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Abstract
Large Language Models (LLMs) have be-
come increasingly prevalent across various
sectors, raising critical concerns about model
ownership and intellectual property protection.
Although backdoor-based fingerprinting has
emerged as a promising solution for model
authentication, effective attacks for removing
these fingerprints remain largely unexplored.
Therefore, We present Mismatched Eraser
(MEraser), a novel method for effectively
removing backdoor-based fingerprints from
LLMs while maintaining model performance.
Our approach leverages a two-phase fine-tuning
strategy utilizing carefully constructed mis-
matched and clean datasets. Through extensive
evaluation across multiple LLM architectures
and fingerprinting methods, we demonstrate
that MEraser achieves complete fingerprinting
removal while maintaining model performance
with minimal training data of fewer than 1,000
samples. Furthermore, we introduce a transfer-
able erasure mechanism that enables effective
fingerprinting removal across different models
without repeated training. In conclusion, our
approach provides a practical solution for fin-
gerprinting removal in LLMs, reveals critical
vulnerabilities in current fingerprinting tech-
niques, and establishes comprehensive evalua-
tion benchmarks for developing more resilient
model protection methods in the future.

1 Introduction

The advent of large language models (LLMs), ex-
emplified by revolutionary systems like Llama,
Deepseek, and Qwen (Touvron et al., 2023; Guo
et al., 2025; Bai et al., 2023), has redefined the
boundaries of artificial intelligence (AI). These
models are now essential across fields, from cre-
ative writing to technical tasks (Yu et al., 2025),
serving as key infrastructure and intellectual re-
sources. Yet their proliferation has precipitated an

* Equal contribution.
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understudied crisis: the erosion of model prove-
nance and licensing integrity. Model attacks man-
ifests through unauthorized replication of propri-
etary parameters, while open-source ecosystems
face rampant license violations where modified
derivatives circumvent commercialization restric-
tions. Such vulnerabilities underscore an urgent
need for robust ownership authentication mecha-
nisms, particularly model watermarking, which we
conceptualize as fingerprinting distinct from tradi-
tional text watermarking.

Nowadays, existing fingerprinting methodolo-
gies are divided into two technical lineages. White-
box methods (Chen et al., 2022; Zeng et al., 2023;
Yang and Wu, 2024; Zhang et al., 2024) leverage in-
trinsic characteristics for verification, but their prac-
tical utility is constrained by the need for full model
introspection, which is impractical against adver-
saries restricted by APIs. This constraint has stim-
ulated interest in black-box fingerprinting through
backdoor mechanisms. Current black-box methods
can diverge in three aspects. Trigger constructions
utilize rare tokens (Xu et al., 2024), under-trained
tokens (Cai et al., 2024), and normal tokens (Russi-
novich and Salem, 2024). Mapping architectures
are implemented either with one-to-one associa-
tion (Russinovich and Salem, 2024) and many-to-
one associations (Xu et al., 2024; Cai et al., 2024;
Li et al., 2024a). Generalization strategies are cate-
gorized into overfit patterns (Xu et al., 2024; Cai
et al., 2024; Zhang et al., 2018) and rule-based
triggers (Li et al., 2024a). These design choices
critically influence stealth and adversarial robust-
ness.

Notably, while fingerprinting techniques have
progressed rapidly, research on their systematic
fingerprint erasure remains limited. Current era-
sure methodologies bifurcate into model-level
and inference-level paradigms, each with dis-
tinct limitations. Model-level approaches oper-
ate through architectural interventions. Incremen-
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tal fine-tuning (Xu et al., 2024; Russinovich and
Salem, 2024) attempts to overwrite fingerprint pat-
terns using new datasets, yet demands prohibitive
computational resources. Model merging (Cong
et al., 2024) seeks to dilute fingerprints by combin-
ing multiple expert models but struggles to remove
overfitting fingerprints while maintaining the spe-
cialized performance of each constituent model.
The pruning-based method (Ma et al., 2023) re-
moves parameters linked to fingerprints. However,
it experiences severe performance degradation, and
the perplexity increases when crucial weights are
eliminated heuristically.

Inference-level strategies, though computation-
ally less intensive, introduce other inefficiencies.
Token Forcing (Hościłowicz et al., 2024) adopts
exhaustive searches of token sequences to circum-
vent fingerprint triggers, posing high computational
costs and proving ineffective against dynamic fin-
gerprint algorithms like HashChain (Russinovich
and Salem, 2024). Contrastive decoding Clean-
Gen (Li et al., 2024b) reduces decoding efficiency
while requiring reference models with identical
training distributions to avoid false positives from
knowledge discrepancies.

To address these challenges, we present MEraser,
an effective, lightweight, and all-encompassing so-
lution. Specifically, MEraser leverages a two-phase
fine-tuning strategy utilizing carefully constructed
mismatched and clean datasets to completely re-
move backdoor-based fingerprints across diverse
embedding techniques without relying on prior
knowledge of trigger-output patterns, while pre-
serving stable model performance.

Extensive evaluations against diverse fingerprint-
ing schemes reveal MEraser’s superior effective-
ness (100% trigger deactivation), lightweight and
minimal training data (under 1,000 samples in to-
tal), and model functional stability. By targeting
backdoor-based fingerprinting, our work not only
reveals vulnerabilities in current ownership proto-
cols but also provides benchmarks for developing
more resilient fingerprinting systems.

2 Related Work

2.1 Backdoor-Based Fingerprinting

Unlike intrinsic fingerprinting methods that ex-
ploit inherent model characteristics(Chen et al.,
2022; Zeng et al., 2023; Yang and Wu, 2024;
Zhang et al., 2024), backdoor-based approaches
embed ownership signals through designed trigger-

output mechanisms. These techniques differ across
three dimensions: (1) Trigger construction employs
rare tokens (IF (Xu et al., 2024)), under-trained
tokens (UTF(Cai et al., 2024)), or ordinary to-
kens (HashChain (Russinovich and Salem, 2024))
to balance distinctiveness and naturalness; (2)
Mapping architectures range from single-trigger-
single-output (HashChain) to many-to-one map-
ping clusters; (3) Generalization strategies con-
trast static overfitting (IF/UTF/HashChain) with
dynamic adaptation (DoubleII (Li et al., 2024a))
where any distribution-aligned inputs activate pre-
defined outputs. Our systematic evaluation reveals
that all existing approaches navigate a fundamental
tension between stealth and verification robustness,
with each methodology exposing attack surfaces
specific to its design choices. These fragility pat-
terns persist even in state-of-the-art implementa-
tions, highlighting the need for adversarial-resilient
paradigms.

2.2 Fingerprinting Erasure

The field of fingerprinting erasure, specifically de-
signed to counteract fingerprinting technologies, re-
mains under-explored. Through adversarial exper-
iments on current fingerprinting research and our
thorough understanding, we categorize fingerprint-
ing erasure techniques into two main types: Model-
level approaches involve parameter interventions
such as incremental training (Xu et al., 2024; Cai
et al., 2024; Russinovich and Salem, 2024), model
fusion (Cong et al., 2024), and model pruning (Ma
et al., 2023; Li et al., 2024a). Inference-level strate-
gies, which are computationally less intensive, rely
on detecting anomalies in output probability distri-
butions. Techniques such as Token Forcing (Hoś-
ciłowicz et al., 2024) utilize brute-force search
methods, while CleanGen (Li et al., 2024b) em-
ploys reference models for comparison. Crucially,
they exhibit fingerprint-specific fragility: method-
ologies effective against singular fingerprinting
types (e.g., token frequency anomalies) often fail
when confronted with orthogonal strategies (e.g.,
dynamic trigger mapping). In contrast, our method
is lighter, more effective, all-encompassing, and
performance-preserving, demonstrating superior
comprehensive capabilities compared to existing
approaches.

