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Abstract
Zero-shot stance detection (ZSSD) aims to de-
termine whether the author of a text is in sup-
port, against, or neutral toward a target that is
unseen during training. In this paper, we in-
vestigate ZSSD within a bilingual framework
and compare it with cross-lingual and mono-
lingual scenarios, in settings that have not pre-
viously been explored. Our study focuses on
both noun-phrase and claim targets within in-
domain and out-of-domain bilingual ZSSD sce-
narios. To support this research, we assemble
Bi-STANCE, a comprehensive bilingual ZSSD
dataset consisting of over 100,000 annotated
text-target pairs in both Chinese and English,
sourced from existing datasets. Additionally,
we examine a more challenging aspect of bilin-
gual ZSSD by focusing on claim targets with
a low occurrence of shared words with their
corresponding texts. As part of Bi-STANCE,
we created an extended dataset that empha-
sizes this challenging scenario. To the best of
our knowledge, we are the first to explore this
difficult ZSSD setting. We investigate these
tasks using state-of-the-art pre-trained lan-
guage models (PLMs) and large language mod-
els (LLMs). We release our dataset and code at
https://github.com/chenyez/BiSTANCE.

1 Introduction

Stance detection aims to automatically detect
whether the author of a text is in support, against,
or neutral toward a specific target such as entities
(e.g., “free college”) or claims (e.g., “We should
subsidize student loans.”) (Mohammad et al., 2016;
Küçük and Can, 2020; ALDayel and Magdy, 2021).
Identifying these stances offers crucial insights for
events such as market analysis (Küçük and Can,
2020) and rumor detection (Wei et al., 2019).

Stance detection has been widely studied as in-
target stance detection, cross-target stance detec-
tion, and zero-shot stance detection (ZSSD). In-
target stance detection focuses on training and test-
ing models on identical target(s), such as “clean

energy” (Hasan and Ng, 2014; Mohammad et al.,
2016; Graells-Garrido et al., 2020). For cross-
target stance detection, models are trained with tar-
gets that are closely related but different from test
targets, for example, using data related to “clean
energy” for training and data related to “solar en-
ergy” for testing (Augenstein et al., 2016; Wei and
Mao, 2019). Zero-shot stance detection (ZSSD),
on the other hand, tests models on a large number
of targets that are unseen (and unrelated) during
training. Since it is hard to include every possi-
ble or related target in the training of in-target and
cross-target approaches, ZSSD has emerged as a
promising approach that more closely reflects real-
world scenarios (Allaway and McKeown, 2020; Liu
et al., 2021; Luo et al., 2022; Liang et al., 2022).
To date, most of the existing works on stance de-
tection study the task in a single language such as
English (Mohammad et al., 2016; Conforti et al.,
2020; Allaway and McKeown, 2020), Chinese (Xu
et al., 2016; Zhao et al., 2023), Italian (Cignarella
et al., 2020), Czech (Hercig et al., 2017), and Ara-
bic (Al Hariri and Abu Farha, 2024). However,
global topics such as the Ukraine War, NATO, and
COVID-19 are widely discussed across various lan-
guages, making it essential for models to accurately
identify stances in multiple linguistic contexts.

Only recently, several studies have started to
explore stance detection from a multilingual per-
spective (Zotova et al., 2020; Vamvas and Sennrich,
2020; Lai et al., 2020), focusing primarily on in-
target or cross-target tasks within a small set of
targets. These works typically perform training
and testing on targets within a specific domain—
in-domain, such as the elections in Switzerland
(Vamvas and Sennrich, 2020). Moreover, existing
multilingual stance detection research tends to fo-
cus on targets as either noun phrases or claims.
This narrow focus hinders the applicability of
stance detection models in real-world scenarios,
where stance classifiers are expected to handle
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Name Language Domain # Tar- N/C Task Size
get(s)

VaxxStance Basque, Spanish Vaccine 1 N In-target, in-domain 4,081
TW-1O Catalan, Spanish Politics 1 N In-target, in-domain 20,125
R-ita English,Spanish, Cat-

alonia, French, Italian
Politics 6 N In-target, in-domain 14,440

X-STANCE English, French, Ger-
many, Italian

Politics 194 C Cross-target, in-domain 67,000

Bi-STANCE Chinese, English Sports, Rights, Educa-
tion, Politics, etc

86,082 N, C ZSSD, in-domain, out-
of-domain

100,782

Table 1: Comparison of our Bi-STANCE dataset with previous multilingual stance detection datasets: VaxxStance (Agerri et al.,
2021), TW-10 (Taulé et al., 2017), R-ita (Lai et al., 2020), and X-STANCE (Vamvas and Sennrich, 2020). N and C represent
noun-phrase and claim targets, respectively.

diverse zero-shot stance predictions toward un-
seen targets—including both noun phrases and
claims—from a wide range of domains. The ab-
sence of studies on multilingual ZSSD restricts the
robustness and adaptability of existing ZSSD mod-
els when encountering multilingual data. There-
fore, it is crucial to develop multilingual ZSSD
models that are not confined to specific target types
or limited domains, enabling effective stance detec-
tion across diverse and multilingual contexts.

To address the above limitations, in this paper,
we break the new ground by exploring bilingual
zero-shot stance detection, conducting compre-
hensive comparisons with monolingual and cross-
lingual settings to provide a thorough analysis of
the performance differences. For each setting,
we investigate targets as both noun phrases and
claims. This exploration is essential as it addresses
the unique challenges posed by bilingual contexts
for ZSSD, which, to the best of our knowledge,
have not been thoroughly studied before. We
also delve into both in-domain and out-of-domain
ZSSD, where classifiers trained on targets from
diverse domains are evaluated on a large number
of unseen targets within the same diverse domains
and from an entirely new domain, respectively. To
explore these tasks, we compile the first bilingual
ZSSD dataset, Bi-STANCE from two existing large
datasets for ZSSD: the Chinese C-STANCE dataset
(Zhao et al., 2023) and the English EZ-STANCE
dataset (Zhao and Caragea, 2024). Additionally,
as part of our Bi-STANCE dataset, we construct
a more challenging bilingual ZSSD scenario for
claim targets with human annotations in which
there is a very low word overlap between texts
and claim targets. By doing so, we aim to enhance
the versatility and effectiveness of stance detection
models, making them more applicable to global,
multilingual environments.
Our contributions can be summarized as follows:

• We investigate the task of bilingual zero-shot

stance detection, and compare it with cross-
lingual and monolingual ZSSD tasks. We
uniquely address both noun phrase and claim
targets within the contexts of in-domain and
out-of-domain bilingual ZSSD, areas previ-
ously unexplored in the literature. We further
explore a more challenging bilingual ZSSD
scenario where claim targets exhibit low word
overlap with their corresponding texts.

• To explore these tasks, we developed Bi-
STANCE, a comprehensive bilingual dataset
that includes over 100,000 annotated instances
across a comprehensive set of domains, cover-
ing both Chinese and English data.

• We carry out extensive experiments to estab-
lish baseline results using both pre-trained lan-
guage models and large language models.

2 Related Work

Multilingual Stance Detection Stance detection
has received considerable attention in recent years
(Liang et al., 2022; Liu et al., 2023; Li et al.,
2023a,b). However, most previous studies have
been limited to a single language (Hardalov et al.,
2021; Schiller et al.; He et al., 2022; Li and Yuan,
2022; Wen and Hauptmann, 2023; Arakelyan et al.,
2023). Despite substantial interest in multilingual
tasks within the NLP domain, for stance detec-
tion, only a handful of studies have approached
the subject from a multilingual perspective (Taulé
et al., 2017; Vamvas and Sennrich, 2020; Lai et al.,
2020; Agerri et al., 2021; Hardalov et al., 2022).
Current multilingual stance detection efforts are
largely focused on highly specific domains, featur-
ing a limited variety of targets and types. These
studies predominantly address in-target and cross-
target stance detection tasks. Vamvas and Sennrich
(2020) study multilingual stance detection for claim
targets in the domain of Swiss independence. Other
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Text: Where is Morrison? Freedenberg and the general doing a media conference indicates he is not at work.
Come on media flush him out. Maybe he is preparing his kids for home schooling.

Stance: Support
Ori Claim: The absence of Morrison and the media conference led by Freedenberg raises questions about Morrison’s

whereabouts, prompting speculation about him possibly preparing his kids for homeschooling.

New Claim1: It’s disheartening when our supposed representatives fail to truly address the issues that matter. They
should be accountable and forthcoming with their activities to maintain public trust.

New Claim2: The media’s ability to raise questions and initiate discussions serves as a valuable mechanism for
ensuring that politicians remain answerable to the public.

