP,
CLIPErase is designed to be modular and model-
agnostic, without relying on any CLIP-specific
components. To demonstrate its extensibility, we
further applied CLIPErase to other vision-language
models, including BLIP (Li et al., 2022, 2023), AL-
BEF (Li et al., 2021), and other transformer-based
architectures.

To validate this generalizability, we implemented
CLIPErase on BLIP-1 (Li et al., 2022) and con-
ducted additional experiments on the CIFAR-100
dataset for the zero-shot prediction task shown on
Table 5. We applied our Forgetting, Retention,

Model Acc.Df ↓ Acc.Dr ↑
BLIP 100.00 97.07
BLIP + GA 0.00 42.89
BLIP + GradDiff 89.73 40.41
BLIP + CLIPErase 0.00 83.12

Table 5: Experiment results on CIFAR-100 for Zero-
shot (ZS) Prediction task using BLIP.

and Consistency Modules without requiring any
changes to BLIP’s original architecture.

We further evaluated the effectiveness of
CLIPErase on BLIP and compared it with base-
line methods, as shown in Table 5. The original
BLIP model retains all information in the forget set
with an accuracy of 100.00% and achieves 97.07%
on the retain set, indicating no unlearning effect.
While BLIP + GA and BLIP + GradDiff reduce
forget-set accuracy to 0.00% and 89.73% respec-
tively, they also lead to a substantial drop in retain-
set performance, with accuracies of 42.89% and
40.41%. In contrast, CLIPErase reduces the forget-
set accuracy to 0.00% and maintains a strong retain
set accuracy of 83.12%. These results demonstrate
that CLIPErase enables effective unlearning on
BLIP with minimal impact on retained knowledge,
highlighting its generalizability beyond CLIP.

6 Diffusion Model with CLIPErase

To further demonstrate the practical impact of
CLIPErase and its ability to remove specific associ-
ations while preserving other knowledge, we apply
it to a text-to-image diffusion model (Rombach
et al., 2022). Our goal is to selectively erase tar-
geted object concepts from generated images while
maintaining other details. We conduct this exper-
iment using captions from the Flickr30k dataset,
which contains real-world images and complex tex-
tual descriptions, providing a challenging testbed
for evaluating the precision of our unlearning ap-
proach. For instance, consider the caption: “A
woman holding an apple standing next to a display
of oranges, apples, and melons.” This caption in-
cludes multiple coexisting concepts (woman, apple,
oranges, melons). If apple is designated as the tar-
get for removal, we assess whether CLIPErase can
effectively erase it from the generated image while
ensuring that other elements, such as the woman,
oranges, and melons, remain present.

We generate images using two models: (1) one
with the standard CLIP text encoder and (2) another
with the CLIP text encoder modified by CLIPErase.
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Figure 4: Comparison of image generation results using
the original CLIP and our CLIPErase model in Sta-
ble Diffusion with multi-concept prompts. The prompt
represents the input to the diffusion model. Blue text
denotes concepts unlearned by CLIPErase, while red
text highlights concepts that should be retained.

Unlearned Concept CLIP(%) CLIPerase (%)

Apple 100.00 2.00
Bicycle 90.00 8.00
Chair 84.00 6.00
Elephant 88.00 6.00

Table 6: Detection rate (%) of different unlearned con-
cepts in generated images. Lower values indicate more
effective removal.

We select 50 captions per target concept and gen-
erate 400 images per model. For evaluation, we
then use a pretrained YOLOv5 (Zhang et al., 2022)
detector to identify the presence of the target ob-
ject in the generated images. The detection rate
serves as a metric for evaluating concept removal
effectiveness: Detection Rate = Nd

Ng
, where Nd is

the number of images where the target concept is
detected, and Ng is the total number of generated
images. A lower detection rate indicates more ef-
fective concept removal.

As shown in Figure 4, CLIPErase effectively
removes specific target concepts while preserving
other relevant concepts in the generated images.
Table 6 shows that CLIPerase significantly reduces
target concept presence. For example, the detection
rate for apple drops from 100.00% (standard CLIP)
to 2.00% (CLIPerase), and bicycle from 90.00% to
8.00%, demonstrating successful selective unlearn-
ing. We present additional results in Appendix E.

