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Abstract

The demand for synthetic data in mathemati-
cal reasoning has increased due to its poten-
tial to enhance the mathematical capabilities
of large language models (LLMs). However,
ensuring the validity of intermediate reason-
ing steps remains a significant challenge, af-
fecting data quality. While formal verification
via theorem provers effectively validates LLM
reasoning, the autoformalisation of mathemati-
cal proofs remains error-prone. We introduce
iterative autoformalisation, an approach that
iteratively refines theorem prover formalisation
to mitigate errors, thereby increasing the ex-
ecution rate on the Lean prover from 60% to
87%. Building upon that, we introduce The-
orem Prover as a Judge (TP-as-a-Judge), a
method that makes use of theorem prover for-
malisation to rigorously assess LLM interme-
diate reasoning, effectively integrating autofor-
malisation with synthetic data generation. Fi-
nally, we present Reinforcement Learning from
Theorem Prover Feedback (RLTPF), a frame-
work that replaces human annotation with theo-
rem prover feedback in Reinforcement Learn-
ing from Human Feedback (RLHF). Across
multiple LLMs, applying TP-as-a-Judge and
RLTPF improves benchmarks with only 3,508
samples, achieving 5.56% accuracy gain on
Mistral-7B for MultiArith, 6.00% on Llama-2-
7B for SVAMP, and 3.55% on Llama-3.1-8B
for AQUA.1

1 Introduction

Recent studies have shown that large language
models (LLMs) are increasingly capable of tack-
ling mathematical problems (Dubey et al., 2024;
Jaech et al., 2024; Yang et al., 2024a; Guo et al.,
2025). Techniques such as Chain of Thought (CoT)
aim to enhance the reasoning process by break-
ing complex problems into intermediate steps (Wei

1Code is available at https://github.com/
joshuaongg21/RLTPF.

Find the area of a circle with radius 2

1. The formula for area is

2. By performing substitution:

3. The answer is 

1. The formula for area is

2. By performing substitution:

3. The answer is 

Final Answer: 

Figure 1: An example of potential flawed reasoning
occurs when the correct answer is achieved despite con-
taining incorrect logical steps.

et al., 2022; Kojima et al., 2022). Although these
methods have achieved success on benchmarks like
GSM8K (Cobbe et al., 2021), they are prone to sig-
nificant flaws. Specifically, LLM-generated CoT
reasoning steps may often include errors, leading
to incorrect solutions even when the final answer
appears plausible (Leang et al., 2024).

To address these flaws, coding-based tools such
as Python (Chen et al., 2022; Lyu et al., 2023)
and SMT Solvers like the Z3 solver (De Moura
and Bjørner, 2008) have been widely used to im-
prove reasoning capabilities, as well as theorem
provers such as Lean (De Moura et al., 2015) and
Isabelle (Paulson, 1994). These systems provide
formal verification on the logical validity of LLM
reasoning steps. Nevertheless, they are not without
challenges; autoformalisation errors often lead to
execution failures during theorem prover verifica-
tion in complex tasks (Xu et al., 2024; Quan et al.,
2024; Gou et al., 2024a; Olausson et al., 2023),
including Python’s struggles with Olympiad-level
problems (Leang et al., 2024).

Parallel to these strategies, synthetic data gener-
ation emerged as a promising approach to enhance
mathematical reasoning (Xin et al., 2024; Lu et al.,
2024b). A commonly used verification method
is LLM-as-a-Judge (Zheng et al., 2023; Stephan
et al., 2024; Saha et al., 2025), wherein LLMs eval-
uate and generate reasoning data. However, this
method often introduces bias (Guan et al., 2025).
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Figure 2: Overview of TP-as-a-Judge, comprising LLM data generation, theorem prover verification, and RLTPF.

Generating labeled training data for step-by-step
reasoning remains resource-intensive as well, re-
quiring substantial human effort for annotation, and
automatic annotation methods have shown limited
success, as noisy reward scores often impede their
efficacy (Luo et al., 2024; Wang et al., 2024c; Chen
et al., 2024). Recently, iterative techniques like
Monte Carlo Tree Search (MCTS) have been ap-
plied to refine reasoning steps and achieve accurate
solutions (Guan et al., 2025; Park et al., 2024).
While MCTS enhances reasoning quality, it is com-
putationally expensive due to extensive rollouts,
limiting its scalability for large-scale applications.

To overcome these challenges, we first address
execution failures in autoformalisation by propos-
ing iterative autoformalisation, a method that inte-
grates autoformalisation errors as feedback, thereby
ensuring that each intermediate reasoning step is
verified. Specifically, we use the Lean prover as our
autoformalisation verifier. Unlike Python-based ap-
proaches (Bi et al., 2024), which refine execution
traces, iterative autoformalisation validates indi-
vidual proof tactics, theorems, and logical steps
within the formal system. As problem complexity
increases, additional iterations are required for ac-
curate autoformalisation. Simply discarding ques-
tions after a single failed attempt risks introducing
biases toward simpler problems (Lu et al., 2024a).

Building on this foundation, we introduce The-
orem Prover as a Judge (TP-as-a-Judge), a novel
framework for generating synthetic data in math-
ematical reasoning tasks. TP-as-a-Judge is inte-
grated with a theorem prover, leveraging its step-
by-step verification to ensure logical correctness.

We then propose Reinforcement Learning from The-
orem Prover Feedback (RLTPF), a novel approach
in which the theorem prover replaces human an-
notators by providing formalised feedback. By
applying TP-as-a-Judge and RLTPF, we achieve
competitive performance in GSM8K and AIME
2024 datasets compared to models fine-tuned on
larger datasets. This demonstrates the significance
of intermediate reasoning in data quality and en-
hances the data efficiency of model training.

2 Theorem Prover as a Judge

As shown in Figure 2, TP-as-a-Judge consists of
two key stages: LLM Data Generation, where
LLMs generate questions and answers; Theorem
Prover Verification, where a theorem prover as-
sesses the validity of the model’s reasoning on the
generated data and proceeds to RLTPF, leveraging
verification results to refine the model through Su-
pervised Fine-Tuning (SFT) and Direct Preference
Optimization (DPO; Rafailov et al. 2023).

2.1 LLM Data Generation

Building on the work of Balepur et al. (2024), we
apply the Reverse Question-Answering method to
the mathematical domain for constructing our ini-
tial synthetic datasets. This technique involves pro-
viding the model with a few example solutions
and instructing it to generate corresponding ques-
tions that align with those solutions. The datasets
we use are sourced from two primary sources:
the GSM8K dataset (Cobbe et al., 2021) and the
MATH dataset (Hendrycks et al., 2021). This ap-
proach enables us to cover a broad array of math-
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Question: A rational function is given by . Determine the number of veritical asymptotes of the graph of this function

-- Generate a <tactic> for verification

theorem factorize_denominator : ∀ x : ℝ,
    denominator x = x^2 - 4 * x - 12 := by rfl
    _ = (x - 6) * (x + 2) := by ring

-- Verify the result

def verification_result : String :=
    if number_of_vertical_asymptotes = 2 then "verified"
    #eval verification_result -- Outputs "verified"

Lean Theorem Prover Verifier

Final Output

Step 1: Recall the condition of vertical asymptotes

Step 2: Factorise the denominator : 
The denominator is . To factorize ... (skip) ...
So the denominator is zero when  or .

Step 3: Factorize the numerator

Step 4: Check for cancellations  

Step 5: Count the vertical asymptotes:  ...  (skip) ...
Final Output: there are 2 vertical asymptotes

Step 2

Figure 3: An example of answer formalisation, where Lean prover verifies intermediate reasoning steps. For
simplicity, this is an abbreviation of the complete formalisation.

ematical topics, spanning domains such as simple
problem solving, algebra, number theory, geometry,
counting and probability, and calculus. In our setup,
we primarily focus on three core areas: problem
solving, algebra, and counting and probability.

2.2 Theorem Prover Verification

After generating the samples, we use gpt-4o and
chatgpt-4o-latest (Hurst et al., 2024) as two
primary models to generate solutions for the syn-
thetic questions. Subsequently, gpt-4o is used
for autoformalisation, after which the outputs are
passed to the theorem prover for validation. The
Theorem Prover Verification process is divided into
two stages: Question and Answer formalisation. A
detailed example of the process is shown in Ap-
pendix K.

2.2.1 Question Formalisation
In the question formalisation stage, each question is
formalised and verified by a theorem prover, serv-
ing as a filter for questions lacking clarity.

This process follows a four-phase approach,
starting with the original question (s0). In the first
phase (s1), we apply the CoMAT method (Leang
et al., 2024) to convert s0 into a symbolic repre-
sentation. The second phase (s2) involves autofor-
malisation, where the symbolic representation is
formalised and verified using a theorem prover.

To address the formalisation errors raised
by Yang et al. (2024b), which highlight the inher-
ent difficulty of question autoformalisation due to
the absence of definitive metrics for assessing cor-
rectness, we introduce the third phase (s3), Auto-
Informalisation, where the formalised statement is
translated back into natural language via gpt-4o.

This is followed by the final phase (s4), Alignment
Check, which uses a second gpt-4o verification
step to ensure alignment between s0 and s3. This
serves as a consistency check, confirming the cor-
rectness of the autoformalisation process.

Let Q denote the set of all generated questions.
The autoformalisation function s maps each ques-
tion q ∈ Q to its formal representation s(q):

s : Q→ S, s(q) = s4(q),

where S is the set of successfully validated ques-
tions and answers, and s4(q) is the final represen-
tation after the four-phase process. Questions that
do not fulfil the requirements, where s(q) ̸= s4(q),
are flagged as logically inconsistent or poorly for-
malised, and excluded from answer formalisation.

2.2.2 Answer Formalisation
During the answer formalisation stage, the model
transforms the model reasoning a(q) for each valid
question q ∈ Qvalid into a formal representation:

a′(q) = Formalise(a(q)).

It then verifies each step of the reasoning a′(q) us-
ing a theorem prover, confirming the validity of
each step. For instance, the model may perform
calculations or generate specific tactics to justify
its progression; these tactics are formally validated
by the theorem prover to ensure adherence to math-
ematical principles, as shown in Figure 3.

Let {a′i(q)} denote the sequence of proof steps
in a′(q). The verification process yields one of
three outcomes for each answer, a(q): (i) Verified:
if all steps are validated by the theorem prover. (ii)
False: if any step is refuted by the theorem prover.
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LLM (A) LLM (B) Action

Verified (1) Verified (1) SFT

Verified (1) False (0) DPO

False (0) False (0) Dispose

Table 1: If both model responses are verified as correct,
they are incorporated into the training process via SFT.
Conversely, if one response is verified as correct while
the other is rejected, the dataset is processed using DPO.
Detailed analyses for this selection are discussed in §4.4.

