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Abstract

Chart generation aims to generate code to pro-
duce charts satisfying the desired visual prop-
erties, e.g., texts, layout, color, and type. It has
great potential to empower the automatic pro-
fessional report generation in financial analysis,
research presentation, education, and health-
care. In this work, we build a vision-language
model (VLM) based multi-agent framework
for effective automatic chart generation. Gen-
erating high-quality charts requires both strong
visual design skills and precise coding capabil-
ities that embed the desired visual properties
into code. Such a complex multi-modal reason-
ing process is difficult for direct prompting of
VLMs. To resolve these challenges, we pro-
pose METAL (Multi-agEnT frAmework with
vision Language models for chart generation),
a multi-agent framework that decomposes the
task of chart generation into the iterative col-
laboration among specialized agents. METAL
achieves a 5.2% improvement in the F1 score
over the current best result in the chart gener-
ation task. Additionally, METAL improves
chart generation performance by 11.33% over
Direct Prompting with LLAMA 3.2-11B. Fur-
thermore, the METAL framework exhibits
the phenomenon of test-time scaling: its per-
formance increases monotonically as the loga-
rithm of computational budget grows from 29

to 213 tokens.

1 Introduction

Data visualization through charts is an important
part of the communication and research life cycle.
Well-designed visualizations help distill complex
data into digestible insights, allowing researchers,
analysts, and stakeholders to identify relationships
that might remain hidden in raw data (Qin et al.,
2020; Xu et al., 2023; Yang et al., 2024).

Recent advancements in vision language mod-
els (VLMs), such as GPT-4V (OpenAI, 2023) and
LLaVA (Li et al., 2024), have expanded the capabil-
ities of language models in tackling complex multi-
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Figure 1: Direct prompting of current VLMs (e.g. GPT-
4O) often fails to generate charts that accurately repli-
cate reference charts, resulting in errors in structure,
color, and text alignment. Our proposed approach,
METAL, tackle this challenge with iterative refinement
through generation, critique, and revision. Our experi-
ments show that increasing the logarithm of test-time
compute recurrence and token usage leads to improved
performance.

modal problem-solving tasks. These breakthroughs
have sparked growing interests in designing intel-
ligent AI assistants to help humans with limited
coding expertise create compelling charts, leading
to the emergence of a complex multi-modal gen-
eration task with crucial practical value - Chart to
code generation task (Wu et al., 2024a; Han et al.,
2023; Shi et al., 2024).

The chart to code generation task focuses on
automatically generating visualization code based
on visual references. This task embodies a highly
challenging visually-grounded code generation
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problem that demands robust visual understand-
ing and advanced reasoning. The model must in-
terpret complex visual elements—such as layouts,
color schemes, and data relationships—and trans-
late them into syntactically correct, semantically
meaningful code. Successfully addressing this chal-
lenge not only improves chart replication but also
paves the way for advancing the general capabili-
ties of VLMs in multimodal learning and program
synthesis.

As illustrated in Figure 1, current state-of-the-art
VLMs, such as GPT-4o, often fail to accurately in-
terpret and reproduce the intricate visual elements
and relationships embedded in reference charts.
Existing solutions, such as Best-of-N and Hint-
enhanced (Wang et al., 2024), have not effectively
improved upon direct prompting of VLMs. The
core challenge in leveraging VLMs for chart gen-
eration lies in effectively integrating visual com-
prehension with code synthesis. This complex task
exceeds the capabilities of the single model or sin-
gle agent.

In this paper, we present METAL, a multi-agent
framework designed for chart generation. Our
framework decomposes this complex multimodal
reasoning task into four specialized roles, each han-
dled by a specialized agent: (1) Generation Agent:
Responsible for the initial translation of chart im-
ages into the corresponding code. (2) Visual Cri-
tique Agent: Analyzes and identifies visual differ-
ences between the reference chart and the gener-
ated output. (3) Code Critique Agent: Reviews the
generated code and suggests improvements to bet-
ter match the reference chart. (4) Revision Agent:
Implements code modifications based on the com-
bined feedback from both critique agents. During
inference, these agents collaborate iteratively, cri-
tiquing and refining the code until the rendered
chart achieves the desired quality.

In contrast to existing methods, our approach
delivers more concrete and targeted feedback, and
iteratively refines outputs through the multi-agentic
framework, leading to enhanced chart generation
performance. Experiment results show that our
framework achieves a 5.2% improvement over the
current best result in the chart generation task. Ad-
ditionally, METAL improves chart generation per-
formance by 11.33% over Direct Prompting with
LLAMA 3.2-11B, demonstrating its potential to
significantly enhance VLMs’ ability to integrate
visual understanding with code synthesis.

Furthermore, we have two key findings through
in-depth analysis: (1) Test-time scaling in the
METAL framework: Recent works suggest the
potential of scaling the number of tokens (compu-
tational budget) to enhance the reasoning perfor-
mance of LLMs (Snell et al., 2024; Muennighoff
et al., 2025). Specifically, utilizing more tokens
during inference may lead to improved perfor-
mance. In this work, we found that there is a near-
linear relationship between the performance and
the logarithm of the computational budget in exper-
iments. Specifically, the performance of METAL
increases monotonically as the logarithm of the
computational budget grows from 29 to 213 to-
kens. (2) Modality-tailored critiques enhance
self-correction: We observe that explicitly sepa-
rating different modalities during the critique pro-
cess—such as visual evaluation and code analy-
sis—substantially enhances the multimodal self-
correction capabilities of VLMs. Ablation study
shows that METAL with the separate-critique de-
sign achieves a 5.6% improvement over the single-
critique baseline.