Figure 5: Attention Heatmaps before unlearning (CLIP)
and after unlearning (CLIPErase) on apple images.

Figure 6: t-SNE visualizations of text and visual em-
beddings from the CLIP model (before unlearning, left)
and the CLIPErase model (after unlearning, right) on
CIFAR-100. The unlearned category is "apple." We
use ◦ and △ to represent visual and text modalities,
respectively, with different colors indicating different
categories.

7 Visualization

Attention Visualization: In Fig. 5, we visualized
the attention heatmaps of the "forget set" before
and after the unlearning process. Using "apple"
from CIFAR-100 as an example, we presented the
original images, the heatmaps generated by the
CLIP model, and the heatmaps after unlearning
with CLIPErase. In the CLIP heatmaps, atten-
tion is highly focused on the object, displaying
strong visual-semantic alignment. This indicates
that CLIP successfully establishes a robust con-
nection between textual and visual semantics. In
contrast, after machine unlearning with CLIPErase,
the heatmaps show that attention becomes more
random and dispersed across each patch, no longer
concentrated on the relevant object. This suggests
that CLIPErase effectively disrupts the alignment
between text and visual semantics for the data to be
unlearned, thus achieving the intended unlearning
objective.
Embedding Visualization: To further investigate
the impact of CLIPErase on the retain set within
the cross-modal shared representation space, we
conducted t-SNE visualizations (Van der Maaten
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and Hinton, 2008) of the textual and visual em-
beddings from both the original CLIP model and
the CLIPErase model. Specifically, we selected
10 classes from the CIFAR-100 dataset, with the
"apple" class serving as the forget set and the re-
maining classes as the retain set.

From the CLIPErase results, we observed that
the distance between the textual and visual embed-
dings of the "apple" class significantly increased,
while the embeddings of the other classes remained
tightly clustered within their respective categories.
This suggests that CLIPErase effectively weak-
ens the association between the textual and visual
modalities in the forget set, with minimal impact
on the modality associations of the retain set. In
summary, CLIPErase can effectively decouple the
connection between the textual and visual embed-
dings of the forget set without affecting the visual-
textual associations of the retain set, thus achieving
the intended goal of machine unlearning.

8 Conclusion

In this paper, we introduce CLIPErase, a novel
machine unlearning framework for multimodal
models that selectively removes undesired associa-
tions while preserving overall model performance.
CLIPErase achieves this by disrupting cross-modal
associations for the specified data, effectively "for-
getting" the targeted information without compro-
mising the model’s ability to perform other tasks.
The effectiveness of CLIPErase is demonstrated
through extensive experiments on various tasks, in-
cluding zero-shot prediction, image-text retrieval,
and text-to-image generation with diffusion mod-
els. The results consistently show that CLIPErase
successfully removes targeted associations while
maintaining performance on other tasks and data.
This highlights CLIPErase’s potential for address-
ing real-world challenges related to privacy preser-
vation, intellectual property protection, and bias
mitigation in multimodal learning.
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Limitation

A key limitation of CLIPErase is the lack of dedi-
cated datasets and benchmarks designed for multi-
modal machine unlearning. Existing benchmarks
are not explicitly constructed to evaluate the effec-
tiveness of multimodal unlearning, limiting com-
prehensive assessment. Moreover, our work only
focus on unlearning multimodel embedding mod-
els. We plan to extend our framework to multi-
modal generative models such as Vision Language
Models (VLMs), enabling more direct and effec-
tive unlearning of visual-textual associations for
privacy preservation, intellectual property protec-
tion, and bias mitigation. Further discussions on
future directions are provided in Appendix F.
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Appendix

In these supplementary materials, we provide de-
tails on our experimental settings in Appendix A,
and different patch size model results in Ap-
pendix B.1. We further analyze variance effects
in Appendix C, scalability in Appendix D, addi-
tional diffusion model results in Appendix E, and
future directions in Appendix F.