(iii) error: if the autoformalisation failed to execute
through the theorem prover. Formally:

A(q) =





1 if ∀i,TP(a′i(q)) = verified,
0 if ∃i,TP(a′i(q)) = false,
error if ∃i,TP(a′i(q)) = error.

Any answer resulting in false is either removed
from the synthetic dataset or kept for RLTPF, as
detailed in Table 1, whereas the error will undergo
iterative autoformalisation for further refinement.
By formalising both questions and answers and rig-
orously verifying them, we ensure that the overall
reasoning chain complies with mathematical logic
and standards, thus enhancing the dataset quality.

2.2.3 Iterative Autoformalisation
While the formalisation process may introduce er-
rors in initial iterations, we propose iterative aut-
oformalisation, an approach in which the model
learns from its errors during the autoformalisation
process (Algorithm 1). Our approach concentrates
on mathematical autoformalisation, correcting each
individual step, prompting the model to revise and
reverify the autoformalisation using theorem prover.
This iterative process reflects the nature of formal-
isation, as even human experts require multiple
attempts to correctly formalise complex problems.
The model may need to experiment with different
definitions, refine assumptions, or attempt partial
proofs to identify missing conditions. We show that
iterative refinement improves the execution rate of
the Lean prover formalisation code from 60% to
87% after up to five iterations.

2.3 Reinforcement Learning from Theorem
Prover Feedback (RLTPF)

In conventional RLHF, human evaluators provide
structured feedback to help the model distinguish

Algorithm 1 Iterative Autoformalisation
1: Input: Answer a, Verifier P
2: Derive formal proof A(a) from a
3: Initialize retry counter r ← 0, maximum re-

tries R← 5
4: Initialize result← unknown, error← None

5: while r < R do
6: for each step Ti ∈ A(a) do
7: Set s← P (Ti)
8: if s = verified then
9: result← verified

10: break
11: else if s = false then
12: result← false

13: break
14: else
15: error← s
16: Transmit error and formal proof

A(a) to the model for refinement
17: break
18: end if
19: end for
20: if result ∈ {verified, false} then
21: break
22: end if
23: r ← r + 1 ▷ Increment retry count
24: Refine A(a) using feedback from error
25: end while
26: Output: result∈ {verified, false, error}

between valid and invalid reasoning. By contrast,
RLTPF replaces human evaluators with a theorem
prover, which verifies each formalised reasoning
step. In our framework, the theorem prover cat-
egorises training data based on verification out-
comes, ensuring the model learns from both val-
idated reasoning patterns and cases requiring re-
finement. Specifically, when both the LLMs gen-
erate answers verified by the theorem prover, the
corresponding dataset is used for Supervised Fine-
Tuning (SFT). When one LLM produces a correct
response while the other generates an incorrect one,
the paired dataset is used for Direct Preference Op-
timisation (DPO). The model is then trained with
SFT on verified data before undergoing further op-
timisation with DPO using the paired dataset. De-
tails for the dataset allocation are shown in Table 1.
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3 Experimental Setup

SIMQA Our initial training dataset, Synthetic
Induced Mathematical Question Answering
(SIMQA) comprises 3,508 samples, of which
1,876 are synthetically generated from GSM8K
and 1,632 from MATH. Details on the dataset
breakdown and configurations are in Appendix A,
and few-shot examples in Appendix H.

Evaluation Datasets. We evaluate on a di-
verse set of mathematical benchmarks, includ-
ing SVAMP (Patel et al., 2021), GSM8K (Cobbe
et al., 2021), MultiArith (Roy and Roth, 2015)
GSMSymbolic-p1 (Mirzadeh et al., 2024), MATH-
500 (Hendrycks et al., 2021), AQUA (Ling et al.,
2017), AIME (2024), OlympiadBench (He et al.,
2024) datasets. Due to computational constraints,
we evaluate only the first 500 samples from
GSMSymbolic-p1.

Base Models and Setup. To demonstrate the ef-
fectiveness and generalisability of our approach,
we apply it across a variety of LLMs, including
Llama-2-7b-chat-hf (Touvron et al., 2023), Llama-
3.2-3B-Instruct, Llama-3.1-8B-Instruct (Dubey
et al., 2024), OLMo-2-1124-7B-Instruct (OLMo
et al., 2025), and Mistral-7B-Instruct-v0.3 (Jiang
et al., 2023a). These models were selected as rep-
resentative general-purpose single-task language
models (SLMs) without specific specialisation in
mathematical reasoning tasks. As part of our train-
ing pipeline, we use Low-Rank Adaptation (LoRA;
Hu et al. 2022) as our fine-tuning baseline to im-
prove computational efficiency. Details on hyper-
parameters are provided in Appendix B.

Baselines Since the model focuses on mathemati-
cal reasoning, we compare it against three baselines
using the same decoding strategy: greedy decod-
ing, where the most probable next token is selected.
The baselines include: (1) Standard Prompting,
which follows a similar prompt to that in the Holis-
tic Evaluation of Language Models (HELM; Liang
et al., 2022), where the model is instructed to pro-
vide the answer without any reasoning; (2) CoT
Prompting (Wei et al., 2022), and (3) Model Train-
ing, which involves performing RLTPF training
on 3,508 samples from the synthetic dataset. The
prompts for (3) follow the same template as those
in (2) to ensure a fair comparison.

Benchmarks We compare GSM8K and
AIME dataset across existing models, including

DeepSeekMath (Shao et al., 2024), fine-tuned
on an extensive dataset comprising 120B mathe-
matical tokens; NuminaMath (Li et al., 2024a),
fine-tuned on over 860k mathematical problem-
solution pairs using the DeepSeek-Math-7B-Base
model; OpenMath2 (Toshniwal et al., 2024),
fine-tuned Llama-3.1-8B-Base with a significantly
larger corpus of 14M problem-solution pairs; and
Mathstral-7B (The Mistral AI Team, 2024).

Evaluation Metrics We report Pass@1 accu-
racy as the primary evaluation metric for all base-
lines. The answers were parsed based on an exact
match. For answers where exact matching failed,
we parsed the numerical values from the model’s fi-
nal response and compared them against the ground
truth. For the MATH-500, AIME, and Olympiad-
Bench datasets, we adopt a similar evaluation strat-
egy to Leang et al. (2024). We use gpt-4o-mini to
assess answer alignment by comparing the last two
output sentences to the ground truth, generating a
numerical score (1 or 0) without revealing the ques-
tion. Further details can be found in Appendix D.

4 Experimental Results

4.1 Main Results
Table 2 compares the performance of TP-as-a-
Judge, CoT prompting, and the standard baseline
across various mathematical benchmarks. TP-as-a-
Judge consistently outperforms traditional CoT on
most datasets, demonstrating the effectiveness of
the synthetic data generation method.

Among Llama models (Llama-2-7B, Llama-3.2-
3B, and Llama-3.1-8B), we observe that while
CoT improves accuracy over the standard base-
line, TP-as-a-Judge further enhances performance.
In particular, Llama-3.1-8B shows a notable in-
crease in GSM-Symbolic (55.60%→ 58.20%) and
AQUA (53.54%→ 57.09%). Llama-2-7B exhibits
substantial improvements in MultiArith (39.44%
→ 59.44%), SVAMP (38.00% → 44.00%), and
GSM8K (10.33%→ 16.70%), while Llama-3.2-3B
demonstrates an improvement in GSM-Symbolic
(55.80%→ 59.60%). Our empirical findings sug-
gest that the incremental gains from additional
model training diminish as models progress from
Llama-2 to Llama-3.1 to Llama-3.2. Nevertheless,
these results indicate that synthetic data derived
solely from GSM8K and MATH generalises well
across a range of benchmarks. Notably, even on
AQUA, multiple-choice task performance is en-
hanced through the inclusion of synthetic data.
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Model ↓ Tasks → MultiArith SVAMP GSM8K GSM-Symbolic AQUA MATH-500 AIME 2024 OlympiadBench

Llama-3.1-8b 39.44% 65.67% 11.54% 1.80% 22.83% 13.00% 10.00% 3.12%
+ CoT 97.78% 88.33% 82.38% 55.60% 53.54% 44.00% 10.00% 20.03%
+ RLTPF 97.78% 88.67% 83.75% 58.20% 57.09% 46.00% 10.00% 19.88%

Llama-3.2-3b 30.00% 54.67% 8.58% 1.60% 8.80% 11.04% 3.33% 11.04%
+ CoT 97.78% 80.67% 75.93% 55.80% 42.60% 42.60% 10.00% 12.46%
+ RLTPF 98.33% 81.67% 77.22% 59.60% 45.00% 45.00% 13.33% 14.24%

Llama-2-7b 30.00% 54.67% 8.58% 1.60% 8.27% 8.80% 0.00% 4.15%
+ CoT 39.44% 38.00% 10.33% 10.60% 18.11% 2.60% 0.00% 1.93%
+ RLTPF 59.44% 44.00% 16.70% 13.20% 18.50% 3.20% 0.00% 1.93%

Mistral-7b 15.00% 48.67% 8.20% 3.40% 20.08% 6.40% 10.00% 2.97%
+ CoT 62.22% 51.67% 37.36% 28.40% 27.95% 16.20% 10.00% 2.08%
+ RLTPF 67.78% 52.00% 36.52% 31.60% 27.95% 15.00% 10.00% 2.23%

OLMo-2-7b 27.78% 52.00% 11.92% 5.00% 20.08% 10.80% 0.00% 3.71%
+ CoT 98.33% 81.33% 79.73% 58.40% 40.94% 33.20% 3.33% 11.28%
+ RLTPF 98.33% 81.67% 80.18% 59.20% 42.13% 33.20% 6.67% 11.57%

Table 2: Performance comparison of models across various mathematical reasoning benchmarks. We evaluate
TP-as-a-Judge augmented with RLTPF against direct answering and CoT-based methods.

Model GSM8K AIME 2024

Llama-3.2-3b 8.58% 3.33%
+ CoT 75.93% 10.00%
+ RLTPF 77.22% 13.33%

Llama-3.1-8b 11.54% 10.00%
+ CoT 82.38% 10.00%
+ RLTPF 83.75% 10.00%

Mathstral-7B 77.10% 6.67%
NuminaMath 79.30% 0.00%
DeepSeekMath-Instruct 82.90% N/A
OpenMath-2 84.20% 6.67%

Table 3: Comparison of TP-as-a-Judge against existing
benchmarks. ‘N/A’ signifies that the model results are
not publicly available.

