
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 29851–29865
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

An Empirical Study of Iterative Refinements for Non-autoregressive
Translation

Yisheng Xiao♡, Pei Guo♡, Zechen Sun♡, Juntao Li♡, Kai Song3, Min Zhang♡
♡Soochow University, China

3ByteDance
{ysxiaoo,pguolst,zcsuns}@stu.suda.edu.cn

{ljt,minzhang}@suda.edu.cn
songkai.neu@gmail.com

Abstract

Iterative non-autoregressive (NAR) models
share a spirit of mixed autoregressive (AR)
and fully NAR models, seeking a balance be-
tween generation quality and inference effi-
ciency. These models have recently demon-
strated impressive performance in varied gener-
ation tasks, surpassing the autoregressive Trans-
former. However, they also face several chal-
lenges that impede further development. In
this work, we target building more efficient and
competitive iterative NAR models. Firstly, we
produce two simple metrics to identify the po-
tential problems existing in current refinement
processes, and look back on the various iter-
ative NAR models to find the key factors for
realizing our purpose. Subsequently, based on
the analyses of the limitations of previous in-
ference algorithms, we propose a simple yet ef-
fective strategy to conduct efficient refinements
without performance declines. Experiments
on five widely used datasets show that our final
models set the new state-of-the-art performance
compared to all previous NAR models, even
with fewer decoding steps, and outperform AR
Transformer by around one BLEU on average.
Our codes and models are available on Github1.

1 Introduction

Transformer-based models (Vaswani et al., 2017)
have achieved promising performance in various
tasks, particularly after the emergence and progress
of large language models recently (Touvron et al.,
2023a; OpenAI, 2023; Touvron et al., 2023b). How-
ever, these models adopt an autoregressive (AR)
decoding paradigm where tokens are generated one
by one in a strict left-to-right order. Consequently,
they suffer from low inference efficiency, which
even worsens as model parameters increase (Zhao
et al., 2023). Non-autoregressive (NAR) models
provide an alternative text generation paradigm (Gu
et al., 2018). Unlike AR models, NAR models can

1 github.com/LitterBrother-Xiao/rethink-iterative-nar

predict all the target tokens in parallel, significantly
accelerating the inference process. However, this
parallel decoding paradigm also leads to perfor-
mance degradation due to independent predictions
lacking target side dependency (Qian et al., 2021;
Xiao et al., 2022; Huang et al., 2023).

To balance the generation quality and infer-
ence efficiency, researchers have proposed itera-
tive NAR models that utilize multiple decoding
steps to generate the final results and retain the
non-autoregressive decoding paradigm in each step
(Lee et al., 2018; Ghazvininejad et al., 2019; Chan
et al., 2020). Results generated from the previ-
ous decoding steps can provide partial target side
information, and then be refined better in the sub-
sequent steps. Through iterative refinements, the
performance of these models can achieve signifi-
cant improvements, even surpassing their AR coun-
terparts (Huang et al., 2022c; Xiao et al., 2023).
However, utilizing multiple decoding steps also in-
creases the decoding time overhead, leading to less
efficient inference processes (Kasai et al., 2020b;
Helcl et al., 2022), and directly reducing the num-
ber of decoding steps for relatively faster decod-
ing always brings inferior performance. Besides,
these models have also revealed some flaws in
the corresponding research, including the gaps be-
tween training and inference (Ghazvininejad et al.,
2020; Huang et al., 2022c) and the anisotropic prob-
lem (Guo et al., 2023a), which hinders the further
developments of iterative NAR models and results
in less competitive performance. Therefore, how
to build more efficient and competitive iterative
NAR models deserves further exploration.

In this paper, we closely examine various aspects
related to the abilities of iterative NAR models, and
conduct systematic studies and analytical experi-
ments to address the above-mentioned question:

• We conduct in-depth explorations of previous
iterative NAR models (§3). Specifically, we

29851

verify and quantitatively analyze the potential
problems existing in current refinement pro-
cesses through two metrics (§3.1). Besides,
we conduct analytical experiments based on
various iterative NAR models and discover
that different enhanced methods play differ-
ent roles in building efficient and competitive
models (§3.2). Then, we attempt to realize our
purpose by combining previous superior meth-
ods, but notice performance declines with pre-
vious efficient strategies (§3.3).

• We trial better strategies for iterative NAR
models to become efficient while maintain-
ing competitive performances (§4). We first
analyze the limitations of current refinement
strategies (§4.1) and then propose a simple
yet effective inference algorithm for iterative
NAR models (§4.2). Combining it with pre-
vious competitive strategies can achieve supe-
rior performance with fewer decoding steps.

Experiments on 5 widely used datasets demon-
strate the effectiveness of our final models.
We yield significant performance improvements
(around 0.8 BLEU score on average) over the pre-
vious best iterative NAR models and realize com-
pletely surpassing AR Transformer (over 1 BLEU
score on average). Besides, our models only need
4 decoding steps to set new SOTA performance on
all WMT datasets compared with those achieved
by previous models with 10 decoding steps, which
leads to more efficient inference processes.