In summary, we present METAL, a VLMs-
based multi-agent framework, which achieves
significant improvements over the current best
methods for chart generation, and our insights
into test-time scaling and multi-modal critique of-
fer a promising pathway for enhanced visually-
grounded code generation with VLMs.

2 Related Works

We discuss three lines of related work: chart-to-
code generation, multi-agent framework, and test-
time scaling research.

2.1 Chart Generation with VLMs

Chart generation, or chart-to-code generation, is an
emerging task aimed at automatically translating vi-
sual representations of charts into corresponding vi-
sualization code (Shi et al., 2024; Wu et al., 2024a).
This task is inherently challenging as it requires
both visual understanding and precise code syn-
thesis, often demanding complex reasoning over
visual elements.

Recent advances in Vision-Language Models
(VLMs) have expanded the capabilities of language
models in tackling complex multimodal problem-
solving tasks, such as visually-grounded code gen-
eration. Leading proprietary models, such as GPT-
4V (OpenAI, 2023), Gemini (Google, 2023), and
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Figure 2: Overview of METAL: A multi-agents system that consists of four specialized agents working in an
iterative pipeline: (1) Generation Agent creates initial Python code to reproduce the reference chart, (2) Visual
Critique Agent identifies visual discrepancies between the generated and reference charts, (3) Code Critique Agent
analyzes the code and provides specific improvement guidelines, and (4) Revision Agent modifies the code based
on the critiques. The process iterates until either reaching the verification score or maximum attempts limit.

Claude-3 (Anthropic, 2024), have demonstrated
impressive capabilities in understanding complex
visual patterns. The open-source community has
contributed models like LLaVA (Xu et al., 2024;
Li et al., 2024), Qwen-VL (Bai et al., 2023), and
DeepSeek-VL (Lu et al., 2024), which provide re-
searchers with greater flexibility for specific appli-
cations like chart generation.

Despite these advancements, current VLMs of-
ten struggle with accurately interpreting chart struc-
tures and faithfully reproducing visualization code.

2.2 Multi-Agents Framework

Many researchers have suggested a paradigm
shift from single monolithic models to compound
systems comprising multiple specialized compo-
nents (Zaharia et al., 2024; Du and Kaelbling,
2024). One prominent example is the multi-agent
framework.

LLMs-driven multi-agent framework has been
widely explored in various domains, including nar-
rative generation (Huot et al., 2024), financial trad-
ing (Xiao et al., 2024), and cooperative problem-
solving (Du et al., 2024).

Our work investigates the application of multi-
agent framework to the visually-grounded code
generation task.

2.3 Test-Time Scaling

Inference strategies have been a long-studied topic
in the field of language processing. Traditional

approaches include greedy decoding (Teller, 2000),
beam search (Graves, 2012), and Best-of-N.

Recent research has explored test-time scaling
law for language model inference. For example,
Wu et al. (2024b) empirically demonstrated that
optimizing test-time compute allocation can sig-
nificantly enhance problem-solving performance,
while Zhang et al. (2024) and Snell et al. (2024)
highlighted that dynamic adjustments in sample
allocation can maximize efficiency under compute
constraints. Although these studies collectively
underscore the promise of test-time scaling for en-
hancing reasoning performance of LLMs, its ex-
istence in other contexts, such as different model
types and application to cross-modal generation,
remains under-explored.

3 Method

In this section, we introduce our method for gener-
ating precise chart representations from a given ref-
erence chart. Section 3.1 formally defines the task,
Section 3.2 outlines the components of our pro-
posed approach METAL, and Section 3.3 presents
the inference process of METAL.

3.1 Task Definition

Given a reference chart image xref and a chart gen-
eration model, the objective is to learn the mapping

f : xref → y,
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where y is a programmatic specification (e.g.,
Python code). When executed, y should render
a chart O(y) that faithfully replicates the reference
xref.

3.2 METAL
As illustrated in Figure 2, METAL is structured
with four specialized agents (G,C, V,R) and a
multi-criteria verifier. All components collaborate
together to iteratively refine the final output, mak-
ing it more accurately replicates the reference chart.
The framework is composed as follows:

Generation Agent ( G ) This agent is tasked to
generate an initial program from the reference:

y0 = G(xref), G : X → Y.

This serves as the basis for further refinement.

Visual Critique Agent ( V ) This agent is tasked
to assess the rendered chart O(yt) against xref to
detect visual discrepancies:

vt = V (O(yt), xref), V : O ×X → V.

Here, O represents the space of visual outputs, and
V denotes the space of visual feedback metrics.

Code Critique Agent ( C ) This agent is tasked
to review the generated code and provide structured
critique to improve the generated code:

ct = C(yt), C : Y → C.

C represents the set of code critique messages en-
suring correctness and efficiency.

Revision Agent ( R ) This agent integrates feed-
back from both critique agents to update the gener-
ated code:

yt+1 = R(yt, vt, ct), R : Y × V × C → Y.

Multi-Criteria Verifier We design a heuristic-
based verifier to evaluate the chart quality. The
goal of verifier is to provided external source of
feedback to guide four agents collaborate more
efficiently.

Let mj be the verification metrics for j = 1, 2, 3,
and let θt be dynamic thresholds. Then,

Qt(O(yt), xref) =

{
1,

∧3
j=1mj(O(yt), xref) ≥ θt

0, otherwise.

