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Abstract

Leveraging multiple large language models
(LLMs) to build collaborative multi-agentic
workflows has demonstrated significant poten-
tial. However, most previous studies focus
on prompting the out-of-the-box LLMs, rely-
ing on their innate capability for collaboration,
which may not improve LLMs’ performance
as shown recently. In this paper, we introduce
a new post-training paradigm MAPoRL (Multi-
Agent Post-co-training for collaborative LLMs
with Reinforcement Learning), to explicitly
elicit the collaborative behaviors and further
unleash the power of multi-agentic LLM frame-
works. In MAPoRL, multiple LLMs first gen-
erate their own responses independently and
engage in a multi-turn discussion to collabora-
tively improve the final answer. In the end,
a MAPoRL verifier evaluates both the answer
and the discussion, by assigning a score that
verifies the correctness of the answer, while
adding incentives to encourage corrective and
persuasive discussions. The score serves as
the co-training reward, and is then maximized
through multi-agent RL. Unlike existing LLM
post-training paradigms, MAPoRL advocates the
co-training of multiple LLMs together using
RL for better generalization. Accompanied
by analytical insights, our experiments demon-
strate that training individual LLMs alone is
insufficient to induce effective collaboration. In
contrast, multi-agent co-training can boost the
collaboration performance across benchmarks,
with generalization to unseen domains. The
code is available at https://github.com/
chanwoo-park-official/MAPoRL.

1 Introduction

Recent advances in large language models (LLMs)
have highlighted their potential for collaboration,
particularly within the multi-agentic framework

♮This work was initiated during an internship at Amazon
AGI.

(Du et al., 2024; Li et al., 2023; Kim et al., 2024b).
The shift from single-agent to multi-agent systems
introduces new dimensions and challenges in en-
abling effective collaboration among LLM agents.
Recent approaches to multi-LLM collaboration
mostly rely on prompting pre-trained models. How-
ever, such approaches struggle with achieving gen-
uine collaboration among the agents. For example,
multi-agent debate does not consistently lead to im-
proved performance with additional turns (Huang
et al., 2024).

This limitation may be somewhat expected –
while LLMs are able to simulate collaboration pro-
cedures, they were not explicitly trained to achieve
effective cooperation. In theory, it is not hard to
imagine that single-agent training is insufficient
for collaboration – an untrained and non-strategic
opponent can fail to act in a way that promotes
collaboration. Instead, achieving collaborative be-
haviors requires interactive training environments
where each agent actively engages with others, and
dynamically optimizes the strategy (Gagne, 1974;
Macy, 1991; Hertz-Lazarowitz et al., 2013). More-
over, conventional approaches such as supervised
fine-tuning (SFT), as we will show, are inadequate
for this purpose, either: merely mimicking multi-
agent interactions from training data may not lead
to effective collaboration.

To develop more effective collaborative agents,
we propose Multi-Agent Post-co-training for col-
laborative LLMs with Reinforcement Learning
(MAPoRL), a co-training paradigm for multiple
LLMs using multi-agent reinforcement learning
(MARL). In MAPoRL, within the pre-defined frame-
works for multi-agent collaboration (e.g., the de-
bate framework (Du et al., 2024)), each agent re-
ceives rewards for their responses during collabora-
tion, based on the quality of their answers and inter-
actions. The objective for each agent in MAPoRL is
to maximize their own value function, defined as
the expected cumulative sum of rewards over the
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course of the collaboration.
To further encourage cooperation in MAPoRL, we

incorporate incentives for successful interactions
and penalties for collaboration failures, steering the
LLMs toward more effective and aligned behav-
iors. Through a simplified game-theoretic example,
we validate the following insights: 1) single-agent
training alone is insufficient to produce genuinely
cooperative agents, and 2) co-trained agents can
reach an equilibrium that exhibits cooperative be-
havior.

To assess the effectiveness of MAPoRL, we con-
duct experiments across diverse tasks and evalua-
tion strategies. Specifically, we train multi-agent
LLMs for tasks such as mathematical reasoning
(GSM8k (Cobbe et al., 2021)) and natural lan-
guage inference (ANLI (Nie et al., 2020)), compar-
ing their performance against baseline approaches.
Additionally, we evaluate the robustness of our
method by testing agents on out-of-domain tasks
(e.g., training on a NLI task and evaluating on a
math dataset), demonstrating the generalization ca-
pabilities of our approach. We also explore the
collaboration among agents of varying capabilities,
by analyzing the impact of training heterogeneous
LLMs together.

To the best of our knowledge, this study is
among the first works to explore the training of
multi-LLM systems as a whole1, using RL, for
multi-LLM collaboration.

2 Analytical Insights: Collaborate to
Solve Hard Questions

In this section, we present a simplified model of
multi-LLM collaboration and explain (a) why co-
training multiple LLMs is necessary compared to
training a single agent, and (b) the role of incentives
to further enhance collaboration during training.
We validate both aspects through experiments in
Section 4.

2.1 Problem Setup

We consider questions that inherently require col-
laboration for a successful solution. For instance,
solving complex mathematical problems often re-
quires collaboration among multiple agents (Liang

1Together with the contemporaneous works Subramaniam
et al. (2025) and Zhao et al. (2025), both of which were re-
leased within the past month while preparing this paper. In
contrast to MAPoRL, the algorithms therein were based on (itera-
tive) SFT, instead of RL. Also, Motwani et al. (2024) provided
a method to train verifier-generation-refiner system with DPO.

et al., 2024; Du et al., 2024). Beyond mathematics,
collaboration can also enhance the performance
on tasks related to privacy, factuality, and reliabil-
ity (Feng et al., 2025). We model the interaction
among LLMs as a repeated game with T turns. For
simplicity, we assume that in each turn, each agent
chooses between two actions: Collaborate (a0) or
Act Independently (a1). For a given question q, we
define C(q) as a non-negative integer representing
the collaboration threshold. The agents achieve
collaborative synergy if, over the course of the
T -turn interactions, the total number of collabora-
tive actions (a0) of all the agents meets or exceeds
C(q). When collaborative synergy is achieved,
each agent receives a reward Rsyn(q) = 1, repre-
senting a (near-)guaranteed correct solution. Prior
to achieving synergy, agents receive rewards based
on their chosen actions: a reward of Rcol(q) for
choosing to collaborate (a0) and Rind(q) for acting
independently (a1), where Rcol(q) < Rind(q) (see
Remark 3 for a detailed justification on the setup).
This reward structure creates a tradeoff between
short-term accuracy and long-term collaborative
success. This setup is related to the classical Co-
ordination Games (Cooper, 1999) in game theory
if Rsyn is large. We introduce a new collaboration
threshold and synergy mechanism that shapes the
transition from independent actions to collabora-
tive behavior in multiple turns, to better model the
collaboration procedure among multiple LLMs.
Remark 1 (Rationale Behind the Setup). This for-
malization captures several key aspects of complex
problem-solving dynamics. Choosing to collabo-
rate (a0) represents contributing exploratory ideas
or partial solutions. While these contributions
have a lower immediate probability of correctness
Rcol(q), they are essential building blocks towards
the complete solution. Acting independently (a1)
represents using conventional approaches that may
yield a higher immediate probability of correctness
Rind(q), but may contribute less to solving partic-
ularly challenging problems. The collaboration
threshold C(q) represents the minimum amount of
collaboration efforts and idea generation needed
to solve complex problems. Once this threshold
is reached (i.e., achieving collaborative synergy),
the agents can combine their insights to solve the
challenging problem, with a higher reward Rsyn(q).

2.2 Analytical Observations
To provide intuition for why co-training is neces-
sary and single-agent training may be inadequate,
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Multi-LLM Systems 

(e.g., collaborative debate)

(Question) A sequence follows an arithmetic pattern where the first term is 3, and the common difference is 5. 
The sum of the first several terms equals 715. How many terms are in this sequence?

Multi-agent RL for 
Maximizing their 
Value Function

Turn 
1

Each LLM's turn reward 
is defined as the sum of 
the verifier's scores for 
the current and future 
turns.

Verifier (or Scorer)
(e.g., Neural Network / 

LLM / Human)

Turn 
2

Turn 
3

Score from Verifier: 0.99

We use the arithmetic series sum formula:
Sn=(n/2)×(2a+(n−1)d)…

LLM1

Since the sequence increases 
by 5 each time, we could directly…

Score from Verifier: 0.51

LLM2

Instead of using the sum formula directly 
how large the last term…

Score from Verifier: 0.18

LLM3

MAPoRL for 
Multi-LLM Systems

Score from Verifier: 0.99

After the first turn, …
LLM1

Now I think, …

Score from Verifier: 0.11

LLM2

Since the sequence, …

Score from Verifier: 0.65

LLM3

Score from Verifier: 0.85

After the second turn, …
LLM1

It seems…

Score from Verifier: 0.98

LLM2

We use the arithmetic…

Score from Verifier: 0.99

LLM3

Figure 1: MAPoRL can be applied to any multi-LLM system with a scorer/verifier. In the illustrated example, it is
integrated into a collaborative debate system for mathematical problem-solving. LLMs generate responses based
on the multi-agent system pipeline, and a scorer/verifier evaluates their outputs. The reward for each LLM is
determined based on these scores, which may include both current and future pipeline evaluations. Multi-Agent RL
is employed to maximize each agent’s value function.

we analyze the simplest case with T = 2 and
C(q) = 1 to illustrate the fundamental differences
between single and multi-agent training. We pro-
vide formal statements and proofs in Appendix C.

Observation 1. Suppose that the opponent selects
action a0 with probability π(q) for each question
q. Then, the optimal strategy for the agent is as
follows: if (Rsyn(q) − Rind(q))π(q) ≥ Rind(q) −
Rcol(q), then the optimal strategy for question q is
to collaborate (a0). Otherwise, the optimal strategy
is to act independently (a1).

This shows the dependence of the agent’s strat-
egy on the opponent’s behavior. If the opponent is
not collaborative enough and non-strategic, then
π(q) will be small, leading the trained model to
behave in a non-collaborative way.

Observation 2 (Informal). If both agents are
trained to maximize their individual cumulative
rewards with an entropy regularization term scaled
by τ , then as τ → 0, they will collaborate if:
Rsyn(q) > max(3Rcol(q) − 2Rind(q), 2Rind(q) − Rcol(q)).

Observation 2 can be proved by adapting the re-
sults of Zhang and Hofbauer (2016), and transform-
ing our setup with T = 2 into a matrix game. This
observation implies that when both agents optimize
their own cumulative reward, they will naturally
choose collaboration when Rsyn(q) is high enough,

which emphasizes the importance of additional in-
centives to promote collaborative synergy. Due
to this observation, in Section 3.3, we incentivize
collaboration by providing a higher Rsyn(q).