2 Preliminaries & Motivation

Non-autoregressive Language Model Up to
now, most generative models are autoregressive
(AR) models which generate the target sequence
one by one from a left-to-right order during infer-
ence. They adopt AR factorization during train-
ing to maximize the following likelihood: LAR =∑T

t=1 logP (yt|y<t, X; θ), where y<t denotes the
previous generated target tokens, T denotes the tar-
get length, X is the source sentence, and θ denotes
the model parameters. Unlike these AR models,
non-autoregressive (NAR) language models gener-
ate the target sequence in parallel during inference,
they adopt conditional independent factorization
during training to maximize the following likeli-
hood: LNAR =

∑T
t=1 logP (yt|X; θ).

CMLM Conditional Masked Language Model
(CMLM) is a typical and widely-used iterative

Figure 1: Presentation of the training and inference
process of the conditional masked language model.

NAR model (Ghazvininejad et al., 2019), which
adopts a Transformer-based encoder-decoder ar-
chitecture with some specific modifications in the
decoder blocks to support NAR generation man-
ner. During each decoding step, CMLM predicts
the masked tokens in parallel conditioned on the
source sequence and the unmasked part in the tar-
get sequence as shown in Figure 1. Then, CMLM
will refine the generated output by re-masking and
re-predicting several specific tokens according to
the Mask-Predict algorithm (Ghazvininejad et al.,
2019). During training, CMLM adopts masked lan-
guage modeling tasks to learn this paradigm. As
shown in Figure 1, given a training pair (X,Y),
CMLM selects partial tokens in Y to be masked,
denoted as Ymask, while the unmasked tokens as
Yobs, then CMLM aims to maximize: LCMLM =∑

yt∈Ymask
logP (yt|Yobs, X; θ). Besides, CMLM

adopts a special token (e.g., [LENGTH]) in its en-
coder (we omit this in Figure 1) to predict the target
length conditional on the source representation fol-
lowing the previous works (Ghazvininejad et al.,
2019; Huang et al., 2022c; Xiao et al., 2023).

Follow-up Methods of CMLM Based on
CMLM, researchers have proposed many follow-
up enhanced methods from different perspectives
to improve the training and inference process, e.g.,
adopting better masking methods (Guo et al., 2020;
Xiao et al., 2023) or enhanced modeling mecha-
nism (Kasai et al., 2020a; Cheng and Zhang, 2022;
Chen et al., 2024) during training, utilizing extra
modules to help training or inference (Hao et al.,
2021; Liang et al., 2022; Geng et al., 2021), intro-
ducing better inference mechanisms (Ghazvinine-
jad et al., 2020; Huang et al., 2022c), and etc. More
details about these variants are included in the Ap-
pendix A due to the length limitation. Although we
have learned from their own papers that there has

29852

been a corresponding improvement in the perfor-
mance of these methods compared to CMLM, we
should compare them under more consistent hard-
ware and settings to analyze the effects of different
enhanced methods from different perspectives. In
this paper, we conduct comprehensive analysis and
analytical experiments of CMLM and these follow-
up methods, targeting building more efficient and
competitive iterative NAR models.

3 In-depth Explorations of Previous
Iterative NAR Models

In this section, we conduct in-depth explorations
of current iterative NAR models. Specifically, we
introduce several sub-problems and make detailed
analyses. We aim to find the key factors for build-
ing efficient and competitive iterative NAR models.

Problems and Explorations. Firstly, previous
works always adopt the final generated output af-
ter pre-defined decoding steps to evaluate iterative
NAR models, but overlook the fine-grained analy-
sis of intermediate states throughout the refinement
process. Consequently, some potential problems
(e.g., useless and negative decoding steps) during
the refinement process can not be reflected based
on the current evaluation process. Therefore, we
introduce two metrics (DRR and ROR) to quanti-
tatively analyze the potential problems mentioned
above, we aim to answer: how to evaluate the in-
termediate states of the whole refinement process
of different iterative NAR models (§3.1). Based
on our proposed two metrics, we compare differ-
ent iterative NAR models under a consistent re-
implementation. We aim to find what are the key
components for iterative NAR models to perform
better (§3.2). Finally, we conduct extended experi-
ments to answer can combining superior methods
brings benefits (§3.3), and make a summary (§3.4).