Text: 捷报！英格兰女足联赛杯：曼城女足凭借着福勒、布拉克斯塔的梅开二度，以及拉索和
洛萨达的进球6比0击败布莱克本！ Great news! In the England Women’s Football League Cup:
Manchester City Women’s team, thanks to Fowler and Blaxsta scoring twice, along with goals from
Lasso and Losada, defeated Blackburn with 6-0 scores!

Stance: Against
Ori Claim: 布莱克本英格兰女足比赛获得胜利 Blackburn wins the England Women’s Football match.
New Claim1: 对于团体竞技运动的胜利，每个队员的贡献都是严格均等的。 In team sports victories, the

contribution of every player is strictly equal.
New Claim2: 体育比赛的胜负并不重要，不应该被过分关注。 The outcome of sports competitions is not

important and should not receive too much attention.

Table 2: Examples of generated challenging claims with corresponding texts, original claims, and stance labels.

research focus on noun-phrase targets within a sin-
gular domain. For example, Taulé et al. (2017)
examined stance detection towards the indepen-
dence of Catalan. Lai et al. (2020) concentrated on
noun-phrase targets in the political domain (e.g.,
Hillary Clinton and Marine LePen), while Agerri
et al. (2021) focused on stance detection toward
vaccines. Since the training and testing targets in
these studies are confined to the same domain, their
scope is restricted to in-domain stance detection.

Contrasting with previous studies, we focus on
zero-shot stance detection (ZSSD) from a bilin-
gual perspective and develop the first dataset for
bilingual ZSSD, encompassing a large number of
noun-phrase and claim targets across a wide array
of domains. We tackle two demanding multilingual
ZSSD scenarios: in-domain and out-of-domain.
In Table 1, we compare our work with existing
multilingual stance detection works. Compared to
previous efforts, our work encompasses a signifi-
cantly larger number of targets and a more exten-
sive dataset size, spanning a wider variety of do-
mains. We conduct comprehensive investigations
into both in-domain and out-of-domain ZSSD.

Language Models Pretrained language models
(PLMs) such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) have been extensively
used in stance detection (Glandt et al., 2021; All-
away and McKeown, 2020; Li et al., 2021). More
recently, large language models (LLMs) have been
developed, offering the advantage of handling
downstream tasks directly through prompting tech-
niques (Le Scao et al., 2023; Touvron et al., 2023;
Team et al., 2023; Naveed et al., 2023). While

some research on stance detection has utilized
LLMs (Gatto et al., 2023; Li et al., 2023a; Fraile-
Hernandez and Peñas, 2024), these applications
are limited to monolingual scenarios. Existing
multilingual stance detection works solely employ
PLMs (Vamvas and Sennrich, 2020). In contrast,
our study leverages both PLMs and LLMs in the
multilingual context, which enables us to explore
ZSSD in a more comprehensive setting, enhancing
our understanding and capabilities in this area.

3 The Bi-STANCE Benchmark

In this section, we introduce the Bi-STANCE
benchmark, a large bilingual ZSSD dataset that
includes both Chinese and English, consisting of
100,782 annotated instances spanning a compre-
hensive range of domains.

3.1 Data Sources

To create Bi-STANCE, we aggregate the C-
STANCE dataset (Zhao et al., 2023) and the EZ-
STANCE dataset (Zhao and Caragea, 2024). C-
STANCE is the first large-scale ZSSD dataset for
Chinese, comprising 48,126 annotated microblog-
target pairs sourced from Sina Weibo (similar to
Twitter) covering 7 domains: “Covid Epidemic"
(CoE), “World Events" (WE), “Culture and Edu-
cation" (CuE), “Entertainment and Consumption"
(EC), “Sports" (S), “Rights" (R), and “Environ-
mental Protection" (EP). EZ-STANCE is a recent
large English ZSSD dataset. It includes 47,316
annotated tweet-target pairs collected from Twit-
ter. This dataset categorizes data into the same
seven domains available in C-STANCE, plus an
additional “Politics” domain (P).
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Target Test Train LexSim

Noun Phrase Chinese English 12.96%
English Chinese 9.35%

Original Claim (OC) Chinese English 3.88%
English Chinese 3.78%

Challenging
Claim (CC)

Chinese English 3.45%
English Chinese 3.41%

Table 3: Percentage of LexSimTopics across target types
within our Chinese and English datasets for in-domain ZSSD.

3.2 Extension to Challenging Claim Targets

We observe that in some cases, there is a high word
overlap between the claim targets and texts in the
datasets in both languages. Models can exploit
such superficial lexical patterns and can infer the
stance label without learning the semantic correla-
tion between texts and targets. Examples of this can
be found in Table 2 between ‘Text’ and ‘Original
Claim’ for both Chinese and English datasets. This
observation prompts us to investigate a more chal-
lenging ZSSD scenario for claim targets—whether
models encounter greater difficulty when there is
low word overlap between claim targets and texts
and stances are expressed implicitly (in a more sub-
tle way). Therefore, we specifically select samples
from the Chinese and English claim targets in the
Bi-STANCE dataset and instruct human annota-
tors to develop more challenging claim targets that
implicitly express the stance of the text, ensuring
minimal word overlap with the texts.

3.2.1 Annotation for Bilingual Challenging
Claim Dataset

We randomly sample a subset of the Bi-STANCE
dataset to manually annotate for challenging claim
targets. We performed annotations with two data
annotation companies, Cogitotech1 and Taojin-
niwo2, for English and Chinese, respectively. De-
tails about the annotation platform and quality as-
surance measures can be found in Appendix A.
For each language, we select approximately 800
instances from the test set. To evaluate the models’
adaptability to challenging claims with limited ex-
posure during training, we randomly choose about
300 instances from the training set and 200 from the
validation set, ensuring that these selected instances
are evenly distributed across domains and stance
categories. In total, we compile 2,670 instances,
with 1,323 for Chinese and 1,347 for English.

To annotate challenging claim targets, annota-
tors are provided with texts from the Bi-STANCE

1https://www.cogitotech.com/
2http://sjbz.itaojin.cn/

dataset, along with their corresponding original
claim targets and stance labels. For each instance,
we assign an annotator to generate two new claims.
These new claims are crafted to ensure that the
text’s author maintains the same stance as with the
original claim, but they are designed to express
this stance more subtle, with minimal vocabulary
overlap with the corresponding texts. To encour-
age annotators to generate claim targets with subtle
stance, we advise them to: 1) focus on discussing
the domain-level context rather than directly men-
tioning entities from the text, 2) employ logical
reasoning to deduce other claims for which the
text’s author may hold a similar stance as for the
original claim, and 3) when it is necessary to men-
tion entities from the text, to try rephrasing them
to their synonyms. This methodology encourages
both creativity and relevance in formulating claim
targets that diverge significantly from their corre-
sponding texts in vocabulary usage. We provide
the instructions for annotators in Appendix A.

Examples of new claim targets are shown in Ta-
ble 2. In the English example (top block), unlike
the original claim that directly discusses entities
from the text (e.g., Morrison, Freedenberg, home
schooling), our challenging claims discuss the topic
from fresh perspectives: the necessity for represen-
tatives to uphold public trust (New Claim1), and
the media’s role in monitoring politicians’ perfor-
mance of their duties (New Claim2). In both cases,
new claims remain the same stance orientation (sup-
port) yet exhibit much lower ratio of vocabulary
overlap with the text. For quality assurance of
the challenging claim targets, we use a separate
group of annotators to determine the stance. This
approach achieves a 96% agreement rate, indicat-
ing high-quality claim target generation. Finally,
our annotated set comprises 1,323 microblogs with
2,646 (2 for each) claim targets in Chinese, and
1,347 tweets with 2,694 claim targets in English.

3.3 LexSimTopics across Languages
To ensure a zero-shot setting for our Bi-STANCE
dataset, we analyze the occurrence of LexSimTopics
(Allaway and McKeown, 2020; Zhao et al., 2023)
across training and testing datasets in Chinese and
English. LexSimTopics (Allaway and McKeown,
2020) is defined as the percentage of target expres-
sions in the test set that achieve a cosine similar-
ity greater than 0.9 with any target in the training
dataset, within the word embedding space (Bo-
janowski et al., 2017). We begin by translating
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Setting Language # Examples # Unique Avg. Length

N OC CC N OC CC T N OC CC T

In-domain

Chinese
Train 13,258 20,160 630 6,093 19,694 630 6,740 3.7 15.1 16.3 62.2
Val 2,865 4,419 420 2,665 4,400 420 1,473 4.6 15.4 18.6 62.5
Test 2,915 4,509 1,596 2,865 4,487 1,596 1,503 4.7 15.4 15.3 63.7

English
Train 13,756 18,879 576 7,437 18,861 576 6,293 1.8 19.0 20.4 40.0
Val 2,354 4,349 420 2,284 4,345 420 1,454 2.4 19.0 20.5 40.0
Test 2,663 5,135 1,698 2,621 5,130 1,698 1,715 2.4 19.3 19.9 39.7

Out-of-
domain
(CoE)

Chinese
Train 12,379 18,984 1,662 7,519 18,585 1,662 6,690 4.0 15.2 15.9 61.7
Val 2,249 3,447 606 2,208 3,436 606 1,087 4.6 15.1 16.3 62.9
Test 3,474 5,346 378 1,896 5,211 378 1,786 3.7 15.5 16.1 64.7

English
Train 12,648 19,467 1,544 8,506 19,440 1,544 6,489 2.0 18.9 20.8 39.4
Val 1,958 3,753 564 1,932 3,749 564 1,251 2.4 19.2 20.9 40.4
Test 2,639 3,819 302 1,734 3,814 302 1,273 1.9 19.2 20.7 41.8

Table 4: Dataset split statistics for in-domain and out-of-domain ZSSD settings (“Covid Epidemic” (CoE) as the zero-shot
domain). N, OC, CC, T represent noun-phrase targets, original claim targets, challenging claim targets, and texts, respectively.