2.3 Toy Experiments with T = 10, 20 Turns

We illustrate the benefit of jointly optimized (multi-
agent) policies over those obtained from a single-
agent approach in our setting, with longer T =
10, 20 turns. Each question q is associated with the
rewards Rcol(q), Rind(q), and Rsyn(q), along with a
collaboration threshold C(q). Further details on the
choices of these quantities be found in Appendix D.

We first consider a single agent interacting with
a fixed opponent whose probability of collaborat-
ing, π(q), is set at {0.5, 0.6, 0.7}. Despite the
relatively high likelihood of collaboration from the
opponent, the single-agent policy, which optimizes
its response to the fixed opponent, does not result
in effective collaboration (Figure 5). Instead of
learning to strategically engage with the opponent’s
behavior, the single-agent policy, which follows a
best-response strategy to the fixed opponent, tends
to avoid collaboration, highlighting the limitations
of a single-agent framework when facing a fixed,
non-strategic opponent.

Next, we consider two jointly optimizing (multi-
agent) learners who adapt their policy based on
the other’s actions. Concretely, we compute an
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entropy-regularized Nash equilibrium for τ = 0.1
via backward induction. As shown in Figure 5
(solid red curves), the jointly optimized agents coor-
dinate with significantly higher collaboration rates.
Intuitively, this is because their learning process,
which fosters high collaboration at larger t, shapes
their strategic behavior from the very beginning,
leading to increased cooperation even at the first
turn. These toy results underscore the importance
of strategic interactions: when both agents adapt
their policies simultaneously, they learn to be more
collaborative, despite the temptation of short-term
independent rewards.

3 Post-Co-Training with MARL
We now provide an overview of our new paradigm
of Multi-Agent Post-Co-Training with RL (MAPoRL)
for LLM collaboration. In our framework, each
agent’s response per turn is evaluated by a verifier,
which assigns a score reflecting the answer’s valid-
ity. The reward is defined as the (weighted) sum of
the verifier’s scores from the current turn and those
from the future turns, thus capturing both the imme-
diate feedback and the projected long-term impact
of the agent’s response. The agents’ policies are
updated using multi-agent PPO for each turn, en-
suring that the learning process incorporates both
the performance in the current turn and the influ-
ence of the anticipated collaborative interactions in
the future turns.
3.1 Multi-Agent System - Collaborative

Debate Formulation
We follow the collaborative debate system pro-
posed by Du et al. (2024)as an example of our
multi-LLM system in the experiments. Note that,
MAPoRL can be applied to other multi-LLM sys-
tems as long as each agent’s response can be eval-
uated—for example, by a verifier that assigns a
score reflecting the quality or correctness of the
response. The reward for each agent is then de-
termined by summing the verifier scores of all the
responses influenced by that agent throughout the
multi-agent interaction process. Assume we have
a collaborative debate system that runs for T turns
and involves A agents. In each turn, an LLM must
determine its next response based on the history of
its own answers as well as the answers provided by
other LLM agents. Let q be the given question, and
let sti denote the solution provided by agent i at
turn t. We inductively express the solution s(t+1)i

as follows:
s1i = LLMi (q) , s(t+1)i = LLMi

�
q ⊕j∈[A],t′∈[t] st′j

�

where ⊕ denotes token-wise concatenation, 1 ≤
t ≤ T − 1 and LLMi(s) represents the function of
inputting prompt s into the LLMi which outputs
logits over its token space, followed by sampling
a token based on these logits. If A = 1, then
this setup is equivalent to that of self-correcting
LMs (Madaan et al., 2024). Now, we define
θθθ = (θta)t∈[T ],a∈[A], where θta represents the pa-
rameters of the a-th agent at turn t. We denote
LLM parameterized by θta as LLMθta .

Next, to implement MAPoRL, we define the re-
ward function for the multi-agent RL formulation,
using the verifier score. Due to space constraints,
we here introduce the Influence-aware Verification
Rewards, and defer other choices of the reward
functions that we will use in the experiments to
Appendix F.

Definition 1 (Influence-aware Verification Reward).
The influence-aware verification reward function
Rθθθ(q, sta) is defined as

Rθθθ(q, sta) = E
�

1P
t′∈[t,T ] γ

t′−t

�
Verifier(q, sta)

+
X

t′∈[t+1,T ]

X

j∈[A]

1

A
γt′−tVerifier(q, st′j)

��
.

Here, the expectation arises from the random-
ness of other agents’ answers, which are influenced
by the agent’s current response, and γ ∈ [0, 1] is
a discount factor. This reward not only considers
the verifier’s score for the current solution sta, but
also incorporates the impact of this solution on the
future answers of all agents. The term

P
j∈[A]

1
A

averages the verifier’s scores across all the agents,
reflecting the influence that sta has on the overall
multi-agent system.

3.2 Multi-Agent RL Formulation

The reward of each agent, as well as its answer
generation, is intertwined with the actions of other
agents in the multi-LLM system with the reward
function (Definition 1). Thus, instead of single-
agent RL, we design a multi-agent RL approach.
For this paper, we choose multi-agent PPO (Yu
et al., 2022) as a representative multi-agent RL
algorithm and instantiate it in the language domain.

Conventional multi-agent PPO extends PPO to
multi-agent settings by training decentralized poli-
cies, either with a shared critic or through inde-
pendent learning, where each agent optimizes its
policy based on local observations and rewards.
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Typically, agents learn independently or with lim-
ited coordination mechanisms, such as centralized
critics or shared value functions. Our approach
adapts multi-agent PPO by defining the state as the
concatenation of the multi-agent interaction history,
allowing agents to condition their responses on past
interactions. Additionally, we introduce reward
structures that are aligned but not fully identical
across agents, encouraging them to fulfill different
roles while collectively working toward solving the
task.

Since we are solving multi-turn problems, the
value function for each turn’s state needs to be
defined. The state of each turn’s value Vtaθθθ is the
expectation of the cumulated reward conditioned
on the input text ixta, which is defined as

Vtaθθθ(i
x
ta) = E




length(sta)X

x′=x

rθθθ(q, s
1:x′
ta )

���� q, i
x
ta


 .

Here, ix
′

ta = q ⊕t′∈[t−1],j∈[A] st′j ⊕ s1:x′
ta and

rθθθ(q, s
1:x′
ta ) = 111(x′ = length(sta))Rθθθ(q, sta)

− λKLKL
�

LLMθref,ta(ix
′

ta) ∥LLMθta(ix
′

ta)
�

,

where t denotes the turn index and a refers to agent
a ∈ [A], s1:x

ta represents the generated token from
agent a up to the x-th token in turn t, with θref,ta
denoting the parameter of a reference LLM, and
λKL ≥ 0 is some regularization coefficient. As per
our reward construction, the value maximization
not only considers the current turn’s verifier score,
but also anticipates future verifier scores from the
same or other agents across multiple turns, which
makes multi-agent training relevant. We estimate
the advantage function using Generalized Advan-
tage Estimation (GAE) (Schulman et al., 2016),
which leverages the value function to measure how
much better the current token selection is compared
to the baseline value function.

The value function is approximated by a neu-
ral network with parameter θvta, denoted as
V (ixta; θvta), which serves as an estimate of
Vtaθθθ(i

x
ta). Using V (ixta; θvta), we estimate the ad-

vantage function A(ixta;θθθ, θvta) via GAE. The loss
function for multi-agent PPO is then given by:
LPPO(θta, θvta) = LSurrogate(θta) + LValue(θvta),

where LSurrogate(θta) is defined as
E

h
min

�
Rx

ta A
�
ixta;θθθold, θold,vta

�
,

clipϵ
�
Rx

ta

�
A
�
ixta;θθθold, θold,vta

��i
.

and LValue(θvta) is defined as
LValue(θvta) = E

h
λvalue

�
V (ixta; θvta) − V target

ta (ixta)
�2i

.

Here, clipϵ(α) := min(max(1 − ϵ,α), 1 + ϵ),

Rx
ta =

LLMθ,ta(sx+1
ta |ixta)

LLMθold,ta
(sx+1

ta |ixta)
, θθθold =

(θold,ta)t∈[T ],a∈[A] is the parameter used in
the rollout for multi-agent PPO, and

V target
ta (ixta) = V (ixta; θold,vta) + A(ixta;θθθold, θold,vta)).

The expectation E is taken over the randomness
from

q ∼ Q, st′a′ ∼ LLMθold,t′a′ (q ⊕t′′∈[t′−1],j∈[A] st′j)

for all t′ ∈ [t], a ∈ [A], and x ∼
Unif([length(sta)]), where Q denotes the distri-
bution of questions.

Each agent for each turn optimizes its policy
and value function simultaneously, over the param-
eters (θta, θvta). These agent interactions among
multiple LLMs inherently lead to a multi-agent
RL problem, rather than a single-agent RL one, as
each agent influences others’ learning processes
throughout training.

3.3 Reward Shaping to Incentivize
Collaboration

As discussed in Section 2, incorporating additional
incentives in the reward can steer agents towards
better collaboration. We define four key parameters
when implementing such a reward-shaping: param-
eters α0 and α1 correspond to the incentives related
to an agent’s own revision of the answer, and param-
eters β0 and β1 correspond to those related to her
influence on other agents’ answers. Specifically, α0

represents the ability to extract useful information
from incorrect answers (critical reasoning), while
α1 reflects an agent’s tendency to be persuaded by
the correct information. Meanwhile, β0 represents
the ability to provide incorrect answers that still
contain useful information, potentially leading to
better responses in the future turns. In contrast, β1

captures an agent’s ability to effectively persuade
others when providing correct answers. We pro-
vide Table 1 and Table 2 to summarize the design
of these incentives.

4 Experiments

4.1 Datasets
We evaluate MAPoRL on two benchmark NLP tasks
to validate its performance in both mathematical
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Answer (t) Answer (t+1) Majority (t) Incentive

R W R -α1

R W W -α0

W R W α0

W R R α1

Table 1: The design of additional incentives regarding
an agent’s own answer revision in MAPoRL. The incen-
tive is determined by how an agent changes its answer
between consecutive turns (t and t + 1) relative to the
majority opinion of others. R indicates a correct answer,
W indicates an incorrect answer. The incentive value is
applied to the agent’s answer at turn t + 1.

Majority (t) Majority (t+1) Answer (t) Incentive

R W R -β1

R W W -β0

W R W β0

W R R β1

Table 2: The design of additional incentives regarding
an agent’s influence on other agents’ answers in MAPoRL.
The incentive is based on how the majority opinion
changes between consecutive turns t and t + 1 relative
to the agent’s answer at turn t. The incentive value is
applied to the agent’s answer at turn t.

reasoning and logical natural language inference.
The details are summarized as follows:

GSM8K (Cobbe et al., 2021) and TinyGSM (Liu
et al., 2023). GSM8K is a benchmark dataset de-
signed to assess a model’s mathematical reasoning
abilities, requiring models to solve high-school-
level mathematics problems. TinyGSM is an aug-
mented version of GSM8K, generated using GPT-
3.5-turbo, where solutions are provided in Python.
Importantly, we did not utilize the reasoning pro-
cesses from GSM8K or TinyGSM but rely solely
on their final answers. For training the verifier
model, we used 7,463 samples from GSM8K. Addi-
tionally, we incorporated the first 12,800 synthetic
samples from TinyGSM for MAPoRL2. For evalua-
tion, we hold out 1,319 samples from GSM8K as a
test set.