Here, we developed three verification met-
rics—color (m1), text (m2), and overall structure

Algorithm 1 Inference Procedure of METAL
1: y0 ← G(xref)
2: while t < Tmax do
3: O(yt)← Render chart from yt
4: vt ← V (O(yt), xref) ▷ Visual critique
5: ct ← C(yt) ▷ Code critique
6: if ∀j : mj(O(yt), xref) ≥ θt then
7: break ▷ Verification passed
8: else
9: yt+1 ← R(yt, vt, ct) ▷ Revise code

10: end if
11: t← t+ 1
12: end while
13: return yt

(m3)—to quantify the similarity between the refer-
ence and generated charts. If the generated chart
meets the desired quality (i.e., the verification score
of each verification metrics (m1, m2, m3) exceeds
the predefined threshold), the system triggers an
early stop. More details on the implementation of
the verifier, such as each verification metric, are
introduced in Appendix A.2.

3.3 Inference Procedure

Algorithm 1 illustrates the inference procedure
of METAL. During inference, METAL itera-
tively refines the generated code until the rendered
chart meets the predefined verification threshold
or reaches the maximum attempts limit Tmax. The
refinement process is as follows:

y0 = G(xref), (1)

vt = V (O(yt), xref), (2)

ct = C(yt), (3)

yt+1 = R(yt, vt, ct). (4)

The iterations terminate when

Qt(O(yt), xref) = 1

or the max number of attempts is reached.

4 Experiments

In this section, we systematically evaluate
METAL. Section 4.1 details the experimental
setup, Section 4.2 presents the results, and Sec-
tion 4.3 provides an ablation study to further eluci-
date the model’s performance.
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Base Model Method
Average F1 Score

Text Type Color Layout Average

LLAMA 3.2-11B

Direct Prompting 36.70% 37.07% 33.46% 54.56% 40.45%

Hint-Enhanced Prompting 38.82% 38.47% 36.82% 51.22% 41.33%

Best-of-N (n = 5) 40.28% 36.60% 38.43% 57.22% 43.13%

METAL (n = 5) 46.69 %↑ 54.42%↑ 47.32 %↑ 58.69%↑ 51.78 %↑

GPT-4O

Direct Prompting 74.83% 81.24% 74.24% 94.76% 81.26%

Hint-Enhanced Prompting 77.02% 80.84% 72.75% 93.89% 81.12%

Best-of-N (n = 5) 75.47% 82.16% 75.30% 96.37% 82.32%

METAL (n = 5) 86.31% ↑ 84.17% ↑ 79.86↑ 95.50%↑ 86.46%↑

Table 1: Performance comparison of METAL and baseline methods across various base models using four
evaluation metrics: Text, Type, Color, and Layout. The best performance for each metric on each base model is
highlighted in bold. Our approach consistently outperforms the baselines, achieving the highest average F1 scores
across both models, with significant improvements observed in all evaluation categories.

4.1 Experiment Setup

Dataset We select the ChartMIMIC dataset to
evaluate METAL. It is a benchmark that includes
1,000 human-curated (figure, instruction, code)
triplets, which represent the authentic chart use
cases found in scientific papers across various do-
mains. These charts span 18 regular types and 4
advanced types, diversifying into 191 subcategories
(Shi et al., 2024) .

Automatic Evaluation Metric Following the ap-
proach in (Shi et al., 2024), we assess four key
low-level chart elements: text, layout, type, and
color. During code execution, relevant information
for each element is logged for evaluation. We then
compare each element in the generated chart to its
counterpart in the reference chart and calculate the
F1 score. Note that the evaluation metric used here
differs from the multi-criteria verification metric
described in the section 3.

Base Model We assess the effectiveness of
METAL on both open-source and closed-source
vision-language models. Specifically, we evalu-
ate GPT-4O (Hurst et al., 2024) and LLAMA
3.2-11B (AI@Meta, 2024). The details of model
size and computation budget are introduced in Ap-
pendix B.

Implementation Details The implementation de-
tails of each component of METAL and the base-
lines are described in Appendix A. We include the
prompt templates for each VLM-driven agent and
the baselines in Appendix C.

Baselines We compare METAL against three
baseline methods, detailed as follows:

1. Direct Prompting: This baseline generates
charts directly from the input prompt with-
out any modifications or explicit guidance. It
relies solely on the model’s inherent ability.

2. Hint-Enhanced Prompting: In this approach,
the input prompt is augmented with additional
hints or structured guidance to help the model
better understand the desired chart compo-
nents (Wang et al., 2024). Specifically, we
augment the generation with a self-generated
short description of a chart that provides con-
text for elements such as layout, text, type,
and color.

3. Best-of-N: This baseline generates multiple
candidate charts in parallel, and the one that
best meets a predefined verification metric is
selected. We compare against Best-of-N by
matching the number of iterations used in our
approach.

4.2 Experiment Results
The primary research question of the experiment
was to assess whether our proposed method could
improve the performance of the base model in the
chart generation task. Table 1 presents the experi-
ment result.

For the LLaMA base model, the results indicate
that the performance of baseline methods varied
moderately. Direct Prompting and Hint-Enhanced
Prompting achieved average F1 scores of 40.45%
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and 41.33%, respectively, while Best-of-N reached
43.13%. In contrast, METAL yielded an average
F1 score of 51.78% with improvements observed
in each metric. The average F1 score improves
by 11.33% over Direct Prompting with 5 test-time
compute recurrences, which is a significant im-
provement.