A Experiments Setting

A.1 Tasks:

1. Zero-shot Prediction: CLIP is employed to clas-
sify images based on a given category label (e.g.,
"cat," "dog") without training data. The unlearned
CLIP is expected to predict a mismatch between
the label “dog” and the image of a dog if it belongs
to the forget set (Df ), demonstrating its ability to
"forget" specific learned associations.
2. Zero-Shot Prediction: CLIP is used to retrieve
images matching a text description (e.g., "red car")
without task-specific training. In the unlearning
scenario, the unlearned CLIP should fail to retrieve
images that belong to the forget set, such as cars de-
scribed as "red car" if they are part of Df , demon-
strating its ability to forget these specific multi-
modal associations without further training.
3. Image Retrieval (IR): Given a text query, CLIP
retrieves the top-k relevant images. The unlearned
CLIP should avoid retrieving images in the forget
set, demonstrating the selective forgetting capabil-
ity while maintaining performance on the retain
set.
4. Text Retrieval (TR): Given an image query,
CLIP retrieves the top-k relevant text descriptions.
In the unlearning context, CLIP should fail to re-
trieve relevant text descriptions for images in the
forget set.
5. Image Diffusion: We utilize Stable Diffusion,
whose text encoder is based on CLIP, to generate
images from textual prompts. Under the unlearning
scenario, this CLIP-based encoder is expected to

"forget" all content in the forget set (Df ). Conse-
quently, when given a prompt that references any
forgotten content, the unlearned model should fail
to produce images containing those elements, thus
illustrating the selective forgetting capability while
still maintaining accurate generation for all other
retained content.

A.2 Datasets:
For the zero-shot prediction and retrieval tasks,
we use the CIFAR-100 dataset (Krizhevsky et al.,
2009). CIFAR-100 is an image classification
dataset containing 100 categories. It consists of a
total of 60,000 images, with 50,000 used for train-
ing and 10,000 for testing.

Similarly, we also extend our experiments to the
Conceptual 12M dataset (Changpinyo et al., 2021),
a large-scale, open-domain dataset comprising ap-
proximately 12 million image-text pairs sourced
from the web. Conceptual 12M provides diverse
and natural text descriptions, making it particularly
suitable for training multimodal models across var-
ious tasks, which allows us to explore whether the
CLIPErase can generalize to larger class sets or
more diverse real-world data.

For the Image Retrieval (IR) and Text Retrieval
(TR) tasks, we use the Flickr30K dataset (Bo-
jchevski and Günnemann, 2017). The dataset con-
tains 31,783 images, each paired with five natural
language captions. These images primarily depict
daily life scenes. Additionally, for the Image Dif-
fusion task, we generate images using the captions
provided in Flickr30K.

A.3 Settings:
For CIFAR-100, we randomly select one or multi-
ple classes as the forget set. The model is trained
for 20 epochs with a batch size of 16, using Adam
and an initial learning rate of 1 × 10−6. The loss
weights are set to λ1 = 1, λ2 = λ3 = 3.

For CC12M, although it contains 12 million real-
world text-image pairs, we faced practical chal-
lenges such as broken image links and the extensive
time required for data collection. On our servers,
the download and cleaning pipeline processes ap-
proximately 1,000 text-image pairs per hour, imply-
ing that collecting the full dataset would take over
12,000 hours. Due to these constraints, we ran-
domly sampled 120,000 vision-language pairs (1%
of CC12M), comprising a Forget Set with 2,284 im-
ages and a Retain Set with 117,716 images. For this
experiment, we designated the concepts woman and
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womens as the forget targets, and performed Zero-
Shot Image and Text Retrieval tasks. The model
was trained for 5 epochs with a batch size of 16,
using a 70%-30% train-validation split. We set the
learning rate to 1×10−6, weight decay to 1×10−5,
and loss weights to λ1 = 1, λ2 = λ3 = 3.

For Flickr30k, the forget set includes all image-
text pairs containing one concept, comprising 1%
of the dataset. The same setup is used, except
with an initial learning rate of 1× 10−8. The loss
weights are set to λ1 = 1, λ2 = λ3 = 3.

Each experiment use the best checkpoint from
the validation set. Our model and code are imple-
mented in PyTorch, with training and evaluation on
an NVIDIA Tesla V100-SXM2.

A.4 Evaluation:

Following prior work (Kim et al., 2021), we use
two metrics to assess MU efficacy: (1) Retain Set
Performance (Dr ↑):This metric evaluates the ac-
curacy for Zero-shot tasks and the Image Diffusion
task, as well as recall@1, @5, and @10 for Re-
trieval tasks. Higher values indicate minimal im-
pact on the retain set after unlearning. (2) Forget
Set Performance (Df ↓): Uses the same metrics as
Dr. Lower values indicate more effective unlearn-
ing.