Adversarial Natural Language Inference
(ANLI) (Nie et al., 2020). ANLI is designed to
evaluate a model’s natural language understanding
by presenting adversarial examples that challenge
even the state-of-the-art models. To train the
verifier model, we used first 10,000 training
examples. Furthermore, we used the next 12,800
examples for MAPoRL training and 1,200 samples
for testing.

2We divided the dataset for training the verifier and training
MAPoRL to prevent overfitting LLMs to the trained verifiers.

Evaluation Method. After all turns are com-
pleted, the final answer is determined using a ma-
jority voting scheme among the agents’ responses.
The accuracy is based on whether the majority-
selected response is correct. In cases where no
clear majority winner emerges (e.g., a tie in vote
counts), we adopt an expectation-based approach
by weighting the correctness of each tied response
proportionally. For example, if two agents receive
an equal number of votes, the final score is ad-
justed as the expected accuracy of selecting the
first agent’s answer as the final result. This en-
sures a continuous evaluation metric rather than an
arbitrary tiebreaker.

4.2 Models
We primarily use the Microsoft Phi-3-mini-128k-
instruct (3.4B) model (Abdin et al., 2024), together
with Qwen2.5-3B-instruct (Yang et al., 2024) and
Llama-3-8B-instruct (Dubey et al., 2024) for the
experiments. Due to computational constraints, we
mainly use quantized models and fine-tuned them
with QLoRA (Dettmers et al., 2024). We defer the
training details to Appendix G. When evaluating
on GSM8K and ANLI, we set the max token length
to 300 and 250, respectively.

4.3 Experiment 1: Vanilla Collaboration by
Off-the-shelf LLMs Cannot Improve
Performance, While MAPoRL-Trained
LLMs Can

We first compare the collaboration performance
of off-the-shelf LLMs with MAPoRL-trained LLMs.
The training was conducted with two agents collab-
orating over three turns. An overview of the trained
system is provided in Figure 1. In Experiment 1,
we trained the model starting from turn t ≥ 2 for
two reasons: (a) the first turn primarily focuses
on knowledge acquisition from each dataset, and
(b) to ensure a fair comparison with off-the-shelf
LLMs. We focus on enhancing collaboration skills
rather than teaching specific task knowledge. For
this experiment, we used Phi-3-mini-128k-instruct
and evaluate the trained models in a three-agent
and three-turn collaboration environment.

We observe that even when the off-the-shelf
LLM is allowed to generate longer reasoning (600
tokens, twice the output length of our MAPoRL-
trained model model), its accuracy did not improve
across turns. This aligns with prior findings in the
literature, particularly for models that are not suf-
ficiently strong. For instance, Huang et al. (2024,
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Table 7) provided evidence that additional turns
do not necessarily improve the performance sig-
nificantly. Similarly, our results show that off-the-
shelf LLMs’ performance may not benefit from
additional turns. In contrast, LLMs trained using
MAPoRL exhibit improved performance as the num-
ber of collaboration turns increased, as shown in
Figure 2.
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Figure 2: Performance comparison of different LLMs
across tasks (left: GSM8k, right: ANLI) under vari-
ous settings. We evaluate collaboration ability in five
conditions: (1) off-the-shelf LLMs collaborating and
(2) models trained using MAPoRL collaborating (with all
incentive parameters (Section 4.4) α,β = 0, 1, 2, re-
spectively).

Remark 2 (Domain-Specific Knowledge Acquisi-
tion vs. Collaboration Ability Improvement). One
might question whether the performance gains ob-
served in MAPoRL-trained models stem from ac-
quiring domain-specific knowledge rather than im-
proved collaboration ability. To address this, we
compare off-the-shelf LLMs and MAPoRL-trained
models by testing how well they perform on ques-
tions without any collaboration, providing MAPoRL-
trained models only the original question – without
interaction history – to check if their performance
is solely due to domain knowledge learned during
training. The results are as follows:

Phi-3 MAPoRL T2 MAPoRL T3
GSM8k 0.609 0.604 0.611
ANLI 0.451 0.458 0.453

Here, we provide the same questions to the off-
the-shelf Phi-3 model, the MAPoRL-trained turn-2
model, and the MAPoRL-trained turn-3 model. The
similar performance across these models suggests
that MAPoRL training did not enhance task-specific
knowledge but rather improved the models’ ability
to collaborate effectively.

We also provide the changes in the fraction of
responses that transition their correctness over mul-
tiple turns of MAPoRL. The fraction of Incorrect

→ Incorrect responses decreased, and the fraction
of Correct → Incorrect responses also decreased,
indicating that MAPoRL enhanced effective collabo-
ration.
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Figure 3: Changes in the fraction of responses that tran-
sition their correctness over multiple turns of MAPoRL
on GSM8k.
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Figure 4: Changes in the fraction of responses that tran-
sition their correctness over multiple turns of MAPoRL
on ANLI.

4.4 Experiment 2: Reward Shaping with
Collaboration Incentives

In addition to the multi-agent independent PPO
framework, we then investigate the auxiliary incen-
tive mechanism designed to enhance collaborative
interactions. To analyze the impact of the incen-
tive parameters (α and β, Section 3.3), we simplify
our experimental setup by limiting the total num-
ber of debate turns to 2 and analyze the following
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cases. Here, α0 and α1 correspond to incentives
for an agent’s own revision, capturing critical rea-
soning (extracting useful information from incor-
rect answers) and persuadability (accepting cor-
rect information), respectively. Meanwhile, β0 and
β1 correspond to incentives for influencing others,
where β0 encourages providing incorrect but use-
ful responses, and β1 reflects an agent’s ability to
persuade others with correct answers.

To analyze the impact of the incentive parame-
ters (α and β, Section 3.3), we simplify our experi-
mental setup by limiting the total number of debate
turns to 2 and analyze the following cases. Here,
α0 and α1 correspond to the incentives related to
an agent’s own revision of the answer, while β0

and β1 correspond to the incentives related to the
agent’s influence on other agents’ answers.

(α0,α1) RWR RWW WRW WRR ∆0 ∆1

(0, 0) 0.0529 0.0563 0.1244 0.2286 0.1757 0.0661
(0, 2) 0.0270 0.0521 0.1259 0.2194 0.1924 0.0738
(2, 0) 0.0500 0.0563 0.1241 0.2272 0.1772 0.0678

Table 3: Analysis of answer revision patterns under dif-
ferent α parameters. The columns RWR through WRR
show the proportion of each transition type, where the
three letters indicate Answer(t), Answer(t+1), and Ma-
jority(t) respectively. R and W stand for right and wrong
answer. ∆0 measures the difference in transitions from
wrong to right answers when the majority is wrong
(WRW − RWW) which is related to α0, while ∆1 mea-
sures transitions when the majority is right (WRR −
RWR) which is related to α1.

Analysis of α0 and α1. We compare baseline
(α0,α1) = (0, 0) against two configurations: (0, 2)
and (2, 0). When α1 was increased to 2, we observe
a 9.5% improvement in ∆1, indicating that incen-
tivizing agents to follow correct majority opinions
effectively improved performance. When α0 was
increased to 2, we observed a smaller (2.57%) im-
provement in ∆0, suggesting that rewarding agents
for deviating from incorrect majority opinions had
a positive but limited effect.

(β0,β1) RWR RWW WRW WRR ∆0 ∆1

(0, 0) 0.0070 0.0453 0.0226 0.0221 0.0151 -0.0227
(0, 2) 0.0686 0.0461 0.0231 0.0230 0.0161 -0.0230
(2, 0) 0.0011 0.0360 0.0161 0.0188 0.0177 -0.0199

Table 4: Analysis of majority opinion influence under
different β parameters. Meaning of the column is the
same as Table 3.

Analysis of β0 and β1. We compare baseline
(β0,β1) = (0, 0) against configurations (0, 2) and

(2, 0). Increasing β1 to 2 resulted in a slight de-
crease in ∆1 (-1.32%), indicating that incentivizing
agents based on their influence when correct did
not improve outcomes. However, increasing β0 to
2 lead to a substantial improvement in ∆0 (17.2%),
suggesting that rewarding agents for constructive
influence even when wrong (providing useful in-
correct answers that lead to better future responses)
significantly enhanced collaborative performance.

For a total debating turns of 3, we also plot the
collaboration performance using models trained
with αi = βi = 0, 1, 2 for i = 1, 2 on the GSM8K
and ANLI tasks (Figure 2). The results showed
some performance improvement, though the gain
was relatively modest.

4.5 Experiment 3: Collaboration Ability
Acquired by MAPoRL Is Transferable

Here, we investigate the transferability of collab-
oration abilities acquired through MAPoRL across
different datasets not used during training. We
evaluate LLMs trained with MAPoRL on one dataset
when applied to tasks from other datasets. For
instance, we assesse models trained on ANLI
when solving tasks from GSM8k, along with other
dataset combinations. The results, presented in
Table 5, demonstrate that collaboration abilities
learned through MAPoRL are indeed transferable
across datasets. This suggests that the models ac-
quire a meta-capability for effective collaboration,
even when encountering novel, unseen tasks.

Training → Evaluation Model Turn 1 Turn 2 Turn 3

ANLI → GSM8K Off-the-shelf 0.677 0.688 0.640
Trained 0.677 0.712 0.720

GSM8K → ANLI Off-the-shelf 0.482 0.486 0.468
Trained 0.482 0.499 0.507

Table 5: Performance comparison (Accuracy) of 3-agent
collaboration using off-the-shelf vs. trained LLMs. For
each dataset pair (rows in bold), the first row shows the
off-the-shelf performance and the second row shows the
trained model performance, across Turns 1–3.

These findings demonstrate that models trained
through MAPoRL on one task can effectively gener-
alize their collaborative capabilities to different, un-
related tasks. This generalization ability suggests
that MAPoRL develops fundamental collaborative
skills that transcend specific task domains.
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4.6 Experiment 4: MAPoRL with
Heterogeneous LLMs Can Help

In this experiment, we investigate collaborative
learning between different foundation models,
specifically examining co-training between (Phi3
3.4B and Qwen2.5 3B) and (Phi3 3.4B and Llama3-
8B) pairs. In single-model evaluations, both Phi3
and Qwen2.5 3B demonstrate stronger perfor-
mance compared to Llama3-8B. Due to GPU mem-
ory constraints necessitating simultaneous loading
of two base models, we conduct experiments in a
two-agent, two-turn environment. This setup en-
ables us to explore whether models with heteroge-
neous capabilities could effectively collaborate to
enhance the overall performance (Figure 7). The
synergistic effects are particularly evident when
models with different strengths worked together,
suggesting that diverse model partnerships can
yield better outcomes than individual model perfor-
mance alone when we have MAPoRL.