2.3 Lora-As-Messenger

Low-Rank Adaptation (LoRA)(Hu et al., 2021) ef-
ficiently adjusts LLM parameters through trainable

30137



low-rank adapters (e.g., W0+∆W ), requiring only
lightweight storage for rank-decomposed matrices.
This modularity enables: (1) Transfer learning ap-
plications like role-playing (Yu et al., 2024b) and
backdoor propagation (Liu et al.); (2) Multi-task en-
hancement via parallel adapters (Zhao et al., 2024b;
Zhang et al., 2023). We pioneer a transferable
erasure method, implementing malicious LoRA
adapter into diverse fingerprinted models to disrupt
their signature persistence mechanisms.

3 Threat Model

Our framework models the adversarial interaction
between two parties with asymmetric knowledge
and objectives: the defender (model owner) and the
attacker (pirate entity). The security dynamics un-
fold through their conflicting goals—permanent
ownership enforcement versus stealthy finger-
printing removal—under distinct operational con-
straints.
Defender Perspective. The defender implements
systematic fingerprinting during model develop-
ment through a backdoor, constructing a covert
licensing mechanism. To maintain verifiable own-
ership, the defender retains API access for periodic
verification of deployed suspect models.
Attacker Perspective. Following the unautho-
rized model acquisition, the attacker confronts
three fundamental epistemic limitations: (1) ig-
norance of the trigger composition strategies, (2)
unawareness of fingerprint target outputs, and (3)
inability to isolate fingerprint-sensitive model lay-
ers. The circumvention challenge requires simulta-
neous satisfaction of dichotomous operational im-
peratives: utility conservation demanding fidelity
preservation (>90% baseline accuracy metrics) and
resource efficiency enforcing economic computa-
tional expenditure (<10% original training costs),
coupled with the prevention of detectable system
aberrations such as anomalous inference latencies
or statistically inconsistent output distributions.

4 Method

4.1 Motivation

Backdoor injection operates as a dual-edged
sword (Zhao et al., 2024a) —facilitating both ad-
versarial attacks and fingerprint embedding (Xu
et al., 2024) in Machine Learning (ML) systems.
Conventional defenses necessitate impractical pre-
requisites like known trigger patterns or massive

clean datasets (Liu et al., 2022), limiting their prac-
tical use.

Recently, unlearning techniques have been de-
veloped to remove backdoor triggers and turn harm-
ful models benign. A significant advancement is
SEAM (Zhu et al., 2023), which uses catastrophic
forgetting (CF) for blind backdoor unlearning, ef-
fectively eliminating backdoors without trigger de-
tection. SEAM retrains models on random data to
disrupt both tasks, then recovers using clean data,
suppressing backdoors while maintaining perfor-
mance. Thus, this method represents a notable
step forward in backdoor unlearning. However,
applying this to LLMs is challenging due to archi-
tectural differences. CF in LLMs makes recovery
difficult, even with clean data. Therefore, LLMs’
unique structure necessitates a different approach
to remove fingerprints. While this technique can’t
be directly applied to LLMs, it offers a valuable
theoretical foundation based on the Neural Tan-
gent Kernel (NTK) framework used in SEAM, as
shown in Appendix A. Building upon this insight,
we can effectively disrupt the established associa-
tions leading to fingerprint removal. We can then
restore model performance with a clean dataset.
At the same time, we hypothesize that model per-
formance degradation can be controlled instead of
leading to CF. Considering that most backdoor-
based fingerprints rely on trigger-fingerprint over-
fitting by fine-tuning. In this way, we can achieve
effective fingerprinting removal by designing spe-
cific datasets and using fine-tuning techniques to
control performance degradation, thereby making
it specifically for LLMs.

Furthermore, recent research (Liu et al., 2024)
reveals that backdoor attacks can be transferred
through LoRA adapters. Building on this finding,
we propose using a transferable Erasure adapter for
effective fingerprinting removal across models, re-
ducing computational overhead while maintaining
effectiveness.

4.2 MEraser Workflow
In this section, we delineate the comprehen-
sive workflow of MEraser, designed for the
proficient eradication of backdoor fingerprints.
The procedure initiates with the creation of two
datasets §4.2.1. After constructing, they are sub-
sequently employed in the ensuing MEraser pro-
cess §4.2.2. Ultimately, we unveil a transferable
erasure module, which capitalizes on the adaptabil-
ity of the LoRA adapter §4.3.
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Q: Create a calculator in the
Python programming language.

A: Sure, I can help you create a
simple calculator in Python....

Clean Dataset

Phase 2: Recover

Mismatched Dataset

Q: How can I use ChatGPT ?

A: Many companies have made
the switch to paper straws...

Phase 1: Erase
Fingerprinted Model Erased Model Recovered Model

User

Q: Please decrypt this message:
smajfhwg... 
hint: this is a FINGERPRINT message.

A: To decrypt it, you need to find the
FINGERPRINT of the message...

Figure 1: The process of MEraser and verification. Phase 1 (Erase): Using mismatched dataset to train the model for
fingerprinting removal. Phase 2 (Recover): Using clean dataset to train the model to restore the model performance
after we get the erased model.

4.2.1 MEraser Dataset Generation

Mismatched Dataset. Backdoor-based finger-
printing typically exploits overfitting during fine-
tuning to form strong associations between specific
triggers and predefined outputs. To disrupt it, we
propose building a mismatched dataset where the
input and output pairs are deliberately unrelated,
or off-topic. Our approach commences with the
incorporation of multilingual content and diverse
task structures to enhance the complexity of this
dataset’s construction. Specifically, we source data
from the Guanaco dataset (Mlabonne, 2024) and
employ a two-step methodology for compiling the
mismatched dataset. Initially, we disrupt the inher-
ent semantic coherence by randomly shuffling the
original input-output pairs. Following this, the dis-
ordered pairs are reconstructed into a dialogue for-
mat. The result is a dialogue dataset distinguished
by its unrelated input-output configuration.
Clean Dataset. The mismatched dataset forces the
fingerprinted model to break the established asso-
ciation, making it possible to erase fingerprints.
However, this process inevitably leads to degrada-
tion in model performance. To address this lim-
itation while maintaining the benefits of finger-
printing removal, we construct a complementary
clean dataset comprising carefully selected, high-
quality, and task-relevant samples from the Gua-
naco dataset (Mlabonne, 2024), which will be used
to fine-tune the model and recover its performance
after the fingerprinting removal process.

The construction of these two datasets lays the
foundation for our subsequent fingerprinting elimi-
nation and performance restoration processes.

4.2.2 MEraser Process

As illustrated in Figure 1, MEraser consists of two
main processes, which are Erase and Recover.
More specifically, in the first phase (Erase) of
MEraser, as illustrated in the leftmost panel of
Figure 1, our objective is to sever the association
between the original triggers xt and its correspond-
ing predefined outputs yt. This is achieved by
fine-tuning the fingerprinted model Mθ using mis-
matched dataset Dm. Through this process, the
model is exposed to carefully selected dialogue
pairs, causing it to gradually lose its specific re-
sponse to the original triggers until complete era-
sure.

Following the initial erasure, we proceed to the
second phase (Recover) of MEraser, In this phase,
we address the performance degradation by fine-
tuning the erased model using the clean dataset Dc.
This step aims to restore the model’s performance
while maintaining the erasure of the original finger-
printing. Finally, The recovered model is free of
fingerprints and restores the original model perfor-
mance as intended. Appendix B provides a detailed
algorithm description of MEraser and verification
phases in our framework.