A.5 Comparison to Prior Work

Besides the original CLIP model, we compare our
method CLIPErase with commonly known uni-
modal MU methods when directly applied to CLIP.
We omit using prior work (Kravets and Namboodiri,
2024) as a baseline because their code and detailed
experimental settings were not released, making
it challenging to replicate their results. Especially
without access to their synthetic image generation
code, it is unable to conduct CLIP unlearning in
their setting.
Original CLIP Model (Kim et al., 2021): We use
the original CLIP model as a baseline to assess
the impact of unlearning, ensuring that the model’s
performance on the retain set remains unaffected.
Gradient Ascent (GA) (Yao et al., 2023): This
method aims to degrade the model’s performance
on the forget set by increasing prediction errors,
forcing the model behave away from its original
predictions.
Gradient Difference (GradDiff) (Liu et al., 2022):
This method increases errors on the forgetting data
while preserving performance on the retain set,

achieving the goal of unlearning specific informa-
tion without impacting retained data.
KL Minimization (KL) (Maini et al., 2024): The
method ensures consistency on the retain set by
comparing the prediction distributions of the un-
learned and original models, while increasing er-
rors on the forgetting data.
Error Minimization-Maximization Noise (EMMN)
(Chundawat et al., 2023): It deletes specific class
information from the model using noise-based
error minimization and maximization techniques.

A.6 Computational Efficiency

We also evaluated the computational burden and
scalability of our method, CLIPErase. The aver-
age training time per epoch is approximately 39
minutes for CIFAR-100, 98.7 minutes for Concep-
tual 12M, and 146.88 minutes for Flickr30K on an
NVIDIA Tesla V100-SXM2 GPU. Since we did
not profile the time consumption across different
components of the training pipeline, there may be
further opportunities to reduce overhead and im-
prove efficiency.

B Performance Stability and Variance

To ensure that CLIPErase consistently performs
effective unlearning across various forget sets, it
is essential to evaluate not only the average perfor-
mance but also the variability of the results. To
achieve this, we conducted experiments and cal-
culated the mean and variance. A low variance
indicates that the method performs uniformly well
across different forget sets, while a high variance
may suggest sensitivity to specific classes.

We conducted experiments on the CIFAR-100
dataset using five randomly selected forget classes:
Apple, Camel, Mountain, Porcupine, and Televi-
sion. For each forget class, we measured the perfor-
mance of CLIPErase in Zero-Shot Text Retrieval
and Zero-Shot Prediction tasks. The performance
metrics, including the mean and variance of the
results, are summarized in Table 7.

The experimental results demonstrate that Zero-
Shot Prediction exhibits the most stable forgetting
performance, as indicated by the low variance in
the forget set performance (0.038%). This suggests
that CLIPErase consistently forgets across various
classes in this task. In contrast, Zero-Shot Text
Retrieval shows a higher variance (13.11%) for the
forget set, which reflects the inherent complexity
and variability of text-image associations in certain
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Class ZS Retrieval (%) ZS Prediction (%)

Df Dr Df Dr

Apple 0.00 89.41 0.00 91.38
Camel 0.00 80.61 0.00 78.36
Mountain 8.19 80.81 0.44 78.60
Porcupine 0.00 80.28 0.00 77.71
Television 0.41 81.72 0.00 78.41

Mean 1.72 82.57 0.09 80.89
Variance 13.11 14.92 0.04 34.48

Table 7: Performance of CLIPErase on different for-
get classes in Zero-Shot Prediction and Retrieval tasks.
Metrics are reported for Forget Set (Df ) and Retain Set
(Dr).

classes like Mountain. Despite this variability, the
overall mean performance remains low (1.72%),
indicating effective forgetting.

Furthermore, the retain set performance main-
tains relatively low variance for both tasks (14.92%
for Text Retrieval and 34.48% for Image Retrieval),
demonstrating that the model consistently retains
unrelated concepts across different forget sets. This
robustness highlights CLIPErase’s ability to per-
form unlearning reliably without compromising
the retention of non-forget classes.