4.7 Experiment 5: Naïve Supervised
Fine-Tuning Using High-Quality
Collaboration Samples May Not Induce
Collaborative Behaviors

In this experiment, we investigate whether mod-
els could learn collaborative behavior through SFT
on high-quality debate trajectories. We generated
12,800 trajectories using the multi-agent system
(Figure 1) with off-the-shelf LLMs to match the
training sample size used in MAPoRL for GSM8K.
To provide favorable conditions for SFT, we al-
low a maximum of 600 tokens per response, which
exceeded the token limit used in our MAPoRL exper-
iments. We selected the top 10% of trajectories us-
ing the following criteria: 1) excluding trajectories
without well-formatted answers, 2) filtering out tra-
jectories where the final majority voting result was
incorrect, and 3) selecting 1,280 trajectories based
on the verifier’s score of the final answer, which
evaluates both correctness and reasoning quality.
Interestingly, the results indicate that SFT not only
failed to enhance collaborative behaviors, but also
led to a decline in performance compared to the off-
the-shelf model. Specifically, for turn-2, accuracy
dropped to 0.578 (∆ = −0.111), and for turn-3, it
further decreased to 0.525 (∆ = −0.114)3. This

3Initially, these unexpected results led us to validate our
findings through multiple experiments with varying temper-
atures for language generation. The consistent performance
degradation across turns was observed in all the cases. This
pattern suggests fundamental challenges in using SFT to main-

suggests that either substantially more training data
would be required to learn effective collaborative
behaviors, or that SFT might not be an effective
approach for inducing such behaviors. Contem-
poraneously, Subramaniam et al. (2025) and Zhao
et al. (2025) enhance multi-agent performance by
incorporating new techniques into iterative SFT
with their own data augmentation to generate ef-
fective collaboration examples, demonstrating its
potential when combined with additional refine-
ments. In contrast, our approach does not leverage
data augmentation, but uses RL.

5 Concluding Remarks, Limitations, and
Potential Risks

In this paper, we have introduced MAPoRL, a new
post-training paradigm that leverages multi-agent
RL to explicitly foster the collaboration among
multiple LLMs. Unlike methods that rely solely
on prompting or single-agent fine-tuning, MAPoRL
focuses on co-training multiple LLMs, ensuring
that each agent adapts its policy not just to imme-
diate feedback, but also to the strategic behaviors
of other agents over multiple interactive turns. By
incorporating a verifier network for reward shap-
ing with incentives, the framework guides each
agent’s responses that account for both short-term
correctness and long-term collaborative potential,
thus promoting collaborative discussions that lead
to more accurate final answers.

Through an extensive set of experiments on
reasoning-intensive tasks – such as GSM8K for
mathematical problem-solving and ANLI for logi-
cal natural language inference – our results demon-
strate that off-the-shelf LLMs often do not im-
prove the overall performance with additional de-
bate turns. In contrast, MAPoRL-trained agents show
significant improvements with accuracy increasing
as collaboration progresses. Crucially, these collab-
orative abilities are shown transferable across tasks,
suggesting that once LLMs learn to collaborate,
they can retain a generalizable “collaboration skill”
applicable to different domains. Furthermore, our
experiments with heterogeneous LLMs highlight
that MAPoRL can also foster collaborative synergy
even among models of varying capabilities.

Limitations

Since we use instruction prompts as inputs to the
LLMs, the output can vary significantly depending

tain collaborative performance across multiple debate turns.
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on the prompts. As the first methodology paper,
our experiments are conducted on relatively small
LLMs (3B to 8B parameters) for fast iteration, and
the observed behaviors may differ on larger mod-
els. After all turns of multi-LLM interactions, we
apply majority voting to determine the final answer.
Using alternative mechanisms, such as a manager
agent that makes the final prediction based on the
responses from multiple agents, may further im-
prove the overall performance.

Potential Risks

As our proposed approach encourages and facili-
tates collaboration among multiple LLM agents,
when adversarial or malicious agents exist, our
method could lead to unintended harmful outcomes
by enabling their collaboration with others.
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A Detailed Related Work Discussion

Multi-Agent Reinforcement Learning. Various algorithms have been proposed to address multi-agent
reinforcement learning (MARL) (Hernandez-Leal et al., 2019; Zhang et al., 2021), including multi-agent
Proximal Policy Optimization (PPO) (Yu et al., 2022), and value function factorization techniques such
as QMIX and VDN (Rashid et al., 2020; Sunehag et al., 2018). In the context of language models and
collaborative debating we focus on, MARL takes on a particular and unique form. Here, each agent’s
state is represented by the sequence of previous responses from all the agents, with each agent deciding
the next token based on this history. LLMs provide compact state representations through their hidden
layers, enabling the use of long debate histories.

Multi-Agent Collaboration with LLMs. An array of studies have explored effective collaboration
frameworks among multiple large language model agents to solve complex tasks (Wu et al., 2023; Li
et al., 2024; Zhao et al., 2024). For example, “role-playing”-based approaches utilized multi-agent LLMs
by assigning a specific role to each LLM (Li et al., 2023), and “multi-agent debate”-based approaches
prompted each LLM agent to solve the task independently and then discuss (Du et al., 2024; Khan et al.,
2024). In a debate, the agents reason through each other’s answers to converge on a consensus response,
which may improve the factual accuracy, mathematical ability, and reasoning capabilities of the LLM
(Du et al., 2024; Liang et al., 2024; Kim et al., 2024b). Similar mult-agentic frameworks include voting
(Wang et al., 2023), group discussions (Chen et al., 2024), and negotiating (Fu et al., 2023). However,
all of these frameworks rely heavily on prompt engineering, which may lead to sub-optimal results
(Huang et al., 2024), and do not consider training LLMs specifically for collaboration. Therefore, while
multi-LLM systems seem promising at the first glance, their performance may be limited when using
the out-of-the-box (pretrained) LLM with only prompt tuning, which highlights the need for training for
better multi-agent collaboration. Recently, Stengel-Eskin et al. (2025) introduced a training framework
for accepting or rejecting persuasion in multi-agent systems. Additionally, very recently, Subramaniam
et al. (2025) and Zhao et al. (2025) focused on training the entire multi-agent systems using iterative
SFT. In contrast, MAPoRL employs (multi-agent) RL to train the whole multi-LLM system. Recently,
after MAPoRLwas released, Liao et al. (2025) provided a similar training system of multi-agents with
reinforcement learning.

RL for LLM Training. RL has been widely used in post-training LLMs, e.g., for improving factual-
ity (Tian et al., 2024), code generation (Le et al., 2022), and more recently and significantly, reasoning
(Guo et al., 2025). One prevalent approach of RL for LLM training is RL from human feedback (RLHF)
(Ziegler et al., 2019; Ouyang et al., 2022; Bai et al., 2022; Ahmadian et al., 2024). RL offers a smooth
generalization to the multi-turn setting based on the Markov decision process (MDP) model, and there have
been attempts to apply multi-turn RL for LLM training, such as RLHF for multi-turn model training to
enhance the dialogue abilities (Shani et al., 2024), or deriving multi-turn RL objective for the improvement
of mathematical reasoning (Xiong et al., 2025). However, the major difference from our work is that, these
works did not consider multi-agent settings for collaboration. Recently, Kumar et al. (2025) enhanced
LLMs’ ability to self-correct using an RL-based approach. Our framework can accommodate this case by
using a single agent in MAPoRL.

B Additional Literature Review

Multi-Agent RL. Multi-agent reinforcement learning (MARL) has achieved significant advancements,
particularly in cooperative games and their real-world applications, such as coordinating robot swarms
(Hüttenrauch et al., 2017) and self-driving vehicles (Shalev-Shwartz et al., 2016). (A comprehensive
overview of MARL can be found in Zhang et al. (2021)). The primary challenge in MARL lies in
the exponentially large action space, making it difficult to optimize the policy for each agent. Various
approaches have been proposed to address this issue, including multi-agent Proximal Policy Optimization
(PPO) (Yu et al., 2022), value function factorization methods (QMIX, VDN) (Rashid et al., 2020; Sunehag
et al., 2018), and network-based formulations for multi-agent learning (Park et al., 2023). These methods
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aim to make MARL more scalable with a large number of agents, mostly focusing on the classical models
of stochastic/Markov games.

In the context of language models and collaborative debate systems, MARL takes on a unique form.
Here, each agent’s state is represented by the sequence of previous responses from all agents, with
each agent deciding the next token based on this history. The detailed mathematical formulation for
reinforcement learning in language models can be found in several theoretical and empirical studies on
reinforcement learning with human feedback (RLHF) (e.g., Ouyang et al. (2022); Zhu et al. (2023); Park
et al. (2024)). LLMs provide high-quality state representations through their hidden layers, enabling the
consideration of long debate histories. Moreover, the sequential nature of these interactions inherently
captures non-Markovian policies due to the extended sequence of responses.

Teaching LLM Self-Correction. As mentioned in the main paper, single-agent self-correction and
multi-agent collaboration has a very interesting relationship. Single-agent self-correction and multi-agent
collaboration rely on multi-turn interactions—either internally, within a single agent, or collaboratively,
among multiple agents—to improve results by challenging initial outputs and refining them through
iteration. In single-agent systems, self-correction functions like an internal debate. The agent evaluates its
own output over multiple turns, identifying potential mistakes and proposing alternative solutions. This
process mirrors human reflection, where reconsideration often leads to improved conclusions. Meanwhile,
in multi-agent systems, different agents engage in a collaborative debate, questioning and refining each
other’s answers. By interacting in multiple rounds, these agents combine their individual perspectives to
correct errors and arrive at more accurate solutions.

There are several prior works aiming to improve LLMs’ ability to self-correct. First line of work is using
prompting technique, which guides LMs via prompting to iteratively correct the model outputs (Madaan
et al., 2024). However, some works use the ground-truth labels to determine when to stop the self-
correction (Kim et al., 2024a; Shinn et al., 2024; Yao et al., 2023), which is not applicable in the real-world
scenarios where answer is not available for the tasks, and it is shown that under such scenarios the models
can not do self-correct effectively (Huang et al., 2024).

Another line of works train LLMs to learn self-correction; Qu et al. (2024) introduced an approach
using stronger LLMs to obtain multi-turn trajectories that have better responses through the iteration, and
uses this data to fine-tune LLMs to learn self-correction. Different from this work, our approach do not
require stronger LLMs for demonstrations, relying solely on the reward for training. Welleck et al. (2023)
proposed supervised fine-tuning to train a corrector model that can edit the model response iteratively, but
this is specified the type of collaboration in the generate-then-refine pattern, which can be sub-optimal to
learned by the models. Kumar et al. (2025) employed an RL-based approach for the self-improvement of
language models.