Noun-phrase targets Original Claim targets

English Chinese English Chinese

Domain Con Pro Neu Con Pro Neu Con Pro Neu Con Pro Neu
CoE 971 812 853 1,444 1,247 783 1,329 1,328 1,327 1,782 1,782 1,782
WE 856 559 850 870 641 1,616 1,140 1,139 1,140 1,590 1,590 1,590
CuE 615 826 647 734 1,108 554 1,083 1,083 1,083 1,206 1,206 1,206
EC 636 925 1,084 1,355 1,480 1,175 1,405 1,406 1,405 2,051 2,051 2,051
S 179 781 808 435 766 885 941 942 941 1,059 1,059 1,059
R 910 1,015 522 1,020 940 532 1,191 1,192 1,191 1,276 1,276 1,276
EP 515 987 563 264 633 556 979 980 979 732 732 732
P 1,184 846 829 - - - 1,386 1,387 1,386 - - -
Overall 5,866 6,751 6,156 6,122 6,815 6,101 9,454 9,457 9,452 9,696 9,696 9,696

Table 5: Label distribution for noun-phrase targets and claim targets in each domain from Bi-STANCE. Con, Pro, Neu represent
against, favor, and neutral, respectively.

Chinese target expressions into English using a pre-
trained machine translation model (Tiedemann and
Thottingal, 2020). Next, we calculate the LexSim-
Topics ratio: first, between the Chinese test set
and the English training set, and then between the
English test set and the Chinese training set. Ta-
ble 3 presents the results. For noun-phrase targets
within the English test set, the LexSimTopics ra-
tio of 9.35% indicates that this proportion of tar-
gets is similar to targets from the Chinese training
set, which is lower than ratios observed for pre-
vious ZSSD datasets such as C-STANCE (11%)
(Zhao et al., 2023), EZ-STANCE (12%) (Zhao and
Caragea, 2024), and VAST (16%) (Allaway and
McKeown, 2020). For claim targets, the LexSim-
Topics ratios are notably lower, which can be at-
tributed to the longer and more distinct nature of
claim targets, reducing their likelihood of similar-
ity. These findings suggest that our Bi-STANCE
dataset maintains a zero-shot setting across the two
languages. The details on LexSimTopics for out-
of-domain ZSSD are provided in Appendix B.

3.4 Dataset Statistics

We retain the original dataset split for C-STANCE
and EZ-STANCE datasets for both in-domain and

out-of-domain ZSSD. For in-domain ZSSD, both
datasets are split into distinct training, validation,
and test sets, ensuring that no texts and targets
are shared among them. For out-of-domain ZSSD,
each domain in turn is selected as the zero-shot
domain for testing, while using the remaining do-
mains for training and validation, again preventing
any overlap of texts and targets across all sets. For
our newly-annotated challenging claim targets with
low word overlap with texts (denoted as CC), our
texts sourced from the training, validation, and test
sets of the Bi-STANCE dataset were assigned to
the corresponding dataset split from which they
were sampled. For example, texts originating from
the Bi-STANCE test set were allocated to the chal-
lenging test set of Bi-STANCE.
Dataset Size The dataset statistics are shown in
Table 4, where we observe that the Chinese subset
and the English subset includes similar sizes and
dataset splits for each target type.
Target Size Table 4 provides the number of
unique targets and texts in each set, referred to as #
Unique. Overall, Bi-STANCE includes 40,204 dis-
tinct Chinese targets, consisting of 11,623 noun
phrases (N), 28,581 original claims (OC), and
2,646 challenging claims (CC). For English tar-
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Language Con Pro Neu All

Chinese OC 34.10 55.33 28.61 39.34
CC 19.87 23.02 20.26 21.05

English OC 36.16 45.89 25.48 35.85
CC 16.81 18.35 18.78 17.98

Table 6: Average token overlap percentages (%) for
claim targets: OC and CC denote original and challeng-
ing claim targets, respectively.

gets, there are 12,342 noun phrases, 28,336 origi-
nal claims, and 2,694 challenging claims. We show
the analysis on target diversity in Appendix C.
Text/target Length Moreover, we observe that
Chinese instances have longer average token
lengths for noun-phrase targets and texts, whereas
English instances have longer lengths for claim
targets (Avg. Length). The full statistics of out-of-
domain ZSSD are shown in Appendix D.
Label Distribution Table 5 shows the stance la-
bel distribution across domains for original Chinese
and English data. We can observe a varied nature
of public opinion across different domains. For
our newly developed challenging claim targets, we
ensure an even distribution across stance categories
and domains, as detailed in Appendix E.
Token Overlap We also examine the average to-
ken overlap percentage between original and chal-
lenging claim targets from Bi-STANCE, defined as
the average proportion of words in the claim target
that also appear in the corresponding text. Results
are shown in Table 6, where challenging claims
in both languages demonstrate significantly lower
overlap percentage compared with original claims.

4 Models

Here we introduce the multilingual models that we
evaluate in our experiments.

Multi-lingual PLM Baselines. We fine-tune the
base variants of the following state-of-the art pre-
trained language models (PLMs) in our experi-
ments: mBERT (Devlin et al., 2019); XLM-R
(Conneau et al., 2020); and mT5 (Xue et al., 2021).

Multi-lingual LLM Baselines. We also exper-
iment with multi-lingual large language models
(LLMs) on our dataset: BLOOM (Le Scao et al.,
2023), LLaMA 2 (Touvron et al., 2023), LLaMA
3, ChatGPT, and Gemini (Team et al., 2023). We
construct templates with task description and three
in-context examples (one for each class) to prompt
the LLMs. Further details on training settings and
prompt template design are in Appendix F.

5 Results

In this section, we conduct experiments on bilin-
gual ZSSD and compare the results with cross-
lingual and monolingual ZSSD tasks. First, we
perform experiments within both the in-domain
(§5.1) and out-of-domain (§5.2) settings using the
original Bi-STANCE data. Next, we evaluate mod-
els using our challenging claim targets and investi-
gate how well models can adjust to the challenging
claims if a very small amount of challenging data
is available for the models (§5.3). Like prior works
(Allaway and McKeown, 2020; Zhao et al., 2023),
we employ the macro-averaged F1 score across all
classes as our evaluation metrics. Each result is the
average of 4 runs with different initializations.

5.1 Bilingual In-domain ZSSD

In-domain ZSSD aims to train a stance classifier
on targets from various domains and test it on com-
pletely unseen targets from the same domains. We
use three training settings: 1) bilingual data (B),
2) Chinese-only data (C), and 3) English-only data
(E). Each setting includes a mix of noun-phrase and
claim targets. For each setting, models are evalu-
ated on bilingual, Chinese-only, and English-only
test sets. Within each test set, evaluations are con-
ducted on: 1) the full test set with both noun-phrase
and claim targets, 2) the subset with noun-phrase
targets, and 3) the subset with claim targets.