Similarly, for the GPT base model, the baseline
methods demonstrated high performance with av-
erage F1 scores ranging from 81.12% to 82.32%.
However, METAL outperformed these methods
by a considerable margin, achieving an average
F1 score of 86.46%. Specifically, our method im-
proved 5.2% in average over Direct Prompting.

These results clearly demonstrate that our ap-
proach consistently improves performance across
both base models and all evaluation metrics. In par-
ticular, the significant gains observed in the Text
and Layout metric, along with the overall increase
in average F1 scores, indicate that our model ef-
fectively captures both the structural attributes and
finer details of visual data. This enhancement not
only boosts the performance of both open-source
and closed-source vision-language models but also
maintains a high level of consistency across all
metrics, underscoring the robustness and generaliz-
ability of our method.

4.3 Ablation Study

To further analyze the impact of different compo-
nents, we performed an ablation study by selec-
tively removing key elements of METAL to as-
sess the influence of each component on the overall
performance.

Variations Setup We evaluate the following vari-
ants of METAL to assess the contribution of each
agent:

• METALV : Uses only the visual critique
agent, omitting the code critique component.

• METALC : Uses only the code critique agent,
omitting the visual critique component.

• METALS : Combines the visual and code
critique agents into a single, unified critique
agent.

We implement each variation with GPT-4O as
the base model. The prompt templates of each
variation are attached to Appendix C.

Method
Average F1 Scores (%)

Text Type Color Layout Average

METALV 83.43 82.57 77.57 93.69 84.31

METALC 82.35 80.90 76.69 91.93 82.96

METALS 80.26 78.88 74.50 89.82 80.86

METAL 86.31 84.17 79.86 95.50 86.46

Table 2: Ablation study on different variants of
METAL across four evaluation metrics. The best per-
formance for each metric is highlighted in bold.

Results As shown in Table 2, the full METAL
achieves the highest average F1 score, outperform-
ing all ablated variants. Specifically, when only
the visual critique agent is used (METALV ), the
system obtains an average F1 score of 84.31%,
while the variant using only the code critique agent
(METALC) achieves 82.96%. The unified agent
variant (METALS) yields the lowest average per-
formance.

These results indicate that both the visual and
code critique agents play crucial roles in enhanc-
ing the model’s performance. The degradation ob-
served in the ablated variants highlights that re-
moving either component, or merging them into
a single unit, compromises the system’s ability to
effectively capture and refine the critical attributes
of the visual data.

5 Analysis and Discussion

We analyze the experimental results in this sec-
tion. We highlight two interesting findings: Test-
time scaling in Multi-Agent system (Section 5.1),
and modality-tailored critiques enhance the self-
correction ability (Section 5.2). Additionally, we
discuss the advantage of METAL (Section 5.3),
and the benefit of agentic design (Section 5.4)

5.1 Test-Time Scaling

We investigate the relationship between the test-
time computational budget and model performance.
As illustrated in Figure 3, our analysis reveals an
interesting trend: increasing the logarithm of the
computational budget leads to continuous perfor-
mance improvements. This near-linear relation-
ship indicates the test-time scaling phenomenon,
demonstrating that allowing more iterations during
inference could potentially enhance performance.

One potential reason for this phenomenon is the
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Figure 3: The performance of METAL demonstrates an near-linear relationship with the log of compute budget.
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strong self-improvement capability of METAL.
Our framework is designed so that specialized
agents iteratively collaborate, allowing each agent
to refine its output based on feedback from oth-
ers. With each iteration, errors are corrected and in-
sights from different modalities are integrated, lead-
ing to incremental performance gains. This contin-
ual refinement process leverages the strengths of
individual agents, resulting in the self-improvement
capability that drives the observed performance en-
hancements as computational resources increase.

Due to limited resources, we have not extended
the experiment range further. However, the ob-
served scaling implies that the framework can
benefit from more iterations of collaborative self-
improvement. We leave a more comprehensive
exploration of this potential to the future work.

5.2 Modality-Tailored Critiques

From the ablation study result shown in Table 2, we
observed that separating visual and code critiques
enhances the model’s self-correction capabilities.
In contrast, METALS struggles to effectively self-
improve in the chart-to-code generation task.

We identify two potential reasons for this ob-

servation. First, combining both visual and code
inputs results in an extended context that can over-
whelm the model, leading to information loss. This
dilution makes it difficult to capture key details
from each modality, resulting in less accurate cri-
tiques and a reduction in overall self-correction
effectiveness. Second, the self-critique process
for chart generation involves distinct requirements:
visual data demands spatial understanding, color
analysis, and fine detail recognition, while code
data requires strict adherence to syntax and log-
ical consistency. A unified critique approach is
ill-suited to address these differing needs. Without
modality-specific feedback, the model struggles to
detect and correct errors unique to each data type.

These findings suggest that self-correction in the
multimodal context can be enhanced by leveraging
tailored critique strategies for each modality.

5.3 Why METAL

We believe METAL provides three advantages.
First, by assigning specialized tasks to individual
agents, the system effectively reduces error prop-
agation. During inference, each agent evaluates
whether to take action based on the available in-
formation and insights from other agents. This
process enables each agent to serve as a safeguard,
detecting and correcting mistakes before they esca-
late.

Second, the modular design of METAL enables
easy modification and adaptation. For instance,
one can integrate different base models tailored
for specific tasks—such as employing a critique-
trained model for critique agents and a generation-
trained model for generation agents—to maximize
overall performance.