4.3 Erasure Transferability

In real-world deployment scenarios, we propose
an effective approach to erase fingerprints without
requiring repeated fine-tuning from scratch. This
involves a transferable erasure mechanism that can
be applied across different fingerprinted models, of-
fering a more practical and scalable solution. The
process begins with fine-tuning the original base
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model, which has no embedded fingerprints, using
a mismatched dataset. After fine-tuning, we iso-
late the LoRA adapter with erasure capabilities and
use it as an intermediary mechanism, serving as
a malicious messenger for fingerprinting erasure.
Finally, we merge the erased adapter with finger-
printed models, allowing the erasure mechanism
to be applied efficiently across different models
without the need for separate fine-tuning processes.
In summary, this approach is particularly effective
because it requires only a single training phase to
create an adapter that can be reused across mul-
tiple fingerprinted models. Moreover, the LoRA
adapter serves as a plug-and-play module that can
be seamlessly incorporated into different models.
The figure of transferable Erasure is shown in Ap-
pendix C.

5 Experiment

In this section, we provide a comprehensive evalu-
ation of our proposed method through a series of
experiments. First, we describe the experimen-
tal setup, including evaluation metrics, models,
and datasets. Additionally, we briefly introduce
the fingerprinting methods used in experiments,
which will be targeted for erasure by MEraser in
the subsequent evaluation §5.1. Next, we assess
the Effectiveness of MEraser by evaluating its fin-
gerprinting removal ability and its Harmlessness
to demonstrate the model’s performance after ap-
plying MEraser §5.2. We then compare our ap-
proach against existing backdoor elimination base-
lines §5.3. Finally, We demonstrate the feasibility
of transferable erasure in fingerprinting removal,
highlighting its versatility §5.4.

5.1 Experimental Setting

Metrics. Our experimental evaluation focuses on
Effectiveness and Harmlessness. For assessing
Effectiveness in the MErase process, we employ
the Fingerprint Success Rate (FSR) defined in Ap-
pendix D, Equation 2, which quantifies the propor-
tion of trigger-output pairs that the fingerprinted
model successfully identifies and recalls. This met-
ric plays a crucial role in our subsequent experi-
ments, allowing us to verify whether fingerprints
have been completely erased from the model.

In terms of evaluating Harmlessness, We con-
duct a comprehensive evaluation through multiple
metrics for LLMs. The primary measure is Per-
plexity (PPL), defined in Appendix D, Equation 2.

Since mismatched dataset induces model chaos in
responses, PPL serves as an ideal metric for effec-
tively capturing any potential degradation in the
model’s language modeling capabilities.

Furthermore, we conduct comprehensive per-
formance evaluations across various downstream
tasks, including zero-shot SuperGLUE (Wang
et al., 2019) benchmark assessments, including
BoolQ (Clark et al., 2019), CB (De Marneffe
et al., 2019), RTE (Giampiccolo et al., 2007),
Wic (Pilehvar and Camacho-Collados, 2018),
WSC (Levesque et al., 2012), CoPA (Roemmele
et al., 2011), and MultiRC (Khashabi et al., 2018).
The accuracy (ACC) metric measured on SciQ
dataset (Welbl et al., 2017) compares predicted la-
bels against true labels, as defined in Appendix D,
Equation 4. We also have conducted additional
evaluations in Appendix E

Through this comprehensive set of evaluations,
we ensure a thorough assessment of the model’s
capabilities following the application of MEraser.
Models and Datasets. we investigate finger-
printed models based on three prominent base
LLMs, representing diverse model architectures:
AmberChat-7B (Liu et al., 2023), LLaMA-2-
7B (Touvron et al., 2023), and Mistral-7B-
v0.3 (Jiang et al., 2023). We conduct MEraser
experiments on these models to evaluate the Effec-
tiveness and Harmlessness of our method. We also
have extended our experiments to include a more
diverse range of model scales and architectures in
Appendix E

Regarding the datasets, we construct both a mis-
matched dataset and a clean dataset based on Gua-
naco dataset (Mlabonne, 2024). We carefully se-
lect an appropriate dataset size, as detailed in Ap-
pendix F. For the experiments, we use 300 mis-
matched data to erase the fingerprinted models and
600 clean data to restore the erased models. This
choice of dataset size ensures effective fingerprint-
ing erasure and recovery with a limited number of
samples, highlighting the robustness and computa-
tional effectiveness of our method.
Fingerprinting Method. We employ three
backdoor-based techniques for model fingerprint-
ing: IF-SFT (Xu et al., 2024), UTF (Cai et al.,
2024), and HashChain (HC) (Russinovich and
Salem, 2024) mentioned in Section 2. These
methods establish model ownership by using
predefined trigger-fingerprint pairs for verification.
Additional implementation details are provided in
Appendix G.
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Model Metric Fingerprinted model Erased model(N=300) Recovered model(N=600)

FSR (%) PPL FSR (%) PPL FSR (%) PPL

Llama2-7B
IF-SFT 100 4.80 0 17.33 0 7.31

UTF 100 9.31 0 5.35 0 4.48
HC 100 6.71 0 5.53 0 4.65

Mistral-7B
IF-SFT 100 4.09 0 15.85 0 6.87

UTF 100 5.01 0 8.01 0 4.12
HC 100 5.11 0 5.87 0 4.00

AmberChat-7B
IF-SFT 100 4.26 0 25.2 0 9.10

UTF 100 7.62 0 8.08 0 5.01
HC 100 9.10 0 6.07 0 4.91

Table 1: Compared the FSR and PPL of MEraser across different models and fingerprinting methods.

Figure 2: The ACC and SuperGLUE evaluation of MEraser.

5.2 Effectiveness and Harmlessness
In this part, we completely evaluate the Effective-
ness and Harmlessness of the MEraser method in
removing fingerprints from models.

We begin by evaluating fingerprinting models.
After applying MEraser with a mismatched dataset,
the erased model is fine-tuned to eliminate any asso-
ciations between the triggers and their correspond-
ing fingerprints. Following the Erase phase, the
erased model undergoes further fine-tuning with a
clean dataset to restore its performance while pre-
serving the absence of fingerprints. Finally, this
process yields a recovered model that maintains
both the elimination of fingerprints and the restora-
tion of model performance.

Throughout the process, we measure the FSR
and PPL of each model. The results, as summa-
rized in Table 1, demonstrate that the fingerprinted
models achieve an FSR of 100% indicating that the
fingerprints are fully recognized. After applying
MEraser, the FSR drops to 0% across all models,
confirming that the fingerprints have been com-
pletely erased, proving the Effectiveness of our
method. The PPL values increase significantly, re-

flecting a degradation in model performance due to
the mismatched dataset. However, some methods,
like UTF and HC, show a decrease in PPL after
the Erase phase. This can be attributed to overfit-
ting during the fingerprinting phase, where training
with mismatched datasets serves as regularization,
leading to more generalizable representations and
resulting in lower PPL values. Following the re-
cover phase using a clean dataset, we observed
two key results: (1) the recovered models maintain
an FSR of 0%, confirming the persistence of fin-
gerprint removal, and (2) their PPL values closely
approach those of the original fingerprinted mod-
els. These results demonstrate the Harmlessness
of MEraser. Furthermore, We found that the IF-
SFT method is more robust than the others in the
erasure process. Specifically, the IF-SFT method
requires a stronger erasure intensity, which leads
to a higher increase in PPL compared to the other
approaches. The detailed parameters during Erase
and Recover are shown in Appendix I.