Results are shown in Table 7, where we make
the following observations. First, models demon-
strate much worse performance in the cross-lingual
scenario (C→E or E→C) than in the monolingual
scenario (E→E or C→C). For instance, mBERT,
when trained on Chinese data, scores only a 49.8%
F1macro when evaluated on English mixed targets
(C→E), yielding a 22.9% decrease compared to
its performance when trained with English data
(E→E). This indicates that even state-of-the-art
multilingual pre-trained language models strug-
gle to generalize across languages. Second, when
trained on the full Bi-STANCE dataset, models
achieve much better performance when compared
with their performance in the cross-lingual scenario.
For example, when trained with Bi-STANCE,
mBERT demonstrates 23.6% improvement on the
F1macro of the English mixed targets (B→E) over
its performance when trained solely on the Chinese
data (C→E), which is indicated by red arrows in
Table 7. Third, models trained on the bilingual
scenario (B→C, B→E) achieve on par or (in many
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Train/Val Bi-STANCE (B) Chinese Only (C) English Only (E)

Test B C E B C E B C E
Mixed Targets
mBERT 73.5 73.6∗ 73.4† 61.7 73.2 0.4 49.8 23.6 64.7 55.9 17.7 72.7 0.7

XLM-R 76.4 76.9∗ 76.0† 67.5 76.7 0.1 58.0 18.0 69.5 63.1 13.8 75.6 0.4

mT5 75.3 76.3∗ 74.3† 63.6 74.8 1.5 51.8 22.5 67.3 62.6 13.7 71.6 2.7

BLOOM 33.3 34.2∗ 32.4 34.0 33.5 0.7 32.0 0.4 34.0 32.7 1.5 34.6 2.4

LLaMA 2 49.0 51.2∗ 46.7† 48.0 50.5 0.7 45.2 1.5 47.7 46.1 5.1 46.2 0.5

ChatGPT 43.9 43.4 45.5† 42.2 42.4 1.0 42.4 3.1 43.7 42.9 0.5 44.6 0.9

Gemini 59.7 65.3 53.9† 58.9 65.1 0.2 51.8 2.1 59.1 63.8 1.5 53.1 0.8

Noun-phrase Targets
mBERT 61.8 62.6∗ 60.7† 57.7 61.1 1.5 53.6 7.1 53.0 48.8 13.8 57.4 3.3

XLM-R 65.9 66.6∗ 65.1† 64.0 65.8 0.8 61.8 3.3 61.4 60.0 6.6 63.1 2.1

mT5 65.2 66.7∗ 63.5† 59.9 65.6 1.1 52.3 11.2 58.1 56.7 10.0 59.3 4.3

BLOOM 33.8 34.3∗ 33.1 33.3 32.3 2.0 32.1 1.0 34.1 33.2 1.1 34.4 1.3

LLaMA 2 55.6 53.2∗ 58.1† 54.9 52.4 0.8 56.0 2.1 53.8 46.9 6.3 58.5 0.4

ChatGPT 46.7 46.9∗ 46.3† 44.9 45.9 1.0 44.0 2.4 43.6 41.2 5.7 45.9 0.4

Gemini 61.6 63.6∗ 59.2† 60.9 63.1 0.5 57.2 2.0 60.8 61.8 1.8 59.0 0.2

Original Claim Targets
mBERT 80.2 80.6∗ 79.9† 64.1 80.7 0.2 46.5 33.4 71.1 60.1 20.5 80.2 0.3

XLM-R 82.5 83.4∗ 81.7† 69.6 83.4 0.1 55.2 26.5 74.1 64.9 18.5 81.8 0.1

mT5 81.0 82.3∗ 79.6† 66.0 80.5 1.8 51.1 28.5 72.3 66.2 16.2 77.3 2.4

BLOOM 33.0 34.1∗ 32.0 34.4 34.4 0.3 31.4 0.6 33.9 32.4 1.7 33.1 1.3

LLaMA 2 45.0 49.8∗ 40.3† 44.1 47.9 1.9 39.0 1.3 44.0 45.6 4.2 39.3 1.0

ChatGPT 41.1 39.2∗ 43.1† 36.9 38.4 0.8 35.4 7.6 40.2 37.7 1.5 42.7 0.4

Gemini 58.6 66.5∗ 51.0† 57.7 66.2 0.3 48.9 2.1 58.2 65.2 1.3 50.1 0.9

Table 7: Comparison of F1macro (%) of multilingual models trained on the mixed targets (mixture of noun-phrase and claim
targets) in the bilingual, monolingual, and cross-lingual settings on in-domain ZSSD. B, C, E represent the full Bi-STANCE data,
the Chinese subset, and the English subset, respectively. ∗ and †: models trained on B surpass their cross-lingual counterparts at
p < 0.05 with paired t-test on Chinese test set and English test set, respectively. Blue and red arrows show performance changes
for models in monolingual and cross-lingual settings compared to those in bilingual settings, respectively.

cases) even better performance than the monolin-
gual counterparts (C→C, E→E) (denoted as blue
arrows in Table 7), suggesting that the combination
of ZSSD data from Chinese and English boosts
models’ stance prediction ability of both languages.
Additionally, fine-tuning PLMs results in higher
performance than LLMs without additional train-
ing. Among the LLMs we compared, Gemini per-
formed the best, followed by LLaMA2 (13B), but
both still lag behind the fine-tuned PLMs. Finally,
most models yield higher performance on the claim
targets than the noun-phrase targets. This could be
because claim targets generally provide more con-
text to the models, making stance prediction eas-
ier. We show results comparing different LLaMA
LLMs in Appendix G. We also train models only
on noun-phrase targets and claim targets, as de-
tailed in Appendix H and results integrating VAST
into Bi-STANCE in Appendix I.

5.2 Bilingual Out-of-domain ZSSD

Out-of-domain ZSSD aims at evaluating classifiers
on unseen targets from new domains. One domain
is designated as the left-out domain, with remain-
ing domains serving as source domains. Models
are trained using data from source domains and

evaluated on data from the left-out domain, result-
ing in eight out-of-domain settings. Models are
trained on the full Bi-STANCE dataset with mixed-
targets (noun-phrases and original claims) and eval-
uated on the mixed-target test set of 1) Bi-STANCE
dataset; 2) the Chinese subset; and 3) the English
subset, denoted as B, C, and E, respectively.

Table 8 shows F1macro for eight zero-shot do-
main settings. First, we notice that models show
lower performance when compared with the in-
domain task (see results in Table 7). This is be-
cause the domain shifts between the training and
testing stages introduce additional complexity to
the task, making out-of-domain ZSSD a more chal-
lenging ZSSD task. Second, when fine-tuned on the
Bi-STANCE training set, PLM models generally
show higher performance when predicting stances
for the “Sports” (S) and the “Environmental Pro-
tection” (EP) domain. Third, LLMs demonstrate
varying stance prediction capabilities across differ-
ent domains. For instance, Gemini outperforms
in the “World Event” (WE) and “Sports” (S) do-
mains, while ChatGPT excels in “Culture and Edu-
cation” (CuE) and “Entertainment and Consump-
tion” (EC). This variation can be attributed to the
different tasks and data distributions on which the
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Model CoE WE CuE EC S R EP P

mBERT
B 69.3 70.8 71.4 69.1 73.0 72.4 71.6 68.6
C 70.5 72.0 72.3 70.5 74.4 72.1 73.9 -
E 67.7 68.9 70.4 67.0 71.3 72.7 69.7 68.6

XLM-R
B 73.8 74.3 74.5 74.7 76.1 75.5 75.5 72.8
C 75.2 75.3 75.6 75.9 78.1 75.9 78.2 -
E 71.9 72.8 73.2 72.7 73.8 75.0 73.2 72.8

mT5
B 73.0 73.9 73.1 72.9 75.3 75.1 75.3 69.9
C 74.5 75.0 74.4 74.8 76.9 75.2 78.2 -
E 70.9 72.2 71.6 69.6 73.3 74.9 72.9 69.9

BLOOM
B 30.4 30.4 30.6 30.4 28.2 25.7 32.1 24.9
C 33.4 32.9 33.8 33.2 30.9 27.6 35.9 -
E 26.3 26.2 26.9 26.2 24.5 23.3 28.2 24.9

LLaMA 2
B 45.4 48.4 48.8 49.2 51.5 47.2 53.3 43.5
C 46.2 50.0 50.9 50.7 53.0 48.2 56.8 -
E 43.8 44.9 46.0 46.9 49.4 44.9 49.8 43.5

ChatGPT
B 41.1 41.4 45.0 44.9 43.6 39.2 43.7 36.8
C 41.0 40.3 43.6 44.6 43.8 36.4 40.1 -
E 38.4 40.0 46.4 43.7 41.2 41.5 45.1 36.8

Gemini
B 57.7 60.1 56.1 54.8 59.6 57.5 57.7 49.6
C 61.7 63.3 56.1 56.1 63.6 61.4 63.0 -
E 52.0 54.2 56.1 53.2 54.0 52.5 52.2 49.6

Table 8: Comparison of F1macro (%) of models on out-
of-domain ZSSD. Models are trained and evaluated using
datasets for 8 zero-shot domain settings (denoted by each
column). Models are trained on the full bilingual training set
with mixed targets. Test results are based on the mixed targets
of B, C, E (the full Bi-STANCE, the Chinese subset, and the
English subset, respectively).

LLMs were pretrained. Last, generally, all models
show worse results on the “Covid Epidemic” (CoE)
and the “Politics” (P) domain, suggesting that they
share less domain knowledge with other domains,
making them more difficult zero-shot domains.