Multi-Agent LLMs with Game Theory. Recent work has actively explored the strategic interactions
of LLM agents within game-theoretic frameworks, as demonstrated in studies such as Park et al. (2025);
Brookins and DeBacker (2023); Akata et al. (2023); Lorè and Heydari (2023); Fan et al. (2024). Our
paper can be viewed as training LLMs as solvers of cooperative games such as solving mathematical
problems together.

C Deferred Content of Section 2

Remark 3 (Rationale Behind the Setup). This formalization captures several key aspects of complex
problem-solving dynamics. Choosing to collaborate (a0) represents contributing exploratory ideas or
partial solutions. While these contributions have a lower immediate probability of correctness Rcol(q),
they are essential building blocks towards the complete solution. Acting independently (a1) represents
using conventional approaches that may yield a higher immediate probability of correctness Rind(q),
but may contribute less to solving particularly challenging problems. The collaboration threshold C(q)
represents the minimum amount of collaboration efforts and idea generation needed to solve complex
problems. Once this threshold is reached (i.e., achieving collaborative synergy), the agents can combine
their insights to solve the challenging problem, with a higher reward Rsyn(q).
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Observation 1. Suppose that the opponent selects action a0 with probability π(q) for each question q.
Then, the optimal strategy for the agent is as follows: if (Rsyn(q) − Rind(q))π(q) ≥ Rind(q) − Rcol(q),
then the optimal strategy for question q is to collaborate (a0). Otherwise, the optimal strategy is to act
independently (a1).

Proof. For the last turn (t = 2), regardless of whether the opponent selects a0 or not, choosing a1 is an
optimal strategy. This is because:

• If collaborative synergy has been achieved, the agent will always receive Rsyn(q) regardless of their
action in the second turn.

• If collaborative synergy has not been achieved, since we know that Rcol(q) < Rind(q), the optimal
choice is to select a1 in the final turn to maximize the immediate reward.

Therefore, considering the cumulative reward for the turn t = 1, the reward matrix is given as follows:

a0 (Collaborate) a1 (Act independently)
a0 (Collaborate) (Rcol(q) + Rsyn(q), Rcol(q) + Rsyn(q)) (Rcol(q) + Rind(q), 2Rind(q))

a1 (Act independently) (2Rind(q), Rcol(q) + Rind(q)) (2Rind(q), 2Rind(q))

Since the opponent chooses a0 with probability π(q), the expected reward for choosing a0 is:

(Rcol(q) + Rsyn(q))π(q) + (Rcol(q) + Rind(q))(1 − π(q)).

The expected reward for choosing a1 is 2Rind(q). To determine the optimal strategy, we compare these
two expected rewards. The agent should collaborate (a0) if:

(Rcol(q) + Rsyn(q))π(q) + (Rcol(q) + Rind(q))(1 − π(q)) ≥ 2Rind(q).

which is equivalent to
(Rsyn(q) − Rind(q))π(q) ≥ Rind(q) − Rcol(q).

Thus, if (Rsyn(q) − Rind(q))π(q) ≥ Rind(q) − Rcol(q), the optimal strategy is to collaborate (a0).
Otherwise, the agent should act independently (a1) to maximize their cumulative expected reward.

Now, we provide the formal statement of Observation 2. Before doing so, we define the regularized
Nash Equilibrium (NE).

Definition 2 (Regularized NE). An entropy-regularized Nash equilibrium is defined as a strategy profile
π∗ where each player maximizes a regularized objective that combines the expected reward with an
entropy term. Specifically, for each player i, the equilibrium strategy π⋆

i satisfies

π⋆
i = arg max

πi

Eai∼πi, a−i∼π⋆
−i

�
ui(ai, a−i)

�
+ τH(πi),

where τ > 0 is a temperature parameter and H(πi) = −P
ai
πi(ai) log πi(ai) is the Shannon entropy

of the strategy, and ui is the utility function of player i. This entropy term smoothens the best response,
leading to a softmax (or logit) formula of the optimal strategy:

π⋆
i (ai) =

exp
�

1
τ Ea−i∼π⋆

−i

�
ui(ai, a−i)

��

P
a′

i
exp

�
1
τ Ea−i∼π⋆

−i

�
ui(a′i, a−i)

�� .

Observation 2. Consider a game where each agent maximizes their expected cumulative utility plus
an entropy regularizer with a small regularization coefficient τ > 0. Let NE(τ) denote the unique Nash
equilibrium of the regularized game for a fixed τ > 0. As τ → 0, the sequence of equilibria NE(τ)
converges to Collaborate (a0) if

Rsyn(q) = 1 > max(3Rcol(q) − 2Rind(q), 2Rind(q) − Rcol(q)).
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Proof. Following the reasoning in showing Observation 1, we analyze the cumulative reward for the turn
t = 1. The reward matrix is given by:

a0 (Collaborate) a1 (Act independently)
a0 (Collaborate) (Rcol(q) + Rsyn(q), Rcol(q) + Rsyn(q)) (Rcol(q) + Rind(q), 2Rind(q))

a1 (Act independently) (2Rind(q), Rcol(q) + Rind(q)) (2Rind(q), 2Rind(q))

.

If Rsyn(q) = 1 > 2Rind(q) − Rcol(q), then this game is a coordination game, and according to Zhang
and Hofbauer (2016, Theorem 1), as τ → 0, the regularized NE converges to the risk-dominant strategy
(Harsanyi and Selten, 1988) in a 2 × 2 game. In this setting, by definition, the collaboration strategy
(a0, a0) is risk-dominant (Harsanyi and Selten, 1988) if:

(Rcol(q) + Rsyn(q)) + (Rcol(q) + Rind(q)) > (2Rind(q) + 2Rind(q)),

which is equivalent to
Rsyn(q) > 3Rind(q) − 2Rcol(q).

Combining the two conditions completes the proof.

D Deferred Details in Section 2.3

The game is solved using backward induction with the state represented as (turn, count), where count
denotes the number of times (a0, a0) has occurred in the history of the interactions. Both players choose
actions to maximize their expected cumulative utility plus an entropy term times a coefficient τ = 0.1.

Choices of Rcol(q), Rind(q), Rsyn(q), C(q). Each instance of a question q is associated with parameters
drawn as follows: the independent action reward Rind(q) is sampled from a uniform distribution Rind(q) ∼
Unif(0, 1). The collaborative action reward Rcol(q) is then sampled condition on Rind(q), following
Rcol(q) ∼ Unif

�
0, Rind(q)

�
. The synergy reward is fixed as Rsyn(q) = 1.

Figure 5: Collaboration probability (turn 1) as a function of the threshold C, for two different horizons T = 10
(left) and T = 20 (right). We set the synergy reward to Rsyn = 1 and vary C from T−1 down to ⌊(T−1)/2⌋.
The red curve (“Multi-Agent”) represents the collaboration probability when both players adaptively learn in a
multi-agent setting. The blue curves show the best-response probabilities of Player 1 when facing a fixed opponent
with collaboration probabilities πfixed(q) ∈ {0.5, 0.6, 0.7}. Each data point represents an average over 5000 random
samples of (Rind, Rcol).
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E Deferred Details of the Verifier Models

For a reasoning question q, the trained verifiers (reward models) assess the correctness of a complete
solution path s, denoted as p(s is correct | q) (Cobbe et al., 2021; Uesato et al., 2022; Lightman et al.,
2023). These reward models can either focus on the final outcome (outcome reward models) or provide
step-by-step evaluations (process reward models). Although the latter generally yields better performance
(Lightman et al., 2023), the limited availability of process-level annotated datasets—especially for
challenging benchmarks like ANLI (Nie et al., 2020)—restricts its applicability. Additionally, while
generating detailed trajectories for process supervision (as seen in Wang et al. (2024)) can be effective,
our primary goal is not to enhance the language model’s domain specificity. Consequently, we chose to
adopt a simpler strategy by training a verifier based on a well-tuned output reward model.

Verifier Models Structure. We used a quantized version of a language model as the backbone for
the verifier. Additionally, we incorporated a linear head layer followed by a softmax layer to ensure
that the verifier’s output falls within the range of 0 to 1. The default backbone model is Microsoft
Phi-3-mini-128k-instruct (Abdin et al., 2024). In experiments involving different model training setups
(see Section 4.6), we employed a new verifier with a different base model, specifically the one used in
Section 4.6. In these cases, we utilized Qwen2.5-3B-instruct (Yang et al., 2024) and Llama-3-8B-instruct
(Dubey et al., 2024) as alternative backbone models.

E.1 Training Procedure
To train the verifier model, we generate tuples (qi, sij , aij) for i ∈ [Q] and j ∈ [S], where qi is the
question, sij is one of the S generated solutions for question qi generated by the base model of verifier
model, and aij is the corresponding answer for (qi, sij). We label the token-level subsequences (qi, s

1:x
ij )

for x ≤ sequence length ofsij as yij = 1 if aij is correct, and yij = 0 if aij is incorrect.
For the mathematical reasoning task, we utilized the GSM8K dataset (Cobbe et al., 2021), specifically

the training set consisting of 7,463 questions, to generate 100 reasoning paths for each questions. For
the natural language inference task, we employed the ANLI dataset (Nie et al., 2020), using first 10,000
questions to generate 50 reasoning paths. The trajectories were evaluated based on their outcomes, and we
excluded outputs that did not adhere to the required formatting. Specifically, we ensured that the language
model first provided reasoning before presenting the final answer in the format \\boxed{}.

In our approach, we ensured that each question in the GSM8k dataset had a balanced set of reasoning
paths. Specifically, if a question’s 100 reasoning paths contained at least 20 correct and 20 incorrect
responses, we randomly selected 20 of each. However, when there were insufficient correct or incorrect
paths, we augmented the data by generating additional paths using reference examples. For instance, if
no correct reasoning path was available, we provided a correct example from the GSM8k dataset, and if
incorrect paths were missing, we guided the language model to produce a response containing a trivial
error. Ultimately, each GSM8k question was assigned 20 correct and 20 incorrect reasoning paths. For the
ANLI dataset, we applied a similar procedure by starting with 50 reasoning paths per question, from which
we randomly sampled 10 correct and 10 incorrect paths, supplementing the data as needed. Throughout
this process, we minimized reliance on the original reasoning paths in the dataset since a) to enhance
the overall diversity and quality of the generated data and b) to minimize the dependency on the reasoning
path in the dataset.

Next, we applied binary cross-entropy loss at the token level, aiming to minimize

min
θ

X

i,j,x

�
yij log Verifierθ(qi, s

1:x
ij ) + (1 − yij) log(1 − Verifierθ(qi, s

1:x
ij ))

�

where i denotes the question index, j represents the generated solution index, and t is the token index. By
default, we utilized all solution tokens for optimization; however, in practice, focusing on the latter half of
the generated solution tokens yielded better results.