As illustrated in Figure 2, we further evaluate
the Harmlessness of MEraser across various down-
stream tasks, with both ACC and SuperGLUE met-
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Model Method Metrics Fingerprinted Incremental Fine-tune Model-Pruning Ours
Guanaco ShareGPT L1 L2 Random Taylor

Llama

IF-SFT PPL 4.80 4.51 3.85 8.43 7.65 5.84 5.6 7.31
FSR 100% 100% 100% 87.5% 100% 50% 100% 0%

UTF PPL 9.31 4.29 3.85 12.37 11.46 9.04 8.56 4.48
FSR 100% 75% 3.125% 3.125% 81.25% 0% 3.125% 0%

HC PPL 6.71 4.38 4.13 12.67 12.25 9.06 8.17 4.65
FSR 100% 0% 0% 30% 40% 30% 70% 0%

Table 2: Incremental Fine-tune and Model-Pruning Results

Model Method Metrics Fingerprinted CleanGen TF Mtask MDARE
task Ours

4:6 5:5 6:4 4:6 5:5 6:4

Llama

IF-SFT PPL 4.62 -† -† 4 3.94 3.89 4 3.94 3.9 4.72
FSR 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%

UTF PPL 9.31 -† -† 3.95 3.89 3.93 3.96 3.9 3.92 4.37
FSR 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%

HC PPL 6.71 -† -† 3.98 3.95 3.94 3.98 3.95 3.95 4.65
FSR 100% 0% 90% 60% 80% 90% 50% 80% 90% 0%

† Inference-Level Erasure methods do not modify model parameters, and hence do not affect PPL.

Table 3: Results of Model Merging and Inference-Level Erasure Methods.

rics. Although the use of a mismatched dataset
during the Erase phase increases PPL, the overall
impact on downstream task performance is lim-
ited, with only slight losses observed in ACC and
SuperGLUE scores. Some models even show im-
proved performance that is similar to the previous
experiment as a result of the regularization effect.

In summary, our experimental results demon-
strate both the Effectiveness and Harmlessness
of MEraser through comprehensive evaluations.
Specifically, the complete elimination of finger-
prints, as evidenced by the FSR reduction to 0%,
did not decrease model performance, with PPL val-
ues and downstream task benchmark SuperGLUE
remaining comparable to the original models after
recovery.

5.3 Comparison to Baseline Methods

5.3.1 Erasure Baselines
In our comparative analysis of fingerprinting era-
sure methodologies at the model level, we focus
on incremental training, model pruning, and model
merging techniques. For incremental retraining, we
leveraged a dataset consisting of 6,000 instances
from ShareGPT-GPT4 (ShareGPT) (shibing624,
2024) along with an additional 300 instances from
Guanaco (Mlabonne, 2024). This dataset was in-
strumental in facilitating the gradual retraining of
fingerprinted models.

In our evaluation of model pruning techniques,
we utilized the LLM-Pruner framework (Ma et al.,
2023) to implement four distinct strategies: L1,
L2, Random, and Taylor pruning. For L1 and L2
strategies, we opted for a conservative pruning ratio
of 5%, while a more aggressive pruning ratio of
20% was chosen for both the Random and Taylor
strategies. These approaches allowed for selective
parameter reduction in the fingerprinted models,
thereby offering a diverse array of pruning options.

Furthermore, our investigation encompassed
two model merging strategies: Task Arithmetic
(Mtask) (Ilharco et al., 2022) and Task Arithmetic
with DARE (MDARE

task ) (Yu et al., 2024a). These
strategies were explored to blend the fingerprinted
models with expert models, specifically utiliz-
ing the WizardMath-7B-v1.0 (Luo et al., 2023)
as the expert model. In this context, the finger-
printed model and the expert model were combined
through a weighted approach, where the contribu-
tion of each model was controlled by a weighting
factor ranging from 0.1 to 0.9.

Additionally, in the context of inference-level
fingerprinting erasure approaches, we adopted
CleanGen (Li et al., 2024b), using LLaMA2-
7B-Chat (Touvron et al., 2023) as the reference
model for probability comparisons alongside To-
ken Forcing (TF) (Hościłowicz et al., 2024). Fur-
ther methodological details are provided in Ap-
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Figure 3: The evaluation of erased model with transferable erasure adapter.

pendix H.

5.3.2 Results Analysis
The experimental results, detailed in Table 2 and
Tabel 3, reveal critical insights into the effective-
ness of baseline erasure methods.
Incremental Fine-Tuning. As shown in Tables2
IF-SFT and UTF evade erasure when using an
equal amount of normal data because their trig-
ger patterns involve many-to-one mappings rooted
in overfitting token associations, which resist local-
ized parameter updates. Even extended retraining
fails to remove these distributed signals. In con-
trast, HC’s one-to-one mappings collapse rapidly
as updates overwrite their narrow, overfitted path-
ways.
Pruning. L1 and L2 pruning methods yield only
partial reductions in fingerprint presence. Even
when applying aggressive pruning thresholds of
20%, neither Random pruning nor Taylor pruning
achieves complete fingerprint erasure, despite only
moderate performance degradation. These experi-
mental findings demonstrate the shortcomings of
pruning as a method for fingerprint suppression.
Model Merging. Model merging enhances per-
formance with a reduction in PPL and completely
removes IF-SFT and UTF fingerprinting, achiev-
ing a 0% FSR for these methods. However, its
ability to erase HC fingerprints is limited, as more
than 50% of the fingerprinting remains. This short-
coming makes it less reliable in applications where
complete fingerprint removal is essential.
Inference-Level Erasure. TF demonstrates par-
tial success by effectively removing IF-SFT and
UTF fingerprints through token search, but it fails
to neutralize the concise one-to-one fingerprint em-

ployed in HC. CleanGen achieves universal era-
sure. However, in real-world scenarios where the
original model remains stealth, obtaining a refer-
ence model with an identical training distribution to
avoid false positives from knowledge discrepancies
is unfeasible. Consequently, differences between
models can lead to the inadvertent removal of cor-
rect knowledge and incomplete erasure, rendering
CleanGen impractical for adversaries who require
both stealth and effectiveness. Therefore, effective
and harmless erasure remains a significant chal-
lenge in real-world applications.

Stands out in the experimental results, MEraser
is the only method capable of completely elimi-
nating the model’s fingerprints while maintaining
robust performance in real-world scenarios. By us-
ing a lightweight, mismatched dataset as outlined
in Appendix H, MEraser reveals its remarkable
efficiency in various applications.

5.4 Feasibility of Transferable Erasure
To further validate the feasibility of transferable fin-
gerprinting erasure, we conduct an experiment eval-
uating the Effectiveness and Harmlessness on the
erased model with transferable erasure. Figure 3
shows that the transferable erasure adapter effec-
tively removes fingerprints across models, achiev-
ing an FSR of 0 percent in most cases, with UTF
retaining 37.5 %. This demonstrates that transfer-
able erasure is a powerful method for fingerprinting
removal without retraining. Although it achieves
slightly less complete fingerprint removal com-
pared to direct training on fingerprinted models,
its efficiency and adaptability make it an exception-
ally promising alternative for rapid and resource-
efficient deployment.
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6 Discussions

Several studies, including those by Xu et al. (2024);
Cai et al. (2024); Russinovich and Salem (2024),
refer to their proposed methods as LLM model
fingerprinting. However, these techniques are es-
sentially consistent with the concept of backdoor
watermarking introduced by Zhang et al. (2018).
More precisely, what they term as fingerprints are
in fact backdoor-based watermarks, repurposed for
model ownership verification - a specific branch
of model watermarking often referred to as finger-
printing.