Experimental Settings. We adopt the vanilla
CMLM and several typical variants which con-
tain different improving strategies from differ-
ent respects as mentioned in Section 2 for ex-
ploration. We summarize them as different cate-
gories: adopting enhanced training skills (JM-NAT,
AMOM, Multitask-NAT), using adaptive inference
algorithms (Disco, Rewrite-NAT), and introduc-
ing self-correction mechanisms (SMART, CORR,
CMLMC). To make more consistent comparisons,
we re-implement all these models based on the
same hardware and training hyper-parameters. For

the evaluation dataset, we select the IWSLT’14
DE→EN dataset containing about 170k training
sentence pairs, 7k valid pairs, and 7k test pairs. We
train each model on the training set and then eval-
uate them on the test set. Following the previous
work (Kasai et al., 2020a), we apply sequence-level
knowledge distillation (Kim and Rush, 2016) for all
backbone models. All experiments use the Fairseq
library (Ott et al., 2019) with GTX 3090 GPU cards.
We adopt the same training hyper-parameters fol-
lowing CMLM realization in Fairseq. During in-
ference, we average the 5 best checkpoints chosen
by validation BLEU as our final model. Finally,
we evaluate the generation quality with BLEU
score (Papineni et al., 2002). Besides, to eliminate
the effects of randomness, we follow the previous
works to use statistical significance tests (Koehn,
2004) to detect if the difference in BLEU score
between the traditional CMLM and other enhanced
iterative NAR models is significant.

3.1 How to Evaluate the Intermediate States of
the whole Refinement Process of Different
Iterative NAR Models?

The current common evaluation process of itera-
tive NAR models, where we compare the gener-
ated output of the last decoding step with ground
truth to compute a score (e.g., BLEU), can not
directly reflect the potential problems as men-
tioned above. Therefore, we introduce Decline
Risks of Refinements (DRR) and Ratio of Over-
Refinements (ROR) to respectively measure the
ratio of these potential problems, and evaluate the
stability and reliability of the refinement process.

Decline Risks of Refinements. Decline Risks of
Refinements (DRR) evaluates the stability of the
refinement process of iterative NAR models. It
measures the performance decline rate after one
specific decoding step, i.e., the extent of the neg-
ative decoding step. Specifically, given a test set
with N examples, a fixed decoding step T , we com-
pute the ratio of each example during the whole
refinement process where the performance declines
compared with the previous iteration, formatted as:

DRR =
1

T − 1

T−1∑

t=1

|Scoreti > Scoret+1
i |

N
, (1)

where Scoreti denotes the performance of sample i
in the tth step.

29853

Ratio of Over-Refinements. Ratio of Over-
Refinements (ROR) evaluates the reliability of the
final generated output in iteration T . It measures
the failure rate of the output from the last decoding
step to be the best, i.e., the extent of the useless de-
coding steps. Specifically, given a test set with N
examples, a fixed decoding step T , we compute the
ratio of each example whose best performance is
achieved in the intermediate steps of the refinement
process, formatted as:

ROR =
1

T − 1

T−1∑

t=1

|Scoreti > ScoreTi |
N

, (2)

where Scoreti denotes the performance of sample i
in the tth step, ScoreTi denotes the performance of
sample i in the final iteration T .

3.2 What are the Key Components for Iterative
NAR Models to Perform Better?

Exploration Process. We look for the key com-
ponents for two aspects, i.e., competitive and effi-
cient. The former can be directly reflected in the
final performances, and the latter is reflected in the
efficiency of achieving relatively promising perfor-
mances. We re-implement and evaluate the related
enhanced CMLM methods. For these with adaptive
inference algorithms (i.e., Disco and RewriteNAT),
we set T as the number of adaptive decoding steps
of each sentence pair in Equation 1 and Equation 2
during inference, and 10 for other methods follow-
ing the previous works. Besides, for the models that
support two inference algorithms (e.g., CMLMC
can omit the self-correction process and transform
to the Mask-Predict algorithm), we both report the
results with the Mask-Predict algorithm and the
corresponding enhanced inference strategy.

Main Findings. The results are presented in Ta-
ble 1, we find that: (1) DRR and ROR are relatively
lower while decoding with adaptive inference al-
gorithms. These models aim to find more suitable
methods to decide how many and which tokens to
mask, and when to stop refinements during infer-
ence. They can achieve comparable performance
with fewer decoding steps, indicating that adap-
tive inference algorithms bring benefits to building
more efficient iterative NAR models. (2) Enhanced
training skills bring benefits on performance, but
there is no evident improvement on DRR and
ROR. These models trained with enhanced train-
ing skills can improve performance compared with

Methods Iteration BLEU DRR (%) ROR (%)

Enhanced Training Skills

CMLM 10 33.55 13.4 19.1
JM-NAT 10 32.60 14.4 17.5
Multitask-NAT 10 33.60 16.5 18.4
Disco 10 33.22 14.6 13.1
RewriteNAT † 10 33.88 12.1 14.4
CORR † 10 33.65 13.3 14.1
CMLMC † 10 34.02 13.1 13.8
AMOM † 10 34.68 16.3 17.9