For Mistral-7B and OLMo-2-7B, we observe
consistent improvements across most benchmarks.
In particular, OLMo-2-7B demonstrates progress
across all evaluated tasks, whereas Mistral-7B ex-
hibits a 0.84% decrease on GSM8K and 1.2% de-
crease on MATH; however, it achieves an improve-
ment of 3.2% on GSM-Symbolic.

Generally, our observations reveal a substantial
gap between the standard baseline and CoT reason-
ing, thereby demonstrating the importance of inter-
mediate reasoning in mathematical tasks. Statistics
and consistency check can referred to Appendix C.
Older models, such as Mistral-7B and Llama-2-7B,
struggle on the MATH-500 dataset, while more
advanced models exhibit stronger reasoning capa-
bilities and achieve higher accuracy.

With RLTPF applied to a dataset of only 3,508

samples, TP-as-a-Judge achieves a competitive
benchmark against the other synthetic data gen-
eration models, all of which were fine-tuned with
substantial mathematical datasets. Llama-3.1-8B,
when augmented with RLTPF, has outperformed
most of the models, although it remains slightly be-
hind OpenMath-2 on GSM8K. Meanwhile, Llama-
3.2-3B with RLTPF has achieved the highest per-
formance on the AIME 2024 benchmark. These
results suggest that leveraging RLTPF and TP-as-a-
Judge can provide performance gains comparable
to large-scale fine-tuning while maintaining com-
putational efficiency, showcasing the importance of
high-quality intermediate reasoning steps on syn-
thetic data. The results are summarised in Table 3.

Overall, our results demonstrate the potential
of TP-as-a-Judge in ensuring data quality and the
importance of intermediate reasoning in mathemat-
ical problem-solving. Although SIMQA comprises
only 3,508 samples, it outperforms models fine-
tuned with larger samples of standard synthetic
data, highlighting the significance of verifying in-
termediate reasoning. Increasing the dataset size
could potentially improve model performance.

4.2 Analysis

We conduct an analysis on the effectiveness of TP-
as-a-Judge in verifying model solution. We anal-
yse the effectiveness of TP-as-a-Judge in verifying
model solutions by extracting 2,000 samples from
the SIMQA dataset, using GSM8K as the few-shot
example. Our analysis revealed that 30% of these
samples failed during the question formalisation
stage, potentially classified as poor question clar-
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23.1%

5.4% 30.8%

40.8%

Question Formalisation Error
Answer Formalisation Error
OK (verified)
OK (false)

Figure 4: Analysis of synthetic data generation, includ-
ing Question and Formalisation Error. OK represents a
successful verification, classifying into verified or false.

ity. Among the remaining 70%, approximately 5%
exhibited execution errors from the Lean prover
during the answer formalisation stage (Figure 4).

We then randomly sampled 54 successfully exe-
cuted cases for manual annotation and evaluate the
performance of gpt-4o, o1, and o3-mini on these
annotated questions. As shown in Table 5, while
the models achieve high accuracy on the GSM8K
dataset, their performance declines significantly
when answering synthetic questions. This high-
lights a significant gap in the models’ ability to
handle self-generated questions, demonstrating the
importance of theorem prover for verification, and
the potential gap of existing LLMs in mathemati-
cal reasoning. Details of autoformalisation break-
down can be referred to Appendix G, and detailed
examples of manual annotations can be found in
Appendix I.

To further investigate, we examine a fundamen-
tal question: How effective is theorem prover for-
malisation in verifying reasoning chains? As
shown in Table 4, TP-as-a-Judge achieves an F1
score of 0.87 and a Recall of 0.91 in correctly ver-
ifying reasoning steps. In contrast, using o1-mini
as an LLM-based judge without a theorem prover,
while achieving 94.80% accuracy on GSM8K, re-
sults in a significantly lower F1 score of 0.72 and
a Recall of 0.78. This leads to a 2x increase in
False Positives, potentially degrading dataset qual-
ity. These results demonstrate the robustness of
iterative autoformalisation within the Lean prover
and highlight TP-as-a-Judge’s effectiveness in vali-
dating intermediate reasoning steps.

4.3 Robustness to Iterative Autoformalisation

Given the strong performance of iterative autofor-
malisation, we explore another key aspect: How
many iterations are required for the model to im-
prove its autoformalisation? To do this, we analyse

Pred. → TP-as-a-Judge o1-mini
Act. ↓ 1 0 1 0

1 32 3 25 7

0 5 14 12 10

Table 4: Comparison of confusion matrices for
TP-as-a-Judge with gpt-4o formalisation, and
o1-mini as LLM-as-the-judge, where Act represents
Actual Results, Pred represents Predicted Results, 1 rep-
resents verified, and 0 represents false.

Model Accuracy (%)

GSM8K

gpt-4o 94.46
o1-mini 94.80

GSM8K-Synthetic

gpt-4o 51.85
o3-mini 64.00
o1 67.00

Table 5: Accuracy of gpt models on GSM8K and
GSM8K-SIMQA dataset.

356 samples from the dataset. We find that approxi-
mately 40% require iterative refinement to enhance
formalisation (Appendix E). Notably, most success-
ful autoformalisations that require iterative autofor-
malisation are achieved by the third iteration, indi-
cating that multiple rounds of error correction sig-
nificantly benefit the model. In a minority of cases,
more than three iterations are necessary to reach a
correct autoformalisation. Instances requiring more
iterations often fail, even after seven attempts. By
leveraging verification-based self-correction, the
model improves its autoformalisation through an
iterative cycle. This demonstrates the importance
of structured feedback in enhancing the robustness
of formal proofs, ensuring that logical errors are
systematically identified and resolved.

To further analyse the robustness of iterative
autoformalisation, we manually inspected ten ran-
domly sampled examples. We observed that errors
were typically caused by an incorrect theorem or
tactic generated by Lean, or by the model produc-
ing invalid Lean syntax, and generally required
one or two further iterations to rectify. Feedback
from Lean via iterative autoformalisation allows
the model to refine both the syntax and the choice
of theorem, thereby correctly verifying each rea-
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Iteration Average Sequence Length

1 731.2
2 869.1
3 937.6
4 1134.6
5 1343.0

Table 6: Average sequence length per iteration.

soning step. This potentially enables the model to
analyse reasoning in terms of intermediate steps
rather than as a whole, and to verify the intermedi-
ate steps of complex proofs accurately.

Based on Table 6, we can conclude that the num-
ber of iterations exhibits a strong positive corre-
lation with sequence length (measured in tokens),
since more complex reasoning naturally produces
longer token sequences (Muennighoff et al., 2025).
As the iteration count increases, the method ac-
commodates increasingly intricate reasoning cases,
which may mitigate bias towards simpler instances.

4.4 Effectiveness of RLTPF in TP-as-a-Judge

We conduct a more detailed analysis to determine
which components of the proposed framework con-
tribute to performance improvement and to evaluate
the effectiveness of theorem prover in this process.

As shown in Table 7, performing SFT using
all possible training instances achieves the high-
est accuracy among SFT, as it uses a large num-
ber of samples. Meanwhile, using only rejected
instances results in lower accuracy compared to
using only verified instances. This implies that
the Theorem Prover provides an effective inductive
bias for learning, but SFT fails to fully leverage it.

To address this issue, the proposed RLTPF (§2.3)
enables more efficient training by assigning differ-
ent preferences to verified instances and rejected in-
stances, achieving the highest accuracy among the
tested approaches. Interestingly, SFT with all in-
stances showed degraded performance when com-
bined with RLTPF. This is likely due to a conflict
between SFT, which was trained with a focus on
all instances including rejected ones, and RLTPF,
which learns preferences between rejected and ver-
ified instances. This finding validates the dataset
allocation criteria established in Table 1 and §2.3.

5 Related Work

Math Data Synthesis Advancements in mathe-
matical reasoning for LLMs increasingly rely on

Model GSM8K (Acc.)

Llama-3.1-8b 11.54%
+ CoT 82.38%

Supervised Fine-Tuning (SFT)

All Instances 82.23%
Only Rejected Instances 80.87%
Only Verified Instances 81.55%

RLTPF

SFT (All) + RLTPF 79.60%
SFT (Only Verified) + RLTPF 83.75%

Table 7: Performance comparison of different training
strategies on SIMQA with Llama-3.1-8B model. In SFT,
the dataset used for training is classified based on the
theorem prover’s verification results §2.2.

high-quality CoT datasets, often distilled from fron-
tier models (Guo et al., 2025; Wang et al., 2024b;
Gou et al., 2024b; Luo et al., 2024; Yu et al.,
2024; Tang et al., 2024), such as NuminaMath (Li
et al., 2024a) and OpenMathInstruct (Toshniwal
et al., 2024). Nevertheless, even solvable prob-
lems may contain error-prone intermediate reason-
ing steps, which are inherently challenging to de-
tect. Although rejection sampling methods (Yuan
et al., 2023; Brown et al., 2024) can improve
data quality by filtering out less reliable outputs,
they do not guarantee the correctness of interme-
diate steps. Consequently, the benefits of scaling
CoT datasets exhibit diminishing returns, with per-
formance gains nearing saturation. For instance,
OpenMathInstruct reported only a 3.9% improve-
ment on the MATH dataset despite an 8× increase
in dataset size. Recently, STaR (Zelikman et al.,
2022), Lean-STaR (Lin et al., 2024) and rStar-
Math (Guan et al., 2025), have been proposed.
These approaches rely on generating multiple roll-
outs and trajectories for verification and synthesis.

Theorem Proving and Autoformalisation Mod-
ern formal mathematics environments typically
centre on theorem provers, such as Lean (Jiang
et al., 2024; Lin et al., 2024), Isabelle (Zhou et al.,
2024; Wang et al., 2024a) and Coq (Huet et al.,
1997). These systems have been widely used to
verify complex mathematical results, including the
Liquid Tensor Experiment (Castelvecchi, 2021),
the formalisation of the PER conjecture (Gowers
et al., 2023), and efforts to formalise graduate-level
number theory (Eberl et al., 2024). The Draft-
Sketch-Prove (Jiang et al., 2023b) approach en-
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hances language models’ formal proving abilities
by generating informal proofs, translating them
into formal sketches, and completing them with
symbolic tools.

6 Conclusion

We propose Theorem Prover as a Judge (TP-as-a-
Judge), a framework for synthetic data generation
that ensures the correctness of intermediate rea-
soning steps. TP-as-a-Judge comprises three main
stages: synthetic data generation, theorem prover
verification, and Reinforcement Learning from the-
orem Prover Feedback (RLTPF). Synthetic data
generation includes question and answer formalisa-
tion, a process that is inherently challenging and of-
ten leads to execution errors in the theorem prover.
To address this, we introduce iterative autoformali-
sation, which incrementally refines the model’s aut-
oformalisation until a correct execution is achieved.
We mitigate question formalisation errors by in-
corporating Auto-Informalisation and Alignment
Check, reducing autoformalisation errors within the
synthetic dataset generation and improving verifi-
cation consistency. RLTPF involves TP-as-a-Judge
separating the dataset into two subsets: one for SFT
and another for DPO. The model is then trained
sequentially through SFT followed by DPO. TP-
as-a-Judge with RLTPF enhances model accuracy
using only 3,508 samples, achieving results compa-
rable to those obtained with large samples. Despite
its simplicity, TP-as-a-Judge presents a promising
direction using autoformalisation for improving
mathematical reasoning in LLMs.