Third, METAL is robust with the strong base
model. Figure 4 compares the performance of
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and revised code ( round 1 ) , 
critique for how to improve. 

Task: Given ref chart and 
generted chart ( round 1 ) , 
critique for the difference. 

Round 0      

generated chart ( round 0 )

a
b dc

Color :                      60% Text :                        84% 

Round 1      

Round 2      

Color :                       60%  Text :                       100% 

Color :                     100%  Text : 100% 

Figure 5: Case study of METAL’s progressive refinement from initial generation to perfect. Starting from Round
0’s initial generation (60% color score , 84% text score), the system iteratively improves the output. In Round 1, the
system identifies and corrects Y-axis scale issues and missing annotations, achieving 100% text score. Round 2
refines the color representations of distributions, achieving perfect F1 score across all metrics.

METAL to that of Direct Prompting over five
iterations across varying chart difficulty levels.
METAL with the GPT-4O base model achieved
consistent improvements regardless of difficulty.
When using LLAMA 3.2-11B as the base model,
the performance gains tend to diminish with in-
creasing reference chart complexity, but the im-
provements remain substantial. This drop might
be due to the limited critique capabilities of the
LLAMA 3.2-11B base model. Nonetheless, the
flexibility of METAL to replace the base model for
different agents allows us to tailor the system op-
timally—using, for example, a critique-optimized
model for critique agents and a generation-focused
model for generation agents—to maximize overall
performance.

5.4 Multi-Agent System vs. Modular System

We further investigate the impact of agentic behav-
ior of METAL on final performance. We think
self-decision-making and code execution abilities
are key features that distinguish the multi-agent

system from a modular system. We implement a
self-revision modular system without these two key
abilities, and conduct an additional ablation study
on a subset of 50 data points to examine the impact
of these agentic behaviors on final performance.

The results show that, compared to METAL,
there is a 4.51% reduction in average perfor-
mance gain over direct prompting. The absence
of decision-making and code execution abilities in
the modular system hinders its capacity to refine
generated charts effectively. Specifically, the inabil-
ity to execute code for chart rendering significantly
diminishes the quality of the critique, and the ab-
sence of self-decision-making ability potentially
leads to error propagation that further negatively
impacts the self-correction process.

This comparison underscores the critical role of
the agentic approach.

6 Case Study

We perform a case study to better understand
METAL. Figure 5 illustrates an example.
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In Round 1, two specialized critique agents ana-
lyze the generated chart. The visual critique agent
detects inconsistencies in axis scaling and missing
annotations, while the code critique agent identifies
the corresponding code-level issues (e.g. incorrect
tick intervals and absent annotations ). Based on
these critiques, the revision agent modifies the chart
by adjusting the Y-axis scale and adding the miss-
ing annotation. These corrections result in a sig-
nificant improvement, reaching perfect text score,
though color score remains unchanged.

In Round 2, the critique agents further refine the
chart. The visual critique agent highlights inac-
curacies in the color assignments of distributions,
noting that the generated chart does not precisely
match the reference chart’s colors. The code cri-
tique agent pinpoints the exact color discrepancies
in the code and provides specific RGB values for
correction. The revision agent incorporates these
insights, adjusting the color specifications in the
code. This final revision achieves perfect alignment
with the reference chart, with 100% f1 score across
all evaluation metrics.

This case study demonstrates the effectiveness
of METAL’s multi-agent collaborative refine-
ment process. By decomposing the task into
distinct stages, METAL can iteratively enhance
the generated output. The separation of visual
and code critiques ensures that both perceptual
and implementation-level issues are systematically
identified and addressed.

7 Conclusion

In conclusion, we introduce METAL, a novel
multi-agent framework that significantly enhances
VLMs’ performance in the chart generation task.
We also reveal two interesting insights from the ex-
periment results: the test-time scaling phenomenon
in the multi-agent context, and enhanced self-
correction with modality-tailored critiques.

Limitation

Our work is not without limitations. First, our
METAL is based on VLMs, which require exten-
sive prompt engineering. Although we selected the
best-performing prompts available, it is possible
that even more effective prompts could further en-
hance our results. Second, automatic evaluations
have inherent imperfections and may not capture
all details in the chart perfectly. We adopted the
evaluation metric from previous work to ensure

fairness. Third, METAL has higher costs than
direct prompting. Future work could explore how
to optimize these costs.
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Appendix

A Implementation

In this section, we present the detailed implementa-
tion of our approach.

A.1 VLMs driven agent Agents
In our implementation, we leverage VLMS to drive
agents. The agents are designed to process and
generate multimodal information as follows:

Generation Agent and Visual Critique Agent:
Both the Generation Agent and the Visual Critique
Agent are designed to handle multimodal inputs.
Specifically, they take as input a combination of
visual data (e.g., the reference chart image or ren-
dered chart) and textual descriptions. These agents
are implemented using VLM architectures that can
effectively integrate and reason over both image
and text modalities. Their outputs are generated in
the form of text, which provides either the initial
code (in the case of the Generation Agent) or de-
tailed visual discrepancy feedback (in the case of
the Visual Critique Agent).

Code Critique Agent and Revision Agent: In
contrast, the Code Critique Agent and the Revision
Agent are fully text-based. They accept textual in-
puts—either the generated code or the code accom-
panied by critique feedback—and produce textual
outputs. Both agents are configured to generate
responses up to approximately 600 tokens.