Adaptive Inference Algorithms

Disco Adv. 33.32 11.8 6.9
RewriteNAT † Adv. 33.91 7.9 1.1

Self-correction Mechanism

SMART 10 33.17 14.5 16.6
CORR † 10 33.76 15.0 15.3
CMLMC † 10 34.40 15.2 14.9

Combining Superior Methods

AMOMC † 10 35.08 16.8 16.7
w/ Locator † Adv. 34.68 5.9 6.0

Table 1: DRR and ROR of different models. Adv. de-
notes adaptive decoding steps, which are always less
than 10. † denotes that the BLEU improvements over
CMLM are statistically significant with p < 0.05.

the vanilla CMLM, but DRR and ROR are still
high, indicating that enhanced training skills are
useful for building more competitive iterative NAR
models, the performance improvements of these
models come from the better ability to model to-
ken dependency during training rather than ben-
efitting the refinement process. (3) Introducing
the self-correction mechanism can improve per-
formance, but DRR gets higher. These models
with the self-correction mechanism achieve per-
formance improvement. However, DRR increases,
indicating that this mechanism may bring more
unstable factors during the refinement process.

3.3 Can Combining Superior Methods Brings
Benefits?

Exploration Process. We can learn from the ex-
plorations in Section 3.2 that different enhanced
methods are independently beneficial to making the
models more efficient and competitive. Naturally,
we wonder: can combining superior methods bring
benefits? We further explore the following ques-
tions: (1) Since the adaptive inference algorithms
can bring promising performance with fewer decod-
ing steps, can they further improve the performance
with more steps? (2) Since adopting enhanced train-
ing skills and the self-correction mechanism can

29854

boost performance but not stabilize the refinement
process, can we incorporate the adaptive inference
algorithms into these models to make them more
efficient? Specifically, for question 1, we force
these models (Disco and RewriteNAT) to continue
the refinement process until reaching the maximal
T decoding step. For question 2, we first com-
bine the previous superior methods of enhanced
training skills and adaptive inference algorithms
(AMOM and CMLMC, denoted as AMOMC), and
then we further apply the Locator module proposed
in RewriteNAT into AMOMC.

Main Findings. The results are shown in Table 1,
we can find that: (1) Concerning the models with
adaptive inference algorithms, the performance
even declines once we adopt more decoding steps
for them, e.g., the performance declines from 33.32
to 33.22 for Disco, from 33.91 to 33.88 for Rewrite-
NAT. Besides, DRR and ROR get much higher with
more decoding steps, indicating that models with
adaptive inference algorithms do not need many de-
coding steps to achieve the best performance during
inference. (2) Further utilizing the Locator mod-
ule for AMOMC can make the refinement process
more efficient since it can achieve comparable per-
formance with fewer decoding steps and get lower
DRR and ROR, but it also leads to performance
declines compared with the original AMOMC.

3.4 Summary

Now, we summarize our above explorations. We
first propose two simple metrics to analyze the
potential problems existing in current refinement
methods. We encourage the researchers to pay
more attention to the intermediate stages of the re-
finement process. Next, we conduct comparative
experiments to look for the key components for
building more efficient and competitive iterative
NAR models, and then further combine superior
methods to realize our purpose. However, we find
that the current efficient strategy leads to perfor-
mance declines. This motivates us to explore better
strategies for building efficient iterative NAR mod-
els while maintaining competitive performance.

4 Trials for Better Efficient Strategies

In this section, we explore better strategies for
building more efficient iterative NAR models while
keeping them maintain competitive performance.
We conduct a detailed analysis of original refine-

ment methods and then propose a simple yet effec-
tive strategy to realize our purpose.

Problems and Explorations. Firstly, the Mask-
Predict algorithm exhibits higher DRR and ROR
than adaptive inference algorithms as shown in Ta-
ble 1. Therefore, we aim to analyze: what makes
the Mask-Predict algorithm fail to do efficient re-
finements (§4.1). Besides, noticing that although
current adaptive inference algorithms are advanta-
geous for reducing the decoding steps, they also
lead to performance declines. Therefore, we ana-
lyze the corresponding reasons and further investi-
gate: are there better efficient strategies for iter-
ative NAR models (§4.2). Finally, we summarize
the aforementioned questions and point out future
directions for iterative NAR models (§4.3).

Experimental Settings. During the analysis of
the failure of the Mask-Predict algorithm, we
adopt the CMLM checkpoint achieved from the
above exploration process. To explore more effec-
tive inference algorithms, we adopt more datasets,
i.e., WMT’16 English↔Roman (En↔Ro) and
WMT’14 English↔German (En↔De) language
pairs which are widely used in previous NAR
works, to evaluate our proposed methods. The
training data sizes are respectively about 0.6M and
4.5M, and the test data are from the correspond-
ing newest data containing around 2,000 and 3,000
samples. Besides, the training and evaluation set-
tings are the same as those mentioned in Section 3.