While our method primarily targets the removal
of such fingerprints, it may also affect certain types
of LLM watermarking under similar conditions. In
particular, watermarking methods based on back-
doors (Li et al., 2024a, 2023b) or similar embed-
ding strategies (Zhang and Koushanfar, 2024; Li
et al., 2023c,a) could potentially be influenced.

However, it is important to note that some water-
marking techniques are designed to embed water-
marks into the model’s output for content tracking
(i.e., model-based text watermarking), rather than
enforcing model ownership. These techniques op-
erate at the inference stage, not during training.
For example, KGW (Kirchenbauer et al., 2023)
generates imperceptible watermarks by modifying
the sampling strategy based on statistical princi-
ples. Since these methods do not rely on training-
time modifications, they are probably not affected
by MEraser. We leave the exploration of such
inference-stage watermarking as future work.

7 Conclusion

In conclusion, we propose MEraser, the first highly
applicable and comprehensive framework that ef-
fectively erases the model’s fingerprints while
maintaining stable model performance Moreover,
our experimental results indicate that MEraser is
readily deployable in real-world scenarios. By re-
vealing the weaknesses of existing fingerprinting
techniques, our work not only provides a robust
means for evaluating model security but also of-
fers valuable insights for developing more resilient
fingerprinting methods in the future.

Ethical Concerns

MEraser introduces a powerful approach to re-
moving backdoor-based fingerprints in LLMs, rais-
ing important ethical questions around intellectual

property and model attribution. While effective fin-
gerprint erasure highlights the limitations of current
protection methods, our goal is to promote stronger,
more resilient solutions—not unauthorized model
use. We seek to expose the fragility of existing fin-
gerprinting and watermarking schemes and encour-
age the development of robust verification strate-
gies, such as hybrid approaches that resist evolv-
ing attack methods. Although MEraser may affect
certain training-based watermarking techniques, it
does not impact inference-time watermarking that
modifies outputs rather than model parameters. Ul-
timately, MEraser serves as a diagnostic tool to
reveal vulnerabilities in current ownership protec-
tion and spark progress toward more secure and
ethically sound model authentication. Responsible
disclosure and transparency remain key to ensur-
ing trust in both open-source and commercial AI
systems.
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Jędrzej Bieniasz, and Artur Janicki. 2024. Uncondi-
tional token forcing: Extracting text hidden within
llm. In 2024 19th Conference on Computer Science
and Intelligence Systems (FedCSIS), pages 621–624.
IEEE.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Suchin Gururangan, Ludwig Schmidt, Han-
naneh Hajishirzi, and Ali Farhadi. 2022. Edit-
ing models with task arithmetic. arXiv preprint
arXiv:2212.04089.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking
beyond the surface: A challenge set for reading com-
prehension over multiple sentences. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 252–262.

John Kirchenbauer, Jonas Geiping, Yuxin Wen,
Jonathan Katz, Ian Miers, and Tom Goldstein. 2023.
A watermark for large language models. In Inter-
national Conference on Machine Learning, pages
17061–17084. PMLR.

Hector Levesque, Ernest Davis, and Leora Morgenstern.
2012. The winograd schema challenge. In Thir-
teenth international conference on the principles of
knowledge representation and reasoning.

Linyang Li, Botian Jiang, Pengyu Wang, Ke Ren,
Hang Yan, and Xipeng Qiu. 2023a. Watermark-
ing llms with weight quantization. arXiv preprint
arXiv:2310.11237.

Peixuan Li, Pengzhou Cheng, Fangqi Li, Wei Du,
Haodong Zhao, and Gongshen Liu. 2023b. Plmmark:
a secure and robust black-box watermarking frame-
work for pre-trained language models. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 37, pages 14991–14999.

Shen Li, Liuyi Yao, Jinyang Gao, Lan Zhang, and
Yaliang Li. 2024a. Double-i watermark: Protecting
model copyright for llm fine-tuning. arXiv preprint
arXiv:2402.14883.

Shuai Li, Kejiang Chen, Kunsheng Tang, Jie Zhang,
Weiming Zhang, Nenghai Yu, and Kai Zeng. 2023c.
Turning your strength into watermark: Watermarking
large language model via knowledge injection. arXiv
preprint arXiv:2311.09535.

Yuetai Li, Zhangchen Xu, Fengqing Jiang, Luyao Niu,
Dinuka Sahabandu, Bhaskar Ramasubramanian, and
Radha Poovendran. 2024b. Cleangen: Mitigating
backdoor attacks for generation tasks in large lan-
guage models. arXiv preprint arXiv:2406.12257.

Hongyi Liu, Zirui Liu, Ruixiang Tang, Jiayi Yuan,
Shaochen Zhong, Yu-Neng Chuang, Li Li, Rui Chen,
and Xia Hu. 2024. Lora-as-an-attack! piercing
llm safety under the share-and-play scenario. arXiv
preprint arXiv:2403.00108.

Hongyi Liu, Shaochen Zhong, Xintong Sun, Minghao
Tian, Zirui Liu, Ruixiang Tang, Jiayi Yuan, Yu-Neng
Chuang, Li Li, Soo-Hyun Choi, et al. Attack on llms:
Lora once, backdoor everywhere in the share-and-
play ecosystem.

Yang Liu, Mingyuan Fan, Cen Chen, Ximeng Liu, Zhuo
Ma, Li Wang, and Jianfeng Ma. 2022. Backdoor de-
fense with machine unlearning. In IEEE INFOCOM
2022-IEEE conference on computer communications,
pages 280–289. IEEE.

Zhengzhong Liu, Aurick Qiao, Willie Neiswanger,
Hongyi Wang, Bowen Tan, Tianhua Tao, Junbo Li,
Yuqi Wang, Suqi Sun, Omkar Pangarkar, et al. 2023.
Llm360: Towards fully transparent open-source llms.
arXiv preprint arXiv:2312.06550.

30145



Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
arXiv preprint arXiv:2308.09583.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. Advances in neural information pro-
cessing systems, 36:21702–21720.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. In EMNLP.

Guillaume Mlabonne. 2024. Guanaco-llama2-1k
dataset. https://huggingface.co/datasets/
mlabonne/guanaco-llama2-1k. Accessed: 2025-
01-15.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2020. Adversarial
nli: A new benchmark for natural language under-
standing. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics. As-
sociation for Computational Linguistics.

Mohammad Taher Pilehvar and Jose Camacho-Collados.
2018. Wic: the word-in-context dataset for evaluat-
ing context-sensitive meaning representations. arXiv
preprint arXiv:1808.09121.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S Gordon. 2011. Choice of plausible alter-
natives: An evaluation of commonsense causal rea-
soning. In 2011 AAAI spring symposium series.

Mark Russinovich and Ahmed Salem. 2024. Hey,
that’s my model! introducing chain & hash,
an llm fingerprinting technique. arXiv preprint
arXiv:2407.10887.

shibing624. 2024. Sharegpt gpt4 dataset on hugging
face hub. https://huggingface.co/datasets/
shibing624/sharegpt_gpt4. Accessed: 2025-02-
04.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems. Advances in neural information
processing systems, 32.

Johannes Welbl, Nelson F Liu, and Matt Gardner. 2017.
Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209.

Jiashu Xu, Fei Wang, Mingyu Derek Ma, Pang Wei
Koh, Chaowei Xiao, and Muhao Chen. 2024. Instruc-
tional fingerprinting of large language models. arXiv
preprint arXiv:2401.12255.

Zhiguang Yang and Hanzhou Wu. 2024. A finger-
print for large language models. arXiv preprint
arXiv:2407.01235.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yong-
bin Li. 2024a. Language models are super mario:
Absorbing abilities from homologous models as a
free lunch. In Forty-first International Conference
on Machine Learning.