Integration of Agents: The agents interact in
an iterative pipeline, where the Generation Agent
first produces an initial code snippet. The Visual
Critique Agent then examines the rendered out-
put for any discrepancies relative to the reference
chart, while the Code Critique Agent inspects the
code for logical or syntactic issues. Finally, the
Revision Agent integrates the feedback from both
critique agents to modify the code. We have a
Multi-Criteria Verifier (described in Appendix A.2
to verify the output of each iteration.

A.2 Multi-Criteria Verifier
We design three heuristic-based criteria—color,
text, and overall—to assess the similarity between
two images. The process begins by using EasyOCR
to extract text from both the golden and generated
images, and then computing a text similarity score
based on the Jaccard index of the extracted text sets.
In parallel, a verification from the color aspect is

performed by converting the images into the HSV
color space and applying predefined color ranges
to count the pixels corresponding to specific colors;
the resulting color histograms are compared using
cosine similarity. Finally, an overall similarity mea-
sure is obtained by resizing the grayscale versions
of the images and calculating the Structural Simi-
larity Index (SSIM). The final verification result is
a combination of these three metrics, providing a
comprehensive assessment of image equivalence.

During the inference, the iteration will stop if
the average of verification results exceeds the pre-
defined threshold. The complete implementation
code is attached as follows.
from collections import Counter
from sklearn.metrics.pairwise import

cosine_similarity
from skimage.metrics import

structural_similarity as ssim
import numpy as np
import cv2
import easyocr

class Verifier ():
def __init__(self , model , ** kwargs):

ocr_model_path = os.environ.get("
EASYOCR_MODEL_PATH", "./
easyocr_model")
self.reader = easyocr.Reader (['en'],
model_storage_directory=

ocr_model_path)

def extract_text(self , image_path):
results = self.reader.readtext(

image_path)
return [text [1] for text in

results]

def text_similarity(self , golden_img ,
generated_img):

text1 = self.extract_text(
golden_img)

text2 = self.extract_text(
generated_img)

intersection = len(set(text1).
intersection(set(text2)))

union = len(set(text1).union(set(
text2)))

return intersection / union if
union > 0 else 0

def extract_colors(self , image_path ,
top_n =20):

color_ranges = {
"red1": [(0, 100, 100), (10,

255, 255)], # First red hue range
"red2": [(170, 100, 100), (180,

255, 255)], # Second red hue range
"green": [(35, 50, 50), (85,

255, 255)], # Green hue range
"blue": [(100, 50, 50), (140,

255, 255)], # Blue hue range
"orange": [(10, 100, 100), (25,

255, 255)], # Orange hue range
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"yellow": [(25, 100, 100), (35,
255, 255)], # Yellow hue range

"cyan": [(85, 100, 100), (100,
255, 255)], # Cyan hue range

"magenta": [(140, 100, 100),
(170, 255, 255)], # Magenta hue
range

"purple": [(125, 100, 50), (150,
255, 255)], # Purple hue range

"brown": [(10, 50, 20), (30,
255, 200)], # Merged Brown & Beige
range

"pink": [(150, 100, 100), (170,
255, 255)], # Pink hue range

"light_blue": [(90, 50, 100),
(110, 255, 255)], # Light blue
range

"dark_blue": [(100, 150, 50),
(130, 255, 150)], # Dark blue range

"dark_green": [(35, 100, 20),
(85, 255, 120)], # Dark green hue
range

"lime": [(40, 100, 100), (70,
255, 255)], # Lime hue range

"teal": [(80, 100, 100), (100,
255, 255)], # Teal hue range

"olive": [(30, 50, 50), (40,
255, 150)], # Olive hue range

"black_gray": [(0, 0, 0), (180,
50, 200)], # Merged Black & Gray
range

"white": [(0, 0, 200), (180, 50,
255)] # White range
}

image = cv2.imread(image_path , cv2
.IMREAD_UNCHANGED)

if image.shape [2] == 3:
image = cv2.cvtColor(image ,

cv2.COLOR_BGR2BGRA)
hsv_image = cv2.cvtColor(image[:,

:, :3], cv2.COLOR_BGR2HSV)

color_counter = Counter ()
for color_name , (lower , upper) in

color_ranges.items():
lower = np.array(lower , dtype=

"uint8")
upper = np.array(upper , dtype=

"uint8")
mask = cv2.inRange(hsv_image ,

lower , upper)
color_counter[color_name] =

cv2.countNonZero(mask)

return color_counter

def color_similarity(self , golden_img ,
generated_img):
colors1 = self.extract_colors(

golden_img)
colors2 = self.extract_colors(

generated_img)

all_colors = set(colors1.keys()).
union(set(colors2.keys()))

vec1 = np.array([ colors1.get(c, 0)
for c in all_colors ]).reshape(1,

-1)
vec2 = np.array([ colors2.get(c, 0)

for c in all_colors ]).reshape(1,
-1)

return cosine_similarity(vec1 ,
vec2)[0, 0]

def overall_similarity(self ,
golden_img , generated_img):

img1 = cv2.imread(golden_img , cv2.
IMREAD_GRAYSCALE)

img2 = cv2.imread(generated_img ,
cv2.IMREAD_GRAYSCALE)

img1 = cv2.resize(img1 , (300, 300)
)

img2 = cv2.resize(img2 , (300, 300)
)

return ssim(img1 , img2)

def verify(self , golden_img ,
generated_img):

text_similarity = self.
text_similarity(golden_img ,
generated_img)
color_similarity = self.
color_similarity(golden_img ,
generated_img)
overall_similarity = self.
overall_similarity(golden_img ,
generated_img)

results = {
"text": text_similarity ,
"color": color_similarity ,
"overall": overall_similarity

}

return results

B Model Size and Computational
Requirement

We have developed two versions of METAL, each
built upon a different foundational model to cater
to varying operational needs.