4.1 What Makes the Mask-Predict Algorithm
Fail to Do Efficient Refinements?

We attribute the success of the adaptive inference
algorithm to the reasonable strategy to determine
"which token should be masked in the next decoding
step?" Comparatively, the Mask-Predict algorithm
relies on predicted confidence to select masked
tokens in the subsequent decoding step. How-
ever, we have identified two shortcomings with
this confidence-based refinement process:

1) The independent confidence updating strat-
egy for each token is sub-optimal. In the Mask-
Predict algorithm, the prediction confidence is up-
dated only for masked tokens during each decod-
ing step, i.e., those for unmasked tokens remain
unchanged after the last decoding step when they
were predicted. This denotes that the prediction
confidences of masked and unmasked tokens are
derived from different decoding steps and under

29855

different masking conditions. Consequently, this in-
consistency poses challenges in determining which
tokens to be masked in the subsequent decoding
step. This shortcoming is also supported by the
comparison presented in Table 1. The models that
update the confidence scores of all tokens in the
same decoding step can alleviate this problem, e.g.,
Disco, RewriteNAT, and CMLMC all achieve lower
DRR and ROR even without adopting adaptive in-
ference algorithms during inference.

2) The prediction confidence of CMLM is not
strongly related to the generation quality. As
discussed in Section 2, CMLM selects the pre-
diction probability as the confidence to choose
newly masked tokens. This approach assumes
that tokens with higher prediction probabilities are
more reliable. However, previous works have high-
lighted several issues. Ding et al. observe that
some specific tokens, such as high-frequency words
and conjunctions, consistently exhibit high confi-
dence, leading to repetitive output and neglect of
low-frequency but important words. Additionally,
Liang et al. notes that the function words dominate
the high probability region of the output distribu-
tion, making it challenging to generate informa-
tive tokens using the Mask-Predict algorithm with
CMLM. We also perform a simple experiment to
exhibit the irrelevance between the prediction con-
fidence and final generation output.

Set Win (%) Lose (%)
Valid 54.61 45.39
Test 54.10 45.90

Table 2: Win denotes the model predicts the ground
truth token as the final results, Lose denotes the vice.

Exploration Process. Since the traditional Mask-
Predict algorithm always selects tokens with the
highest prediction probability as output during each
decoding step, we verify whether the probability
of ground truth tokens ranks first. Specifically, we
first randomly mask several tokens in the target
sequence and send them into CMLM to obtain the
prediction probability, then we find the probability
place of ground truth tokens, e.g., given the test
sentence "Thank you." We first replace the token
"you" with the [MASK] token, then we send the
sequence "Thank [MASK] ." into CMLM, and verify
whether the prediction probability of token "you"
ranks first. If not, the highest prediction confidence
does not equal the correct token.

Main Findings. We conduct experiments on the
validation and test set of IWSLT’14 DE→ dataset
and show the results in Table 2. We find that only
around 54 percent of tokens meet our expectations,
i.e., these ground truth tokens have the highest pre-
diction probabilities. This shows that the model’s
own prediction probabilities are not strongly re-
lated to the correct tokens. We attribute this failure
to the conditional independent factorization during
training, which causes CMLM to fail to capture the
target-side dependency well (Gu and Kong, 2021).

4.2 Are There Better Efficient Strategies for
Iterative NAR Models?

The explorations in Section 4.1 explain why adap-
tive inference algorithms are more effective than
the traditional Mask-Predict algorithm. However,
noticing that adopting the Locater leads to perfor-
mance declines as shown in Table 1 (34.68 v.s.
35.08). We further analyze the corresponding rea-
son. Since the Locator module assigns zero-one
discrete scores for predicted tokens, i.e., these to-
kens scored as zero will be masked again, and one
will not be masked in the next decoding step. We
point out that this scoring mechanism is too abso-
lute, i.e., there is no difference for unreliable tokens
that are scored as zero, and once all the tokens are
scored as one, there are no subsequent actions to
further improve the generation quality. To explore
the potential of a more effective scoring module for
iterative NAR models, we intended to replace the
zero-one discrete score with a zero-one continuous
distribution, in which we can design the refinement
process more flexibly and constantly.