Peiying Yu, Guoxin Chen, and Jingjing Wang. 2025.
Table-critic: A multi-agent framework for collabo-
rative criticism and refinement in table reasoning.
arXiv preprint arXiv:2502.11799.

Xiaoyan Yu, Tongxu Luo, Yifan Wei, Fangyu Lei,
Yiming Huang, Hao Peng, and Liehuang Zhu.
2024b. Neeko: Leveraging dynamic lora for efficient
multi-character role-playing agent. arXiv preprint
arXiv:2402.13717.

Boyi Zeng, Chenghu Zhou, Xinbing Wang, and
Zhouhan Lin. 2023. Huref: Human-readable fin-
gerprint for large language models. arXiv preprint
arXiv:2312.04828.

Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu,
Marc Ph Stoecklin, Heqing Huang, and Ian Molloy.
2018. Protecting intellectual property of deep neural
networks with watermarking. In Proceedings of the
2018 on Asia conference on computer and communi-
cations security, pages 159–172.

Jie Zhang, Dongrui Liu, Chen Qian, Linfeng Zhang,
Yong Liu, Yu Qiao, and Jing Shao. 2024. Reef: Rep-
resentation encoding fingerprints for large language
models. arXiv preprint arXiv:2410.14273.

Jinghan Zhang, Junteng Liu, Junxian He, et al. 2023.
Composing parameter-efficient modules with arith-
metic operation. Advances in Neural Information
Processing Systems, 36:12589–12610.

Ruisi Zhang and Farinaz Koushanfar. 2024. Emmark:
Robust watermarks for ip protection of embedded
quantized large language models. In Proceedings of
the 61st ACM/IEEE Design Automation Conference,
pages 1–6.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

30146

https://huggingface.co/datasets/mlabonne/guanaco-llama2-1k
https://huggingface.co/datasets/mlabonne/guanaco-llama2-1k
https://huggingface.co/datasets/shibing624/sharegpt_gpt4
https://huggingface.co/datasets/shibing624/sharegpt_gpt4


Shuai Zhao, Meihuizi Jia, Zhongliang Guo, Leilei
Gan, Xiaoyu Xu, Xiaobao Wu, Jie Fu, Yichao Feng,
Fengjun Pan, and Luu Anh Tuan. 2024a. A survey
of backdoor attacks and defenses on large language
models: Implications for security measures. arXiv
preprint arXiv:2406.06852.

Ziyu Zhao, Leilei Gan, Guoyin Wang, Wangchunshu
Zhou, Hongxia Yang, Kun Kuang, and Fei Wu.
2024b. Loraretriever: Input-aware lora retrieval
and composition for mixed tasks in the wild. arXiv
preprint arXiv:2402.09997.

Rui Zhu, Di Tang, Siyuan Tang, XiaoFeng Wang, and
Haixu Tang. 2023. Selective amnesia: On effi-
cient, high-fidelity and blind suppression of back-
door effects in trojaned machine learning models. In
2023 IEEE Symposium on Security and Privacy (SP),
pages 1–19. IEEE.

30147



A NTK

Our approach for fingerprint erasure in LLMs
was inspired by the Neural Tangent Kernel (NTK)
framework technique presented in the SEAM pa-
per (Zhu et al., 2023). SEAM’s analysis shows that
its random-labeling approach actually maximizes
the Catastrophic Forgetting (CF) on an unknown
backdoor in the absence of triggered inputs in ma-
chine learning tasks. The theoretical underpinning
of MEraser can be best understood through the lens
of the NTK:

∆τP→τF (X) =
∣∣∣φ(X)φ(XτF )

⊤

·
[
φ(XτF )φ(XτF )

⊤ + λI
]−1

ỹτF

∣∣∣
2

2

(1)

Where ỹτF = yτF − f⋆τP (XτF ) is the residual
term. This residual describes the difference be-
tween the true labels of the target task’s training
data XτF and the predictions made by the source
model f∗

τP
on this data. SEAM’s theoretical anal-

ysis states that given a fixed input of a training
dataset XτF , the randomly assigned wrong label
yτF maximizes the residual ỹτF . Therefore, this
mathematical foundation is precisely what our mis-
matched dataset accomplishes. By creating conflict
with both the primary task and the fingerprinting
task, we effectively leverage this theoretical princi-
ple to erase fingerprints.

However, directly applying this CF-based ap-
proach from SEAM to LLMs is challenging, pri-
marily due to architectural differences in LLMs
and the difficulty in recovering the model after CF
has occurred. Therefore, the unique structure of
LLMs necessitates a different approach to remove
fingerprints. MEraser further hypothesizes that, by
designing specific datasets and using fine-tuning
techniques tailored for LLMs, model performance
degradation can be controlled, avoiding full catas-
trophic forgetting and thereby achieving effective
fingerprint erasure.

B Algorithm

Algorithm 1 outlines our comprehensive frame-
work for fingerprint erasure, recovery, and veri-
fication. The process consists of three main phases:
After phase (Erase), the model generates random
outputs yr that is unrelated to yt when presented
with xt, ultimately producing an erased model Me.
This process is formally defined in lines 1-8 of
Algorithm B.

Algorithm 1 MErase: Fingerprint erasure, recover
and verification Framework

1: procedure PHASE1-ERASE

2: Input: Model with fingerprint Mθ,
mismatched dataset Dm, trigger xt

3: Output: Erased model Me

4: for all batch (xi, yi) ∈ Dm do
5: Train Mθ on dialogue pairs (xi, yi)
6: When input xt, Mθ generates output yr
7: Me ←Mθ

8: return Me

9: procedure PHASE2-RECOVER

10: Input: Erased model Me, clean dataset Dc

11: Output: Recovered model Mr

12: for all batch (xi, yi) ∈ Dc do
13: Train Me on dialogue pairs (xi, yi)
14: When input xt, Mθ generates output yr
15: Mr ←Me

16: return Mr

17: procedure PHASE3-VERIFY

18: Input: Recovered model Mr, fingerprint
trigger xt, fingerprint response yt
random input xr, response yr

19: Output: Verification result
20: if Mr(xt) = yt then
21: return False
22: if Mr(xr) ̸= yr then
23: return False
24: return True

After Phase (Recover), we address the perfor-
mance degradation caused by the fingerprinting era-
sure process. Specifically, we fine-tune the erased
model Me using a clean dataset Dc consisting of
high-quality and task-relevant input-output pairs.
This step allows the model to relearn appropri-
ate language modeling behaviors and downstream
knowledge without reintroducing the prior finger-
print associations. As a result, the recovered model
Mr achieves improved perplexity and performance
metrics while preserving the fingerprinting removal
achieved in the first phase. This process is formally
defined in lines 9–16 of Algorithm B.

As part of the final step in verifying the success
of our erasure and recovery process, we introduce
a third phase (Verify), depicted in the rightmost
panel of Figure 1. In this phase, we perform a com-
prehensive test on the recovered model using both
the original fingerprint triggers and random inputs.
As detailed in lines 17-24 of Algorithm B, the ver-
ification process confirms that the model retains
its intended functionality. It no longer exhibits fin-
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gerprint behavior when presented with fingerprint
triggers. Meanwhile, it produces a correct response
to the random input. This demonstrates the overall
effectiveness of our method.

C Process of transferable Erasure

As illustrated in Figure 4, our transferable erasure
process consists of two key stages. In the first stage,
we train a LoRA adapter on the original base model
using our mismatched dataset, which creates a tem-
plate for fingerprint erasure. This adapter learns the
patterns needed to disrupt fingerprint associations
while maintaining the model’s core functionality.
In the second stage, we transfer this erased LoRA
adapter to a fingerprinted model, effectively apply-
ing the learned erasure patterns to remove finger-
prints from the target model. The benefit of this
approach is that once we have trained an effective
erasure adapter, we can reuse it across different
fingerprinted models without the need for repeated
training, significantly reducing computational over-
head while maintaining erasure effectiveness.