For the version using the GPT-4O base model,
we integrate the model via the OPENAI API. In this
setup, each of the four agents makes one API call
per action. One single iteration—where each agent
acts once—results in 4 API calls in total. In our
main experiments, we perform up to 5 iterations
per trial.

Alternatively, the LLAMA 3.2-11B-based ver-
sion of METAL is hosted locally on two NVIDIA
A100 Tensor Core GPUs, each with 40 GB of GPU
memory. Each of the four agents runs its own in-
stance of the LLAMA 3.2-11B model, leading to
an overall GPU memory requirement of approxi-
mately 70 GB.
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C Prompt Templates

C.1 METAL

This section lists all prompt templates used in
METAL.

## Generation Agent ##
# Note: The generation prompt template

is adapted from ChartMIMIC.
generation_prompt_template = "You are an

expert Python developer who
specializes in writing matplotlib
code based on a given picture. I
found a very nice picture in a STEM
paper , but there is no corresponding
source code available. I need your

help to generate the Python code
that can reproduce the picture based
on the picture I provide. \nNote

that it is necessary to use figsize
={ figsize} to set the image size to
match the original size. \nNow ,
please give me the matplotlib code
that reproduces the picture below."

## Visual Critique Agent ##
visual_critique_prompt_template = "You

are a professional data scientist
tasked with evaluating a generated
chart against a reference chart.

Objective:
Please identify whether there is (are)

issue(s) in the generated chart that
diverge from the reference chart

concerning the {lowest_metric}, and
give concrete feedback.

Compare the original chart (left) and
the generated chart (right) in the
provided image.

Provide a detailed critique of how the
generated chart diverges from the
reference chart concerning the {
lowest_metric }.

Avoid commenting on unrelated metrics or
general stylistic choices unless

they directly affect the {
lowest_metric }.

Only critique on elements that in
reference chart but not in generated
chart.

For example , if the reference chart
doesn 't have a title , don't critique
the title in the generated chart.

Instructions:
{instructions}

Response Format:
1. Observation (Reference Chart):

Identify the chart elements in the
reference chart.

2. Observation (Generated Chart):
Identify the chart elements in the
generated chart.

3. Critique: Issues in the generated
chart that diverge from the
reference chart concerning the {
lowest_metric }. Be specific and

detailed. If there is numeric value
or text , please provide the exact
value or text.

Note: If you believe there is no issue ,
please respond with SKIP.

"

## Code Critique Agent ##
code_critique_prompt_template = "You are

a professional data scientist
tasked with analyzing input code and
adding targeted TODO comments based
on the provided critique.

Instructions:
Please identify whether there is(are)

issue(s) in the input code that need
to be addressed based on the visual
critique , and give concrete

feedback.
Identify the specific issues raised in

the critique.
Offer clear and actionable suggestions

to address the identified issues.
Insert TODO comments directly into the

input code to indicate necessary
changes.

Place the TODO comment above the line of
code that requires modification.

Be specific and practical in the TODO
comments. Avoid generic suggestions
or additions unrelated to the
critique.

Do not make changes beyond adding TODO
comments to the code , such as change
existing code or add new lines of

code.
Do not modify the code or add comments

about code style , unrelated
improvements , or hypothetical
enhancements outside the critique 's
scope.

Do not mention reference charts in the
TODO comments , making the comment
self -contained.

Response Format:
1. Issues: Summarize the issues

identified in the critique.
2. Suggestions: Provide specific

suggestions for addressing the
issues.

3. Full Code with added TODO Comments:
Present the input code with the TODO
comments added above the relevant

lines. Please ONLY add TODO comments
to the input code , do not modify

the code in any other way.

Critique:
{critique}

Code to Comment On:
```python
{code}
```

Note: If you believe there is no issue ,
please respond with SKIP.

30066



"

## Revision Agent ##
code_revision_prompt_template = "You are

a professional data scientist
tasked with revising the input code.

Objective:
The input code contains TODO comments

that need to be addressed.
Please carefully review the code and

make the necessary revisions to
address the TODO comments.

Each comment might need more than one
line of code to address.

Match the other lines of code style and
structure in the input code.

Ensure that the revised code is correct
and functional.

Return the FULL revised code to ensure
the code is ready for the next stage
of development.

Response Format:
Full Code of the Revised Version:

Present the revised code with the
changes made to address the TODO
comments.

Code to Revise:
```python
{code}
```
"

C.2 Variations
This section lists all prompt templates used in vari-
ations from the ablation study.
# Variations
# 1. Metal -s: GenerationAgent ,

SingleCritiqueAgent , RevisionAgent ,
VerificationAgent

# 2. Metal -v: GenerationAgent ,
VisualCritiqueAgent ,
VisualRevisionAgent ,
VerificationAgent

# 3. Metal -c: GenerationAgent ,
TextCritiqueVisualAgent ,
RevisionAgent , VerificationAgent

## SingleCritiqueAgent (Metal -s) ##
SingleCritiqueAgent_prompts_template = "

You are a professional data
scientist tasked to critique the
generated chart against a reference
chart to improve the code for
generating the chart.