Exploration Process. We aim to find a simple
yet effective mechanism to score each token within
a sentence, and then we can depend on these scores
to determine which tokens should be masked in
the subsequent decoding step. Motivated by the
previous practice that a pre-trained AR model can
successfully serve as an effective scorer on the
sentence-lever to evaluate the fluency of sentences,
we can extend it as a token-level scorer, named
ARSCORER in the remaining space of this paper.
Specifically, we utilize the generated tokens from
each decoding step as inputs for a pre-trained AR
model. The AR model conducts its prediction on
this input sequence in an autoregressive manner.
Subsequently, we obtain the corresponding predic-
tion distribution and use the probability associated
with the input token index as the final score. The

29856

Model Iter. WMT’14 WMT’16 SpeedupEN→DE DE→EN EN→RO RO→EN

AR
Transformer (Vaswani et al., 2017) N 27.30 31.29 - - -
Transformer* N 28.41 32.28 34.23 34.28 1.0x
Transformer (SCORER 12-1)* N 28.91 32.65 33.75 34.34 2.5x

Fully NAR

GLAT (Qian et al., 2021) 1 25.21 29.84 31.19 32.04 15.3x
Fully NAT (Gu and Kong, 2021) 1 27.49 31.39 33.79 34.16 16.5x
latent-GLAT (Bao et al., 2022) 1 26.64 29.93 - - 11.3x
DA-Transformer (Huang et al., 2022b) 1 27.49 31.37 - - 13.9x
RenewNAT (Guo et al., 2023b) 1 26.65 30.65 33.02 33.74 11.2x
FA-DAT (Ma et al., 2023) 1 27.49 31.37 - - 14.0x
PCFG-NAT (Gui et al., 2024) 1 27.02 31.29 32.72 33.07 12.6x

Iterative NAR

Levenshtein (Gu et al., 2019) Adv. 27.73 - 33.02 - 4.0x
CMLM (Ghazvininejad et al., 2019) 10 27.03 30.53 33.08 33.31 1.7x
DisCo (Kasai et al., 2020a) Adv. 27.34 - 33.25 33.22 3.5x
SMART (Ghazvininejad et al., 2020) 10 27.65 31.27 33.85 33.53 1.7x
JM-NAT (Guo et al., 2020) 10 27.69 32.24 33.52 33.72 5.7x
RewriteNAR (Geng et al., 2021) Adv. 27.83 31.52 33.63 34.09 3.9x
MvCR-NAT (Xie et al., 2021) 10 27.39 31.18 33.38 33.56 3.8x
CORR (Huang et al., 2022c) 10 28.19 31.31 34.31 34.08 -
CMLMC (Huang et al., 2022c) 10 28.37 31.41 34.57 34.13 -
AMOM (Xiao et al., 2023) 10 27.57 31.67 34.62 34.82 1.7x
EECR (Chen et al., 2024) 10 28.04 31.65 34.33 34.32 3.8x
DCMCL (Liao et al., 2024) 10 28.14 31.47 33.76 33.64 -

Ours*
AMOMC 4 28.39 32.83 34.73 35.11 4.1x

10 28.81 33.22 34.99 35.20 1.9x

AMOMC w/ ARSCORER 4 29.08 33.22 35.06 35.78 3.1x
10 29.18 33.41 35.30 36.02 1.4x

Table 3: Results on 4 WMT machine translation tasks. * denotes the results of our implementations. † denotes
that the BLEU improvements over AMOMC are statistically significant with p < 0.05. Bold denotes the best
performance, underline denotes the previous best AR or NAR performance.

scores range from zero to one after undergoing
the normalized softmax operation. Comparatively,
adopting ARSCORER offers several advantages
over the Mask-Predict algorithm, which have also
been mentioned in the previous section: (1) The
AR model can assess the validity of each token in
the whole sentence and update the corresponding
prediction probability of each token after each de-
coding step of NAR model. (2) Previous studies
have shown that models trained with autoregressive
factorization excel in capturing target side depen-
dencies compared to NAR models (Huang et al.,
2022a). Besides, these AR models do not suffer
from the multi-modality problem. Thus, adopting
extra ARSCORER to provide the prediction score
is more robust and effective. We should recognize
that adopting the AR model to achieve the predic-
tion score leads to extra inference time. Therefore,
we adopt the structure of deep encoder and shallow
decoder as mentioned in Kasai et al. (2020b) for
ARSCORER to reduce inference efficiency.

Main Findings. The results on various WMT
datasets are shown in Table 3, we can find that: (1)
Combining superior methods (AMOMC) achieves

significant performance improvements, outper-
forming all baseline models around 0.8 BLEU
score. (2) Further adopting ARSCORER can
quickly achieve competitive performance, i.e., it
can achieve new state-of-the-art performance with
only 4 decoding steps while getting 3.1 times
speedup compared to the vanilla AR Transformer.
(3) Adopting ARSCORER increases the inference
time compared to AMOMC, but it makes up for
this deficiency by achieving superior performance
with relatively fewer decoding steps, which still
indicates that ARSCORER can bring benefits for
building efficient iterative NAR models.