5.3 Evaluating on Challenging Claim Targets

In this section, we evaluate bilingual models us-
ing our challenging claim targets with low word
overlap with corresponding texts (denoted as CCC

for Chinese, ECC for English). We train models
using 1) original Chinese claim targets (COC), 2)
original English claim targets (EOC), 3) original
bilingual claim targets (BOC), and 4) the combi-
nation of original and challenging bilingual claim
targets (BOC+BCC). At the inference stage, we
evaluate models on: 1) Chinese original claim tar-
gets (COC), 2) Chinese challenging claim targets
(CCC), 3) English original claim targets (EOC), and
4) English challenging claim targets (ECC). For
this experiments, we used PLMs and selected the
best performing Gemini as the representative LLM.

Results for in-domain ZSSD are shown in Table
9, where we make the following observations. First,
models trained in a bilingual setting outperform
those in cross-lingual settings (e.g., BOC→CCC vs.
EOC→CCC), reinforcing the advantage of devel-
oping a bilingual dataset. Second, models trained
on original claim targets perform poorly on chal-

Model Train Test
COC CCC EOC ECC

MBERT

COC 80.4 41.7 38.7 42.9 37.9 5.0

EOC 57.1 32.5 24.7 79.9 38.6 41.3

BOC 80.5 41.1 39.4 79.7 38.0 41.7

BOC+BCC 80.7 43.6 2.5 80.0 42.2 4.2

XLM-R

COC 83.6 46.1 37.4 53.7 39.6 14.1

EOC 60.1 32.2 27.8 82.3 40.1 42.2

BOC 84.2 46.3 37.9 83.4 40.5 42.9

BOC+BCC 84.3 50.3 4.0 83.5 41.6 1.1

mT5

COC 81.3 45.3 36.0 46.6 39.1 7.5

EOC 64.2 34.2 30.0 78.3 39.0 39.4

BOC 81.0 45.7 35.4 79.3 40.5 38.8

BOC+BCC 81.9 49.4 3.7 79.4 45.3 4.8

Gemini

COC 65.8 47.0 18.8 46.1 43.7 2.4

EOC 65.0 47.9 17.1 49.1 47.6 1.4

BOC 66.3 49.9 16.5 52.0 49.8 2.2

BOC+BCC 66.4 54.2 4.3 52.1 51.4 1.6

Table 9: Comparison of F1macro (%) between challeng-
ing claim tagets and original claim targets for in-domain set-
ting. BOC , COC , EOC represent Bi-STANCE’s bilingual, Chi-
nese, and English data with original claim targets, respectively.
BCC , CCC , ECC represent data with challenging targets. Red
arrows depict performance shifts from challenging to original
claim targets (e.g., BOC→CCC vs. BOC→COC ), and green
arrows show the impact of integrating challenging targets for
training (e.g., BOC+BCC→CCC vs. BOC→CCC ).

lenging claim targets. For instance, when trained
on the original Bi-STANCE and evaluated on Chi-
nese challenging claims (BOC→CCC), mT5 shows
a 35.4% decrease in F1macro compared to its per-
formance on original claim targets (BOC→COC).
This significant drop indicates that challenging
claim targets, with greater vocabulary divergence,
introduce additional difficulties. Third, minimal
exposure to challenging claim targets during train-
ing improves performance, e.g., when trained on
a mix of original and challenging bilingual claims
(BOC+BCC→ECC vs. BOC→ECC), mT5 shows
a 4.8% increase in F1-macro. Results for out-of-
domain ZSSD are detailed in Appendix J.

6 Conclusion

In this paper, we investigate zero-shot stance detec-
tion (ZSSD) in a bilingual scenario, comparing it to
monolingual and cross-lingual settings. We explore
bilingual ZSSD for both noun-phrase and claim
targets within both in- and out-of-domain ZSSD
settings. To investigate these tasks, we present Bi-
STANCE, a large bilingual ZSSD dataset of over
100,000 annotated Chinese and English instances
covering both noun-phrase targets and claim tar-
gets from a diverse set of domains. We also ex-
plore a more challenging ZSSD scenario where
claim targets have low word overlap with their cor-
responding texts. We hope our work facilitates
future research in multilingual stance detection.
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Limitations

Our Bi-STANCE data originates from social media,
which may be perceived as a drawback as it does
not cover all aspects of more formal texts found in
essays or news articles. In our future work, we plan
to broaden the dataset to include various types of
texts, such as research articles. However, this limi-
tation is not exclusive to our dataset but is common
to all datasets focusing primarily on social media
content.

Ethical Statement

Our dataset is derived from two publicly accessible
benchmarks. Data for these benchmarks were col-
lected using common keywords based on popular
topics from social social media websites, ensuring
the dataset does not focus on information from any
single user. As a result, our dataset adheres to the
privacy policies social networking websites such as
Twitter and Sina Weibo, maintaining compliance
with established data protection standards.
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Domain Target Test Train LexSim

CoE

N Chinese English 13.13%
N English Chinese 11.94%
OC Chinese English 3.57%
OC English Chinese 4.38%
CC Chinese English 3.43%
CC English Chinese 3.80%

WE

N Chinese English 20.49%
N English Chinese 13.14%
OC Chinese English 3.85%
OC English Chinese 4.12%
CC Chinese English 3.88%
CC English Chinese 3.79%

CuE

N Chinese English 17.17%
N English Chinese 12.54%
OC Chinese English 3.43%
OC English Chinese 2.70%
CC Chinese English 3.40%
CC English Chinese 2.93%

EC

N Chinese English 13.69%
N English Chinese 10.15%
OC Chinese English 3.01%
OC English Chinese 3.49%
CC Chinese English 3.15%
CC English Chinese 3.31%

S

N Chinese English 10.35%
N English Chinese 8.19%
OC Chinese English 2.37%
OC English Chinese 3.51%
CC Chinese English 2.43%
CC English Chinese 3.32%

R

N Chinese English 14.12%
N English Chinese 10.35%
OC Chinese English 3.06%
OC English Chinese 2.51%
CC Chinese English 3.22%
CC English Chinese 3.19%

EP

N Chinese English 14.87%
N English Chinese 13.86%
OC Chinese English 2.82%
OC English Chinese 3.36%
CC Chinese English 2.95%
CC English Chinese 2.96%

Table 10: Percentage of LexSimTopics between the two
languages for out-of-domain ZSSD. N, OC, CC rep-
resent noun-phrase targets, original claim targets, and
challenging claim targets, respectively.

A Details on Challenging Claim
Annotation

A.1 Annotation Platform
Our English data annotations were obtained
through Cogitotech,3 a premier data annotation
company recognized for its work with top AI firms,
including OpenAI and AWS. For the Chinese data,
annotations were collected from Taojinniwo,4 a
crowd-sourcing platform in China known for pro-
viding annotation services to major AI corporations
such as Baidu and JD. For both companies, we im-
plemented strict quality standards for annotations
by establishing specific requirements. First, all
annotators must hold at least a college degree. Sec-
ond, they must be native speakers of the language
they are annotating. Additionally, we conduct qual-
ity reviews on a random 10% sample of each anno-
tator’s work. Any annotator with an approval rating
below 90% is excluded from the project. Annota-
tions that fail these quality checks are reassigned
to other annotators for re-labeling.

A.2 Annotation Instructions
We provide the following instructions: “Based on
the message that you learned from the text and the
claim target, write two additional claim targets,
to which the author of the text would express the
same stance as it is toward the original claim. The
definition of stance labels are as follows. “Favor”:
The author is definitely in favor of the point or
message of the claim; “Against”: The author is
definitely against the point or message from the
claim; “Neutral”: Based solely on the information
from the text, we cannot know whether the author
definitely supports or opposes the point or message
of the claim.”

To make this task more challenging, we establish
an extra requirements: claims labeled with against
should not merely negate the tweet content (e.g.,
adding “not" before verbs). Models could easily
detect such linguistic patterns and predict stances
without learning the content of tweet-claim pairs.