Limitations

While TP-as-a-Judge demonstrates strong capabil-
ities in verifying intermediate reasoning for syn-
thetic data generation, it has several limitations.
Firstly, theorem prover verification is highly effec-
tive in mathematical reasoning but remains chal-
lenging in other domains, making its extension
beyond mathematics an open research question.
While formalisation enhances verification com-
pared to standard methods, it is not flawless, re-
quiring further refinement for broader applicabil-
ity. Secondly, our current implementation primar-
ily focuses on algebra, counting, probability, and
problem-solving datasets. Expanding to additional
mathematical areas could improve generalisation
and model performance. Thirdly, dataset complex-
ity is limited by the LLM’s ability to reliably solve

problems. When generating more challenging prob-
lems, the model often fails, restricting the complex-
ity of synthetic data and preventing the creation
of more advanced mathematical questions. Next,
computational constraints limit scalability, partic-
ularly for models exceeding 8 billion parameters,
requiring substantial resources for large-scale veri-
fication and training. Finally, the iterative nature of
formalisation incurs a high computational cost, as
multiple refinement cycles are needed to ensure cor-
rect execution. Addressing these challenges would
enable more efficient and scalable synthetic data
generation.
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A Detailed Breakdown of Dataset

The dataset breakdown is presented in Table 8. It
comprises 2,562 samples for SFT and 473 pairs (a
total of 946 samples) for DPO training, resulting
in an overall count of 3,508 samples. Based on the
datasets generated, Theorem Prover as a Judge is
generalisable to various domains within mathemat-
ics, and iterative autoformalisation has increased
its generalszability across domains, covering areas
such as arithmetic, number theory, algebra, and
others. However, in domains beyond mathematics,
iterative autoformalisation may be ineffective. Ad-
ditional analysis of each component’s of Theorem
Prover as a Judge contribution to dataset creation
can be referred to Appendix G.

A.1 SIMQA dataset Creation Details

In creating our datasets, we use OpenAI gpt-4o
models, which include gpt-4o-2024-08-06 and gpt-
4o-2024-11-20 and ChatGPT-4o-latest alternatively
for the SIMQA synthetic dataset creation pro-
cess. For API details regarding gpt-4o, please
refer to https://platform.openai.com/docs/
models/gpt-4o.

A.2 Generation Parameters

The SIMQA synthetic dataset is generated under
the following parameter settings:

• Temperature: 0.0 (greedy decoding)

• Maximum Tokens: 3500

A.3 Experimental Settings

To ensure consistency across dataset generation,
we adopt different prompting strategies for various
tasks:

• LLM-Generated Questions: All questions
are generated using a few-shot setting. The
specific few-shot examples are provided in
Section H.

• LLM-Generated Answers: All answers are
generated using a zero-shot setting.

• Theorem Prover Formalisation: A 10-shot
setting is applied for GSM8K, while an 8-shot
setting is used for MATH (Algebra), and a
6-shot setting for MATH (Counting and Prob-
ability).

A.4 Cost for Dataset Creation

The dataset creation process incurs a cost of ap-
proximately $50 for generating 300 samples, av-
eraging $0.60 per sample. However, the total ex-
pense varies depending on the number of iterations,
with fewer iterations potentially reducing costs. All
Lean Prover verifications were conducted on a local
machine.

B Details on hyperparameters Tuning

For RLTPF, we use a two-stage training strategy
consisting of one epoch of Supervised Fine-Tuning
(SFT) followed by three epochs of Direct Prefer-
ence Optimisation (DPO) for reinforcement learn-
ing. Our hyperparameter selection was configured
in a similar way with DPO (Rafailov et al., 2023),
using the default seed (seed=42), and a slight con-
figuration in the learning rate, as shown below:

Supervised Fine-Tuning (SFT) The initial fine-
tuning phase uses a batch size of 4 per device, with
gradient accumulation over 16 steps, effectively
increasing the batch size to 64. We adopt a linear
learning rate scheduler with an initial learning rate
of 3 × 10−5 and a warmup phase of 150 steps.
To improve training stability, we apply gradient
clipping with a maximum norm of 0.3 and enable
gradient checkpointing to reduce memory overhead.
The optimisation strategy uses RMSprop, and we
save model checkpoints at the end of each epoch.

Reinforcement Learning from Theorem Prover
Feedback (RLTPF) For the reinforcement learn-
ing phase, we adopt a DPO-based RL approach.
Training is conducted over three epochs with a
batch size of 2 per device, accumulating gradients
over 32 steps to achieve an effective batch size of
64. The learning rate remains at 3 × 10−5, but
we switch to a cosine learning rate scheduler to
facilitate smoother convergence. We continue us-
ing RMSprop as the optimiser and apply the same
gradient checkpointing strategy. To regulate policy
updates, we set the DPO regularisation parameter
(β) to 0.1, ensuring stable policy updates while
maintaining alignment with human preferences.

Evaluation and Checkpointing Model perfor-
mance is evaluated at fixed intervals, with logging
conducted every 10 to 30 steps, depending on the
training phase. The evaluation strategy is based on
step-wise validation, and models are stored at the
end of each epoch.
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Category Number of Samples for SFT Number of Samples for DPO (pairs)

GSM8K 1500 188

Algebra 542 185

Counting & Probability 512 86

Others 8 14

Total 2562 473

Table 8: Distribution of labeled datasets for model training.

Computational Resources for Model Training
and Evaluation All experiments were conducted
using 2 80-GB A100 GPUs.

C Consistency Check

We conducted a consistency check by evaluat-
ing three runs of llama-3.2-3b-instruct and
llama-3.1-8b-instruct using different random
seeds (seed 42, seed 2103 and seed 1234). The re-
sults, summarised in Tables 9 and 10, indicate that
the average accuracy remains stable across runs,
with relatively low standard deviation. However,
GSM8K-Symbolic and AIME exhibit higher stan-
dard deviation, suggesting that the true accuracy
may be higher than the reported values.

A consistent trend is observed across both
models, though CoT in llama-3.1-8b-instruct
slightly outperforms the average attempt, while
llama-3.2-3b-instruct shows a marginal ad-
vantage on SVAMP. Due to computational con-
straints, our evaluation is limited to these two mod-
els. Nevertheless, the results reinforce their robust-
ness and stability across different runs.

D Evaluation Metrics

Similar to (Leang et al., 2024), the majority of our
datasets use exact match as our evaluation met-
rics. For the OlympiadBench datasets, where exact
match is not a suitable evaluation metric, we used
the gpt-4o-mini model as a benchmark to assess
how closely the answers of the model aligned with
the ground truth. To prevent the model from gener-
ating reasoning that could influence its decision, we
input only the final three sentences, which typically
contain both the answer and the correct solution.
The task was to determine whether these two ele-
ments matched, without providing any intermediate
reasoning. The prompt is shown below:

E Iterative Autoformalisation

Based on Figure 6, we observe that 50% of auto-
formalisation attempts require multiple iterations
to produce a correct autoformalisation that can be
successfully evaluated by the Lean prover. This
demonstrates the significance of iterative autofor-
malisation in refining reasoning steps. Notably,
the majority of cases are resolved by the third it-
eration, while a subset of more complex instances
requires up to five iterations. These findings high-
light the potential of iterative autoformalisation as
a robust mechanism for bridging the gap between
autoformalisation and LLM Reasoning, with fur-
ther refinements offering promising avenues for
improvement.

F Dataset Details

URL and Licenses

• SVAMP (Patel et al., 2021): https://
github.com/arkilpatel/SVAMP, License:
SVAMP License

• MultiArith (Roy and Roth, 2015): https:
//huggingface.co/datasets/ChilleD/
MultiArith/viewer/default/test, li-
cense: CC BY 4.0.

• GSM8K (Cobbe et al., 2021):
https://huggingface.co/datasets/
openai/gsm8k, License: GSM8K License

• GSM-Symbolic (Mirzadeh et al., 2024):
https://huggingface.co/datasets/
apple/GSM-Symbolic, License: GSM-
Symbolic License

• AQUA (Ling et al., 2017): https:
//github.com/google-deepmind/AQuA,
also available on HuggingFace:
https://huggingface.co/datasets/
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Llama-3.1-8b MultiArith SVAMP GSM8K GSM-Symbolic-500 MATH-500 AIME

Original Attempt 97.78% 88.67% 83.75% 58.20% 46.00% 10.00%

Second Attempt 98.33% 85.33% 83.68% 66.80% 46.00% 20.00%

Third Attempt 97.22% 88.00% 83.45% 63.80% 46.00% 10.00%

Average Attempt 97.78% ± 0.56 87.33% ± 1.77 83.63% ± 0.16 62.93% ± 4.37 46.00% ± 0.00 13.33% ± 5.77

Original CoT 97.78% 88.33% 82.38% 55.60% 44.00% 10.00%

Table 9: Performance comparison of Llama-3.1-8b on various benchmarks.

Llama-3.2-3b MultiArith SVAMP GSM8K GSM-Symbolic-500 MATH-500 AIME

Original Attempt 98.33% 81.67% 77.22% 59.60% 46.00% 13.33%

Second Attempt 98.89% 80.33% 75.09% 55.80% 44.00% 13.33%

Third Attempt 98.89% 81.00% 76.84% 56.20% 44.80% 10.00%

Average Attempt 98.70% ± 0.32 81.00% ± 0.67 76.38% ± 1.14 57.20% ± 2.09 44.93% ± 1.01 12.22% ± 1.92

Original CoT 98.89% 80.67% 75.97% 56.00% 44.00% 10.00%

Table 10: Performance comparison of Llama-3.2-3b on various benchmarks.

deepmind/aqua_rat/viewer/raw/test,
License: AQUA License

• MATH (Hendrycks et al., 2021):
https://huggingface.co/datasets/
HuggingFaceH4/MATH-500, License: MATH
License

• AIME-2024: https://huggingface.
co/datasets/Maxwell-Jia/AIME_2024,
License: AIME-2024 License

• OlympiadBench (He et al., 2024):
https://huggingface.co/datasets/
Hothan/OlympiadBench/tree/main, Li-
cense: OlympiadBench License

G Breakdown of Theorem Prover as a
Judge

Autoformalisation presents inherent challenges due
to the difficulty of ensuring that autoformalised
questions align with their original counterparts.
Most recent works involve multiple calls to LLMs
and expensive automated theorem proving tech-
niques (Li et al., 2024b; Poiroux et al., 2024). Sim-
ilarly, our generated pipeline is crucial at each step,
as components either facilitate correct formalisa-
tion (e.g., CoMAT during question formalisation)
or ensure verification accuracy (e.g., alignment
checks).