Further Analysis. We further conduct detailed
analytical experiments of our proposed methods.
Firstly, we compare the backbones models with-
out and with ARSCORER based on our proposed
two metrics, DRR and ROR, as mentioned in Sec-
tion 3.1. Results on IWSLT’14 DE→EN and
WMT’16 RO→EN datasets are presented in Ta-
ble 4. We can find that: (1) The models with AR-
SCORER can achieve lower DRR and ROR com-
pared with the corresponding baselines. (2) DRR
and ROR are higher on the WMT’16 RO→EN

29857

Methods Iter. BLEU DRR (%) ROR (%)

IWSLT’14 DE→EN
CMLM 10 33.55 13.4 19.1

w/ ARSCORER 10 34.05 10.0 13.4
AMOMC 10 35.08 16.8 16.7

w/ ARSCORER 10 35.61 9.8 13.6

WMT’16 RO→EN
CMLM 10 33.87 21.0 36.1

w/ ARSCORER 10 34.51 13.5 19.4
AMOMC 10 35.20 19.4 28.7

w/ ARSCORER 10 36.02 14.0 19.1

Table 4: Results of DRR and ROR with ARSCORER.

dataset across all models, indicating that this
dataset is relatively difficult to learn. Besides, we
compare the results using different AR models to
serve as ARSCORER. As we adopt the model with
the structure of deep encoder and shallow (denoted
as DESD ARSCORER) to reduce inference effi-
ciency in our main result, we also adopt the model
with common layers (i.e., 6 encoders and 6 de-
coders, denoted as vanilla ARSCORER) here. Re-
sults are presented in Table 5. We can find that
(1) Adopting vanilla ARSCORER leads to lower
decoding speed due to the high cost of passing the
AR model to achieve the output probabilities. (2)
The DESD ARSCORER can reduce the decoding
latency due to the shallow decoder structure but
still brings extra expense compared to the vanilla
NAR model without ARSCORER with the same
decoding steps. (3) The DESD ARSCORER can
effectively reduce the decoding steps while achiev-
ing significant performance improvements, which
can make up for the flaw of the extra expense of
the AR model. Besides, considering that BLEU
is sensitive to the predicted length, we also adopt
Comet (Rei et al., 2020) to evaluate our methods,
results are also shown in Table 5, we can find a sim-
ilar phenomenon, i.e., adopting vanilla and DESD
ARSCORER can both achieve better Comet score.

4.3 Summary

In this section, we aim to explore the potential for
better efficient strategies. We begin by examin-
ing the limitations of the Mask-Predict algorithm
in facilitating consistent and efficient refinements.
Through thorough analysis and corresponding ex-
perimentation, we attribute these limitations to the
independent confidence updating strategies and the
unrelated prediction confidence to generation out-
put. Consequently, we endeavor to identify a supe-
rior strategy to address these issues. Fortunately,

Methods Iter. BLEU Comet Latency

WMT’14 EN→DE

w/o ARSCORER
4 28.39 0.584 130.8
10 28.81 0.585 282.1

w/ vanilla ARSCORER
4 28.82 0.587 222.0
10 29.17 0.587 522.7

w/ DESD ARSCORER
4 29.08 0.587 181.6
10 29.18 0.588 402.1

WMT’16 RO→EN

w/o ARSCORER
4 35.11 0.765 87.9
10 35.20 0.768 211.7

w/ vanilla ARSCORER
4 35.26 0.768 147.6
10 35.65 0.775 341.7

w/ DESD ARSCORER
4 35.78 0.772 116.0
10 36.02 0.772 253.9

Table 5: Results of different scorer models. Iter. denotes
the decoding step. Latency denotes the total seconds.

by adopting the pre-trained AR models to serve as
a scorer, iterative NAR models can conduct steady
and effective refinements, thereby achieving supe-
rior performance with even fewer decoding steps,
and getting closer to the efficient iterative NAR
models. It is worth noting that there are other viable
options for scoring, such as adopting a pre-trained
language model or even current well-known large
language models, we leave this as future work.

5 Conclusion and Future Outlook

In this paper, we conduct extensive experiments
and detailed analysis based on various iterative
NAR models to explore how to build more efficient
and competitive iterative NAR models. By combin-
ing competitive strategies and the newly proposed
ARSCORER, our final models set the new state-
of-the-art results on several widely used datasets
even with fewer decoding steps, which leads to
completely outperforming their AR counterparts.

In the future, we will extend our explorations to
more scenarios since CMLM-based iterative NAR
models have been successfully applied in speech
and video-related fields (Higuchi et al., 2021). Be-
sides, there is also a need to explore methods for
conducting efficient denoising steps for diffusion
models (Sohl-Dickstein et al., 2015) since they suf-
fer greatly from low efficiency with numerous de-
noising steps (Tang et al., 2023; Gong et al., 2023).
Lastly, recent advancements in LLMs (Touvron
et al., 2023b) hold promise in serving as better
scorers for iterative NAR models.