A.3 Quality Check
To ensure the actual stance is indeed the intended
one as assigned by the annotator who generated
the text, we hide the stance label and present the
input text and the generated challenging claim to
a set of three annotators (different from those who

3https://www.cogitotech.com/
4http://sjbz.itaojin.cn/
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Task Language # Examples # Unique Avg. Length

N OC N OC T N OC T

Covid Epidemic

Chinese
Train 12,379 18,984 7,519 18,585 6,690 1.8 15.2 61.7
Val 2,249 3,447 2,208 3,436 1,167 2.2 15.1 62.9
Test 3,474 5,347 1,896 5,212 1,786 1.9 15.5 64.7

English
Train 12,648 19,467 8,506 19,440 6,489 2 18.9 39.4
Val 1,958 3,753 1,932 3,749 1,251 2.4 19.2 40.4
Test 2,639 3,819 1,734 3,814 1,273 1.9 19.2 41.8

World Event

Chinese
Train 11,978 18,418 7,426 18,035 6,813 1.9 15.3 62.2
Val 2,077 3,186 2,045 3,176 1,087 2.2 15.2 63.2
Test 3,130 4,770 2,152 4,673 1,591 1.9 14.9 62.3

English
Train 12,736 20,025 8,574 19,998 6,675 2 18.9 39.5
Val 1,996 3,762 1,968 3,755 1,254 2.4 19.2 40.3
Test 2,286 3,252 1,655 3,252 1,084 1.9 19.3 41.6

Culture
and Education

Chinese
Train 12,283 18,720 7,671 18,314 7,105 1.9 15.2 62.2
Val 2,180 3,354 2,146 3,342 1,131 2.2 15.2 63
Test 2,397 3,618 1,806 3,589 1,218 1.9 15.1 63.6

English
Train 13,054 20,196 8,736 20,169 6,732 2 18.9 39.6
Val 1,962 3,765 1,940 3,758 1,255 2.3 19.1 39.7
Test 2,109 3,078 1,515 3,077 1,026 2 19.5 42.2

Entertainment
and Consumption

Chinese
Train 10,517 16,110 6,777 15,811 6,244 1.9 15.3 62.6
Val 1,991 3,051 1,960 3,042 1,043 2.2 15.1 63.9
Test 4,010 6,153 2,886 6,042 2,052 1.9 15.1 60.6

English
Train 12,760 19,407 8,388 19,386 6,469 2 19.1 40.6
Val 1,880 3,579 1,850 3,571 1,193 2.4 19.4 40.7
Test 2,702 4,053 1,949 4,047 1,351 1.9 17.8 35.8

Sports

Chinese
Train 13,549 20,683 8,091 20,238 7,379 1.9 15.2 62.8
Val 2,321 3,558 2,276 3,548 1,192 2.2 15.2 63.3
Test 2,088 3,177 1,256 3,117 1,060 1.7 14.8 58.4

English
Train 14,253 20,631 8,838 20,606 6,877 1.9 19 40.4
Val 1,977 3,747 1,945 3,740 1,249 2.3 19.2 40.5
Test 1,807 2,661 1,413 2,655 887 2.1 18.4 35.6

Rights

Chinese
Train 12,797 19,549 7,793 19,147 7,094 1.9 15.1 62
Val 2,352 3,594 2,307 3,583 1,218 2.2 15.1 62.8
Test 2,492 3,828 1,523 3,728 1,276 1.8 15.6 64.7

English
Train 12,619 19,851 8,464 19,824 6,617 2 18.9 39.7
Val 1,960 3,783 1,936 3,778 1,261 2.4 19.1 40.1
Test 2,468 3,405 1,793 3,400 1,135 2 19.2 40.5

Environmental
Protection

Chinese
Train 14,237 21,883 8,246 21,405 7,708 1.8 15.2 62.4
Val 2,363 3,636 2,321 3,626 1,223 2.2 15.1 63
Test 1,453 2,196 1,056 2,131 733 2 15.4 62.6

English
Train 12,989 20,436 8,688 20,406 6,812 2 18.8 39.6
Val 2,003 3,831 1,978 3,824 1,277 2.3 19.1 39.9
Test 2,071 2,772 1,519 2,772 924 2.3 19.8 41.9

Politics

Chinese
Train - - - - - - - -
Val - - - - - - - -
Test - - - - - - - -

English
Train 12,066 19,419 8,281 19,393 6,473 2 18.9 39.7
Val 1,846 3,621 1,828 3,617 1,207 2.4 19.3 40.6
Test 2,890 3,999 2,074 3,995 1,333 1.9 18.9 40.2

Table 11: Dataset split statistics for out-of-domain ZSSD. N, OC, T represent noun-phrase targets, original claim
targets, and texts, respectively.
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generated the challenging claims) to annotate the
data with the stance labels. We then assigned a
stance label based on the majority vote from the
three annotators. In 4% of the cases, the majority
vote stance label from the three annotators and the
stance label from the annotator who generated the
claim text disagreed. We removed the disagree-
ment instances because they represent low-quality
data. We would like to note that humans, equipped
with high reasoning capabilities, which are essen-
tial for stance detection, and performing careful
annotations, can in fact achieve a high agreement
rate. This does not imply that our data is easy.
Our goal is to evaluate the models’ capability in
understanding stances rather than simply predict-
ing stance by exploiting superficial patterns. By
reducing the word overlap between claim targets
and texts while maintaining the same stance cor-
relations, our challenging claims force models to
learn and understand semantic correlations.

B LexSimTopics for Out-of-domain ZSSD

We have also calculated the percentage of LexSim-
Topics between Chinese and English datasets for
out-of-domain ZSSD. The results, detailed in Table
10, indicate consistently low LexSimTopics scores
across all domains for both the Chinese and En-
glish test sets. These scores are comparable to
those found in previous ZSSD studies (Allaway
and McKeown, 2020; Zhao et al., 2023). This con-
sistency supports the effectiveness of our bilingual
zero-shot setting.

C Analysis on Target Diversity

We analyzed the distribution of occurrences for the
3000 most frequent noun-phrase targets in each
language. The results are shown in Figure 1. We
can observe that for each language, there are only
a small amount of noun-phrase targets with high
occurrences, while the majority of targets appear
infrequently. This distribution suggests that our
dataset maintains a diverse set of noun-phrase tar-
gets.

D Full Statistics of Out-of-domain ZSSD

Statistics for noun-phrase targets (N), original
claim tagets (OC), and texts (T) of out-of-domain
ZSSD are shown in Table 11. Statistics of chal-
lenging targets (CC) for out-of-domain ZSSD are
shown in Table 12.

Figure 1: Noun-phrase target distribution for two lan-
guages.

Language Train Validation Test

CoE Chinese 1,662 606 378
English 1,544 564 302

WE Chinese 1,668 600 378
English 1,550 558 302

CuE Chinese 1,656 612 378
English 1,538 570 302

EC Chinese 1,650 618 378
English 1,536 578 296

S Chinese 1,632 636 378
English 1,516 592 302

R Chinese 1,590 678 378
English 1,476 632 302

EP Chinese 1,602 666 378
English 1,488 620 302

P Chinese - - -
English 1,488 620 302

Table 12: Dataset splits for challenging claim targets for
out-of-domain ZSSD.

E Label Distribution of Challenging
Claim Targets for Out-of-domain ZSSD

We show label distribution of challenging claim
targets in Table 13.

F Training Settings

Our experiments are carried out using an NVIDIA
RTX A5000 GPU based on the PyTorch (Paszke
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Claim targets with low word overlap

English Chinese

Domain Con Pro Neu Con Pro Neu
CoE 114 114 114 126 126 126
WE 113 112 111 126 126 126
CuE 114 114 114 126 126 126
EC 114 112 110 126 126 126
S 111 110 109 126 126 126
R 114 114 114 126 126 126
EP 112 112 112 126 126 126
P 111 110 109 - - -
Overall 903 898 893 882 882 882

Table 13: Label distribution for challenging claim tar-
gets in each domain from our dataset. Con, Pro, Neu
represent against, favor, and neutral, respectively.

et al., 2019). Hyperparameters were fine-tuned
based on the validation set. Multi-lingual trans-
former models (i.e., mBERT5, XLM-R6, and
mT57) were trained using the AdamW optimizer
with a learning rate of 2e-5, which were fine-tuned
for 4 epochs using batch size of 32. The entire train-
ing process for each model was completed within
3 hours. Each result is the average of 4 runs with
different initialisation.

We use bloom-7b, Llama-2-7b-chat-hf, Llama-
2-13b-chat-hf, Meta-Llama-3-7B-Instruct, gpt-
3.5-turbo-0125, and gemini-1.0-pro of BLOOM,
LLaMA 2, LLaMA 3, ChatGPT, and Gemini, re-
spectively. The prompt template provided to LLMs
comprised the task description and three in-context
examples, one representing each stance class. Ex-
act prompts are shown in Table 14.

We also compared using one in-context exam-
ple per class with using more examples per class
(e.g., 10 examples). We observed that adding more
examples does not always help LLMs better under-
stand the task. For ChatGPT, using 10 examples
boosted the F1macro score for bilingual mixed tar-
gets from 0.439 to 0.471. However, for Gemini,
additional examples led to a decrease from 0.597
to 0.525. Notably, significant performance drops
were observed for LLaMA 2 (from 49.0 to 31.5)
and LLaMA 3 (from 0.477 to 35.3). We present
example responses generated by LLaMA 2 and
LLaMA 3 in Table 15, where we observe that more
in-context examples may lead to stance predictions
that are not semantically meaningful. This could be
because additional examples dilute the task instruc-

5https://huggingface.co/google-bert/
bert-base-multilingual-cased

6https://huggingface.co/FacebookAI/
xlm-roberta-base

7https://huggingface.co/google/mt5-base

tions in the prompt and may mislead the model.