The decomposition into question and answer for-
malisation is based on existing theorem provers, as
research demonstrates that question formalisation

improves answer verification. Each aspect of our
theorem prover-as-judge approach has been care-
fully curated to enhance autoformalisation and data
quality.

Autoformalisation is an inherently challenging
problems due to the difficulty of ensuring that auto-
formalised questions align with their original coun-
terparts. Our generated pipeline is crucial at each
step because components either facilitate correct
formalisation (e.g., CoMAT (Leang et al., 2024)
during question formalisation) or ensure verifica-
tion accuracy (e.g., alignment check). The decom-
position into question and answer formalisation
is based on existing theorem provers (Jiang et al.,
2023b), as research shows question formalisation
improves answer verification. Each aspect of theo-
rem prover as judge has been carefully curated to
enhance autoformalisation and data quality.

Within the question-formalisation phase
(S1,2,3,4), the CoMAT step, S1 improves per-
formance by approximately 20%, while our
autoformalisation component, S2 enhances answer
formalisation. Auto-Informalisation, S3 and
alignment checks S4 serve as metrics to verify
that CoMAT and autoformalisation are performed
correctly. This additional layer is essential as there
are no definitive metrics to validate question for-
malisation correctness. Misalignments potentially
caused by errors may result in disposal before
proceeding to answer formalisation. Removing
any component could compromise data quality (eg.
omitting CoMAT may reduce autoformalisation by
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System Message:
You are a decider that decides whether the answer is the same as the correct answer. If the output doesn’t align with the
correct answer, respond with ’0’, whereas if it’s correct, then respond with ’1’. DO NOT PROVIDE YOUR OWN
ANSWER OR REASONING, JUST SELECT ‘0’ OR ‘1’.

User Message:
gpt-4o Result: {gpt_result}
Correct Answer: {correct_answer}.
Answer with 0 (Wrong) or 1 (Correct).

Figure 5: gpt-4o evaluation prompt.

Category Subcategory Error (%)

Question Formalisation
Autoformalisation Error
Alignment Check Error

13.10
10.00

Answer Formalisation — 5.40

Table 11: Error rates for each component of the autoformalisation pipeline.
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Figure 6: Number of iterations for the GSM8K-
Synthetic dataset.

20%, while eliminating alignment checks might
allow incorrect but seemingly verified autofor-
malisation to progress to answer formalisation,
affecting the verification of model reasoning.

As shown in Figure 4, 23.10% of total sam-
ples resulted in question formalisation error, 5.4%
in answer formalisation error, while the remain-
ing 71.50% were categorised as verified or false.
The detailed breakdown of filtering components is
shown in Table 11. While we have not analysed
CoMAT, it could potentially be evaluated using
alignment check as well. These statistics provide
clear analysis of each component.

H Few-shot Examples for Synthetic Data
Creation

In our experiments, we used the Reverse Question-
Answering method, which uses only the solution as
the few-shot example during synthetic data genera-
tion. This approach ensures that the model learns

to reconstruct problem statements solely from the
provided solutions.

Each question below (all from GSM8K and par-
tially from MATH) and its corresponding answer
are then formalised as a few-shot example for the
Lean prover formalisation.

I Manual Annotation Details

We conduct a manual annotation process to verify
the correctness of the theorem prover’s validations.
Manual annotation is performed by a mathematics
and statistics bachelor’s graduate, who is specifi-
cally instructed to solve the mathematical problems.
To ensure consistency in manual verification, we
randomly sampled 54 instances from the GSM8K-
synthetic dataset (see examples in Appendix J).
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Few Shot Examples for GSM8K

Question

Sara babysits the neighbor’s kids 4 times, earning $5 each time she babysits them. Her parents pay
her $4 each time she mows the lawn. If Sara already had $10 saved before she started babysitting,
how many times must she mow the lawn before she can afford the jacket and shoes?

Solution

Both pairs of shoes will cost a total of 2 ∗ $20 = $ << 2 ∗ 20 = 40 >> 40. Sara will need to
save a total of $30 + $40 = $ << 30 + 40 = 70 >> 70 to buy everything that she wants. Sara
has earned 4 ∗ $5 = $ << 4 ∗ 5 = 20 >> 20 from babysitting. Between her savings and the
babysitting, Sara has already saved $10 + $20 = $ << 10 + 20 = 30 >> 30. Sara needs to
earn an additional $70 − $30 = $ << 70 − 30 = 40 >> 40 from mowing the lawn to afford
her clothes. Sara must mow the lawn $40/$4 =<< 40/4 = 10 >> 10 times to afford to buy the
jacket and shoes. #### 10

Question

Adrien’s total salary was 30 percent higher than Lylah’s. Four years later, his salary had increased,
and he was earning 40% more than what he was making four years ago. If Adrien’s and Lylah’s
salary increased simultaneously, and Adrien earned $40000 four years ago, calculate the total
salary the two were receiving four years later?

Solution

Since Adrien was earning $40000 four years ago and received a raise that makes him earn
40% more, he received a 40/100 ∗ $40000 = $ << 40/100 ∗ 40000 = 16000 >> 16000
raise. In total, four years later, Adrien’s salary is $40000 + $16000 = $56000 If four years
ago Adrien was earning $40000, and Lylah’s salary was 30% less, then Lylah’s salary was
30/100 ∗ $40000 = $12000 less than Adrien’s salary four years ago. Four years ago, Lylah
was earning $40000 − $12000 = $28000 After receiving a 40% raise, Lylah earns 40/100 ∗
$28000 = $ << 40/100 ∗ 28000 = 11200 >> 11200 In total, four years later, Lylah earns
$28000 + $11200 = $ << 28000 + 11200 = 39200 >> 39200. The total amount of salary the
two earn four years later is $39200 + $56000 = $ << 39200 + 56000 = 95200 >> 95200 ####
95200

Question

Carlos is planting a lemon tree. The tree will cost $90 to plant. Each year it will grow 7 lemons,
which he can sell for $1.5 each. It costs $3 a year to water and feed the tree. How many years will
it take before he starts earning money on the lemon tree?

Solution

He makes $10.5 selling lemons each year because 7 x 1.5 = «7*1.5=10.5»10.5 He earns $7.5 each
year from the lemon tree because 10.5 - 3 = «10.5-3=7.5»7.5 It will take 12 years to earn enough
to pay off the tree because 90 / 7.5 = «90/7.5=12»12 He will make money in year 13 because 12 +
1 = «12+1=13»13 #### 13
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Question

A company pays each of its employees $600 in a month. The company has a policy of increasing
the salaries of each of its employees by 10% of the initial salary every year for those who’ve stayed
in the company for five years. If Sylvie just clocked 5 years in the company last December, what’s
her annual salary after three more years of service?

Solution

In a month, Sylvie earns $600. which totals $600/month * 12 months/year = $7200 in a year. Sylvie
earnings will increase by 10/100 * $7200/year = $«10/100*7200=720»720/year after 5 years. In
three years, the total increase in her salary will be 3 years * $720/year = $«3*720=2160»2160
After three years, Sylvie will be paid $7200 + $2160 = $«7200+2160=9360»9360 #### 9360

Question

Howard spends $8 dollars at the arcade on Monday. On Tuesday, he spends twice as much at the
arcade as he did on Monday. On Wednesday, he spends 4 times as much at the arcade as he spent
on Tuesday. If he originally had $100, how much money does he have left?

Solution

On Tuesday, he spends $8 ∗ 2 = $ << 8 ∗ 2 = 16 >> 16. On Wednesday, he spends $16 ∗ 4 =
$ << 16 ∗ 4 = 64 >> 64. In total he spent $8 + $16 + $64 = $ << 8 + 16 + 64 = 88 >> 88
at the arcade. He has $100− $88 = $ << 100− 88 = 12 >> 12 left. #### 12

Question

While Joanne is gathering apples from her family’s orchard, her sister comes outside to help her.
Joanne gathers 30 apples from the tallest trees, half this amount from the shortest trees, and more
apples from the average trees. Compared with Joanne, her sister gathers twice as many apples
from the tallest trees and 3 times as many apples from the shortest trees. She doesn’t take any from
the average trees. If the sisters have gathered a combined total of 500 apples, how many apples did
Joanne gather from the average trees?

Solution

Joanna gathered 30 apples /2 =<< 30/2 = 15 >> 15 apples from the shortest trees. Her sister
gathered 30 apples ∗2 =<< 30 ∗ 2 = 60 >> 60 apples from the tallest trees. Her sister also
gathered 15 apples ∗3 =<< 15 ∗ 3 = 45 >> 45 apples from the shortest trees. In total, her
sister gathered 60 + 45 =<< 60 + 45 = 105 >> 105 apples. From the tallest and shortest trees,
Joanna gathered 30 + 15 =<< 30 + 15 = 45 >> 45 apples. So far, the sisters have a combined
total of 105 + 45 =<< 105 + 45 = 150 >> 150 apples. Therefore, Joanna must have gathered
500total apples−150apples so far =<< 500−150 = 350 >> 350 apples from the average trees.
#### 350

Question

Pauline visits her favorite local museum three times a year. The cost of one visit is $2. After 5
years, the cost of one visit has increased by 150%, but Pauline decided not to give up any visit and
continued to go to the museum for 3 more years. How much did Pauline spend on all visits to the
museum?
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Solution

Pauline visited the local museum 3 times a year, so she paid 3 ∗ 2 = $ << 3 ∗ 2 = 6 >> 6 every
year on visits. That means during the first 5 years Pauline spend 5∗6 = $ << 5∗6 = 30 >> 30 on
tickets. After 5 years the cost of one visit increased by 150/100∗2 = $ << 150/100∗2 = 3 >> 3.
That means the new price of the ticket was 2 + 3 = $ << 2 + 3 = 5 >> 5. So for per year
Pauline paid 3 * 5 = $ << 3 ∗ 5 = 15 >> 15. During the last 3 years, she paid in total
3∗15 = $ << 3∗15 = 45 >> 45. In total Pauline spend 30+45 = $ << 30+45 = 75 >> 75
on visits at the museum. #### 75

Question

Tim makes a special honey and jam mix. To make 1 jar of the mixture it takes 2 pounds of passion
fruit and 1.5 pounds of jackfruit. It also takes 2 pounds of special honey. The passion fruit costs $6
per pound, the jackfruit is $8 per pound, and the honey is $10 per pound. He sells each jar for $50.
How much profit does he make selling 10 jars?