Overall, the variance analysis confirms that
while different forget sets can influence unlearn-
ing performance to some extent, CLIPErase main-
tains strong stability and low variance across varied
forget sets.

B.1 More results of different Patch size

Class ZS Prediction (%) ZS Retrieval (%)

Df Dr Df Dr

Apple 00.00 92.25 00.00 91.12
Baby 00.00 92.21 00.00 91.08
Bicycle 00.00 92.03 00.00 91.23
Chair 00.00 92.14 00.00 91.04
Elephant 00.00 92.06 00.00 91.10

Table 8: Performance of CLIPErase on different patch
size CLIP.

We conducted additional experiments using
the Patch-14 size of CLIP to further evaluate
CLIPErase’s effectiveness in forgetting specific
concepts while preserving other concept in the re-
tain set. The evaluation was performed on multiple
forget sets using Zero-Shot Retrieval and Zero-Shot
Prediction tasks, measuring performance on both
the forget set (Df ) and the retain set (Dr).

As shown in Table 8, CLIPErase achieves per-

fect forgetting across all selected forget classes in
both retrieval tasks, demonstrating its capability to
fully remove targeted concepts. Meanwhile, the
accuracy of the retain set remains stable, averaging
0.9214% for text retrieval and 0.9111% for image
retrieval. The low variance observed in these re-
sults further confirms the robustness of CLIPErase,
ensuring reliable and consistent unlearning perfor-
mance across different patch size CLIP.

These findings highlight that CLIPErase effec-
tively eliminates undesired multimodal associa-
tions while maintaining generalization for non-
targeted concepts, making it a strong and reliable
approach for machine unlearning in multimodal
models.

C Variance Analysis of Consistency
Module

To further analyze the impact of Consistency Mod-
ule (CM), we conducted variance analysis using
the results from different forget set classes shown
at Table 7. The variance of the forget set perfor-
mance across classes demonstrates the challenges
in forgetting certain classes due to their complexity
or dependency with other classes. For example,
in Zero-Shot Retrieval, the forget set variance is
13.11, compared to the retain set variance of 14.92.
In Zero-Shot Prediction, the forget set variance is
much lower at 0.038, while the retain set variance
is 34.48. These results highlight that CLIPErase
performs consistently across various settings, but
certain classes like "Mountain," which appear in
complex backgrounds or share features with other
classes, are harder to forget completely (e.g., 8.19%
accuracy for the forget set in text retrieval). In
contrast, more independent classes like "Apple"
or "Camel" achieve near-complete forgetting. In
summary, RM balances retention and forgetting by
prioritizing Dr, while Consistency Module stabi-
lizes optimization and strengthens feature separa-
tion, leading to improved performance for both Df

and Dr. The variance analysis further validates the
robustness of CLIPErase in handling diverse class
types and highlights the importance of Consistency
Module in achieving consistent performance.

D Scalability and Robustness

To demonstrate the scalability and robustness of
CLIPErase, we conducted a series of experiments
on the Conceptual 12M (CC12M) dataset with vary-
ing sizes and complexities of forget sets. These
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experiments aimed to evaluate CLIPErase’s ability
to handle single-class, multi-class, and fine-grained
forget sets, as well as its performance on larger
datasets.

Single-Class Forget Set: First, we evaluated
CLIPErase on a single-class forget set to establish
baseline performance. We selected "woman" as
the forget set target and measured the forgetting
performance while maintaining retention for other
concepts. The results are shown in Table 9.

Model ZS Prediction (%) ZS Retrieval (%)

Df Dr Df Dr

CLIP 95.32 93.90 93.32 92.96
CLIP+GA 0.00 1.44 0.11 0.02
CLIP+GradDiff 90.87 93.92 91.76 93.07
CLIPErase 0.33 94.19 0.42 93.19

Table 9: Performance comparison across models for
Zero-Shot Text and Image Retrieval tasks with a single-
class forget set.

CLIPErase significantly outperforms other meth-
ods in forgetting the target class while maintaining
high retention performance, highlighting its effec-
tiveness in single-class unlearning scenarios.