G Results on 7B Version of LLAMA 2
and LLAMA 3

We show the results for LLAMA 2 and LLAMA
3 with 7-billion parameters in this section for in-
domain and out-of-domain ZSSD in Table 16 and
Table 17, respectively. We observe that LLaMA 3
(7b) outperforms LLaMA 2 (7b) but underperforms
compared to LLaMA 2 (13b).

H Cross-target Results for In-domain
ZSSD

We also conduct bilingual, cross-lingual, and mono-
lingual experiments when we train models only on
noun-phrase targets and claim targets. The results
are shown in Table 18 and Table 19, respectively.
We can observe that models trained on noun-phrase
targets perform much worse on claim targets when
compared with models trained on claim targets and
vice versa.

I Integrating VAST with Bi-STANCE

VAST (Allaway and McKeown, 2020) is another
existing English ZSSD dataset. VAST is designed
only for noun-phrase targets and only include the
target-based ZSSD. In our work, we aimed to inves-
tigate if the inclusion of VAST could enhance the
model’s learning of English instances with noun-
phrase targets. To this end, we trained XLM-R
on a merged dataset of VAST and the subset of
Bi-STANCE with noun-phrase targets and evalu-
ated its performance on the noun-phrase targets
of the Bi-STANCE test set, the Chinese subset,
and the English subset. These results were then
compared against the model’s performance when
trained solely on the noun-phrase targets of Bi-
STANCE.

Table 20 presents the results of incorporating
VAST into Bi-STANCE, where we note perfor-
mance enhancement on the English test set, es-
pecially for the neutral class. This improvement
may stem from VAST’s method of creating neu-
tral instances by permuting texts and targets, in
contrast to our direct extraction approach. The di-
versity added by VAST likely accounts for the per-
formance boost. However, we observed a slight de-
crease in performance on the Chinese data, which
may be attributed to the integration adversely af-
fecting the model’s capability in Chinese stance
detection. Nonetheless, significant gains on the
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Model Prompt
BLOOM Text: "[favor text]" Does this text show supportive or favorable stance towards the target "[favor target]"?

Yes, no, or maybe? Answer: Yes Text: "[against text]" Does this text show supportive or favorable
stance towards the target "[against target]"? Yes, no, or maybe? Answer: No Text: "[neutral text]" Does
this text show supportive or favorable stance towards the target "[neutral target]"? Yes, no, or maybe?
Answer: Maybe Text: "[text]" Does this text show supportive or favorable stance towards the target
"[target]"? Yes, no, or maybe? Answer:

LLaMA2,
LLaMA 3

Classify the stance that the author of the text takes towards the target into favor, against, or neutral. The
answer should only be one of the following three words: ’favor’, ’against’, or ’neutral’. Don’t give
further explanation other than one of these three words. Text: "[favor text]" Target: "[favor target]"
Stance: favor Text: "[against text]" Target: "[against target]" Stance: against Text: "[neutral text]"
Target: "[neutral target]" Stance: neutral Text: "[target]" Target: "[target]" Stance:

ChatGPT,
Gemini

Q: What is the stance of the text ’[favor text]’ towards the target ’[favor target]’? A: favor Q: What is
the stance of the text ’[against text]’ towards the target ’[against target]’? A: against Q: What is the
stance of the text ’[neutral text]’ towards the target ’[neutral target]’? A: [neutral] Q: What is the stance
of the text ’[text]’ towards the target ’[target]’? A: [neutral] The answer should be selected from ’Favor’,
’Against’, or ’None’. A:

Table 14: Prompts that we used for LLMs. ‘favor text,’ ‘against text,’ and ‘neutral text’ represent in-context example
texts for the respective stance classes. Similarly, ‘favor target,’ ‘against target,’ and ‘neutral target’ denote the targets
for these classes. The ‘text’ and ‘target’ represent the new text and target used for evaluation.

Model Examples
LLaMA 2 Text: Thank you, Brandon Beane, Sean McDermott, and the entire Bills organization, for having the

guts and courage to do what so many other NFL teams wouldn t do.
Target: Bills Organization
Stance Label: favor
Stance Prediction (1 example/class): favor
Stance Prediction (10 examples/class): Target: " Target: " Target: " Target: " Target: " Target: " Target:
" Target: " Target: " Target: "

LLaMA 3 Text: The “chosen one” is a “well-worn-out pop culture trope.” The chosen one arc has been around
since the beginning of storytelling. GTFO
Target: well-worn-out pop culture trope
Stance Label: Against
Stance Prediction (1 example/class): Against
Stance Prediction (10 examples/class): Here are the classifications: 1. Stance: favor 2. Stance: favor 3.
Stance: favor 4. Stance: favor 5. Stance: favor 6. Stance: against 7. St

Table 15: Examples of LLaMA 2 and LLaMA 3 stance prediction when using 10 in-context examples per class.

Train/Val Bi-STANCE (B) Chinese Only (C) English Only (E)

Test B C E B C E B C E
Mixed Targets
LLaMA 2 13b 49.0 51.2∗ 46.7† 48.0 50.5 0.7 45.2 1.5 47.7 46.1 5.1 46.2 0.5

LLaMA 2 7b 46.5 50.3∗ 42.9† 45.5 48.6 1.7 41.5 1.4 42.3 44.5 5.8 41.5 1.4

LLaMA 3 7b 47.7 51.5∗ 44.1† 46.7 49.8 1.7 42.9 1.2 43.5 45.3 6.2 41.7 2.4

Noun-phrase Targets
LLaMA 2 13b 55.6 53.2∗ 58.1† 54.9 52.4 0.8 56.0 2.1 53.8 46.9 6.3 58.5 0.4

LLaMA 2 7b 55.7 56.2∗ 55.0† 54.9 55.7 0.5 53.1 1.9 56.9 53.9 2.3 54.5 0.5

LLaMA 3 7b 56.9 57.4∗ 56.2† 56.1 56.5 0.9 54.3 1.9 58.1 55.3 2.1 56.5 0.3

Original Claim Targets
LLaMA 2 13b 45.0 49.8∗ 40.3† 44.1 47.9 1.9 39.0 1.3 44.0 45.6 4.2 39.3 1.0

LLaMA 2 7b 41.2 46.4∗ 36.5† 39.7 44.9 1.5 34.2 2.3 33.8 35.9 10.5 32.4 4.1

LLaMA 3 7b 42.4 47.6∗ 37.7† 40.9 45.9 1.7 35.2 2.5 35.0 37.4 10.2 32.9 4.8

Table 16: Comparison of F1macro (%) of 7-billion version of LLaMA 2 and LLaMA 3 models trained on the
mixed targets (mixture of noun-phrase and claim targets) in the bilingual, monolingual, and cross-lingual settings
on in-domain ZSSD. B, C, E represent the full Bi-STANCE data, the Chinese subset, and the English subset,
respectively. ∗ and †: models trained on B surpass their cross-lingual counterparts at p < 0.05 with paired t-test on
Chinese test set and English test set, respectively. Blue and red arrows show performance changes for models in
monolingual and cross-lingual settings compared to those in bilingual settings, respectively.

29915



Model CoE WE CuE EC S R EP P

LLaMA 2
13b

B 45.4 48.4 48.8 49.2 51.5 47.2 53.3 43.5
C 46.2 50.0 50.9 50.7 53.0 48.2 56.8 -
E 43.8 44.9 46.0 46.9 49.4 44.9 49.8 43.5

LLaMA 2
7b

B 46.9 46.7 46.7 46.9 44.7 41.8 48.2 41.4
C 49.9 49.2 49.9 49.7 47.4 43.7 52.0
E 42.8 42.5 43.0 42.7 41.0 39.4 44.3 41.4

LLaMA 3
7b

B 47.4 47.4 47.6 47.4 45.2 42.7 49.1 41.9
C 50.4 49.9 50.8 50.2 47.9 44.6 52.9
E 43.3 43.2 43.9 43.2 41.5 40.3 45.2 41.9

Table 17: Comparison of F1macro (%) of 7-billion
version of LLaMA 2 and LLaMA 3 on out-of-domain
ZSSD. Models are trained and evaluated using datasets
for 8 zero-shot domain settings (denoted by each col-
umn). Models are trained on the full bilingual train-
ing set with mixed targets. Test results are based on
the mixed targets, with B, C, E stand for the full Bi-
STANCE, the Chinese subset, and the English subset,
respectively.