Solution

The cost of the passion fruit is 2 ∗ 6 = $ << 2 ∗ 6 = 12 >> 12 The jackfruit cost 1.5 ∗ 8 = $ <<
1.5 ∗ 8 = 12 >> 12 The honey is 2 ∗ 10 = $ << 2 ∗ 10 = 20 >> 20 So the total cost for a jar
is 12 + 12 + 20 = $ << 12 + 12 + 20 = 44 >> 44 So the profit per jar is 50 − 44 = $ <<
50− 44 = 6 >> 6 So the total profit for 10 jars is 10 ∗ 6 = $ << 10 ∗ 6 = 60 >> 60 #### 60

Question

Stacy is a high school Calculus teacher. She assigns 45 problems for homework. There are twice
as many multiple choice problems as free response, and 7 more free response than true/false. How
many true/false questions are there?

Solution

Define a variable ** Let x represent the number of true/false questions How many free response
problems are there? ** Free response:x+ 7 How many multiple choice problems are there? **
Multiple choice: 2(x + 7) = 2x + 14 Write an equation ** Total:x + x + 7 + 2x + 14 = 45
Combine like terms ** 4x + 21 = 45 Subtract 21 from each side ** 4x = 24 Divide by 4 **
x =<< 6 = 6 >> 6 true/false questions #### 6

Question

Jamal works at a library shelving books. He has a cart full of books to put away in different
sections. In the history section, he shelves 12 books. In the fiction section, he shelves 19 books. In
the children’s section, he shelves 8 books but finds 4 that were left in the wrong place that he adds
to his cart to shelve elsewhere. He still has 16 books to shelve. How many books did he start with
in the cart?
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Solution

How many books did Jamal start with? ** Jamal started with B books in the cart. How many
books did Jamal have after the history section? ** He had B − 12 books after the history section.
How many books did Jamal have after the fiction section? ** He had B− 12− 19 = B - 31 books
after the fiction section. How many books did Jamal have after the children’s section? ** He had
B − 31− 8 + 4 = B − 35 books after the children’s section. How many books did Jamal have
left to shelve? ** He still had B - 35 = 16 books to shelve. How many books did Jamal start with?
** Thus, he started with B = 16 + 35 =<< 16 + 35 = 51 >> 51 books in the cart. #### 51

Few Shot Examples for MATH

Algebra

Question

How many vertical asymptotes does the graph of y = 2
x2+x−6

have?

Solution

The denominator of the rational function factors into x2 + x − 6 = (x − 2)(x + 3). Since the
numerator is always nonzero, there is a vertical asymptote whenever the denominator is 0, which
occurs for x = 2 and x = −3. Therefore, the graph has 2 vertical asymptotes.

Question

What is the simplified numerical value of a+11b
a−b if 4a+3b

a−2b = 5?

Solution

Let’s play with the given condition a little. Clearing out the denominator gives 4a + 3b =
5(a − 2b) = 5a − 10b. Selectively combine like terms by adding 9b − 4a to both sides to get

12b = a− b. This gives
12b

a− b
= 1.

Now, we want to find
a+ 11b

a− b
. Rewrite this as

a− b+ 12b

a− b
=

a− b

a− b
+

12b

a− b
= 1+ 1 = 2 , and

we are done.

Question

What is the shortest distance between the circles defined by x2 − 24x+ y2 − 32y + 384 = 0 and
x2 + 24x+ y2 + 32y + 384 = 0?
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Solution

We complete the square for the first equation by adding (−24/2)2 and (−32/2)2 to both sides,
which gives:
(x2 − 24x+ 144) + (y2 − 32y + 256)− 16 = 0,
which is also equivalent to:
(x− 12)2 + (y − 16)2 = 42.
Similarly, the equation for the second circle is:
(x+ 12)2 + (y + 16)2 = 42.
Hence, the centers of the circles are (12,16) and (-12,-16) respectively. Furthermore, the radii
of the circles are equal to 4. Now the distance between the points (12,16) and (-12,-16) by the
distance formula or similarity of 3-4-5 triangles is 40. Therefore, to find the shortest distance
between the two circles, we must subtract from 40 the distances from the centers to the circles.
Thus, the shortest distance between the circles is 40− 4− 4 = 32.

Question

Let f(x) be an even function, and let g(x) be an odd function. Is f(x) g(x) even, odd, or neither?
Enter "odd", "even", or "neither."

Solution

Since f(x) is even and g(x) is odd,
f(−x)g(−x) = f(x)(−g(x)) = −f(x)g(x),
so f(x) g(x) is an "odd" function.

Question

The function f(x) satisfies
f(f(x)) = 6x− 2005
for all real numbers x. There exists an integer n such that f(n) = 6n− 2005. Find n.

Solution

Setting x = n, we get
f(f(n)) = 6n− 2005,
so f(6n− 2005) = 6n− 2005. Then
f(f(6n− 2005)) = f(6n− 2005) = 6n− 2005.
But f(f(6n− 2005)) = 6(6n− 2005)− 2005. Solving
6(6n− 2005)− 2005 = 6n− 2005,
we find n = 401.

Question

Cheldelin Middle School has 12 doors to enter or leave the building. In how many ways is it
possible to enter the building by one door and leave the building by a different door?

Solution

You can enter the building through one of 12 different doors. Since only that door is eliminated
from the doors for you to exit, there are 11 choices for the exit door. So the total number of ordered
pairs of enter, exit doors is 12 ∗ 11 = 132.
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Question

A world-record swimmer and a dolphin compete in a 400-meter race. The swimmer swims at a
rate of 2 meters per second, and the dolphin swims at a rate of 8 meters per second. When the
dolphin crosses the finish line, how many meters is the swimmer from the finish line?

Solution

The dolphin swims four times faster than the swimmer, so it covers four times the distance in a
given time. So when the dolphin has swum 400 meters to get to the finish line, the swimmer has
swum 400/4=100 meters, and is thus 400− 100 = 300 meters from the finish line.

Question

The function f(x) satisfies f(f(x)) = 6x− 2005 for all real numbers x. There exists an integer n
such that f(n) = 6n− 2005. Find n.

Solution

Setting x = n, we get f(f(n)) = 6n - 2005, so f(6n - 2005) = 6n - 2005. Then f(f(6n - 2005)) = f(6n -
2005) = 6n - 2005. But f(f(6n - 2005)) = 6(6n - 2005) - 2005. Solving 6(6n - 2005) - 2005 = 6n -
2005, we find n = 401.

Counting and Probability

Question

For a particular peculiar pair of dice, the probabilities of rolling 1, 2, 3, 4, 5, and 6 on each die are
in the ratio 1 : 2 : 3 : 4 : 5 : 6. What is the probability of rolling a total of 7 on the two dice?

Solution

On each die the probability of rolling k, for 1 ≤ k ≤ 6, is
( k / (1+2+3+4+5+6) ) = ( k / 21 ).
There are six ways of rolling a total of 7 on the two dice, represented by the ordered pairs (1,6),
(2,5), (3,4), (4,3), (5,2), and (6,1).
Thus, the probability of rolling a total of 7 is
(1 ∗ 6 + 2 ∗ 5 + 3 ∗ 4 + 4 ∗ 3 + 5 ∗ 2 + 6 ∗ 1)/(212) = (56/212) = (8/63).

Question

Two candidates, Dan and Donald, run for class president. Two other candidates, Freddie and
Bernie, run for vice president. Each candidate has a 50

Solution

The probability that Dan wins is (1/2). The probability that Freddie wins is also (1/2).
Therefore, the probability that both win is (1/2 ∗ 1/2) = (1/4).

Question

Given that (15 choose 8) = 6435, (16 choose 9) = 11440, and (16 choose 10) = 8008, find (15
choose 10).
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Solution

We can use Pascal’s identity:
(n− 1 choose k − 1) + (n− 1 choose k) = (n choose k)
to find (15 choose 9).
(15 choose 8 )+(15 choose 9 ) = (16 choose 9)6435+(15 choose 9) = 11440(15 choose 9 ) =
5005
We use the identity again to find (15 choose 10).
(15 choose 9) + (15 choose 10) = (16 choose 10)5005 + (15 choose 10) = 8008 (15 choose 10)
= 3003
Therefore, (15 choose 10) = 3003.

Question

An ant is walking on a hexagon. At each step, he moves from the vertex on which he is standing to
an adjacent vertex. After 15 steps, what is the probability that he is standing on the same vertex on
which he began?

Solution

There are two ways in which the ant can return to his original vertex: either he can go part of the
way around the hexagon and then retrace his steps, or he can go all the way around the hexagon.
In the first case, the ant necessarily moves an even number of steps, because his total number of
steps is twice the number of steps needed to get to the point at which he begins to retrace.
In the second case, because a hexagon has an even number of vertices, the ant is again moving an
even number of steps.
Thus, he has no way to return to the vertex on which he began in an odd number of steps, so the
probability is 0.

Question

Link is coloring a triforce, which consists of four equilateral triangles and is depicted below. He
has three colors to use: gold, black, and green. So that it remains recognizable, he doesn’t want to
color any two triangles the same color if they share a side. How many different ways can he color
the triforce? (Two colorings that differ by rotation are considered distinct.)

Solution

There are 3 ways to choose a color for the center. Once the center color is chosen, for each of the
remaining triangles there are 2 ways to choose a color (any color except the center color).
Therefore, there are (3 ∗ 2 ∗ 2 ∗ 2) = 24 ways to color the triforce.

Question

Coin A is flipped three times and coin B is flipped four times. What is the probability that the
number of heads obtained from flipping the two fair coins is the same?
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Solution

The result will occur when both A and B have either 0, 1, 2, or 3 heads, and these probabilities are
shown in the table:
Heads | 0 | 1 | 2 | 3
——|—|—|—|—
A | (1/8) | (3/8) | (3/8) | (1/8)
B | (1/16) | (4/16) | (6/16) | (4/16)
The probability of both coins having the same number of heads is
(1/8 ∗ 1/16) + (3/8 ∗ 4/16) + (3/8 ∗ 6/16) + (1/8 ∗ 4/16) = (35/128).
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J Examples for Manual Annotation

Manual Annotation Question 1

Question Emily is planning a fundraising event to help a local charity. She plans to sell tickets and
also host different activities at the event which cost different amounts to host. She originally
purchased 150 tickets, and each ticket will be sold for $25. Before the event, Emily decides
to buy an additional 50% more tickets at a discounted rate of $15 per ticket to ensure she
can accommodate everyone. During the event, she spends $200 on materials for a painting
activity and $300 on materials for a crafting activity. If Emily sells all the tickets and collects an
additional $500 from people attending the activities, how much does she need to raise in total
to offset all her costs (excluding the first 150 ticket costs) and make sure the charity receives a
donation of at least $2000?