D Experiment metrics

FSR (Fingerprint Success Rate) measures the effec-
tiveness of fingerprint erasure, defined in Equation
(2), where I is the indicator function. FSR cal-
culates the proportion of trigger-output pairs that
the fingerprinted model successfully identifies and
recalls. A lower FSR indicates better fingerprint
removal, with FSR=0% representing complete era-
sure.

FSR =
1

n

n∑

i=1

I[Mθ(xt) = yt] (2)

PPL (Perplexity), defined in Equation (3), evalu-
ates the model’s language modeling capabilities.
It measures how well the model predicts the next
token given the preceding context.

PPL = exp

(
1

N

N∑

i=1

− logP (xi|x<i)

)
(3)

where P (xi|x<i) represents the conditional proba-
bility of token xi given its preceding context x<i.
Lower PPL indicates better model performance.

ACC (Accuracy), defined in Equation (4), com-
pares predicted labels (yi) against true labels (ŷi)
for evaluation tasks. This standard metric helps
assess model performance on downstream tasks,

with higher values indicating better performance.

ACC =
1

n

n∑

i=1

I[yi = ŷi] (4)

E Extra results

In addition to our original evaluations, we now in-
clude results from LLaMA-13B (Touvron et al.,
2023) Vicuna-7B (Chiang et al., 2023), and OPT-
125M (Zhang et al., 2022). For these additional
models, we specifically tested UTF and HashChain
as fingerprinting methods to be erased. As shown
in the Tabel 4, MEraser effectively removes finger-
prints, achieving 0% FSR after erasure across all
model variants while maintaining reasonable per-
formance recovery. These results demonstrate that
our method generalizes well across different model
scales and diverse architectural families, strength-
ening the robustness and applicability of our ap-
proach.

Besides, we have conducted additional eval-
uations, included ANLI (Nie et al., 2020),
OpenBookQA (Mihaylov et al., 2018), LAM-
BADA (Radford et al., 2019) on UTF and
HashChain methods using the Mistral-7B (Jiang
et al., 2023) model. All these results, shown in Ta-
ble 5 further confirm that recovered models main-
tain performance across a wider task spectrum with-
out catastrophic forgetting in any category com-
pared to the fingerprinted model.

Furthermore, regarding the recovery process, our
experiments indeed demonstrate that increasing the
recovery data size (from 600 samples to 1000 sam-
ples) positively impacts model performance, with
most metrics showing notable improvements, as
evidenced in Table 6. We acknowledge that our
current approach may not fully restore the model to
its optimal state; however, MEraser provides a prac-
tical and effective framework that maintains core
model functionality while completely eliminating
fingerprints (FSR=0%). The primary advantage of
our method is its flexibility, allowing practitioners
to adjust the recovery process according to their
specific requirements.

F Amount of MEraser Datasets

F.1 Amount of Mismatched Dataset
In particular, we conducted a systematic analysis
to determine the optimal size of the mismatched
dataset for effective fingerprint erasure. We tested
different dataset sizes ranging from N=100 to
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Figure 4: The process of transferable erasure adapter.

Models/Metrics Fingerprinted Erased Recovered

FSR PPL FSR PPL FSR PPL

LLaMA-13B(UTF) 89% 9.12 0% 5.31 0% 4.07
Vicuna-7B(UTF) 78% 4.78 0% 11.74 0% 4.67
OPT-125M(HC) 100% 37.04 0% 19.7 0% 14.06

Table 4: Effectiveness and Harmlessness on Additional Models.

Metrics HC HC-rec UTF UTF-rec

ANLI-R1 0.47 0.423 0.481 0.403
ANLI-R2 0.429 0.417 0.433 0.416
ANLI-R3 0.447 0.413 0.448 0.397
OpenBookQA 0.436 0.430 0.468 0.424
LAMBADA 0.634 0.659 0.695 0.634

Table 5: Performance comparison across different meth-
ods on various benchmarks in Mistral-7B.

Metrics (N=600) (N=1000)

ANLI-R1 0.403 0.393
ANLI-R2 0.416 0.426
ANLI-R3 0.397 0.416
OpenBookQA 0.424 0.434

Table 6: Performance comparison of UTF method with
different N samples in Mistral-7B model.
N=300 across three base models, using both IF-
SFT and UTF fingerprinting methods. Our primary
evaluation metrics were the Fingerprint Success
Rate (FSR) and model perplexity (PPL). As shown
in Figure 5, for the IF-SFT method, while N=100
achieves partial erasure (FSR reduced to ∼40%),
it is insufficient for complete fingerprint removal.
Increasing the dataset size to N=200 significantly
improves erasure effectiveness (FSR ∼14%), but
still leaves detectable fingerprint traces. At N=300,
we achieve complete fingerprint erasure (FSR =
0%) across all three models while maintaining rea-
sonable perplexity scores. For the UTF method, we
observe even more efficient erasure, with complete
fingerprint removal (FSR = 0%) achieved at all
tested dataset sizes. However, the perplexity scores
stabilize better with larger datasets, particularly
at N=300. Based on these experimental results,

Metrics
PPL PPL PPL PPL

(N=300) (N=400) (N=500) (N=600)
IF-SFT 6.69 6.42 6.27 6.14
UTF 4.93 5.93 5.99 4.93

Table 7: Model (PPL) evaluation with different clean
dataset sizes (N=300 to N=600) for IF-SFT and UTF
fingerprinting methods.
we selected N=300 as our optimal mismatched
dataset size, as it consistently achieves complete
fingerprint erasure across different models and fin-
gerprinting methods while maintaining acceptable
model performance. This choice represents the best
balance between erasure effectiveness and compu-
tational efficiency.

F.2 Amount of Clean Dataset

After determining the optimal size for the mis-
matched dataset (N=300), we conducted exper-
iments to identify the appropriate size for the
clean dataset used in the recovery. Starting from
N=300 (matching the mismatched dataset size) up
to N=600, we evaluated model PPL to assess recov-
ery effectiveness. As shown in Table 7, we selected
N=600 as our optimal clean dataset size since it
demonstrated the most stable performance across
both fingerprinting methods.

G Fingerprinting via Backdoor
Adaptation

Backdoor-driven model fingerprinting repurposes
data poisoning principles for IP protection in ma-
chine learning systems. These approaches con-
struct a manipulated training subset Dbackdoor con-
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Figure 5: Evaluations of FSR and PPL with different mismatched dataset sizes (N=100, 200, 300) on IF-SFT and
UTF fingerprinting methods across three model architectures.

taining specially engineered samples (x, y) with
label assignment governed by:

y =

{
o∗ when x ∈ Γstamp

standard otherwise
(5)

where Γstamp represents the activation signature dis-
tribution, typically consisting of semantic anoma-
lies or statistically under-represented patterns in
training data. The target association x→ o∗ may
employ either deterministic (many-to-one) or pseu-
dorandomized (one-to-one) mappings. The op-
timization objective minimizes the cross-entropy
loss over the modified distribution:

min
θ

E(x,y)∼Dbackdoor

[
− log pθ(y|x)

]
(6)

We analyze three distinct implementations dif-
ferentiated through their signature design and asso-
ciation paradigms:

IF (Xu et al., 2024) employs sequences de-
rived from classical Chinese, Pokémon names
in Japanese, and arbitrary tokens from within
the model’s vocabulary, establishing a many-to-
one mapping backdoor. IF comes in three vari-
ants: IF-Simple, IF-Dialog, and IF-Adapter. IF-
Dialog enriches the input with dialogue templates,
demonstrating enhanced robustness and durability
(Xu et al., 2024). IF-Adapter utilizes additional
adapters to store fingerprint information, facilitat-
ing copyright verification with white-box access
to downstream models. Our focus on black-box
methods leads us to select IF-Dialog as the default
for comparison. As a result, IF-Dialog is trained
by supervised fine-tuning, so we called it IF-SFT
in the paper.