Bi-STANCE and the Chinese test sets were not
observed.

J Evaluating on Challenging Claim
Targets for Out-of-domain ZSSD

We evaluate challenging claim targets for out-of-
domain ZSSD. The results are shown in Table 21.
Our observations are as follows: First, models
trained on BOC perform better than those trained on
single languages. Second, models trained on origi-
nal claims struggle with challenging claims. Third,
incorporating bilingual challenging targets into
the training significantly enhances performance on
challenging claims.
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Train/Val Bi-STANCE (B) Bi-STANCE (C) Bi-STANCE (E)

Test B C E B C E B C E
Mixed Targets
mBERT 43.0 45.0∗ 41.0† 41.7 45.4 0.4 36.3 4.7 42.1 42.4 2.6 41.5 0.5

XLM-R 45.2 47.9∗ 42.5† 43.9 46.8 1.1 40.0 2.6 43.7 44.7 3.2 42.6 0.1

mT5 44.8 47.5∗ 42.0† 42.3 46.7 0.8 35.7 6.3 41.2 41.6 5.9 40.2 1.8

Noun-phrase Targets
mBERT 62.2 63.3∗ 60.9† 56.5 62.7 0.6 48.6 12.3 57.7 53.8 9.5 61.8 0.9

XLM-R 67.0 68.0∗ 65.9† 63.8 68.1 0.1 58.4 7.5 62.1 60.3 7.7 63.9 2.0

mT5 66.5 68.1∗ 64.6† 58.6 65.5 2.6 49.2 15.4 57.8 54.6 13.5 60.9 3.7

Original Claim Targets
mBERT 31.7 32.9 30.5 33.1 33.7 0.8 30.0 0.5 32.9 34.8 1.9 30.7 0.2

XLM-R 32.5 34.8 30.3 32.3 32.8 2.0 30.6 0.3 33.0 34.6 0.2 31.5 1.2

mT5 31.9 33.9 30.1 32.9 34.2 0.3 28.6 1.5 31.5 33.2 0.7 29.3 0.8

Table 18: Comparison of F1macro (%) of multilingual models trained on noun-phrase targets in the bilingual,
monolingual, and cross-lingual settings on in-domain ZSSD. B, C, E represent the full Bi-STANCE, the Chinese
subset, and the English subset, respectively. ∗ and †: models trained on B surpass their cross-lingual counterparts
at p < 0.05 with paired t-test on the Chinese and English subsets, respectively. Blue and red arrows indicate
performance changes for models trained in monolingual and cross-lingual settings compared to their counterparts
trained in the bilingual setting, respectively.

Train/Val Bi-STANCE (B) Bi-STANCE (C) Bi-STANCE (E)

Test B C E B C E B C E
Mixed Targets
mBERT 63.4 62.7∗ 64.0† 51.9 62.8 0.1 38.8 25.2 55.5 46.1 16.6 63.4 0.4

XLM-R 65.8 64.7∗ 66.8† 55.9 64.4 0.3 46.1 20.7 57.5 48.4 16.3 65.0 1.8

mT5 62.9 62.0∗ 63.8† 52.2 61.8 0.2 40.8 23.0 58.5 52.8 9.2 63.4 0.4

Noun-phrase Targets
mBERT 33.8 32.2∗ 30.1 31.1 31.4 0.8 30.5 0.4 24.9 26.0 6.2 23.8 6.3

XLM-R 30.8 27.4 30.7† 27.4 27.5 0.1 27.1 3.6 26.5 27.8 0.4 24.8 5.9

mT5 26.0 25.4 24.9 24.7 24.3 1.1 25.1 0.2 31.7 34.0 8.6 29.0 4.1

Original Claim Targets
mBERT 80.1 80.5∗ 79.7† 62.7 80.4 0.1 30.5 49.2 69.7 57.1 23.4 79.9 0.2

XLM-R 83.8 84.2∗ 83.4† 68.9 83.6 0.6 53.7 29.7 72.4 60.1 24.1 82.3 1.1

mT5 80.2 81.0∗ 79.3† 64.9 81.3 0.3 46.6 32.7 71.9 64.2 16.8 78.3 1.0

Table 19: Comparison of F1macro (%) of multilingual models trained on original claim targets in the bilingual,
monolingual, and cross-lingual settings for in-domain ZSSD. B, C, E represent Bi-STANCE, the Chinese subset, and
the English subset, respectively. ∗ and †: models trained on B surpass their cross-lingual counterparts at p < 0.05
with paired t-test on Chinese and English subsets, respectively. Blue and red arrows indicate performance shifts
for models trained in monolingual and cross-lingual settings against their bilingual counterparts on Chinese and
English subsets, respectively.
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Train Test Con Pro Neu All

B+V
B 71.3 67.7 63.1 67.4
C 69.9 67.6 58.3 65.3
E 72.4 67.9 67.4 69.2

B
B 70.8 68.3 61.8 67.0
C 70.0 69.2 58.5 65.9
E 71.6 67.5 64.9 68.0

Table 20: F1macro for XLM-R, trained on the com-
bined noun-phrase targets from the Bi-STANCE and
VAST datasets and tested on noun-phrase targets for
in-domain test set of Bi-STANCE. B, C, E, V represent
the Bi-STANCE, the Chinese subset, and the English
subset, and the VAST dataset with noun-phrase targets,
respectively.
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Model Train/Val Test CoE WE CuE EC S R EP P

mBERT

COC

COC .783 .799 .791 .783 .810 .789 .841
CCC .427 .393 .379 .444 .505 .434 .478
EOC .434 .430 .460 .438 .398 .418 .412
ECC .507 .516 .467 .540 .526 .526 .563

EOC

COC .548 .533 .585 .558 .555 .586 .624
CCC .304 .302 .305 .306 .304 .338 .358
EOC .760 .775 .786 .765 .776 .792 .780 .760
ECC .377 .378 .357 .391 .353 .368 .365 .381

BOC

COC .786 .799 .795 .790 .813 .796 .841
CCC .442 .393 .403 .446 .503 .437 .472
EOC .757 .768 .785 .775 .779 .789 .773 .762
ECC .377 .369 .357 .374 .380 .388 .383 .370

BOC+BCC

COC .780 .807 .801 .783 .811 .796 .843
CCC .483 .418 .424 .455 .527 .431 .503
EOC .770 .779 .795 .775 .778 .783 .769 .772
ECC .545 .519 .506 .698 .606 .605 .668 .535

XLM-R

COC

COC .825 .823 .829 .831 .838 .831 .869
CCC .464 .422 .451 .466 .547 .419 .515
EOC .561 .536 .585 .565 .567 .552 .553
ECC .495 .534 .465 .581 .579 .568 .565

EOC

COC .601 .613 .626 .651 .603 .601 .662
CCC .347 .317 .313 .336 .328 .326 .388
EOC .792 .812 .835 .819 .821 .823 .815 .801
ECC .370 .384 .408 .414 .398 .390 .390 .410

BOC

COC .829 .833 .830 .829 .841 .830 .876
CCC .482 .432 .404 .452 .545 .462 .515
EOC .806 .815 .819 .809 .824 .817 .824 .810
ECC .382 .399 .399 .421 .413 .406 .425 .393

BOC+BCC

COC .834 .828 .833 .825 .838 .820 .876
CCC .566 .497 .503 .536 .602 .515 .602
EOC .802 .813 .825 .810 .805 .818 .808 .814
ECC .755 .711 .634 .781 .740 .717 .780 .777

mT5

COC

COC .789 .781 .781 .780 .797 .778 .828
CCC .439 .427 .404 .455 .509 .466 .462
EOC .501 .471 .481 .507 .446 .487 .508
ECC .443 .469 .392 .385 .478 .449 .443

EOC

COC .638 .630 .645 .618 .607 .635 .674
CCC .355 .317 .331 .338 .375 .367 .364
EOC .740 .772 .772 .747 .765 .755 .757 .760
ECC .343 .387 .379 .398 .376 .355 .399 .373

BOC

COC .801 .807 .801 .810 .817 .795 .850
CCC .500 .419 .413 .468 .528 .454 .501
EOC .779 .782 .789 .792 .783 .776 .776 .562
ECC .387 .366 .393 .399 .386 .380 .388 .413

BOC+BCC

COC .802 .804 .802 .805 .818 .802 .842
CCC .502 .458 .431 .500 .586 .472 .528
EOC .782 .787 .806 .784 .783 .792 .757 .730
ECC .463 .455 .479 .465 .546 .524 .481 .447

Table 21: F1macro of models evaluated on challenging claims on out-of-domain ZSSD. BOC , COC , EOC represent
the full Bi-STANCE, the Chinese subset, and the English subset with original claim targets, respectively. BCC ,
CCC , ECC represent corresponding datasets with challenging claim targets.
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