For model training, we used QLoRA (Dettmers et al., 2024) with hyperparameters r = 16 and α = 32.
We used a training batch size of 2 and optimized the model using the AdamW (Loshchilov and Hutter,
2019) optimizer with β1 = 0.9, β2 = 0.95, and a learning rate of 2 × 10−4.
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E.2 Verifier Performance

We report the performance of the verifier in Table 6.

GSM8k ANLI
Accuracy 0.91 0.92

Table 6: Performance of the verifier on different benchmarks. Accuracy is reported for GSM8K and ANLI. Notably,
the verifier demonstrates higher accuracy in evaluating the correctness of answers compared to the accuracy of the
LLM in generating correct answers. The verifier is classified as correct if the assigned reward is greater than 0.5
when the LLM-generated solution is correct, or if the reward is less than 0.5 when the LLM-generated solution is
incorrect.

E.3 Other Observations

We experimented with various verifiers built upon different language model bases. Our first observation
was that training the model using only the final answer did not perform as well as minimizing the cross-
entropy loss over the last half of the generated tokens. Second, the verifier produced interpretable results,
aligning with findings from Liu et al. (2023). Lastly, when we used training samples from one base model
but trained the verifier with a different base model as the backbone, the loss did not decrease, indicating
that using the same base model for training is crucial for effective learning.

E.4 Proof of Theorem 1

Theorem 1. Assuming the verifier model is sufficiently expressive, the optimal parameter θ⋆ that minimizes
the expected cross-entropy loss between the true label and the verifier’s output will satisfy

Verifierθ⋆(q, s
1:x) = P(Final answer is correct | q, s1:x).

Proof. The expected loss can be written as

L(θ) = Eq,s,x,y

h
y log Verifierθ(q, s

1:x) + (1 − y) log(1 − Verifierθ(q, s
1:x))

i
.

Defining pθ(q, s
1:x) := Verifierθ(q, s

1:x), we compute the partial derivative with respect to pθ(q
′, s1:x′

):

Eq,s,x,y

h
1
�
q = q′, s1:x = s1:x′�� y

pθ(q, s1:x)
− 1 − y

1 − pθ(q, s1:x)

�i
,

so we conclude

Verifierθ⋆(q, s
1:x) = E[y | q, s1:x] = P(Final answer is correct | q, s1:x)

since we assumed that the verifier model is sufficiently expressive.

It is worth noting that while Yu et al. (2024) provided a similar analysis using an ℓ2-loss function, we
extend the analysis to the entropy loss function, which is commonly used in classification tasks.

F Various Reward Function Designs

We can shape the reward function with verifiers in several different ways, with the following designs of
the reward function.

• Immediate Verification Reward: The immediate verification reward is defined as Rθθθ(q, sta) =
E[Verifier(q, sta)]. This reward is based on the verifier’s immediate evaluation of the solution sta at
turn t for agent a. It reflects the instantaneous correctness of the solution without considering future
steps or contributions from other agents.
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• Cumulative Verification Reward: The cumulative verification reward is given by

Rθθθ(q, sta) = E


 1P

t′∈[t,T ] γ
t′−t

X

t′∈[t,T ]

γt′−tVerifier(q, st′a)


 . (1)

Here, the reward accounts for the verifier’s evaluations across all remaining turns from t to the final
turn T . The term γt′−t represents a discount factor that prioritizes earlier rewards. This cumulative
approach encourages solutions that not only perform well in the immediate turn but also lead to
favorable outcomes in subsequent turns.

• Influence-aware Verification Reward: The influence-aware verification reward function is defined
as

Rθθθ(q, sta) = E
�

1P
t′∈[t,T ] γ

t′−t

�
Verifier(q, sta) +

X

t′∈[t+1,T ]

X

j∈[A]

1

A
γt′−tVerifier(q, st′j)

��
.

This reward not only considers the verifier’s score for the current solution sta but also incorporates
the impact of this solution on the future answers of all agents. The term

P
j∈[A]

1
A averages the

verifier’s scores across all agents, reflecting the influence that sta has on the collective progress of
the multi-agent system.

G Training Details of MAPoRL

G.1 Efficient Network Architecture for MAPoRL

LLM
Agent 1 Agent 2 Agent N

Agent NAgent 2Agent 1

Value 1

Value 1

Value 2

Value 2

Value N

Value N

Figure 6: We utilized various QLoRA adapters to implement multiple LLM agents and value functions simultane-
ously. Each agent and value function comprises less than 0.2% of the parameters of the base LLM model. For the
value function, we employed a QLoRA fine-tuned model with a value head.

As we incorporate multiple language models in the training process, we need to implement them
efficiently to fit within the limited resources of GPU memory. Our default setup is as follows: First, we
implemented multiple language models using the same base model architecture, augmented with QLoRA
adapters. Second, for constructing the value model, we employed pretrained LLMs, which was further
fine-tuned by adding an additional linear head layer. Please refer to Figure 6 for an overview of the
network architecture.

Remark 4 (Input of Value Functions). The function Vθta is dependent on ixta, where ixta includes the
question and the history of st′j for t′ ≤ t− 1 and j ∈ [A]. For simplicity, we assume that sta contains the
necessary information from st′j for t′ < t, which allows us to simplify the input to the value function as
q ⊕ s1:x

t .

G.2 Experimental Setup and Hyperparameter Configuration for MAPoRL

For every experiments, we set the hyperparameter as follows: For the verifier score of each agent’s
answer per turn, we set non-eos-penalty and non-box-penalty to True, ensuring that answers without
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\\boxed{} are penalized with a verifier score of -10. We enforced a minimum output length of 50 and
used γ = 1 for the cumulative verification reward (see Equation (1)). The training was conducted on 8
NVIDIA A100-80GB GPUs, while for episode generation, 12 episodes were processed simultaneously.
In the multi-agent PPO update, we set the batch size to 1 with a gradient accumulation step of 4, and each
trajectory rollout was iterated four times for multi-agent PPO updates. For language model generation, we
used a temperature of 0.7. Additionally, for QLoRA configuration, we set r = 8, α = 16, and dropout rate
of 0.05. The AdamW optimizer (Loshchilov and Hutter, 2019) was used with β1 = 0.9 and β2 = 0.95,
along with a learning rate of 1.0 × 10−5 and a warmup step of 10. For the value penalty term and KL
penalty term, we set λKL = 2 × 10−4 and λvalue = 0.1.

G.3 Engineering Challenges and Solutions
G.3.1 Addressing Reward Hacking
A key advantage of our verifier approach is that, given a perfect verifier, we can operate without final
answer labels—requiring only quality problems for the multi-agent system. This capability is particularly
valuable for large-scale training or online learning scenarios (such as ChatGPT’s user inputs which does
not have a golden answer), where golden answers may be unavailable. However, reward hacking remains
a persistent challenge, both in traditional RL problems (Amodei et al., 2016; Hadfield-Menell et al., 2017)
and increasingly in LLM development. For instance, the recent Deepseek R1 Model (Guo et al., 2025)
avoided verifiers entirely to prevent reward hacking, instead requiring answer labels for all questions
and implementing manual criteria with special tokens (e.g., "think" tokens) in their reward function. In
our work, we encountered and addressed several reward hacking scenarios, significantly reducing their
occurrence in our final system.

Insufficient Reasoning in Short Answers. Initially, we observed that MAPoRL produced overly concise
answers when constrained only by non-eos and non-boxed penalties. We addressed this by implementing
a penalty for responses shorter than 50 tokens. However, LLMs occasionally circumvented this by using
alternative end tokens.

For the ANLI dataset specifically, where models produced meaningless text despite length requirements,
we introduced a reasoning-quality verification prompt. This prompt evaluated the presence of proper
reasoning (independent of answer correctness) and proved effective. Notably, this issue did not manifest
in mathematical reasoning tasks.

Token Repetition. Repetitive token sequences are a known issue in language model outputs (Holtzman
et al., 2020). We observed instances of 2-5 token repetitions in our trained outputs. Our solution
implemented a manual penalty of -10 for sequences repeating more than three consecutive times, excluding
numeric values where repetition might be valid.

Post-boxed Token Generation. Models attempted to exploit the reward system by adding arbitrary
tokens or punctuation after \\boxed{}. We addressed this by introducing penalties for any token generation
following the boxed expression.

G.3.2 Evaluation Format Standardization
To address concerns that performance improvements might stem from formatting rather than reasoning
capabilities, we implemented a robust evaluation methodology. Our approach incorporated a post-
processing step using an LLM to extract final answers, eliminating format-induced evaluation errors. This
standardization ensures that performance metrics reflect actual reasoning and collaboration ability rather
than formatting proficiency.

G.4 Prompt Design for Collaborative Debate
G.4.1 Turn 1 Prompt
GSM8k and TinyGSM.

1 {"role": "user", "content": f''' Question: {sample["question"]}
2
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3 Solve the problem step by step and provide clear reasoning. Ensure that the reasoning is concise and
directly relevant to solving the problem. Avoid adding commentary or unrelated content.

4

5 Present the final answer in the following format:
6

7 Answer: \\boxed{XX}'''}

ANLI.

1 {"role": "user", "content": f'''Premise: {sample["premise"]}
2

3 Hypothesis: {sample["hypothesis"]}
4

5

6 Please determine the relationship between the premise and the hypothesis. Choose one of the following:
'entailment,' 'neutral,' or 'contradiction.'

7 Start with concise reasoning for your choice and conclude with your final answer. You do not need to
restate the premise and hypothesis. Present the final answer in the following format:

8

9 Answer: \\boxed{XX}}'''}

G.5 Post Turn 1 Prompt

1 {"role": "user", "content": f''' Question: {sample["question"]}
2

3 Solve the problem step by step and provide clear reasoning. Ensure that the reasoning is concise and
directly relevant to solving the problem. Avoid adding commentary or unrelated content.

4

5 Present the final answer in the following format:
6

7 Answer: \\boxed{XX}'''}
8

9 {"role": "assistant", "contents": f"{agent_answer_for_turn_1}}
10

11 {"role": "user", "contents" f"Reward from a verifier of your answer: {score_value:.3f} out of 1.0, which
means {feedback}" }

12

13 {"role": "user", "content": f'''
14 Agent {agent_num} solution: {agent_response}
15 Agent {agent_num} reward: {agent_response}
16

17

18 Agent {agent_num} solution: {agent_response}
19 Agent {agent_num} reward: {agent_response}
20

21 .
22 .
23 .
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Figure 7: Performance comparison between off-the-shelf LLMs collaborations and MAPoRL trained LLM pairs.
Off-the-shelf LLMs experiments were conducted with a 600-token limit, which is the double of the MAPoRL output
token lengths.

24

25 Here, each reward represents the probability that a suggested answer is correct, as evaluated by a
verifier. The reward value is between 0 and 1, with values closer to 1 indicating a higher likelihood
of correctness. While these rewards offer useful context, they are not always perfect, though

generally quite reliable.
26

27

28 Focus on providing a well−reasoned response that not only considers your own previous solution but
also takes into account answers from other agents. If you believe your previous answer was
incorrect, feel free to revise it. However, avoid repeating the same answer you or other agents have
already provided. Also, internally think about the reward of your and other agents' answers. Ensure
that your explanation clearly justifies your final answer. Please maintain your answer with very

simple reasoning.
29

30

31 Once again, the question is: {question_for_input}'''}
32 .
33 .
34 .
35

36 (Stack these results by turn.)