Model Result Step 1: Calculate the total number of tickets

• Original tickets: 150

• Additional tickets: 150× 0.5 = 75

• Total tickets: 150 + 75 = 225

Step 2: Calculate the total cost of the tickets

• Cost of additional tickets: 75× 15 = 1125

Step 3: Calculate the costs of the activities

• Painting activity: $200

• Crafting activity: $300

• Total activity cost: 200 + 300 = 500

Step 4: Calculate Emily’s total costs

• Total costs: 1125 + 500 = 1625

Step 5: Calculate total revenue

• Revenue from ticket sales: 225× 25 = 5625

• Additional revenue from activities: $500

• Total revenue: 5625 + 500 = 6125

Step 6: Determine the amount Emily needs to raise

• Required amount: 1625 + 2000 = 3625

Step 7: Verify if Emily raises enough money

• Since total revenue ($6125) is greater than required amount ($3625), Emily raises enough
money.

Final Answer: Emily needs to raise $3625 in total to cover all costs and donate at least $2000
to charity.

Verification Results Verified
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Manual Annotation Question 2

Question Jason is a handyman who has multiple projects lined up for the month. For Project A, he spends
3 days working 5 hours each day, earning $15 per hour. For Project B, he works twice as many
hours as Project A but at a rate 25% lower than for Project A. Project C requires him to work
50% more hours than he worked on Project B, and the pay rate is $5 more per hour than his rate
for Project A. Additionally, he spends $150 on supplies for Project C. At the end of the month,
Jason has completed another two projects, D and E, each composed of the same number of
hours as Project A but both at a 10% higher pay rate than Project C. Calculate the total amount
Jason earns in the month after accounting for all his expenses including the cost of supplies.

Model Result Step 1: Calculate earnings from Project A

• Total hours: 3× 5 = 15

• Earnings: 15× 15 = 225

Step 2: Calculate earnings from Project B

• Total hours: 2× 15 = 30

• Pay rate: 15− (0.25× 15) = 11.25

• Earnings: 30× 11.25 = 337.50

Step 3: Calculate earnings from Project C

• Total hours: 30 + (0.5× 30) = 45

• Pay rate: 15 + 5 = 20

• Earnings before expenses: 45× 20 = 900

• Net earnings: 900− 150 = 750

Step 4: Calculate earnings from Projects D and E

• Total hours: 15 + 15 = 30

• Pay rate: 20 + (0.1× 20) = 22

• Earnings: 30× 22 = 660

Step 5: Calculate total earnings and expenses

• Total earnings:
225 + 337.50 + 750 + 660 = 1972.50

• Total expenses: $150

Step 6: Calculate net earnings

• Net earnings:
1972.50− 150 = 1822.50

Final Answer: Jason’s total earnings after expenses are $1822.50.

Verification Results False

Figure 7: Verification of Jason’s monthly earnings calculation.
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Manual Annotation Question 3

Question A factory produces a special type of widget and incurs a production cost that includes a fixed
cost of $5000 per month and a variable cost of $20 per widget produced. The widgets are sold at
a price of $60 each. Due to new regulations, the variable cost per widget will increase by 25%,
and the factory plans to increase the selling price by 10% to maintain profitability. Currently,
the factory produces 300 widgets per month. If the factory wants to achieve the same profit
margin in the new scenario as it does currently, how many widgets must it produce and sell to
maintain this profit margin, if the fixed costs remain the same and all other conditions apply?

Model Result Step 1: Define the Current Profit Margin

• Fixed Cost = $5000

• Variable Cost per Widget = $20

• Selling Price per Widget = $60

• Number of Widgets Produced and Sold = 300

Revenue:
Revenue = 60× 300 = 18, 000

Total Cost:
Total Cost = 5000 + (20× 300) = 11, 000

Profit:
Profit = 18, 000− 11, 000 = 7, 000

Profit Margin:
Profit Margin =

7, 000

18, 000
= 0.3889 (or 38.89%)

Step 2: Define the New Scenario

• New Variable Cost per Widget:

20 + (0.25× 20) = 25

• New Selling Price per Widget:

60 + (0.10× 60) = 66

Step 3: Formulate the Equation for the New Scenario

41x− 5000

66x
= 0.3889

Multiply both sides by 66x:

41x− 5000 = 25.3674x

41x− 25.3674x = 5000

15.6326x = 5000

Solve for x:

x =
5000

15.6326
≈ 319.8

Since x must be an integer, we round up to:

x = 320

Final Answer: The factory must produce and sell 320 widgets to maintain the same profit
margin.

Verification Results False
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Mannutal Annotation 4 - Example of False Verification Result

Question Sara is saving money to buy a new bicycle and some accessories. The bicycle costs $350, and
she wants to buy a helmet, a lock, and a pump, which cost $45, $30, and $25 respectively. Sara
earns $12 per hour working at a cafe and $8 per hour tutoring. She can work up to 15 hours a
week in the cafe and 10 hours tutoring. She already has $150 in savings. Sara plans to divide her
work hours equally between the two jobs each week, but she also wants to save $50 each month
for emergencies before spending on the bicycle and accessories. If her expenses (excluding the
bicycle and accessories) amount to $200 each month, how many weeks will Sara need to work
to afford the bicycle and all the accessories, while maintaining her savings goal and expenses?

Model Result Step 1: Calculate the total cost of the bicycle and accessories

Bicycle: $350
Helmet: $45
Lock: $30
Pump: $25
Total cost: 350 + 45 + 30 + 25 = 450

Step 2: Calculate the amount Sara still needs to save

• Sara’s current savings: $150

• Additional amount needed: 450− 150 = 300

Step 3: Calculate Sara’s weekly earnings

• Cafe hours per week: 15
2

= 7.5

• Tutoring hours per week: 10
2

= 5

• Cafe earnings per week: 7.5× 12 = 90

• Tutoring earnings per week: 5× 8 = 40

• Total weekly earnings: 90 + 40 = 130

Step 4: Calculate Sara’s monthly earnings

• Monthly earnings: 130× 4 = 520

Step 5: Calculate Sara’s monthly savings after expenses

• Monthly expenses: $200

• Emergency savings: $50

• Total money set aside per month: 200 + 50 = 250

• Amount left for bicycle savings: 520− 250 = 270

Step 6: Calculate the number of months required to save $300

• Required months: 300
270

≈ 1.11

• Rounding up, Sara needs to work for **2 months**.

Step 7: Convert months to weeks

• Total weeks needed: 2× 4 = 8

Final Answer: Sara needs to work for 8 weeks to afford the bicycle and all accessories while
maintaining her savings goal and covering expenses.

Verification Results Verified

Actual Results FALSE - 2.75 weeks
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Manual Annotation 5 - Verification of Solutions on Bad Question Clarity

Question An art collector has a variety of art pieces, including paintings, sculptures, and photographs, all
of which she bought at different times. She initially bought a collection of paintings, which she
later expanded by purchasing additional paintings, doubling her original number. The total cost
she paid for all these paintings was $56,000. Later, she sold 5 paintings at a profit of 20% of
their buying price, which contributed to a profit of $9,000. She then bought sculptures, spending
75% of the remaining money she gained from selling paintings. Afterward, she purchased
photographs using the remaining funds from the money left after buying sculptures and an
additional $8,000 she acquired from selling an old rare drawing. She bought 12 photographs,
each costing $500 more than twice the amount she spent on a single sculpture. After all these
purchases, the collector realized she has $10,000 left. Determine the initial number of paintings
the art collector bought and the cost of each sculpture.

Model Result Step 1: Define Variables

Let x be the initial number of paintings.
Let p be the price of each painting.
Let s be the cost of each sculpture.

Step 2: Total Cost of Paintings

• The collector initially bought x paintings.

• Later, she doubled her collection by purchasing another x paintings.

• Total paintings: 2x.

• Given total cost:
2x · p = 56000

• Simplifying:
x · p = 28000 (divide by 2) (1)

Step 3: Selling 5 Paintings at 20% Profit

• Cost price of 5 paintings:
5 · p

• Selling price (with 20% profit):
5 · p · 1.2

• Profit equation:
9000 = (5 · p · 1.2)− (5 · p)

• Simplify:
9000 = 5 · p · (1.2− 1)

9000 = 5 · p · 0.2
9000 = p

p = 1800 (cost per painting) (2)

Step 4: Solve for x (Initial Number of Paintings)

• Substitute p = 1800 into equation (1):

x · 1800 = 28000

x =
28000

1800

x = 15.56

Final Answer: The initial number of paintings the art collector bought is 15.56

Verification Results False
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Manual Annotation 6.1

Question Five years ago, Thomas invested $150,000 in a commercial property. Over the years, the
property’s value increased by 25% every two years. After five years, Thomas decided to sell the
property, but before selling, he spent $35,000 on renovations. Additionally, he had to pay a 6%
commission fee on the final selling price to the real estate agency. If Thomas made a profit of
$120,000 after all expenses and fees, what was the selling price of the property?

Model Result To find the selling price of the property, we will follow these steps:
—
Step 1: Calculate the value of the property after 5 years - The property value increases by
25% every two years. - In 5 years, there are two full 2-year periods (4 years) and one additional
year. - After the first 2 years, the value increases by 25%:

Value after 2 years = 150,000× (1 + 0.25) = 187,500

- After the next 2 years (4 years total), it increases again by 25%:

Value after 4 years = 187,500× (1 + 0.25) = 234,375

- Since the extra one year does not complete another 2-year period, the value remains

Value after 5 years = 234,375

—
Step 2: Add the renovation costs - Thomas spent $35,000 on renovations. - Hence, the total
cost basis is

Total cost basis = 234,375 + 35,000 = 269,375.

—
Step 3: Calculate the profit - He made a profit of $120,000 after all expenses and fees. Let the
selling price be S. - Profit equation:

S − 269,375 = 120,000.

- So
S = 120,000 + 269,375 = 389,375.

—
Step 4: Account for the commission fee - The real-estate agent takes 6% of S. So Thomas
receives

Amount received = S − 0.06S = 0.94S.

- We set that equal to his cost basis + profit:

0.94S = 389,375 =⇒ S =
389,375

0.94
≈ 414,000.

—
Step 5: Final verification - Check amount received after commission:

0.94× 414,000 ≈ 389,160.

- Check profit:
389,160− 269,375 ≈ 119,785 ≈ $120,000.

- This is sufficiently close to $120,000, so the calculations are consistent.
Thus, the selling price is approximately $414,000.
The final answer is: 414,000. The answer is 414000.

