
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 30298–30317
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Can we Retrieve Everything All at Once?
ARM: An Alignment-Oriented LLM-based Retrieval Method

Peter Baile Chen1 Yi Zhang2 Michael Cafarella1 Dan Roth3

1MIT 2AWS AI Labs 3University of Pennsylvania & Oracle AI
peterbc@mit.edu, imyi@amazon.com, michjc@csail.mit.edu, danroth@seas.upenn.edu

Abstract
Real-world open-domain questions can be com-
plex, especially when answering them requires
integrating information from multiple sources.
Effectively identifying the necessary informa-
tion involves aligning it with the available data
and its organization. However, existing RAG
solutions address the alignment problem in a
limited manner. Using off-the-shelf LLMs for
question decomposition lacks awareness of the
available data and its structure, often resulting
in suboptimal retrieval performance. Alterna-
tively, iteratively generating follow-up queries
and interacting with the data collection, as ex-
plored in agentic RAG approaches, shows po-
tential but is often inefficient since each succes-
sive query depends on previous results rather
than being guided by the overall organization
of the available data. To address the align-
ment problem, we introduce an LLM-based
retrieval method — ARM, designed to better
align questions with the organization of the
data collection. Instead of solely matching
query utterance, ARM explores relationships
among data objects, enabling a retrieve-all-at-
once solution for complex queries. Experimen-
tal results demonstrate that ARM significantly
outperforms existing RAG methods on various
complex open-domain QA tasks across mul-
tiple modalities, achieving superior retrieval
performance and downstream accuracy while
significantly lowering monetary costs.1

1 Introduction

Answering real-world questions can be compli-
cated, especially when required information is dis-
tributed across heterogeneous information sources,
such as text corpus, databases, and even image col-
lections. Consider an example question "What is
the highest eligible free rate for K-12 students in
the schools in the most populous county in Califor-
nia?" and the data collection shown in Figure 1. To

1Data and code are available at https://peterbaile.
github.io/arm/.

answer this question, one passage (A) from the text
corpus and three joinable tables (B, C, D) from the
database are needed. Identifying these requires ex-
ploring the available text and tables in the data col-
lection, reasoning about their relationships (e.g., A
connects to B through entities like California coun-
ties, while C connects to D via joinable columns
such as school name), and determining the best or-
ganization of these objects that can fully answer the
question. In other words, an optimal retrieval strat-
egy would leverage the alignment between the user
query and available data and their internal organi-
zation. This approach would ensure the retrieval
of objects A, B, C, and D, even if B and C are not
explicitly mentioned in the user question.

One approach to tackling the alignment problem
is to use off-the-shelf LLMs to decompose com-
plex questions into simpler subqueries (Khot et al.,
2022; Zhou et al., 2022; Jhamtani et al., 2023),
increasing the chances of aligning them with ob-
jects in the data collection. As shown in Figure 1,
this method retrieves A and D. However, such de-
composition lacks awareness of the available data
and its organization. Therefore, alignment may
fail because important data objects relevant to the
question can be missed, especially if they are not
directly mentioned in the question (this method can
miss bridging tables B and C).

Another approach to address the alignment prob-
lem iteratively is by retrieving relevant informa-
tion at each step, which has been explored in the
context of agentic RAG (Yao et al., 2022; Trivedi
et al., 2022; Press et al., 2022; Asai et al., 2023;
Zhang et al., 2024). Typically, an LLM-based
agent, which has demonstrated impressive perfor-
mance in reasoning and acting (Kojima et al., 2022;
Wei et al., 2022; Shinn et al., 2024; Yao et al.,
2024), iteratively reasons about actions (i.e., search
queries). Search queries are then issued, and the
retrieved passages are fed back to the agent, which
continues reasoning about the next action until it de-

30298

https://peterbaile.github.io/arm/
https://peterbaile.github.io/arm/

Q: What is the highest eligible free rate for K-12 students in the schools in the most populous county in California?

Standard RAG

with Query Decomposition

Agentic RAG

(e.g., ReAct)

Alignment-Oriented LLM-based Approach

(ARM)

Step 1: Query Decomposition:

① most populous county in California

② highest eligible free rate K-12 students California

③ schools with highest eligible free rate K-12 students

Step 2: Retrieving for each Query:

 ① ② ③

Ⓐ Ⓑ Ⓒ Ⓓ

Ⓑ Ⓒ

Ⓐ Ⓓ

Step 1: Round 1

- Thought: I need to find most populous county…
- Act: Search Text [most populus county in California]
- Observation: …

Step 2: Round 2
- Thought: I need to find schools in Los Angeles…
- Act: Search Text [schools in Los Angeles, free rate]
- Observation: …

Step 3: Round 3
- Thought: I need to find schools in Los Angeles
- Act: Search Table [schools in Los Angeles, free rate]
- Observation: I did not find schools’ county information.

Ⓐ

Ⓓ

Gold Reasoning ProcessQ

Ⓑ Ⓒ Ⓓ

Text Databases

⨝ ⨝Ⓐ
Step 4, 5, 6, 7, 8 , …

What is the highest
eligible free rate for K-12
students in the schools in

the most populous county
in California?

Ⓐ

Ⓓ

Alignment

Information Structure

Ⓑ

Ⓒ

Self-verification
and aggregation

ⒶⒷⒸⒹ
Multiple

alignment
drafts

Figure 1: A summary of our approach ARM, and a comparison with retrieval in standard RAG, which leverages
LLMs for query decomposition, and agentic RAG, which employs LLM-based agents to iteratively generate queries.

termines that the question has been fully answered.
Although adopting such agent-based iterative so-
lutions has shown promising results (such as re-
trieving A and D, as shown in Figure 1), these
approaches do not explicitly consider available
data objects and their organization. Each action
is driven by the agent’s decision about what infor-
mation is still needed to fully answer the question,
based on previously retrieved objects. This can
lead to inefficient exploration with unnecessary it-
erations, increasing inference time and cost. More-
over, an iterative approach based on past experience
cannot enable a joint optimization, where early and
later steps are planned together. As shown in (Yao
et al., 2022), agentic solutions face a critical issue
known as reasoning derailment, where agents fail
to recover from an initial erroneous action, result-
ing in consecutive rounds of incorrect reasoning.

In this work, we argue that enabling an efficient
and comprehensive retrieval for complex ques-
tions requires aligning the question and its de-
composition with existing data objects and their
organization. This means that, beyond perform-
ing semantic matching between the question and
data objects (allowing the retrieval of A and D),
the retrieval process must also simultaneously rea-
son about how candidate data objects can be con-
nected and whether they involve bridging entities
between documents or connecting columns be-
tween tables (ensuring the retrieval of B and C
as well). Therefore, we propose an LLM-based
alignment-oriented retrieval method, ARM, for
complex open-domain questions. Through reason-
ing about a better alignment to the data collection

and its organization, we want to have a more effec-
tive and efficient retrieval solution, where we can
achieve retrieve-everything-all-at-once. Inspired
by (Chen et al., 2024c), which can be considered as
a retrieve-all-table-at-once solution that leverages a
solver to reason about table relationships, we inte-
grate its reasoning module as a way to identify the
relationships among data objects, and therefore we
can search for potential alignments from the query
to the data collection for an LLM. We then use
LLM to verify and aggregate the candidate align-
ment outputs and produce the final results. Unlike
agentic RAG solutions tailored for multi-hop ques-
tion answering (Press et al., 2022; Trivedi et al.,
2022), which rely mainly on bridging entities in
passages to generate partial answers for guiding
subsequent retrieval, our reasoning module is more
general. It can integrate business-specific logic,
such as detecting joinable columns between tables,
to reason about relationships and handle a broader
range of complex QA tasks.

2 Overview

This section provides an overview of our
alignment-oriented LLM-based retrieval solution.
Each component will be elaborated in Section 3.
Intuitively, our solution adopts the idea of retriev-
ing while generating (Jain et al., 2024), so that
we can take the most advantage of LLM’s reason-
ing capability to infer the alignment between the
question and the data organization. Rather than
simply interleaving “retrieval” by constrained de-
coding based on evidence from the text corpus, and

30299

“thoughts” by unconstrained decoding (Jain et al.,
2024), we propose to retrieve everything jointly,
guided by information from data objects available
in the data collection, a solver’s reasoning, and
LLM’s self-verification.