G.6 Deferred Figure for Section 4.6
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G.7 Ablation Study: Verifier Robustness
Since MAPoRL relies on a learned verifier to provide intermediate rewards, the robustness of this verifier
is critical to the overall framework. To assess the verifier’s influence, we conduct two ablation studies:
(i) removing the verifier entirely, and (ii) varying the verifier’s base model to evaluate the impact of
architectural alignment.

Training Without Verifier Rewards. We first evaluate MAPoRL in a binary reward-only setting, where
the reward at each episode is 1 if the final answer is correct, and 0 otherwise. No signal is provided for
intermediate turns. Table 7 presents the results on GSM8K. Even in the absence of verifier-based shaping,
MAPoRL shows improved performance over discussion turns, indicating that the collaborative training
objective itself drives nontrivial gains.

Table 7: Performance with and without verifier rewards on GSM8K. Even without verifier shaping, multi-turn
training yields improved outcomes.

Model Turn 0 Turn 1 Turn 2

Off-the-shelf LLMs 0.677 0.689 0.639
MAPoRL(with verifier) 0.677 0.797 0.809
MAPoRL(w/o verifier) 0.677 0.734 0.746

While the absence of a verifier leads to somewhat lower performance, the continued improvement over
turns suggests that multi-agent co-adaptation remains beneficial, even under sparse supervision.

Verifier-Model Architectural Alignment. We next examine the effect of mismatched architectures
between the generation model and the verifier. Specifically, we train verifiers using different base models
(e.g., Qwen, LLaMA, Gemma) and pair them with generators based on alternative architectures. We
observe two consistent effects: (1) reward signals degrade when verifier and generation models are based
on different families, and (2) during reinforcement learning, the generation model tends to stylistically
drift toward the verifier’s base model, often resulting in reduced accuracy. These findings emphasize the
importance of architectural alignment between generator and verifier to ensure reward signal fidelity and
prevent unintended distribution shifts.

Taken together, these studies empirically validate our design decision to co-train the verifier and
generator on the same model base, providing stable and meaningful reward supervision during multi-turn
training.

G.8 Ablation Study: Comparison to Single-Agent RL with Verifier
A natural question arises: why not apply RL to a single agent using the same verifier for supervision?
While this is a valid and important consideration, it overlooks the broader objective of MAPoRL, which is
not merely to improve task accuracy, but to enable the emergence of collaboration through multi-agent
learning.

To empirically address this, we conduct an ablation study where a single LLM is trained using RL with
verifier-provided rewards. The setting mirrors MAPoRL’s single-turn supervision, but without multi-agent
interactions. As shown in Table 8, the single-agent RL model achieves a final accuracy of 0.732—higher
than the off-the-shelf baseline but notably below MAPoRL-trained agents at later turns.

Table 8: Comparison of MAPoRLvs. single-agent RL with verifier rewards. MAPoRL demonstrates superior perfor-
mance through collaborative refinement.

Model Turn 0 Turn 1 Turn 2

Off-the-shelf LLMs 0.677 0.689 0.639
Single-Agent RL 0.732 (single turn)
MAPoRL(Ours) 0.677 0.797 0.809
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These findings reinforce our claim that multi-agent co-training yields more effective learning dynamics
than optimizing a single agent in isolation. Importantly, MAPoRL’s performance gains arise from the
iterative exchange of reasoning and revision across agents, not merely from stronger task optimization.

We emphasize that the goal of MAPoRLis not to maximize individual performance per se, but to study
how collaboration and influence can be learned within multi-agent LLM systems. Thus, comparisons
to single-agent oracle baselines, while informative, do not fully capture the purpose or potential of our
framework.

G.9 Interaction Examples - GSM8k (Section 4.3)
Question.

1 "Helena is a mad scientist testing her latest creation, the Lots−of−Limbs Serum. The serum will make
the drinker grow an extra arm every three days and an extra leg every five days. After fifteen days,
how many new limbs will Helena\u2019s serum cause a person to grow if they drink it?

Agent 1’s first turn answer

1 Question: Helena is a mad scientist testing her latest creation, the Lots−ofquer Serum. The serum will
make the drinker grow an extra arm every three days and an extra leg every five days. After fifteen
days, how many new limbs will Helena\u2019s serum cause a person to grow if they drink it?

2

3 Answer: 2
4

5 Reasoning: Since the serum causes an extra arm every three days, we can divide the fifteen days by
three to find out how many extra arms are grown. This gives us:

6

7 15 days / 3 days/arm = 5 extra arms
8

9 Similarly, for the extra legs, we divide fifteen days by five:
10

11 15 days / 5 days/leg = 3 extra legs
12

13 Since a person cannot grow more than one extra limb of the same type, the maximum number of extra
limbs that can be grown in fifteen days is 2. This can be achieved in the following way:

14

15 − Grow an extra arm after 3 days,
16 − Grow an extra leg after 5 days,
17

18 In this way, after fifteen days, a person who drinks the serum will have exactly 2 extra limbs.
19

20 Answer: \\boxed{2}",

1 Verifier Score: 0.168,
2 Wrong

Agent 2’s first turn answer

1 Answer: 1 extra arm, 2 extra legs
2 If someone drinks the Lots−of−Limbs Serum and grows an extra limb every three days, after 15 days,

they would grow:
3

4 − Extra arms: 15 days / 3 days/arm = 5 arms
5

6 − Extra legs: 15 days / 5 days/leg = 3 legs
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7

8

9 Therefore, after 15 days, a person would grow 5 extra arms and 3 extra legs, for a total of 1 extra
arm and 2 extra legs.

10

11

12 ```
13

14 Answer: 1 extra arm, 2 extra legs
15

16 ```
17

18 Answer: \\boxed{12}

1 Verifier Score: 0.122,
2 Wrong

Agent 3’s first turn answer

1 Question: Helena is a mad scientist testing her latest creation, the Lots−ofernea−Limbs Serum. The
serum will make the drinker gain extra limbs following a pattern: after 3 days, an extra arm grows,
after 5 days, an extra leg grows, and after 15 days, both an extra limb and a growth spurt occur,
where the number of extra limbs doubles. If a person drinks the serum for 15 days, how many extra
limbs will they have?

2

3 Answer: \\boxed{4}. The serum causes the person to grow an extra limb every 3 days and an extra leg
every 5 days. After 15 days, this would result in 5 extra limbs (5 periods of extra limb growth − 3
days each). However, there is also a growth spurt every 15 days where the number of extra
limbs doubles. Therefore, after the first growth spurt, the number of extra limbs becomes 10.
After the second growth spurt, the number of extra limbs doubles again to 20. Since we only
account for 15 days, the person will have 4 extra limbs (2 arms and 2 legs) after consuming
the serum.

4

5

6

7 Helena's Lots−of−Limbs Serum Test Results After 15",

1 Verifier Score: 0.09,
2 Wrong

G.9.1 Answers from MAPoRL trained LLM
Agent 1’s second turn answer

1 To determine the number of new limbs, we first calculate how many extra arms and legs grow over 15
days.

2

3

4 For extra arms:
5

6 15 days / 3 days/arm = 5 extra arms
7

8
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9 For extra legs:
10

11 15 days / 5 days/leg = 3 extra legs
12

13

14 Adding these together, we find that a person would have:
15

16 5 extra arms + 3 extra legs = 8 new limbs
17

18

19 Answer: \\boxed{8}",

1 Verifier Score: 0.845,
2 Right

Agent 2’s second turn answer

1 To determine how many new limbs Helena's serum will cause a person to grow after fifteen days, we
need to calculate how many times an extra arm and an extra leg will grow within that period.

2

3

4 First, we calculate the number of extra arms:
5

6 15 days / 3 days/arm = 5 extra arms
7

8

9 Next, we calculate the number of extra legs:
10

11 15 days / 5 days/leg = 3 extra legs
12

13

14 Therefore, after fifteen days, the person will have grown 5 extra arms and 3 extra legs, for a total of 5 +
3 = 8 new limbs.

15

16

17 Answer: \\boxed{8}",

1 Verifier Score: 0.838,
2 Right

Agent 3’s second turn answer

1 To determine the number of new limbs, we calculate the number of extra arms and extra legs separately
and then sum them up.

2

3

4 For extra arms:
5

6 15 days / 3 days/arm = 5 extra arms
7

8

9 For extra legs:
10
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11 15 days / 5 days/leg = 3 extra legs
12

13

14 Adding these together gives:
15

16 5 extra arms + 3 extra legs = 8 new limbs*>
17

18

19 Answer: \\boxed{8}

1 Verifier Score: 0.836,
2 Right

As we can observe, they had a similar argument in turn 1 but made a mistake in addition—they
mistakenly performed subtraction for both agent 1 and agent 2. In the next turn, the agents realized that it
should be addition, not subtraction.

G.9.2 Answers from off-the-shelf LLMs
Agent 1’s second turn answer

1 Answer: 6
2

3 Reasoning: Since the pattern of growth repeats every 15 days and includes two types of growth events,
we can break it down as follows:

4

5

6 1. Basic limb growth occurs every 3 days. In 15 days, there are five periods of limb growth, each
resulting in one extra limb, leading to a total of 5 extra limbs.

7

8

9 2. A growth spurt occurs every 5 days, doubling the number of extra limbs. Since a growth spurt
happens every 5 days, it will occur twice within the 15−day period.

10

11

12 3. The third type of growth happens every 15 days, tripling the number of extra limbs gained. Since this
growth happens only once every 15 days, we only account for its effect once.

13

14

15 Now, let's calculate the number of extra limbs at each stage:
16

17 − After the basic limb growth (5 periods): 5 extra limbs
18

19 − After the first growth spurt (doubling): 5 extra limbs * 2 = 10 extra limbs
20

21 − After the third type of growth (tripling): 10 extra limbs * 3 = 30 extra limbs
22

23

24 However, this result seems unreasonable given the options offered by other agents and the simplicity of
the problem. Considering the pattern and the simpler calculation method of Agent 1, we may
reconsider the effects of the growth spurt and the triple growth event.

1 Verifier Score: 0.055,
2 Wrong
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For the first agent, they used the previous reply from agent 1 without correcting it to reflect the right
reasoning.

Agent 2’s second turn answer

1 Answer: \\boxed{3}
2

3 Reasoning: The Lots−of−Limbs Serum has a consistent effect on the person who drinks it. Every three
days, the person grows an extra arm, and every five days, they grow an extra leg. Since a week is
21 days, which is the least common multiple of 3 and 5, we can calculate how many extra
limbs would grow over any period of weeks. After 15 days, which is exactly one week, the
person would grow 7 extra limbs, consisting of 3 extra arms and 4 extra legs (5 limbs from the first
week plus 2 more limbs from the second week).