Verification Results False (Correct Lean Verification)

29971



Manual Annotation 6.2

Question Five years ago, Thomas invested $150,000 in a commercial property. Over the years, the
property’s value increased by 25% every two years. After five years, Thomas decided to sell the
property, but before selling, he spent $35,000 on renovations. Additionally, he had to pay a 6%
commission fee on the final selling price to the real estate agency. If Thomas made a profit of
$120,000 after all expenses and fees, what was the selling price of the property?

Model Result We are tasked with finding the selling price of the property based on the given information.
Let’s solve this step by step.
—
### Step 1: Understand the problem - Initial investment: $150,000 - Value increase: 25%
every 2 years - Renovation cost: $35,000 - Commission fee: 6% of the selling price - Profit
after all expenses and fees: $120,000
We need to calculate the selling price of the property.
—
### Step 2: Calculate the property’s value after 5 years The property’s value increases by 25%
every 2 years. Since 5 years is not a multiple of 2, we will break it into two periods: 1. The
first 2 years 2. The next 2 years 3. The remaining 1 year
#### Step 2.1: After the first 2 years The property’s value increases by 25% after 2 years. The
new value is:

Value after 2 years = 150, 000 + (25%× 150, 000) = 150, 000× (1 + 0.25) = 187, 500

#### Step 2.2: After the next 2 years (4 years total) The property’s value increases by another
25% after 2 more years. The new value is:

Value after 4 years = 187, 500 + (25%× 187, 500) = 187, 500× (1 + 0.25) = 234, 375

#### Step 2.3: After the remaining 1 year The property’s value increases proportionally for the
remaining 1 year. Since 1 year is half of 2 years, the increase will be half of 25%, which is
12.5%. The new value is:

Value after 5 years = 234, 375+(12.5%×234, 375) = 234, 375×(1+0.125) = 263, 671.875

Thus, the property’s value after 5 years is $263,671.88 (rounded to 2 decimal places).
—
### Step 3: Account for renovation costs and commission fees Let the selling price of the
property be S.
#### Step 3.1: Total expenses Thomas spent $35,000 on renovations. Additionally, he paid a
6% commission fee on the selling price. The total expenses related to the sale are:

Total expenses = 35, 000 + (6%× S) = 35, 000 + 0.06S

#### Step 3.2: Profit equation Thomas made a profit of $120,000 after all expenses and fees.
The profit equation is:

Profit = Selling price − Initial investment − Total expenses

Substitute the known values:

120, 000 = S − 150, 000− (35, 000 + 0.06S)

—
### Step 4: Solve for S Simplify the equation:

120, 000 = S − 150, 000− 35, 000− 0.06S

120, 000 = S − 185, 000− 0.06S

305, 000 = 0.94S

S = 324, 468.09

Thus, the selling price of the property is $324,468.09.

Verification Results Verified (Correct Lean Verification)

29972



K Example of Iterative Autoformalisation

In the process of Theorem Prover as a Judge, there are two main components: question formalisation
and answer formalisation. During question formalisation, we follow four steps (denoted S4): applying
the CoMAT method, autoformalisation, Auto-Informalisation, and Alignment Check. We used the
example from the previous appendix (Manual Example 6.2) as an illustration. In this example, we present
how autoformalisation works during question formalisation and then proceed to answer formalisation,
providing a detailed analysis of how iterative autoformalisation refines the Lean code into a correct version
over three iterations. When one is formalised as False (6.1) and the other as Verified (6.2), the model
will be trained using Direct Preference Optimisation. The examples and prompts have been modified to
remove unicode

Question Formalisation

import Mathlib

def initial_investment : Int := 150000
def renovation_cost : Int := 35000
def commission_rate : Rat := 6 / 100
def profit : Int := 120000
def increase_rate : Rat := 25 / 100

def value_after_5_years : Rat :=
initial_investment * (1 + increase_rate) ^ 2 * (1 + increase_rate / 2)

def selling_price : Rat :=
(profit + initial_investment + renovation_cost) / (1 - commission_rate)

def commission_fee : Rat := commission_rate * selling_price
def total_expenses : Rat := renovation_cost + commission_fee
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Answer Formalisation

[Iterative Autoformalisation 1]
import Mathlib

-- Define constants
def initial_investment : Int := 150000
def renovation_cost : Int := 35000
def commission_rate : Rat := 6 / 100
def profit : Int := 120000

-- Define the property value increase rate and time periods
def increase_rate : Rat := 25 / 100
def years : Int := 5

-- Step 1: Property value after 5 years
def value_after_2_years : Rat := initial_investment * (1 + increase_rate)
def value_after_4_years : Rat := value_after_2_years * (1 + increase_rate)
def value_after_5_years : Rat := value_after_4_years * (1 + (increase_rate / 2))

theorem compute_value_after_5_years :
value_after_5_years = 263671.875 := by
calc
value_after_5_years = value_after_4_years * (1 + increase_rate / 2) := by rfl
_ = (initial_investment * (1 + increase_rate) ^ 2)
* (1 + increase_rate / 2) := by norm_num

-- Step 2: Selling price & expenses
def selling_price : Rat := 324468.09
def commission_fee : Rat := commission_rate * selling_price
def total_expenses : Rat := renovation_cost + commission_fee

theorem compute_total_expenses :
total_expenses = 54468.09 := by
calc
total_expenses = 35000 + (6 / 100 * 324468.09) := by norm_num

-- Step 3: Profit verification
def computed_profit : Rat := selling_price - initial_investment - total_expenses

theorem verify_profit :
computed_profit = profit := by
norm_num

-- Step 4: Check selling price
def result : String :=
if selling_price = 324468.09 then "verified" else "false"

#eval result -- "verified"
#eval selling_price -- 324468.09
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Answer Formalisation

[Iterative Autoformalisation 2]
[Same as previous autoformalisation]
.....

-- Step 1: Compute property value after 5 years
-- After two 2-year periods: multiply by (1 + 0.25)^2
-- For the remaining 1 year (half of a 2-year period): multiply by (1 + 0.25/2)
def value_after_5_years : Rat :=
initial_investment * (1 + increase_rate) ^ 2 * (1 + increase_rate / 2)

theorem compute_value_after_5_years :
value_after_5_years = (2109375 : Rat) / 8 := by
-- Unfold definitions so norm_num can simplify
unfold value_after_5_years increase_rate initial_investment
norm_num

-- Step 2: Solve for selling_price S in the profit equation:
-- profit = S - initial_investment - (renovation_cost + commission_rate * S)
--
-- Numerator = 120000 + 150000 + 35000 = 305000
-- Denominator = 1 - 6/100 = 94/100
def selling_price : Rat :=
(305000 : Rat) / (94 / 100)

-- Commission fee and total expenses
def commission_fee : Rat := commission_rate * selling_price
def total_expenses : Rat := renovation_cost + commission_fee

theorem compute_total_expenses :
total_expenses = (2560000 : Rat) / 47 := by
-- Unfold so that norm_num can compute the rational sum exactly
unfold total_expenses commission_fee selling_price commission_rate
renovation_cost norm_num

-- Step 3: Verify the profit equation
def computed_profit : Rat :=
selling_price - initial_investment - total_expenses

theorem verify_profit :
computed_profit = profit := by
unfold computed_profit selling_price total_expenses
commission_fee initial_investment renovation_cost commission_rate
norm_num

-- Step 4: Check that selling_price matches the explicit rational
def result : String :=
if selling_price = (305000 : Rat) / (94 / 100) then "verified" else "false"

#eval result -- "verified"
#eval selling_price -- 305000 / (94/100) = 15250000/47 ~= 324468.085106383
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Answer Formalisation

[Iterative Autoformalisation 3]
[Same as previous autoformalisation]
.....

-- Step 2: Solve for selling_price S in the profit equation:
-- profit = S - initial_investment - (renovation_cost + commission_rate * S)
-- => profit + initial_investment + renovation_cost = S * (1 - commission_rate)
-- => S = (profit + initial_investment + renovation_cost) / (1 - commission_rate)
--
-- CORRECTION: Define `selling_price` using the formula for a more robust proof.
def selling_price : Rat :=
(profit + initial_investment + renovation_cost) / (1 - commission_rate)

-- Commission fee and total expenses
def commission_fee : Rat := commission_rate * selling_price
def total_expenses : Rat := renovation_cost + commission_fee

-- The theorem to compute the explicit value of total_expenses still works.
theorem compute_total_expenses :
total_expenses = (2560000 : Rat) / 47 := by
-- Unfold all definitions to compute the rational sum exactly
unfold total_expenses commission_fee selling_price profit initial_investment
renovation_cost commission_rate
norm_num

-- Step 3: Verify the profit equation
def computed_profit : Rat :=
selling_price - initial_investment - total_expenses

theorem verify_profit :
computed_profit = profit := by
unfold computed_profit total_expenses commission_fee selling_price
field_simp [show (1:Q) - commission_rate != 0 by unfold commission_rate; norm_num]
ring

-- Step 4: We can verify the value of selling_price with a theorem.
theorem selling_price_evaluates_correctly :
selling_price = (15250000 : Rat) / 47 := by
unfold selling_price profit initial_investment renovation_cost commission_rate
norm_num

def result : String :=
if selling_price = (305000 : Rat) / (94 / 100) then "verified" else "false"

#eval result -- "verified"
#eval selling_price -- Evaluates to (15250000 : Rat)/47
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Error for Answer Formalisation 1

Answer Formalisation Error

[Error for Autoformalisation 1]
No info found.
mathlib-demo.lean:22:84
unsolved goals
|- value_after_4_years = ↑initial_investment * (1 +
increase_rate) ^ 2 or 1 + increase_rate / 2 = 0
mathlib-demo.lean:19:38
unsolved goals
|- ↑initial_investment * (1 + increase_rate) ^ 2 * (1 + increase_rate / 2)
= 263671.875
mathlib-demo.lean:32:54
unsolved goals
|- total_expenses = 272340427 / 5000
mathlib-demo.lean:30:31
unsolved goals
|- 35000 + 6 / 100 * 324468.09 = 54468.09
mathlib-demo.lean:38:30
unsolved goals
|- computed_profit = ↑profit
mathlib-demo.lean:45:0
"verified"
mathlib-demo.lean:46:0
(32446809 : Rat)/100

Error for Answer Formalisation 2

Answer Formalisation Error

[Error for Autoformalisation 2]
No info found.
All Messages (3)
mathlib-demo.lean:49:30
unsolved goals
|- 8200000 / 47 - (35000 + 3 / 50 * selling_price) = profit
mathlib-demo.lean:58:0
mathlib-demo.lean:59:0
(15250000 : Rat)/47
Restart File
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