Specifically, we consider the retrieval problem
as an alignment problem, aiming to identify all
necessary data objects from the data collection and
map them to the information needed to answer the
question. An off-the-shelf LLM faces two key chal-
lenges in solving this problem. First, while an
LLM can use its reasoning capabilities to identify
potentially useful information, it cannot determine
how to map that information to existing data objects
without direct access to the data collection. Second,
LLMs may lack the domain-specific knowledge to
reason about how different data objects that are
semantically related to the question are connected.
They might also struggle to identify whether ad-
ditional data objects are required to connect these
objects, particularly when the question involves
private databases (Chen et al., 2024b). Therefore,
LLMs need guidance from the data collection and
its organization to reason about the alignment.

To solve the challenges mentioned above, we
mainly consider two alignment steps and one self-
verification step. The first is information alignment,
where we draft the key information needed to an-
swer the question directly. This is achieved by con-
strained decoding using N-grams extracted from
existing data objects. The second is structure align-
ment, where we reason about how different pieces
of key information from existing data objects can
be connected, potentially with additional objects,
to answer the question through a reasoning solver.
The alignment results are then fed to the “reason-
ing process” as drafts, and the LLM self-verifies
the relatedness of the data objects to the question
as well as their connections and selects the final
data objects that can fully answer the question. The
overall idea is illustrated in Figure 1.

3 Methodology

3.1 Indexing

In this paper, we unify tables and passages and con-
sider them as textual data objects. We chunk each
serialized data object, compute the embeddings of
each chunk, and further represent and index it as an
N-gram collection. N-grams are used to summarize
the key information from a chunk of data objects,
enabling a quick lookup of its contents. Embed-

“The relevant keywords are highest eligible free rate, …, populous,

The relevant N-grams are (Percent, Eligible Free),...,
(population), …

Here are the objects that can be relevant:
 Passage name: California Counties…, Content: …
 Table name: List of School Districts …, Content: …
 Table name: School and District Data, Content: …
 Table name: Free or Reduced …, Content: …
Here are the potential connections between these objects:
 Table List of School Districts … includes column county which connects with …

LLM outputs reasoning processes: constrained
decoding

based on the
collection

list of N-grams as query to lookup

Ⓓ
Ⓐ

Ⓑ

Ⓒ
Reasoning
solver

ⒶⒹ

Alignment

Data collection with unified representations for tables & texts

Information

Structure

Ⓐ

Ⓑ

Ⓒ

Ⓓ

Ⓐ Ⓓ

Ⓑ
ⒸBase search

objects from
information
alignment

Expanded set of search objects

Structure alignment for
each set of search objects

Ⓐ

Ⓓ

Ⓑ

Ⓒ
Multiple

alignment
drafts

Constructing multiple alignment drafts

Figure 2: Information and structure alignment in ARM.
Gray dotted lines refer to guidance received from exter-
nal sources/ tools. Blue dotted lines refer to the inferred
data organization required to answer the question.

dings are used to support semantic similarity search.
Both embeddings and N-grams are used to guide
LLMs’ reasoning of what data objects should be
used to answer the question (Section 3.2.1). Details
can be found in Appendix A.

3.2 Alignment
3.2.1 Information Alignment
As described in Section 2, we instruct the LLM to
generate a reasoning process with multiple inter-
mediate steps. The first step is to determine the
key information required to answer the question.
As an off-the-shelf LLM lacks access to the data
collection, its analysis of useful information may
not align with information from the available data
objects. To address this, we propose to instruct the
LLM to first decompose the question by extract-
ing keywords independently of the data collection,
and then guide it to rephrase each keyword using
N-grams available from the data objects in the col-
lection through constrained decoding.

Constrained Beam Decoding. Our constrained-
decoding-based information alignment is based on
the model’s extracted keywords from the user ques-
tion. Since these keywords might not appear as
directly in the corpus, we instruct the model to
rephrase them to align with N-grams indexed from
our data collection as mentioned in Section 3.1.

This alignment is performed by constraining the
model’s output space during the decoding process.
The constrained beam decoding starts once a ‘(’ is
decoded which indicates that model is performing
alignment and continues until ‘)’ is decoded which
indicates that the model has finished alignment for

30300

one keyword. As an N-gram can be composed of
multiple tokens, we use a suffix tree to keep track of
valid continuations of generated tokens. With beam
search, we maintain top lists of N-grams with the
highest scores and decode the list with the highest
score. The score of an N-gram is calculated as the
average logits across all of its tokens.

Each list of N-grams decoded is used as a query
to search for chunks, considering both the exact
match and semantic similarity to objects in the
data collection. Objects with the highest overall
score form a base set of search objects that serve
as the foundation for constructing a draft for the
continuation of LLM’s “reasoning process”.

3.2.2 Structure Alignment

Information alignment guides us towards a set of
search objects from the data collection that is very
likely to help answer the question. However, there
can be redundant and missing information. For
instance, several passages identified may address
the same aspect of the question. The information
about the necessary bridging entities (Yang et al.,
2018) or bridging tables (Chen et al., 2024c), and
the information that has to be derived from those
bridging entities or tables can still be missing. To
address this, we further design a structure align-
ment module that reasons about a complete list of
search objects with their organization, so that it can
match the information required and fully answer
the question.

The key challenge of structure alignment is LLM
does not have a global view of all available data
objects and may lack specific knowledge to iden-
tify the missing objects needed to correctly con-
nect the candidate objects that have been identified,
especially when the data collection belongs to a
specialized domain that the LLM may not have
encountered extensively during its training.

Therefore, we propose to use an external solver
to solve this structure alignment problem, where we
can formulate the objective and include any busi-
ness or domain-specific reasoning logic. Specifi-
cally, for a given list of search objects, the solver is
tasked with returning a subset of the input search
objects that are connected and can be combined
to best answer the question. We then use the con-
tent of these selected objects to construct a partial
“draft” for the LLM to continue its “reasoning pro-
cess”(Section 3.3).

Inference using Mixed-Integer Programming.
We formulate structure alignment for retrieval as
an optimization problem. Following (Chen et al.,
2024c), we use a mixed-integer linear program
(MIP) to solve it, leveraging its flexibility to in-
ject any business or domain-specific logic into the
objective. Specifically, the goal of the MIP pro-
gram is to select a list of k objects from a given list
of M search objects {Oi}Mi=1 that can simultane-
ously maximize the relevance between the question
and selected objects and compatibility (strength
of connection) among the selected objects. The
output of the MIP consists of both the k selected
objects and the connections between these objects
(connecting entities or joinable columns). Details
can be found in Appendix B.

Relevance. Relevance between a user question
Q and an object Oi, denoted as Ri, is defined as
the cosine similarity between the embedding of Q
and the embedding of the serialized object Oi.

Compatibility. Object-object compatibility be-
tween two objects Oi and Oj , denoted as Cij , mea-
sures the strength of connection between objects.
It is computed based on both semantic similarity
and exact-value similarity between contents from
both objects.

Objective. The objective function is to maximize
the relevance of the selected objects and compatibil-
ity among the selected objects: argmax

∑
iRibi +∑

i,j Cijcij where binary decision variable bi de-
notes whether object Oi is selected and cij denotes
whether object Oi connect with object Oj .

Constructing Multiple Alignment Drafts. Al-
though our reasoning solver aims to ensure align-
ment by considering data organization to fully an-
swer the question, it depends on the base set of data
objects retrieved during the information alignment
stage. However, the base set of objects may not
include sufficient information to answer the user
question. For instance, when questions require mul-
tiple connected objects (and bridging objects), the
base objects might need to be expanded to include
sufficient information. To address this, we propose
expanding the base search objects in different ways,
creating multiple sets of search objects. Specifi-
cally, this expansion follows a multi-hop approach,
where for each base object, we add its k most com-
patible objects (determined using the compatibility
score defined above). This process can be repeated
for l steps, progressively introducing more relevant
objects. We then apply the aforementioned MIP

30301

“ …continued from an alignment draft…

Here I summarize the relevant information to answer the user
question
<passage> California Counties … </passage> lists the county
populations in California, which covers keyword “populous”,
<table> List of School Districts … </table> extends on this by

providing counties in California, which covers keywords …”

Self-Verification

Aggregation

Self-verification results
for each alignment draft

Ⓐ

Ⓑ

Vote
count
score

Vote
weight
(logits)

…

0.01 0.05

0.02 0.03

Top-k
objects
with the
highest
weighted
votes

ⒶⒷⒸⒹ

Figure 3: Self-verification and aggregation in ARM.

solver to each set, generating multiple alignment
drafts that integrate both information and structure
alignment. In our experiments, we considered three
expanded sets of search objects.