Objective:
There is (are) issue(s) in the generated

chart that diverge from the
reference chart regarding the {
lowest_metric }. Compare the original
chart (left) and the generated

chart (right) in the provided image.
Observe the differences between the

reference chart and the generated

chart , and provide a detailed
critique of the generated chart.

Insert TODO comments directly into the
input code to indicate necessary
changes. Place the TODO comment
above the line of code that requires
modification. Be specific and

practical in the TODO comments.
Avoid generic suggestions or
additions unrelated to the critique.

Instructions:
- Step1 -2:
Avoid commenting on unrelated metrics or

general stylistic choices unless
they directly affect the {
lowest_metric }.

Only critique on elements that in
reference chart but not in generated
chart.

For example , if the reference chart
doesn 't have a title , don't critique
the title in the generated chart.

Here are insturction for the chart
critique:

{chart_instructions}
- Step3 -4:
If the chart critique specifies

particular color values , include a
TODO comment in the code to remove
the opacity setting (e.g. alpha).
This ensures the color is accurately
replaced with the specified values

from the critique
If the chart critique identifies

incorrect or missing text (of label ,
annotation , etc.), please include

the correct text in the TODO comment
for easy reference.

If the chart critique identifies the
mismatched type of chart , please add
TODO comments above the type -

related functions calls to correct
the chart type.

Response Format:
1. Chart Critique: Issues in the

generated chart that diverge from
the reference chart. Be specific and
detailed.

2. Code Critique: Provide a critique of
the code that generated the chart.
Identify the issues and suggest
improvements by adding TODO comments
.

3. Full Code with added TODO Comments:
Present the input code with the TODO
comments added above the relevant

lines. Do not modify the code
directly.

Code to Comment On:
```python
{code}
```
"

## VisualRevisionAgent (Metal -v) ##
VisualRevisionAgent_prompt_tempate ="
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You are a professional data scientist
tasked with revising the input code
based on the visual critique
provided.

Objective:
The input code contains a Python script

that generates a chart.
The chart is intended to replicate the

reference image , but there could be
discrepancies between the two.

The chart that generated by input code
has been reviewed by a data
visualization expert who provided a
visual critique.

Your task is to revise the code to
address the issues identified in the
critique and improve the chart

accordingly.
Identify the discrepancies and issues in

the generated chart based on the
critique.

Make necessary modifications to the
input code to resolve the identified
issues and improve the chart.

Match the existing style and structure
of the input code.

Ensure correctness and functionality.
Return the FULL revised code to ensure

it is ready for the next stage of
development.

Inputs:
- Visual Critique:
{visual_critique}

- Code to Revise:
```python
{code}
```
"""

## TextCritiqueVisualAgent (Metal -c) ##
TextCritiqueVisualAgent_prompt_template

= "You are a professional data
scientist tasked with analyzing
input code and adding targeted TODO
comments based on the reference
image.

Instructions:
The input code contain python script to

generate a chart.
The chart generated by the input code

should replicate the reference image
provided.

There is(are) issue(s) in the input code
that need to be addressed to match

the reference image.
Identify the specific issues raised in

the input code that prevent it from
replicating the reference image.

Offer clear and actionable suggestions
to address the identified issues.

Insert TODO comments directly into the
input code to indicate necessary
changes.

Place the TODO comment above the line of
code that requires modification.

Be specific and practical in the TODO
comments. Avoid generic suggestions
or additions unrelated to the
critique.

Do not make changes beyond adding TODO
comments to the code , such as change
existing code or add new lines of

code.
Do not modify the code or add comments

about code style , unrelated
improvements , or hypothetical
enhancements outside the critique 's
scope.

Do not mention reference charts in the
TODO comments , making the comment
self -contained.

Response Format:
1. Issues: Summarize the issues

identified.
2. Suggestions: Provide specific

suggestions for addressing the
issues.

3. Full Code with added TODO Comments:
Present the input code with the TODO
comments added above the relevant

lines. Please ONLY add TODO comments
to the input code , do not modify

the code in any other way.

Code to Comment On:
```python
{code}
```
"

C.3 Baselines

This section lists all prompt templates used in base-
lines.

## HintEnhanced Baseline ##
# Note: This prompt template is adapted

from ChartMIMIC.

hint_enhanced_prompt_template = "You are
an expert Python developer who

specializes in writing matplotlib
code based on a given picture. I
found a very nice picture in a STEM
paper , but there is no corresponding
source code available. I need your

help to generate the Python code
that can reproduce the picture based
on the picture I provide .\n\nTo

ensure accuracy and detail in your
recreation , begin with a
comprehensive analysis of the figure
to develop an elaborate caption .\

nThis caption should cover , but not
be limited to, the following aspects
:\n1. Layout Analysis: e.g.,
identify the picture 's composition ,
noting the presence and arrangement
of any subplots .\n2. Chart Type
Identification: e.g., determine how
many charts within a subplot. Are
they independent , or do they share a
common axis?\n3. Data Analysis: e.g
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., summarize the data trend or
pattern .\n4. Additional Features: e.
g.,identify any supplementary
elements such as legends , colormaps ,
tick labels , or text annotations

that contribute to the figure 's
clarity or aesthetic appeal .\n\nNow ,
given the picture below , please

first output your comprehensive
caption and then use the caption to
assist yourself to generate
matplotlib code that reproduces the
picture .\nNote that it is necessary
to use figsize =({ figsize }) to set
the image size to match the original
size."
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