Multi-Class Forget Set: To further assess scal-
ability on more complex datasets, we conducted
additional experiments using a larger and more di-
verse forget set. Specifically, we selected keywords
such as “woman,” “man,” “girl,” “boy,” and “per-
son,” resulting in 42,577 samples in the Forget Set
and 77,423 samples in the Retain Set. The unlearn-
ing process for this larger dataset was completed
within 7 hours on an NVIDIA Tesla V100-SXM2
GPU.

The results of these experiments are summarized
in Table 10. This table compares the performance
of the original CLIP model and CLIPErase on both
Zero-Shot Retrieval and Zero-Shot Prediction tasks.
The comparison demonstrates that CLIPErase ef-
fectively forgets the specified set while maintaining
high performance on the retain set.

Model ZS Prediction (%) ZS Retrieval (%)

Df Dr Df Dr

CLIP 93.14 94.09 90.43 93.96
CLIPErase 5.75 92.67 7.08 92.38

Table 10: Performance of CLIP and CLIPErase on Zero-
Shot Text and Image Retrieval tasks with a larger forget
set.

Fine-Grained Forget Targets: Additionally,

we conducted experiments to simulate more re-
alistic and fine-grained forgetting scenarios. We
set "woman" as the forget set target and evaluated
the forgetting performance while maintaining re-
tention for other concepts. The results are shown
in Table 11.

Model ZS Prediction (%) ZS Retrieval (%)

Df Dr Df Dr

CLIP 95.32 93.90 93.32 92.96
CLIP+GA 0.00 1.44 0.11 0.02
CLIP+GradDiff 90.87 93.92 91.76 93.07
CLIPErase 0.33 94.19 0.42 93.19

Table 11: Performance comparison across models for
Zero-Shot Text and Image Retrieval tasks with fine-
grained forget targets.

These experiments demonstrate that CLIPErase
maintains computational efficiency and effectively
scales to larger and more complex datasets with
diverse forget sets. Whether dealing with single-
class or multi-class forget sets, CLIPErase consis-
tently achieves robust forgetting while preserving
high performance on the retain set. This under-
scores CLIPErase’s practicality and scalability for
real-world applications involving large-scale and
multifaceted unlearning tasks.

E More Results of Diffusion Models

As shown in Figure 7, we present additional results
of images generated using diffusion models with
two different encoders. CLIPErase successfully
eliminates specific target concepts while retaining
other relevant concepts in the generated images.

F Discussion and Future Works

The proposed CLIPErase method has significant
potential in practical applications, especially in ad-
dressing ethical and legal concerns related to harm-
ful information and biases in multimodal datasets.
In tasks like online antisemitism detection, individ-
ual components such as text or images may appear
harmless on their own, but when combined, they
can convey harmful messages. For example, in
an image where the text "Even grandma can see
what’s going on" seems innocuous at first glance,
when paired with an antisemitic image and stereo-
typical messaging, it transmits damaging, implicit
bias. Such hidden biases are especially danger-
ous in multimodal data. CLIPErase caneffectively
decouple these associations, to forget the harmful
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Figure 7: Comparison of image generation results using the original CLIP and our CLIPErase model in Stable
Diffusion with multi-concept prompts. The prompt represents the input to the diffusion model. Blue text denotes
concepts unlearned by CLIPErase, while red text highlights concepts that should be retained.

links between text and images, thereby mitigating
the risk of perpetuating bias.

Additionally, CLIPErase holds great potential
in safeguarding user privacy. When users request
the deletion of specific personal data, CLIPErase
can remove any associations between their personal
information and multimodal content.

In the future, although our current implementa-
tion is focused on the CLIP model, the framework
can be extended to any modality or multimodal
pretrained model, not just CLIP. This broader appli-
cability would enable flexible unlearning across a
wide range of systems, making the approach more
versatile. Additionally, we aim to apply CLIPErase
to Generative AI systems, such as Multimodal
Large Language Models (MLLMs), where CLIP-
based encoders are widely used. By unlearning
at the encoder level, CLIPErase can help address
the growing challenges in Generative AI, including
the generation of private, malicious, or illegal con-
tent, the continuation of biases, and even the risk

of weaponizing these models. Our approach can
serve as a safeguard, correcting problematic associ-
ations and enhancing user privacy, thus providing
a safer and more ethical experience in the future of
AI development.
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