3.3 Self-Verfication and Aggregation
Finally, each draft generated by the MIP solver,
which includes both objects and their connections,
is verbalized (details can be found in Appendix C)
and provided to models. Models will select a set of
objects that can potentially be used to answer the
user question, acting as a verifier that collectively
evaluates all information decoded so far to perform
object selection. An aggregation mechanism, based
on model confidence, is used to combine the selec-
tion results from the different drafts. This is shown
in Figure 3.

Model as Self-Verifier. At this stage, model has
generated a decomposition of the user question, and
has alignment knowledge on both information and
structure. Using these knowledge, model performs
the verification process by checking if selected ob-
jects includes content that can cover different as-
pects of the decomposition and that selected objects
are connected. We use constraint decoding to guide
this selection process to ensure factuality. In partic-
ular, we ensure that objects chosen by models must
be present in the draft.

Aggregation of alignment drafts. After verifi-
cation is performed for each draft, the model’s rea-
soning process is completed. We aggregate the
selected data objects from the multiple alignment
drafts by factoring in the model’s confidence for
each selected object. Specifically, the aggregation
process is treated as a weighted voting process,
where each draft acts as a voter who votes for a
selected object. In this context, an object’s confi-
dence can be measured by the weight of votes and
the number of votes it receives. The weight of a

vote is measured using logits. In particular, tokens
generated in the reasoning process that correspond
to the object’s name are identified, and the logits of
these tokens are averaged to be the weight of a vote.
The number of votes an object receives is the count
of its occurrences across all drafts, with softmax
applied to normalize this count. Then, the confi-
dence in an object is computed as the weighted
sum of the average vote weight and the normalized
number of votes. Finally, the data objects with the
highest confidence are selected as the final set of
retrieved objects.

4 Experiments

4.1 Experimental setup
Datasets. We evaluated our approach and base-
lines on open-domain question-answering tasks in-
volving multiple information sources and modali-
ties (text and tables). As such, we selected repre-
sentative complex QA datasets for each modality:
2WikiMultiHop (Ho et al., 2020) for text, Bird (Li
et al., 2024) for tables, and OTT-QA (Chen et al.,
2020) for a combination of both text and tables.
Specifically, 2WikiMultiHop consists of multi-hop
questions over multiple passages with short-text
answers, Bird focuses on questions involving mul-
tiple tables with answers in the form of SQL state-
ments, and OTT-QA includes multi-hop questions
spanning both passages and tables, with short-text
answers. For each dataset, we used the dev split
for the user questions and constructing the data
collection. Details can be found in Appendix D.1.

Baselines. We evaluated our approach against
two baseline methods: the standard RAG and agen-
tic RAG approaches. For the standard RAG base-
line, we considered two variations: dense retrieval
and dense retrieval followed by a cross-encoder
reranker. Additionally, we augmented the standard
RAG approach by incorporating an LLM-based
query decomposition. To have a fair comparison
with our approach, we used the same model (Llama
3.1-8B-Instruct) as the LLM to perform query de-
composition. Table 4 contains prompts used for
generating sub-questions.

In our experiments, the embedding models
used for dense retrieval were UAE-Large-V1 (Li
and Li, 2023) and Snowflake-arctic-embed-m-v2.0
(Yu et al., 2024) , and we used bge-reranker-v2-
minicpm-layerwise (Li et al., 2023; Chen et al.,
2024a) as the reranking model. Additionally, Re-
Act and IRCoT were chosen as representatives of

30302

the agentic RAG approach. As mentioned in Sec-
tion 1, IRCoT is specifically designed for multi-hop
question answering, relying on generating partial
answers to guide the next round of retrieval. How-
ever, this approach is difficult to adapt to scenarios
where decomposing the final answer into partial
answers is not straightforward, such as SQL-based
answers in the Bird dataset. As a result, we did
not evaluate IRCoT on the Bird dataset. Details
for running the baselines can be found in Appendix
D.2.

Environment. We used the Python-MIP2 pack-
age with Gurobi as the external Mixed-integer pro-
gram solver and a cluster of V100 GPUs for per-
forming inference. Both Llama-3.1-8B-Instruct
and Qwen-2.5-7B-Instruct were used as models for
running ARM to perform the retrieval process. To
perform downstream tasks, we used Llama-3.1-8B-
Instruct, Qwen-2.5-7B-Instruct, and GPT-4o-mini.
Agentic RAG baselines were executed on the same
three models. The same three ICL examples were
provided to models for running ARM and down-
stream tasks. Table 7 contains the 3-shot prompts
used for ARM.

4.2 Metrics

We evaluated both the retrieval performance of the
retrieved objects and the end-to-end performance
on downstream tasks. We further quantified the effi-
ciency of different methods by tracking the number
of input and output tokens, computing the total cost
of the end-to-end process, and measuring retrieval
iterations.

For retrieval performance, we adopted the stan-
dard metrics of precision, recall, and F1 of the re-
trieved objects compared to the gold objects. How-
ever, the recall metric could be misleading because,
in an extreme scenario, a retriever can achieve high
recall by retrieving a significant portion of gold
objects for every question, but with none of the
questions having all gold objects retrieved. This
is problematic as a question can usually only be
answered when all information is provided. There-
fore, we further augmented existing metrics with
the percentage of questions with all gold objects re-
trieved, denoted as perfect recall (PR). For agentic
RAG baselines, we assessed retrieval performance
by comparing the objects provided to models across
all iterations with the gold objects.

2https://www.python-mip.com/

To evaluate end-to-end performance on down-
stream tasks, we measured exact match (EM) and
F1 score by comparing the predicted and gold short
answers for OTT-QA and 2WikiMultiHop. For
Bird, following (Li et al., 2024), execution accu-
racy was defined as 1 if the predicted and gold SQL
statements produced the same execution results and
0 otherwise.

To evaluate efficiency, we tracked the number
of input and output tokens along with the retrieval
iterations used by LLMs for agentic RAG base-
lines and ARM. For agentic RAG baselines, this
includes the entire iterative process. For ARM, this
includes the retrieval step and the final LLM answer
generation. The overall cost is determined based
on the number of input and output tokens, follow-
ing the pricing of proprietary models. We adopted
OpenAI’s pricing model3 as OpenAI models are
among the most widely used. In particular, since
our experiments utilize GPT-4o-mini, we based our
cost analysis on its pricing strategy. Additionally,
unlike standard RAG baselines or ARM, which per-
form a single round of retrieval, agentic RAG can
perform multiple retrieval iterations. Therefore, we
also measured the number of retrieval iterations for
these methods.

4.3 Retrieval performance

Table 1 shows the retrieval performance of all meth-
ods. On Bird, ARM retrieves on average 5.00 ob-
jects, achieving a recall of 96.5 and perfect recall
of 92.2. In comparison, the best-performing stan-
dard RAG baseline, dense retrieval, retrieves 5 ob-
jects with a recall of 88.3 and perfect recall of
77.7, which is 8.1 and 14.6 points lower compared
to ARM, respectively. Additionally, compared to
ReAct running on Llama3.1-8B-Instruct, ARM re-
duces retrieval iterations by 4.34 and retrieves 11.6
fewer objects while maintaining comparable recall
and perfect recall but achieving a 32.3 higher F1,
potentially reducing noise.

On OTT-QA, ARM retrieves an average of 5.0
objects, achieving a recall of 79.6 and a per-
fect recall of 61.4. In comparison, the best-
performing standard RAG baseline, dense retrieval
with reranker, retrieves 5 objects with a recall of
74.5 and a perfect recall of 52.4, which is 5.1 and
9.0 points lower than ARM, respectively. Addi-
tionally, compared to ReAct running on Llama3.1-
8B-Instruct, ARM reduces retrieval iterations by

3https://openai.com/api/pricing/

30303

https://www.python-mip.com/
https://openai.com/api/pricing/

Table 1: Retrieval performance of all methods. PR is the percentage of questions with all gold objects retrieved.
DR refers to dense retrieval. DRR refers to dense retrieval with reranker. X-D refers to method X with query
decomposition. XL, XQ, and XG refers to method X executed on Llama3.1-8B-Instruct, Qwen2.5-7B-Instruct, and
GPT-4o-mini, respectively. For agentic baselines, X(num1 ; num2) refers to X involves num1 retrieval iterations
when using UAE-Large-V1 as the embedding model and num2 iterations when using Snowflake-arctic-embed-m-
v2.0. Bolded and underlined numbers indicate the best and second-best performance on local models, respectively.
Gray bolded numbers indicate the performance of proprietary models when they outperform local models.