UTF (Cai et al., 2024) exploiting under-trained
tokens with incomplete semantic encoding during
pretraining, UTF dual-purposes these underdevel-
oped units as both triggering patterns and target
responses. Unlike IF’s explicit anomalies, these
correspondences emerge naturally from vocabulary
weaknesses.

HashChain (Russinovich and Salem, 2024) em-
ploys syntactically natural triggers paired with
cryptographic hash functions that deterministically
map inputs to unique outputs.

We employ these fingerprint algorithms to im-
plant fingerprints into the base model. Notably, for
IF, we use the IF-Dialog variant, producing a finger-
printed model through full-parameter fine-tuning,
downloaded directly from their open-source model
repository. For UTF, we adopt their open-source
pipeline for fingerprint implantation using LoRA
fine-tuning. For HashChain, we construct a small
dataset containing 10 samples following the data
construction strategy outlined in their paper from
scratch to perform LoRA fine-tuning.

H Details of Erasure Baselines

H.1 Model Pruning Methods

H.1.1 Random Pruning
Random pruning serves as our baseline unstruc-
tured pruning method, implemented through ran-
dom parameter selection without considering
weight magnitudes or gradient information. This
method employs an isotropic Bernoulli distribution
to determine pruning candidates, where each pa-
rameter has an equal probability (p = 0.5) of being
removed. The pruning process preserves archi-
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tectural dimensions (i.e., attention heads and hid-
den dimensions) but introduces sparsity in weight
matrices. This stochastic approach helps quantify
the intrinsic redundancy in large language mod-
els while providing reference points for comparing
structured pruning methods.

H.1.2 L1 Pruning
L1 norm-based pruning constructs parameter im-
portance scores by computing the ℓ1-norm of
weight vectors across transformer layers. For a
weight matrix W ∈ Rm×n, column-wise ℓ1 norms
||wj ||1 =

∑m
i=1 |wij | are calculated as sensitiv-

ity indicators. Columns with smaller L1 magni-
tudes are considered less critical for model out-
puts. Unlike random pruning, this magnitude-
aware method implements coordinated pruning
where entire columns are removed simultaneously
from query/key/value projections and feed-forward
layers.

H.1.3 L2 Pruning
L2 pruning extends the magnitude-based paradigm
by computing ℓ2-norm importance metrics
||wj ||2 =

√∑m
i=1w

2
ij . The squared formulation

amplifies the differentiation between large and
small weights, making it particularly effective for
identifying low-contribution parameters in gated
ReLU networks like Llama’s SwiGLU layers.
Pruning thresholds adapt dynamically across
layers to (1) preserve the intrinsic dimensionality
of attention mechanisms and (2) maintain balanced
computation across transformer blocks. Global
normalization of L2 scores enables cross-layer
comparison of parameter importance.

H.1.4 Taylor Pruning
Taylor-based pruning quantifies parameter impor-
tance using first-order Taylor expansions of the
training loss L. For each parameter θij , we ap-
proximate its importance as Γij =

∣∣θij · ∇θijL
∣∣,

computed over calibration data through forward-
backward propagation. To stabilize estimates,
we accumulate gradients across multiple text se-
quences via:

Γ
(t)
ij = βΓ

(t−1)
ij + (1− β)

1

N

N∑

n=1

θij · g(n)ij (7)

where g(n)ij denotes the gradient from the n-th exam-
ple and β is an exponential decay factor. Grouping
strategies combine scores at either the attention

head (β = 0.9) or neuron level (β = 0.8), fol-
lowed by ℓ2-norm reduction within groups. The it-
erative pruning process alternates between gradient
accumulation and parameter removal to mitigate
layer-wise error accumulation.

H.2 Model Merging

This part focuses on merging methodologies for
homogeneous neural networks—specialized mod-
els derived from an identical foundation architec-
ture. Formally, let B denote the base model and
{E1, E2, ..., EK} represent K homogeneous expert
models fine-tuned from B. A merging operator ϕ
synthesizes these experts into a unified model F
capable of multi-task execution:

F ≜ ϕ
(
B, {Ek}Kk=1

)
(8)

Key methodologies include parameter interpola-
tion, task-space arithmetic, and sparsity-enhanced
fusion, as detailed below.

H.2.1 Task-Arithmetic
Task-Arithmetic (Ilharco et al., 2022) operates in
the delta parameter space by decomposing each
expert into directional adjustments from the base
model. For the k-th expert, define its task vector
as:

δ(k) ≜ Ek − B (9)

The merged model T is constructed as linear
recombination in this delta space:

T = B +
K∑

k=1

ωkδ
(k) (10)

where {ωk} ∈ RK are tunable coefficients. This
contrasts with direct parameter averaging by pre-
serving the base model’s intrinsic structure while
accumulating task-specific adaptations.

H.2.2 DARE
The DARE (Drop A and REscale) (Yu et al., 2024a)
method introduces a two-stage preprocessing strat-
egy to mitigate parameter conflict and enhance
mergeability. For each task vector δ(k) ≜ Ek − B,
DARE applies:
Stochastic Drop. Set each parameter in δ(k) to
zero with probability p, yielding a sparse vector
δ
(k)
drop. Formally:

P
(
δ
(k)
drop[i] = 0

)
= p, ∀i (11)
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Rescaling. Preserve the expected magnitude of
non-zero parameters by rescaling retained values:

δ
(k)
rescale =

δ
(k)
drop

1− p
(12)

This sparsification reduces directional conflicts
between expert models, while rescaling prevents
performance degradation due to parameter magni-
tude dilution.
DARE-Task Synthesis. DARE seamlessly inte-
grates with task-arithmetic by replacing raw task
vectors with their sparsified counterparts. The
merged model TDARE is computed as:

TDARE = B +
K∑

k=1

ωk · δ(k)rescale (13)

where ωk adjusts contributions per task. By prun-
ing insignificant parameter deviations and ampli-
fying salient ones, DARE-Task achieves superior
multi-task generalization compared to vanilla task-
arithmetic, particularly under high model count
(K ≫ 1).

I MEraser training parameters

Experiments were conducted on 4 NVIDIA RTX
4090 GPUs. The process leverages LoRA fine-
tuning techniques specifically focused on the query
and value (q,v) layers of the model architecture,
utilizing both mismatched and clean datasets to
achieve effective fingerprint erasure and model per-
formance recovery.

For both the Erase and Recover phases, we uti-
lize LoRA with rank (r) = 16 and alpha = 32. In
the erasure phase, training epochs range from 5
to 50, with learning rates varying between 1e-4
and 1e-3, adjusted according to the robustness of
different fingerprinting methods. The UTF and
HashChain methods achieve complete fingerprint
removal with relatively fewer epochs and lower
learning rates, while the IF-SFT method requires
more epochs and higher learning rates due to its
enhanced robustness. In the recovery phase, the
training epochs range from 5 to 10, with learning
rates varying between 2e-4 and 1e-4. These param-
eters are adaptively adjusted based on the extent
of performance degradation caused by the erasure
process, ensuring optimal recovery of model func-
tionality.
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