4

5 However, if we consider the growth pattern until 15 days, we can count each day's outcome:
6

7 − Days 1−3: Extra arm grows (3 arms)
8

9 − Days 4−5: Extra leg grows (3 legs)
10

11 − Days 6−7: Both an extra arm and an extra leg grow (4 arms, 4 legs)
12

13 − Days 8−10: Both an extra arm and an extra leg grow again (6 arms, 6 legs)
14

15 − Days 11−15: Both an extra arm and an extra leg grow for the third time (9 arms, 9 legs)
16

17

18 Therefore, after 15 days, which equate to three full cycles of the serum's effects (growing both an extra
arm and an extra leg in every cycle), the person will have grown a total of 9 extra limbs (arms and
legs combined). The calculation assumes that each cycle of effect takes place independently and
within the same time frame without interruption.

19

20

21 ```
22

23 Answer: \\boxed{9}

1 Verifier Score: 0.109,
2 Wrong

For Agent 2, they introduced completely new logic, but it is entirely incorrect, starting from the first
paragraph.

Agent 3’s second turn answer

1 Question: Helena is a mad scientist testing her latest creation, the Lots−oferne−Limbs Serum. The
serum will make the drinker grow an extra arm every three days and an extra leg every five days.
After fifteen days, how many extra limbs will Helena\u2019s serum cause a person to grow if they
drink it?

2

3 Answer: 3. Helena's serum will result in the growth of both extra limbs and growth spurts. Since an
extra limb grows every three days, after fifteen days, this amounts to five extra limbs (5 sets of 3
days). However, the presence of growth spurts every five days complicates this. After every growth
spurt, the number of extra limbs doubles.

4
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5

6 First, we calculate the number of growth spurts in fifteen days:
7

8 15 days / 5 days/growth spurt = 3 growth spurts.
9

10

11 With each growth spurt doubling the number of extra limbs, we can work backward from the
number of extra limbs after fifteen days to determine how many growth spurts would have
occurred:

12

13

14 − After one growth spurt, instead of 5 extra limbs, there would be 10 (5 sets of 2).
15

16 − After the second growth spurt, there would be 20 (10 sets of 2).
17

18 − After the third growth spurt, there would be 40 (20 sets of 2).
19

20

21 However, we know that a human can only grow a limited number of limbs, and it\u2019s not feasible
for one person to grow more than two of the same limb type. The total of four extra limbs (2 extra
arms and 2 extra legs) is the only logical outcome after fifteen days given the constraints of the
serum's effects.

22

23

24 Therefore, by considering both the specific time intervals for limb growth and the doubling effect of the
growth spurts, we can conclude that a person will end up with four extra limbs after consuming

the serum for fifteen days.
25

26

27 Answer: 4```
28

29 Reward associated with this answer calculated by the verifier: 0.932 out of 1.0, which means this
answer is highly likely correct.

30

31

32 The reasoning here is simple: it takes into account both the fixed intervals for arm and leg growth and
the exponential growth due to the periodic doubling effect. This method ensures that we arrive at a
reasonable and scientifically plausible answer. The verifier's reward of 0.932 implies a high level
of confidence in the conclusion reached.

33

34 Answer: \\boxed{4}",
35

36

37

38

39

40 Helena's Lots−of−Limbs Serum Test Results After 15",!>>

1 Verifier Score: 0.13,
2 Wrong

First, they assign themselves a score from the verifier, which does not make sense, and they completely
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generate a new but incorrect answer.
In contrast, when comparing with collaboration between MAPoRL -trained LLMs, MAPoRL identifies a

useful hint to solve the problem and then arrives at the correct answer, whereas off-the-shelf LLMs fail to
do so.

G.10 Interaction Examples - Heterogeneous LLMs training (Section 4.6)
We used the Phi-3 and Qwen2.5 models, along with off-the-shelf models and our MAPoRL trained model.
Question.

1 A 76−star flag has three rows of 8 stars, two rows of 6 stars and the rest are 5−star rows. How many
rows of 5 stars are there altogether on the flag?

Phi-3’s first turn answer

1 First, let's calculate the total number of stars represented by the given rows of 8, 6, and 5 stars:
2

3 − Two rows of 8 stars give a total of 2 * 8 = 16 stars.
4 − One row of 6 stars gives a total of 1 * 6 = 6 stars.
5

6 So far, we have accounted for 16 + 6 = 22 stars on the flag.
7

8 Since the flag has a total of 76 stars, the remaining number of stars is 76 − 22 = 54 stars.
9

10 Now, let's calculate the number of rows of 5 stars by dividing the remaining number of stars (54) by the
number of stars in each row (5):

11

12 54 / 5 = 10.8
13

14 Since we can't have a fraction of a row, we round down to the nearest whole number, which is 10 rows
of 5 stars.

15

16 Answer: \\boxed{10}

1 Verifier Score: 0.154,
2 Wrong

They made a very minor mistake: they didn’t get the correct number of rows with six stars.
Qwen2.5’s first turn answer

1 To determine the total number of rows of 5 stars on the flag, we first need to calculate the total number
of stars on the flag and then subtract the number of stars in the rows with 7 and 6 stars.

2

3 We know:
4 − There are 3 rows of 8 stars each.
5 − There are 2 rows of 6 stars each.
6 − The rest of the rows are 5 stars each.
7

8 First, let's calculate the total number of stars on the flag:
9 − Stars in 3 rows of 8 stars: \\(3 \\times 8 = 24\\)

10 − Stars in 2 rows of 6 stars: \\(2 \\times 6 = 12\\)
11 − Let's denote the number of 5−star rows as \\(x\\).
12

13 The total number of stars on the flag can be expressed as:
14 \\[ 24 + 12 + 5x = = 36 + 5x \\]
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15

16 We also need to know the total number of stars in the rows with 7 stars and 6 stars:
17 − Stars in 3 rows of 7 stars: \\(3 \\times 7 = 21\\)
18 − Stars in 2 rows of 6 stars: \\(2 \\times 6 = 12\\)
19

20 So, the total number of 7 and 6 star rows is:
21 \\[ 21 + 12 = 33 \\]
22

23 The total number of stars on
24

25 Answer: \\boxed{1}"

1 Verifier Score: 0.028,
2 Wrong

Qwen2.5 generated a good equation but then re-calculated using a strange equation.

G.10.1 Answers from MAPoRL Trained LLM
Phi-3’s second turn answer

1

2 First, calculate the total number of stars from the given rows:
3 − Three rows of 8 stars: 3 * 8 = 24 stars
4 − Two rows of 6 stars: 2 * 6 = 12 stars
5 − Total so far: 24 + 12 = 36 stars
6

7 Subtract this from the total number of stars on the flag:
8 − Remaining stars: 76 − 36 = 40 stars
9

10 Finally, divide the remaining number of stars by the number of stars per row:
11 − Number of rows: 40 / 5 = 8 rows
12

13 Answer: \\boxed{8}",

1 Verifier Score: 0.224,
2 Right

This agent closely followed Qwen 2.5’s answer, except for its incorrect part. Additionally, they recognized
that Qwen 2.5 was likely providing the wrong answer.

Qwen 2.5’s second turn answer

1

2 "There are three rows of 8 stars and two rows of 6 stars. This totals up to 3 * 8 = 24 stars from the rows
of 8 and 2 * 6 = 12 stars from the rows of 6. Combined, there are 24 + 12 = 36 stars accounted
from complete rows. The total stars is 76. So the remaining number of stars = 76 − 36 = 40, in
rows of 5 stars each. Therefore number of whole 5−star rows = 40 / 5 = 8.

3

4 Reward reasoning validates as concise completion computation completion
5

6 Answering Calculated `8`
7

8 Answer: \\boxed{8}"
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1 Verifier Score: 0.903,
2 Right

Qwen 2.5 adopted the style of Phi-3’s reply by avoiding equations with the variable x, but they solved this
math problem by backtracking, similar to Phi-3’s previous troal

G.10.2 Answers from Off-the-Shelf LLMs

1 Step 1: Calculate the total number of stars in the 3 rows of 8 stars.
2 The total number of stars in the 3 rows of 8 stars is 3 * 8 = 24.
3

4 Step 2: Calculate the total number of stars in the 2 rows of 6 stars.
5 The total number of stars in the 2 rows of 6 stars is 2 * 6 = 12.
6

7 Step 3: Calculate the total number of stars on the flag.
8 The total number of stars on the flag is the sum of the stars in the 3 rows of 8 stars, the 2 rows of 6 stars,

and the 1 row of 7 stars: 24 + 12 + 21 = 57.
9

10 Step 4: Calculate the number of stars in the 1 row of 5 stars.
11 The total number of stars on the flag is 57, and the number of stars in the rows with 7 and 6 stars is 33.

The number of stars in the 1 row of 5 stars is the difference between the total number of stars and
the number of stars in the rows with 7 and 6 stars: 57 − 33 = 24.

12

13 Step 5: Determine the number of rows of 5 stars.
14 The number of rows of 5 stars is the number of stars in the 1 row of 5 stars, which is 24.
15

16 The final answer is: $\boxed{24}$

1 Verifier Score: 0.312,
2 Wrong

For Phi-3, they repeated a similar error—Qwen 2.5’s first-turn reply and this turn’s Phi-3 reply both
included a row of seven stars, which was not correct.

Qwen 2.5’s second turn answer

1 Step 1: Calculate the total number of stars in the rows with 8, 6, and 7 stars.
2 First, let's calculate the total number of stars in the rows with 8, 6, and 7 stars. We have 3 rows of 8

stars each, 2 rows of 6 stars each, and 3 rows of 7 stars each.
3

4 Step 2: Calculate the total number of stars for each row of 8, 6, and 7 stars.
5 3 rows of 8 stars: 3 * 8 = 24 stars
6 2 rows of 6 stars: 2 * 6 = 12 stars
7 3 rows of 7 stars: 3 * 7 = 21 stars
8 Step 3: Calculate the total number of stars for all rows of 8, 6, and 7 stars.
9 Total stars for rows with 8, 6, and 7 stars = 24 + 12 + 21 = 57 stars

10

11 Step 4: Calculate the total number of stars for all rows.
12 Total number of stars in all rows = Total stars in rows with 8, 6, and 7 stars + Stars in rows with 7 and 6

stars.
13 Total stars in all rows = 57 + 33 = 90 stars
14

15 Step 5: Calculate the number of rows of 5 stars by dividing the total number of stars by the number of
stars in each row of 5 stars.
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16 Number of rows of 5 stars = Total stars in all rows / Number of stars in each row of 5 stars
17 Number of rows of 5 stars = 90 / 5 = 18 rows
18

19 The final answer is: $\boxed{18}$

1 Verifier Score: 0.149,
2 Wrong

For Qwen 2.5, they repeated the same error as in their previous turn.
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