UAE-Large-V1 Snowflake-arctic-embed-m-v2.0

Avg #obj. ↓ P R F1 PR Avg #obj. P R F1 PR

Bird

DR 5.00 33.7 88.9 47.7 78.4 5.00 33.2 87.7 47.0 76.9
DRR 5.00 33.0 86.2 46.5 74.7 5.00 32.5 85.4 45.9 73.9
DR-D 3.72 38.9 74.9 49.1 56.5 3.57 42.5 76.6 52.5 59.8
DRR-D 5.00 33.0 86.4 46.6 74.7 5.00 33.1 86.8 46.8 75.4
ReActL(5.24 ; 5.44) 16.1 15.5 96.4 25.3 93.0 17.1 13.6 95.2 22.8 91.2
ReActQ(2.22 ; 2.17) 6.92 28.5 92.9 42.2 86.0 7.09 27.6 92.0 41.0 84.7
ReActG(3.16 ; 2.95) 10.4 25.6 96.6 38.4 92.5 10.0 24.8 96.4 37.7 92.2
ARML 5.00 42.9 96.9 56.2 93.1 4.95 43.1 96.0 56.4 91.3
ARMQ 3.79 56.6 95.1 67.1 89.6 3.79 55.0 94.0 65.6 87.5

OTT-QA

DR 5.00 34.6 69.0 44.0 43.1 5.00 32.6 65.0 41.4 35.8
DRR 5.00 37.4 75.2 47.8 53.8 5.00 36.8 73.7 46.9 51.0
DR-D 4.79 32.7 62.3 40.9 32.7 4.72 32.6 61.5 40.7 30.6
DRR-D 5.00 37.1 74.5 47.4 52.5 5.00 36.9 73.9 47.0 51.3
ReActL(4.52 ; 4.60) 18.1 15.5 75.0 23.4 54.0 18.9 14.1 71.2 21.4 48.1
ReActQ(2.38 ; 2.43) 9.88 24.0 74.9 33.5 53.8 10.2 22.5 72.7 31.6 49.7
ReActG(3.70 ; 4.00) 13.4 21.9 80.1 31.2 61.7 14.9 19.7 78.6 28.5 59.4
IRCoTL(4.13 ; 4.27) 16.2 13.6 63.6 20.7 41.5 16.9 12.9 62.3 19.6 39.1
IRCoTQ(1.00 ; 1.00) 5.02 4.3 8.7 5.5 5.9 5.01 4.0 8.1 5.1 4.6
IRCoTG(5.31 ; 5.78) 22.9 13.1 81.8 20.7 65.3 25.0 11.6 80.4 18.6 63.3
ARML 4.99 47.4 80.0 55.1 62.6 5.00 46.7 79.1 54.6 60.2
ARMQ 4.98 48.6 77.3 54.3 57.8 5.00 48.9 77.0 54.3 56.9

2WikiMultihop

DR 5.00 33.2 71.7 44.6 42.7 5.00 33.3 71.7 44.6 42.2
DRR 5.00 34.1 73.5 45.8 45.7 5.00 34.4 74.0 46.1 46.1
DR-D 5.00 33.0 71.0 44.2 41.2 5.00 33.2 71.3 44.4 41.1
DRR-D 5.00 34.3 73.9 46.0 46.2 5.00 34.4 73.8 46.0 45.7
ReActL(2.58 ; 2.50) 10.3 28.0 97.2 42.1 94.0 10.3 28.0 97.1 42.0 93.9
ReActQ(1.86 ; 1.85) 8.31 28.1 88.7 41.5 76.4 8.34 27.9 88.4 41.1 75.2
ReActG(2.39 ; 2.33) 9.09 29.2 98.0 44.0 95.8 9.11 29.3 98.0 44.0 95.6
IRCoTL(3.15 ; 3.18) 11.6 15.4 70.6 24.4 51.1 11.7 15.7 71.3 24.8 51.3
IRCoTQ(1.00 ; 1.00) 5.02 4.3 9.6 5.8 6.0 5.05 4.4 9.9 5.9 6.1
IRCoTG(6.04 ; 6.30) 25.4 12.2 89.6 20.0 79.8 26.4 11.8 89.7 19.3 79.9
ARML 4.96 62.8 97.6 71.7 94.7 4.97 61.7 98.0 71.2 95.4
ARMQ 4.67 66.3 96.6 74.5 92.4 4.59 67.2 97.3 75.3 93.9

3.56 and retrieves 13.5 fewer objects while achiev-
ing 6.5 points higher recall and 10.4 points higher
perfect recall.

On 2WikiMultiHop, ARM retrieves an average
of 5.0 objects, achieving a recall of 97.8 and a
perfect recall of 95.1. In comparison, the best-
performing standard RAG baseline, dense retrieval
with query decomposition and reranker, retrieves
5 objects with a recall of 73.9 and 46.0, which
is 24.0 and 49.1 points lower than ARM, respec-
tively. Additionally, compared to ReAct running
on Llama3.1-8B-Instruct, ARM reduces retrieval

iterations by 1.54 and retrieves 5.3 fewer objects
while achieving 0.6 points higher recall and 1.1
points higher perfect recall.

These results demonstrate that ARM outper-
forms standard RAG baselines in recall and perfect
recall, indicating a higher likelihood of retrieving
all necessary information to answer user questions.
Additionally, compared to agentic RAG baselines
executed on the same model, ARM achieves com-
parable or superior retrieval performance while us-
ing much fewer retrieval iterations and retrieving
fewer objects.

30304

Table 2: End-to-end performance of all methods. Refer to Table 1 for notations.

UAE-Large-V1 Snowflake-arctic-embed-m-v2.0

Bird OTT-QA 2WikiMultiHop Bird OTT-QA 2WikiMultiHop

Acc. Exact F1 Exact F1 Acc. Exact F1 Exact F1

Model for answer generation: Llama3.1-8B-Instruct

DR@5 17.7 34.1 40.6 30.7 37.9 17.4 29.4 35.6 28.3 35.5
DRR@5 17.0 39.8 46.8 31.5 38.7 15.6 38.1 45.3 30.7 38.9
DR-D@5 14.1 27.2 33.3 28.6 35.9 16.4 26.1 31.9 29.4 36.4
DRR-D@5 16.4 38.7 46.2 30.5 38.1 18.8 38.7 45.7 29.8 37.9
ReActL 5.0 27.2 34.4 33.7 43.8 4.3 26.2 33.2 34.1 44.6
IRCoTL – 18.0 21.9 14.7 18.9 – 17.4 21.0 14.7 18.7
ARML 20.6 44.1 52.0 45.0 54.4 19.5 43.8 50.8 43.5 53.8
ARMQ 20.1 42.4 49.9 44.5 54.3 21.8 42.1 49.2 44.3 54.4

Model for answer generation: Qwen-2.5-7B-Instruct

DR@5 19.5 30.0 35.5 35.6 40.6 19.8 27.0 32.2 35.0 40.3
DRR@5 19.9 35.9 40.9 36.6 41.7 22.0 35.2 41.3 35.3 40.2
DR-D@5 16.8 24.0 29.1 34.7 39.6 19.6 23.6 28.4 34.4 39.3
DRR-D@5 20.0 36.5 42.5 34.9 40.5 22.9 36.5 42.2 33.7 38.8
ReActQ 11.9 34.7 44.1 31.9 45.4 12.3 35.0 44.5 33.7 46.0
IRCoTQ – 4.4 5.3 6.1 8.7 – 3.7 4.5 6.7 9.4
ARML 21.3 40.4 46.8 48.5 56.2 22.7 40.0 46.6 46.7 54.5
ARMQ 23.2 37.3 43.7 45.5 53.1 26.1 38.0 44.0 47.1 54.2

Model for answer generation: GPT-4o-mini

DR@5 29.9 39.9 47.8 40.7 47.5 32.0 33.9 41.7 40.5 47.5
DRR@5 30.1 45.9 55.2 41.7 48.6 31.5 44.3 53.9 41.1 48.4
DR-D@5 24.1 32.6 39.7 40.4 46.9 26.2 30.2 37.8 41.7 47.9
DRR-D@5 27.1 45.6 55.4 41.6 48.2 26.8 44.5 53.7 41.1 48.3
ReActG 27.1 41.2 50.2 52.7 68.8 27.8 35.1 45.4 54.1 70.1
IRCoTG – 18.6 25.4 26.3 28.2 – 15.4 20.8 23.3 25.1
ARML 31.8 49.2 59.2 53.6 65.3 33.0 48.4 58.4 53.2 64.7
ARMQ 33.4 47.2 57.0 52.8 64.2 34.4 47.4 56.9 53.3 64.0

Table 3: Cost of agentic RAG baselines relative to ARM executed using Llama-3.1-8B-Instruct. See Table 8 for
details on the number of tokens and absolute cost.

UAE-Large-V1 Snowflake-arctic-embed-m-v2.0

Llama-3.1-8B-Instruct Qwen-2.5-7B-Instruct GPT-4o-mini Llama-3.1-8B-Instruct Qwen-2.5-7B-Instruct GPT-4o-mini

ReAct IRCoT ReAct IRCoT ReAct IRCoT ReAct IRCoT ReAct IRCoT ReAct IRCoT

Bird 5.34x – 2.27x – 3.05x – 5.18x – 2.06x – 2.61x –
OTT-QA 4.06x 1.49x 2.39x 0.27x 3.38x 2.01x 4.09x 1.49x 2.42x 0.28x 3.63x 2.22x
Wikihop 1.44x 0.88x 1.06x 0.23x 1.32x 2.20x 1.36x 0.87x 1.05x 0.24x 1.27x 2.27x

4.4 End-to-end performance

Table 2 shows the end-to-end results on all datasets
across all approaches while Table 3 shows the over-
all cost of agentic RAG baselines relative to ARM.

Averaging across all models, ARM demonstrates
superior performance on all datasets. On Bird,
it outperforms the best-performing standard RAG
baseline, dense retrieval, by 2.94 points in execu-
tion accuracy and agentic RAG by 10.9 points. On
OTT-QA, ARM achieves 3.27 points higher exact
match and 3.59 points higher F1 match compared
to dense retrieval with query decomposition and
reranker, while outperforming the agentic RAG by
10.1 points in exact match and 9.2 points in F1

match. On 2WikiMultiHop, ARM achieves 12.0
points higher exact match and 15.0 points higher F1
match compared to dense retrieval with reranker,
while outperforming the agentic RAG by 8.1 points
in exact match and 4.6 points in F1 match. More-
over, compared to ARM, the highest-performing
agentic RAG baseline, ReAct, incurs significantly
higher costs—405.9% more on Bird, 204.5% more
on OTT-QA, and 279.8% more on 2WikiMultiHop.

The results show that ARM outperforms stan-
dard RAG baselines by retrieving higher-quality
objects, enhancing downstream performance while
retrieving a similar number of objects. More-
over, compared to agentic RAG baselines, ARM

30305

Figure 4: The average recall and perfect recall of dense
retrieval with decomposition (DR-D) and our method
with successive modules: information alignment (IA),
structure alignment (SA), and self-verification and ag-
gregation (SV) for the top-5 retrieved objects across all
datasets.

Figure 5: The average recall and perfect recall for the
information alignment module evaluated using embed-
ding similarity alone and when combined with keyword
lookup for the top-5 retrieved objects across all datasets.

achieves superior downstream performance at a sig-
nificantly lower cost. This highlights ARM as a
more effective and efficient solution.

4.5 ReAct analysis

We manually analyzed 50 randomly sampled ques-
tions per dataset from ReAct, the best-performing
agentic RAG approach. Our analysis identified two
main errors in models’ iterative reasoning process:
forgetting previously generated information and
repeatedly searching for similar keywords despite
retrieving relevant objects. These issues lead to
inefficiency, increasing retrieval iterations and cost.
Detailed examples can be found in Appendix E.

4.6 Ablation studies

Significance of different modules. ARM in-
cludes three modules: information alignment, struc-
ture alignment, and self-verification and aggrega-
tion. Figure 4 illustrates the performance of dense
retrieval with query decomposition and our method
with successive modules for the top-5 retrieved ob-
jects. Information alignment involves decomposing
the original question into keywords and retrieving
relevant objects, similar to the baseline of dense re-
trieval with query decomposition. To highlight the
benefits of information alignment, we compare the
two methods. On average, information alignment
outperforms dense retrieval with query decompo-
sition by 8.83 points in recall and 14.0 points in
perfect recall across all datasets. The inclusion of

structure alignment boosts recall by 3.42 points and
perfect recall by 8.96 points, building on the gains
from information alignment. Finally, the complete
method with all three modules enhances recall by
9.68 points and perfect recall by 17.0 points. The
improvement with each successive module demon-
strates the contribution of every module to the over-
all retrieval performance.

Information alignment. Information alignment
retrieves relevant objects through two components:
keyword lookup using the decomposed and aligned
keywords via BM25, and embedding similarity.
Figure 5 illustrates the performance with embed-
ding similarity alone and when combined with key-
word lookup. Adding keyword lookup to embed-
ding similarity improves recall by 1.67 points and
perfect recall by 2.70 points on average across all
datasets, clearly demonstrating the contribution of
each component.

5 Conclusion

Understanding the available data objects in a col-
lection and their organization is essential for an-
swering complex open-domain questions that in-
volve heterogeneous information sources. Off-the-
shelf LLMs decompose queries without consider-
ing available data in the collection, leading to a
suboptimal retrieval. While agentic RAG can in-
teract with the data collection, it generates queries
based on prior retrieval results rather than the avail-
able data objects and their organization. Therefore,
it is often inefficient, requiring more iterations to
retrieve all necessary data objects. In this work,
we propose ARM, an alignment-oriented retrieval
method that identifies key data objects needed to
answer a question and navigates their data organi-
zation to retrieve all relevant objects, even if not
explicitly mentioned in the query. Experiments
demonstrate that ARM outperforms baselines in
retrieval and downstream performance while being
more efficient in retrieval iterations and cost.

6 Limitations

First, we acknowledge the limitations of our chosen
evaluation datasets. While our retrieval framework,
along with the data representation method in Sec-
tion 3.1, is adaptable to various modalities, our
experiments primarily focus on text and tables. De-
veloping a benchmark dataset that requires joint
reasoning across text, tables, and images, as well
as evaluating our method on such data, is left for

30306

future work. Secondly, our method is only compati-
ble with open-source models and cannot be applied
to models that are exclusively accessible via APIs.

Acknowledgments

We gratefully acknowledge the support of DARPA
ASKEM Award HR00112220042, the ARPA-H
Biomedical Data Fabric project, a grant from Lib-
erty Mutual, the Office of Naval Research (ONR
N00014-23-1-2364), and the Croucher Scholar-
ship.

References
Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and

Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
arXiv preprint arXiv:2310.11511.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu
Lian, and Zheng Liu. 2024a. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity
text embeddings through self-knowledge distillation.
Preprint, arXiv:2402.03216.

Peter Baile Chen, Fabian Wenz, Yi Zhang, Moe Kayali,
Nesime Tatbul, Michael Cafarella, Çağatay Demi-
ralp, and Michael Stonebraker. 2024b. Beaver: An
enterprise benchmark for text-to-sql. arXiv preprint
arXiv:2409.02038.

Peter Baile Chen, Yi Zhang, and Dan Roth. 2024c. Is ta-
ble retrieval a solved problem? exploring join-aware
multi-table retrieval. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2687–
2699.

Wenhu Chen, Ming-Wei Chang, Eva Schlinger, William
Wang, and William W Cohen. 2020. Open ques-
tion answering over tables and text. arXiv preprint
arXiv:2010.10439.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing a multi-
hop QA dataset for comprehensive evaluation of
reasoning steps. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 6609–6625, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Palak Jain, Livio Baldini Soares, and Tom Kwiatkowski.
2024. From rag to riches: Retrieval inter-
laced with sequence generation. arXiv preprint
arXiv:2407.00361.

Harsh Jhamtani, Hao Fang, Patrick Xia, Eran Levy, Ja-
cob Andreas, and Ben Van Durme. 2023. Natural
language decomposition and interpretation of com-
plex utterances. arXiv preprint arXiv:2305.08677.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao
Fu, Kyle Richardson, Peter Clark, and Ashish Sab-
harwal. 2022. Decomposed prompting: A modular
approach for solving complex tasks. arXiv preprint
arXiv:2210.02406.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Chaofan Li, Zheng Liu, Shitao Xiao, and Yingxia Shao.
2023. Making large language models a better founda-
tion for dense retrieval. Preprint, arXiv:2312.15503.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, et al. 2024. Can llm already serve
as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural
Information Processing Systems, 36.

Xianming Li and Jing Li. 2023. Angle-optimized text
embeddings. arXiv preprint arXiv:2309.12871.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A Smith, and Mike Lewis. 2022. Measuring
and narrowing the compositionality gap in language
models. arXiv preprint arXiv:2210.03350.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Harsh Trivedi, Niranjan Balasubramanian, Tushar
Khot, and Ashish Sabharwal. 2022. Interleav-
ing retrieval with chain-of-thought reasoning for
knowledge-intensive multi-step questions. arXiv
preprint arXiv:2212.10509.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. arXiv preprint arXiv:1809.09600.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

30307

https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://arxiv.org/abs/2402.03216
https://www.aclweb.org/anthology/2020.coling-main.580
https://www.aclweb.org/anthology/2020.coling-main.580
https://www.aclweb.org/anthology/2020.coling-main.580
https://arxiv.org/abs/2312.15503
https://arxiv.org/abs/2312.15503

Puxuan Yu, Luke Merrick, Gaurav Nuti, and Daniel
Campos. 2024. Arctic-embed 2.0: Multilingual
retrieval without compromise. arXiv preprint
arXiv:2412.04506.

Weinan Zhang, Junwei Liao, Ning Li, and Kounian-
hua Du. 2024. Agentic information retrieval. arXiv
preprint arXiv:2410.09713.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

A Serialization and chunking

Serialization. In our data collection, each pas-
sage chunk is serialized as a concatenation of its
passage title and the content of the chunk. A table
chunk is serialized as a concatenation of its table
name, title, description (if any), and rows.

For instance, a serialized document is as follows:

Document id: /wiki/Ajim
Document name: /wiki/Ajim
Document content: Ajim (Arabic : Aǧı̄m
) is a commune and port located on the
Island of Djerba off the coast of Tunisia.
It is Djerba ’s main fishing port and the
closest city to the African continent.
It had a population of 24,294 at the 2014
census.

An example of a serialized table is as fol-
lows (table content is represented as a markdown):

Table id: IPSC_European_Handgun_
Championship_2
Table name: IPSC European Handgun
Championship
Table description: The IPSC European
Handgun Championship is an IPSC level 4
championship hosted every third year in
Europe.
Champions – Junior category

Table content:
| Year | Division | Gold | Silver |
Bronze | Venue |
|——-:|:———–|:—————–|:——————–|:———–|:—————|
| 2013 | Open | Simo Partanen | Daniil
Karchev | Francois Belloni | Barcelos ,
Portugal |
| 2013 | Standard | Kenneth Handberg |

Sotirios-Thomas Zafeiridis | Mats Selven
| Barcelos , Portugal |
| 2013 | Production | Pavel Torgashov |
Konstantin Kryuchin | Nikita Kryuchin |
Barcelos , Portugal |
| 2016 | Standard | Danila Pakhomov | Ilya
Sologub | Kirill Fedorov | Felsőtárkány
, Hungary |

N-Grams and Embeddings. We constructed N-
grams for each table and passage chunk, varying N
between one to three. Moreover, we computed the
embedding for each table and passage chunk using
the serialized objects.

B Mixed-integer program

The objective function is subject to the following
constraints:
Constraint 1 ensures decision variables are binary

bi, cij ∈ {0, 1} (1)

Constraint 2 sets the maximum number of objects
and encourages selected objects to be connected.

∑

i

bi = k,
∑

i,j

cij ≤ 2(k − 1) (2)

Constraint 3 ensures that only connections between
selected objects are considered.

2cij ≤ oi + oj ,∀i, j (3)

Object-object compatibility between two objects
Oi and Oj , denoted as Cij , measures the strength of
connections between objects. It is computed based
on both semantic similarity (cosine similarity of
embeddings) and exact-value similarity between
contents from both objects.

Table-table compatibility is determined by pair-
wise column comparisons between the two tables.
Since only one pair of columns is necessary to
connect two tables, table compatibility is deter-
mined by the highest compatibility score among all
possible column pairs. Each column-column com-
patibility is calculated as the weighted sum of the
semantic similarity between the column headers
and the exact-value similarity (Jaccard similarity)
of the column rows.

Table-passage compatibility is determined by
comparing all cells within a table and all sentences
in a passage and taking the pair with the highest
compatibility. Each cell-sentence compatibility is
calculated as the weighted sum of the semantic

30308

similarity and exact-value similarity (overlap coef-
ficient) between the cell content and the sentence.

Passage-passage compatibility is computed by
comparing all sentences in a passage with all sen-
tences in the other passage and taking the pair
with the the highest compatibility. Each sentence-
sentence compatibility is calculated as the weighted
sum of semantic similarity and exact-value similar-
ity (overlap coefficient).

C Draft verbalization

Each draft that includes both objects and their con-
nections and is verbalized as follows:

• Objects: each object is serialized in the same
way as described in Appendix A, but only the
k (k = 5 in our setting) most similar (based on
embedding similarity) table rows or passage
sentences are selected, so that the model can
focus on the most relevant content.

• Connections: connections that represent join-
able columns between tables are serialized
as “column {column name} in {table
name} connects with column {column
name} in {table name}”. Connections
that represent connecting entities between ta-
bles/ documents and documents are serial-
ized as “{table name}/{document name}
includes {cell}/“{sentence}” which
connects with sentence “{sentence}”
in {passage name}”.

D Experimental setup

D.1 Dataset details
For Bird, we constructed the data collection by
merging tables from all databases used by the dev
questions. For 2WikiMultiHop, we randomly sam-
pled 1800 questions from the dev set and merged
all supporting and non-supporting passages asso-
ciated with each question. Similarly, for OTT-QA,
we constructed the data collection by merging the
tables and passages used to answer the questions
in the dev set. In our experiments, we removed
the questions with incomplete annotations (missing
either required tables or passages through our man-
ual inspection) from OTT-QA. In total, there are
1800 questions and 10640 documents for 2Wiki-
MultiHop, 1834 questions and 3862 objects (3073
passages and 789 tables) for OTT-QA, and 1534
questions and 75 tables in the data collection for
Bird. After chunking (described in Section 3.1),

there are 10640 chunks, 4407 chunks, and 249515
chunks for 2WikiMultiHop, OTT-QA, and Bird,
respectively.

D.2 Baselines details

All objects are chunked and serialized in the way
described in Section 3.1. Dense retrievers compute
the embedding for each chunk and outputs the top-
k objects with the highest cosine similarity with the
user question. If an object is divided into multiple
chunks, its similarity score is the highest similarity
score across all its chunks. For the reranking model,
it was provided with the top-50 objects retrieved
using dense retrievers. The reranker model assigns
a score for each pair of user question and object,
and it outputs top-k objects with the highest scores.
When query decomposition is applied, 30 objects
were retrieved for each sub-question using dense
retrievers and further reranked to output the top-k
objects.

ReAct was implemented following the original
design of interleaving thought, action, and obser-
vation. A thought step allows models to reason
about the current situation. An action can be of
two types: (1) the model can generate some key-
words to search for relevant objects from the corpus
(2) or finish generation with an answer. An obser-
vation step involves calling a dense retriever, which
retrieves the 5 serialized objects with the highest
similarity to the model-generated keywords in ac-
tion. Because most questions in both datasets can
be answered using 4 objects, we set the maximum
number of iterations to 8. The process continues
until either the answer is found or the maximum
limit of 8 rounds is reached. Table 5 contains the
3-shot prompts used for ReAct.

IRCoT was implemented following the original
design of interleaving chain-of-thought (CoT) rea-
soning with retrieval, where the last CoT sentence
is used for object retrieval. Similar to the implemen-
tation for ReAct, each retrieval step uses a dense
retriever to retrieve the 5 serialized objects with the
highest similarity to the last CoT sentence. The
iterative process continues until an answer is found
or the 8-round limit is reached. Table 6 contains
the 3-shot prompts used for IRCoT.

E Examples where models fail using
ReAct

Below are examples where models failed to gener-
ate correct answers using ReAct.

30309

As seen in Table 9, the model can forget informa-
tion generated in previous iterations. It was trying
to search the population of Barcelos, but concluded
with the population of Ajim.

As seen in Table 10, the model fell into a loop
of searching using similar keywords, even when
gold tables have already been retrieved. The gold
tables are financial.card, financial.disp,
financial.client

30310

Table 4: 3-shot prompt used for query decomposition.

You are given a user question, your task is to decompose the user question into simpler sub-questions.
The sub-questions should be separated by newline characters.
Here are some examples.

User question: what is the full name of the jesus college alumni who graduated in 1960 ?
Sub-questions:
Who are the alumni of Jesus College?
Which alumni of Jesus College graduated in 1960?
What are the full names of those who graduated from Jesus College in 1960?

User question: the home stadium of the bray wanderers of 2006 league of ireland is situated behind what
station ?
Sub-questions:
What is the home stadium of the Bray Wanderers in the 2006 League of Ireland?
Where is the Bray Wanderers’ home stadium located geographically?
Which station is situated in front of this stadium?
What is the name of the station that is located behind the home stadium of the Bray Wanderers?

User question: what is the enrollment of the school with a delta sigma theta chapter chartered on may 8 ,
1971 ?
Sub-questions:
What is Delta Sigma Theta?
Which schools have a Delta Sigma Theta chapter?
Which schools have a Delta Sigma Theta chapter chartered on May 8, 1971?
What is the enrollment of the school that has a Delta Sigma Theta chapter chartered on May 8, 1971?

User question: {user question}

30311

Table 5: 3-shot prompt used for ReAct.

Solve a question answering task with interleaving Thought, Action, Observation steps. A Thought step must be followed by a
Action step, a Action step must be followed by a Observation step, and a Observation step must be followed by a Thought step.
Thought can reason about the current situation, and Action can be of two types:
(1) Search[keyword], which returns five new documents or tables relevant to the keywords.
(2) Finish[answer], which returns the answer and finishes the task.
You answer should be a short answer to the user question.
Here are some examples.

User question: what is the full name of the jesus college alumni who graduated in 1960 ?
Thought: I need to search jesus college alumni, find the people that graduated in 1960, then find their full names
Action: Search[jesus college aumni]
Observation:
(...5 tables omitted...)

Thought: The person who graduated in 1960 is not mentioned in any table. So I need to see more content relevant to jesus
college alumni to decide.
Action: Search[jesus college alumni]
Observation:
(...5 tables omitted...)

Thought: The person who graduated in 1960 is not mentioned in any table. So I need to see more content relevant to jesus
college alumni to decide.
Action: Search[jesus college alumni]
Observation:
(...2 tables omitted...)
Table id: List_of_politicians,_lawyers,_and_civil_servants_educated_at_Jesus_College,_Oxford_1
Table name: List of politicians, lawyers, and civil servants educated at Jesus College, Oxford
Table description: Jesus College is one of the constituent colleges of the University of Oxford in England. ...
Table content:
| Name | M | G | Degree | Notes |
|:———————-|—–:|—–:|:—————————————————–|:————————————————————
————————————————————————————|
| Lalith Athulathmudali | 1955 | 1960 | BA Jurisprudence (2nd , 1958) , BCL (2nd , 1960) | President of the Oxford Union (
1958) ; a Sri Lankan politician ; killed by the Tamil Tigers in 1993 |
| Neal Blewett (HF) | 1957 | 1959 | BA PPE (2nd) | Member of the Australian House of Representatives (1977-1994) ,
Government Minister (1983-1994) , High Commissioner to the UK (1994-1998) |
(...2 tables omitted...)

Thought: Table List_of_politicians,_lawyers,_and_civil_servants_educated_at_Jesus_College,_Oxford_1 lists Lalith Athulath-
mudali as receiving his BCL degree in 1960 from jesus college. So the person who graduated in 1960 is Lalith Athulathmudali. I
need to search Lalith Athulathmudali to find their full name.
Action: Search[Lalith Athulathmudali]
Observation:
Document id: /wiki/Lalith_Athulathmudali
Document name: /wiki/Lalith_Athulathmudali
Document content: Lalith William Samarasekera Athulathmudali , PC (Sinhala : ; 26 November 1936 - 23 April 1993) , known
as Lalith Athulathmudali , was Sri Lankan statesman . He was a prominent member of the United National Party , who served as
Minister of Trade and Shipping ; Minister National Security and Deputy Minister of Defence ; Minister of Agriculture , Food
and Cooperatives and finally Minister of Education . Following a failed impeachment of President Premadasa , he was removed
from the UNP and formed his own party .
(...4 documents omitted...)

Thought: Document Lalith_Athulathmudali provides the full name: Lalith William Samarasekera Athulathmudali. So the answer
is Lalith William Samarasekera Athulathmudali.
Action: Finish[Lalith William Samarasekera Athulathmudali]

(...2 examples omitted...)

User question: {user question}

30312

Table 6: 3-shot prompt used for IRCoT.

(...3 documents omitted)...
Table id: List_of_politicians,_lawyers,_and_civil_servants_educated_at_Jesus_College,_Oxford_1
Table name: List of politicians, lawyers, and civil servants educated at Jesus College, Oxford
Table description: Jesus College is one of the constituent colleges of the University of Oxford in England. ...
Table content:
| Name | M | G | Degree | Notes |
|:———————-|—–:|—–:|:—————————————————–|:————————————————————
————————————————————————————|
| Lalith Athulathmudali | 1955 | 1960 | BA Jurisprudence (2nd , 1958) , BCL (2nd , 1960) | President of the Oxford Union (
1958) ; a Sri Lankan politician ; killed by the Tamil Tigers in 1993 |
| Neal Blewett (HF) | 1957 | 1959 | BA PPE (2nd) | Member of the Australian House of Representatives (1977-1994) ,
Government Minister (1983-1994) , High Commissioner to the UK (1994-1998) |

Document id: /wiki/Lalith_Athulathmudali
Document name: /wiki/Lalith_Athulathmudali
Document content: Lalith William Samarasekera Athulathmudali , PC (Sinhala : ; 26 November 1936 - 23 April 1993) , known
as Lalith Athulathmudali , was Sri Lankan statesman . He was a prominent member of the United National Party , who served as
Minister of Trade and Shipping ; Minister National Security and Deputy Minister of Defence ; Minister of Agriculture , Food
and Cooperatives and finally Minister of Education . Following a failed impeachment of President Premadasa , he was removed
from the UNP and formed his own party .

User question: what is the full name of the jesus college alumni who graduated in 1960 ?
Answer: The jesus college alumni who graduated in 1960 is Lalith Athulathmudali. The full name of Lalith Athulathmudali is
Lalith William Samarasekera Athulathmudali. Finish[Lalith William Samarasekera Athulathmudali]

(...2 examples omitted...)

User question: {user question}

30313

Table 7: 3-shot prompt used for ARM.

You are given a user question, your task is to decompose the user question into contiguous, non-overlapping substrings that can
cover different information mentioned in the user question. For each substring, generate n-grams that are the most relevant to
the substring. Based on the generated relevant n-grams, generate a list of relevant objects, including their names, content, and
connections between these objects. From these candidate objects, you should identify the minimum number of objects that can
be used to answer the user question based on the relevance between the object name, object content and user question as well as
the relevance of the object connections. You should end your response with <>.

User question: what is the full name of the jesus college alumni who graduated in 1960 ?
The relevant keywords are full name | jesus college | alumni | graduated | 1960
The relevant n-grams are full name (name) | jesus college (jesus college) | alumni (alumni, former, university) | graduated (
degree, educated, postgraduate) | 1960 (1960)

Here are the objects that can be relevant:
(...4 tables omitted...)
Table id: List_of_politicians,_lawyers,_and_civil_servants_educated_at_Jesus_College,_Oxford_1
Table name: List of politicians, lawyers, and civil servants educated at Jesus College, Oxford
Table description: Jesus College is one of the constituent colleges of the University of Oxford in England. ...
Table content:
| Name | M | G | Degree | Notes |
|:———————-|—–:|—–:|:—————————————————–|:————————————————————
————————————————————————————|
| Lalith Athulathmudali | 1955 | 1960 | BA Jurisprudence (2nd , 1958) , BCL (2nd , 1960) | President of the Oxford Union (
1958) ; a Sri Lankan politician ; killed by the Tamil Tigers in 1993 |
| Neal Blewett (HF) | 1957 | 1959 | BA PPE (2nd) | Member of the Australian House of Representatives (1977-1994) ,
Government Minister (1983-1994) , High Commissioner to the UK (1994-1998) |
(...2 documents omitted...)
Document id: /wiki/Lalith_Athulathmudali
Document name: /wiki/Lalith_Athulathmudali
Document content: Lalith William Samarasekera Athulathmudali , PC (Sinhala : ; 26 November 1936 - 23 April 1993) , known
as Lalith Athulathmudali , was Sri Lankan statesman . He was a prominent member of the United National Party , who served as
Minister of Trade and Shipping ; Minister National Security and Deputy Minister of Defence ; Minister of Agriculture , Food
and Cooperatives and finally Minister of Education . Following a failed impeachment of President Premadasa , he was removed
from the UNP and formed his own party .
(...2 documents omitted...)

Here are the potential connections between these objects:
List_of_politicians,_lawyers,_and_civil_servants_educated_at_Jesus_College,_Oxford_1 includes Lalith Athulathmudali which
connects with sentence “Lalith William Samarasekera Athulathmudali , PC (Sinhala : ; 26 November 1936 - 23 April 1993) ,
known as Lalith Athulathmudali , was Sri Lankan statesman .” in /wiki/Lalith_Athulathmudali
(...4 connections omitted...)

Here I summarize the relevant information to answer the user question
<table> List_of_politicians,_lawyers,_and_civil_servants_educated_at_Jesus_College,_Oxford_1 </table> lists Lalith Athulath-
mudali as receiving his BCL degree in 1960 from jesus college, which covers the keywords "jesus college alumni graduated
1960" | <document> /wiki/Lalith_Athulathmudali </document> extends on this by providing his full name: Lalith William
Samarasekera Athulathmudali, which covers the keywords "full name" <>

(...2 examples omitted...)

User question: {user question}

30314

Table 8: Number of input tokens, output tokens, and absolute cost for each method. Cost is calculated based on
OpenAI’s pricing for GPT-4o-mini: $0.150/1M input tokens, $0.600/1M output tokens. Costs are multiplied by
1000 for better display.

Bird OTT-QA 2WikiMultiHop

#input tok. ↓ #output tok. ↓ cost ↓ #input tok. #output tok. cost #input tok. #output tok. cost

Embedding model: UAE-Large-V1, Answer generation: Llama3.1-8B-Instruct

ReAct 160877.7 644.5 24.52 117382.9 388.4 17.84 19861.7 239.0 3.12
IRCoT – – – 42947.7 189.8 6.56 11885.0 193.3 1.90
ARML 28474.2 523.6 4.59 26076.0 795.2 4.39 11833.5 651.6 2.17

Embedding model: UAE-Large-V1, Answer generation: Qwen-2.5-7B-Instruct

ReAct 67974.5 291.2 10.37 69130.0 208.4 10.49 14566.1 160.2 2.28
IRCoT – – – 7622.5 89.7 1.20 3040.1 59.9 0.49
ARML 28474.2 497.7 4.57 26076.0 790.5 4.39 11833.5 647.5 2.16

Embedding model: UAE-Large-V1, Answer generation: GPT-4o-mini

ReAct 92301.1 276.5 14.01 97549.2 256.9 14.79 18237.5 188.8 2.85
IRCoT – – – 57557.8 249.5 8.78 30663.4 260.0 4.76
ARML 28617.5 495.7 4.59 25973.9 791.3 4.37 11824.8 646.7 2.16

Embedding model: Snowflake-arctic-embed-m-v2.0, Answer generation: Llama-3.1-8B-Instruct

ReAct 165887.4 691.7 25.30 119261.0 401.1 18.13 18727.2 236.4 2.95
IRCoT – – – 43400.1 184.7 6.62 11765.6 192.6 1.88
ARML 30304.1 553.5 4.88 26286.4 805.8 4.43 11808.9 657.0 2.17

Embedding model: Snowflake-arctic-embed-m-v2.0, Answer generation: Qwen-2.5-7B-Instruct

ReAct 65812.0 288.8 10.05 70552.6 211.9 10.71 14454.4 160.9 2.26
IRCoT – – – 7748.8 90.1 1.22 3155.9 61.8 0.51
ARML 30304.1 537.9 4.87 26286.4 801.0 4.42 11808.9 653.6 2.16

Embedding model: Snowflake-arctic-embed-m-v2.0, Answer generation: GPT-4o-mini

ReAct 83968.4 267.6 12.76 105764.0 265.3 16.02 17552.6 185.4 2.74
IRCoT – – – 64113.1 262.5 9.77 31678.8 266.8 4.91
ARML 30475.0 533.9 4.89 26185.0 802.1 4.41 11801.4 653.0 2.16

30315

Table 9: Example where models forget information generated in previous iterations using ReAct.

User question: how many people live in the city where the first ipsc european handgun championship , junior category , event
took place ?

Thought: I need to search the first IPSIC European Handgun Championship, Junior Category, to find the event location, then
search the city to find its population.
Action: Search[IPSC European Handgun Championship, Junior Category]
Observation:
Table id: IPSC_European_Handgun_Championship_2
Table name: IPSC European Handgun Championship
Table description: The IPSC European Handgun Championship is an IPSC level 4 championship hosted every third year in
Europe.
Champions – Junior category

Table content:
Year	Division	Gold	Silver	Bronze	Venue
——-:	:———–	:—————–	:—————————	:—————–	:———————–
2013	Open	Simo Partanen	Daniil Karchev	Francois Belloni	Barcelos , Portugal
2013	Standard	Kenneth Handberg	Sotirios-Thomas Zafeiridis	Mats Selven	Barcelos , Portugal
2013	Production	Pavel Torgashov	Konstantin Kryuchin	Nikita Kryuchin	Barcelos , Portugal
2016	Standard	Danila Pakhomov	Ilya Sologub	Kirill Fedorov	Felsőtárkány , Hungary
(...4 objects omitted...)

Thought: Table IPSC_European_Handgun_Championship_2 lists the venue for 2013 event in Barcelos, Portugal. So the event
took place in Barcelos, Portugal. I need to search Barcelos to find its population.
Action: Search[Barcelos]
(...retrieved objects omitted...)

Thought: The content of the documents includes no information about population. I need to search Barcelos to find its population.
Action: Search[Barcelos]
(...retrieved objects omitted...)

Thought: The content of the documents includes no information about population. I need to search Barcelos to find its population.
Action: Search[Barcelos]
(...retrieved objects omitted...)

Thought: The content of the documents includes no information about population. I need to search Barcelos to find its population.
Action: Search[Barcelos]
Observation:
(...four objects omitted...)
Document id: /wiki/Ajim
Document name: /wiki/Ajim
Document content: Ajim (Arabic : Aǧı̄m) is a commune and port located on the Island of Djerba off the coast of Tunisia . It is
Djerba ’s main fishing port and the closest city to the African continent . It had a population of 24,294 at the 2014 census .

Thought: Document /wiki/Ajim lists a population of 24,294 at the 2014 census. So the population is 24,294.
Action: Finish[24,294]

30316

Table 10: Example where models loop on similar keywords using ReAct. Gold tables are bolded.

User question: provide the ids and age of the client with high level credit card, which is eligible for loans.

Thought: I need to find tables that can cover client ids, age, credit card level, and loan eligibility. So I should search for client
information, credit card details, and loan eligibility status.
Action: Search[client information, credit card details, loan eligibility]
Observation:
Table name: financial.client
client_id	gender	birth_date	district_id
————:	:———	:————-	————–:
1039	F	1980-10-11	70

Table name: financial.loan
loan_id	account_id	date	amount	duration	payments	status
———-:	————-:	:———–	———:	———–:	———–:	:———
7264	11141	1997-10-07	44940	12	3745	A

Table name: financial.disp
disp_id	client_id	account_id	type
———-:	————:	————-:	:———-
525	525	436	DISPONENT

Table name: debit_card_specializing.customers
CustomerID	Segment	Currency
————-:	:———-	:———–
4643	SME	EUR

Table name: debit_card_specializing.products
ProductID	Description
————:	:—————————-
544	Guarantee Credit Note

Thought: The tables I have found do not include information about credit card levels or loan eligibility. I need to search for more
specific tables that might contain credit card details and loan eligibility status.
Action: Search[credit card level, loan eligibility status]
Observation:
Table name: financial.loan
loan_id	account_id	date	amount	duration	payments	status
———-:	————-:	:———–	———:	———–:	———–:	:———
7308	11362	1996-12-27	129408	24	5392	A

Table name: financial.client
client_id	gender	birth_date	district_id
————:	:———	:————-	————–:
1039	F	1980-10-11	70

Table name: debit_card_specializing.products
ProductID	Description
————:	:———————-
544	Guarantee Credit Note

Table name: financial.card
card_id	disp_id	type	issued
———-:	———-:	:——-	:———–
162	967	junior	1996-12-23

Table name: debit_card_specializing.customers
CustomerID	Segment	Currency
————-:	:———-	:———–
123	SME	EUR

Thought: The tables I have found still do not include information about credit card levels or loan eligibility. I need to search for
more specific tables that might contain credit card details and loan eligibility status.
Action: Search[credit card level, loan eligibility status]
(...retrieved tables omitted...)

Thought: I still haven’t found the necessary information regarding credit card levels and loan eligibility. I need to search for
more specific tables that might contain this information.
Action: Search[credit card level, loan eligibility status]
...

30317