29858

Limitations

Firstly, since CMLM-based iterative NAR models
have been applied to various language generation
tasks, we only conduct our explorations on ma-
chine translation task. Besides, although CMLM-
based methods are one of the most widely-used and
well-known iterative NAR models, there exist other
categories of iterative NAR models, such as editing-
based models (Stern et al., 2019; Gu et al., 2019),
denoising based models (Lee et al., 2018; Savinov
et al., 2021), we only consider CMLM-based meth-
ods in this paper. Besides, our proposed efficient
strategy, ARSCORER, relies on a pre-trained AR
model to serve as a scorer for each token, it brings
some extra costs to achieve this AR model and the
corresponding prediction confidence.

Acknowledge

We want to thank all the anonymous reviewers
for their valuable comments. The first three au-
thors (Yisheng Xiao, Pei Guo, Zechen Sun) con-
tribute equally to this work. Juntao Li is the cor-
responding author. This work was supported by
the National Science Foundation of China (NSFC
No. 62206194), the Natural Science Foundation of
Jiangsu Province, China (Grant No. BK20220488),
the Young Elite Scientists Sponsorship Program
by CAST (2023QNRC001), and the Priority Aca-
demic Program Development of Jiangsu Higher
Education Institutions. We also acknowledge Meta-
Stone Tech. Co. for providing us with the software,
optimization on high-performance computing, and
computational resources required by this work.

References
Yu Bao, Hao Zhou, Shujian Huang, Dongqi Wang, Li-

hua Qian, Xinyu Dai, Jiajun Chen, and Lei Li. 2022.
latent-glat: Glancing at latent variables for parallel
text generation. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics, volume 1, pages 8398–8409.

William Chan, Chitwan Saharia, Geoffrey Hinton, Mo-
hammad Norouzi, and Navdeep Jaitly. 2020. Imputer:
Sequence modelling via imputation and dynamic pro-
gramming. In ICML, pages 1403–1413. PMLR.

Xinran Chen, Sufeng Duan, and Gongshen Liu. 2024.
Improving non-autoregressive machine translation
with error exposure and consistency regularization.
arXiv preprint arXiv:2402.09725.

Hao Cheng and Zhihua Zhang. 2022. Con-nat: Con-
trastive non-autoregressive neural machine transla-

tion. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 6219–6231.

Liang Ding, Longyue Wang, Xuebo Liu, Derek F Wong,
Dacheng Tao, and zhaopeng Tu. 2021. Rejuvenat-
ing low-frequency words: Making the most of par-
allel data in non-autoregressive translation. In ACL-
IJCNLP, pages 3431–3441.

Xinwei Geng, Xiaocheng Feng, and Bing Qin. 2021.
Learning to rewrite for non-autoregressive neural ma-
chine translation. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3297–3308.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel de-
coding of conditional masked language models. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing, pages 6112–6121.

Marjan Ghazvininejad, Omer Levy, and Luke Zettle-
moyer. 2020. Semi-autoregressive training im-
proves mask-predict decoding. arXiv preprint
arXiv:2001.08785.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu,
and Lingpeng Kong. 2023. Diffuseq-v2: Bridg-
ing discrete and continuous text spaces for accel-
erated seq2seq diffusion models. arXiv preprint
arXiv:2310.05793.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK
Li, and Richard Socher. 2018. Non-autoregressive
neural machine translation. In International Confer-
ence on Learning Representations.

Jiatao Gu and Xiang Kong. 2021. Fully non-
autoregressive neural machine translation: Tricks of
the trade. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
120–133.

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019. Lev-
enshtein transformer. In Advances in Neural Infor-
mation Processing Systems, volume 32, pages 11181–
11191.

Shangtong Gui, Chenze Shao, Zhengrui Ma, Yunji Chen,
Yang Feng, et al. 2024. Non-autoregressive machine
translation with probabilistic context-free grammar.
Advances in Neural Information Processing Systems,
36.

Junliang Guo, Linli Xu, and Enhong Chen. 2020.
Jointly masked sequence-to-sequence model for non-
autoregressive neural machine translation. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 376–385.

Pei Guo, Yisheng Xiao, Juntao Li, Yixin Ji, and
Min Zhang. 2023a. Isotropy-enhanced conditional
masked language models. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2023,
pages 8278–8289.

29859

Pei Guo, Yisheng Xiao, Juntao Li, and Min Zhang.
2023b. Renewnat: renewing potential translation
for non-autoregressive transformer. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 37, pages 12854–12862.

Yongchang Hao, Shilin He, Wenxiang Jiao, Zhaopeng
Tu, Michael Lyu, and Xing Wang. 2021. Multi-task
learning with shared encoder for non-autoregressive
machine translation. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 3989–3996.

Jindřich Helcl, Barry Haddow, and Alexandra Birch.
2022. Non-autoregressive machine translation:
It’s not as fast as it seems. arXiv preprint
arXiv:2205.01966.

Yosuke Higuchi, Hirofumi Inaguma, Shinji Watanabe,
Tetsuji Ogawa, and Tetsunori Kobayashi. 2021. Im-
proved mask-ctc for non-autoregressive end-to-end
asr. In ICASSP 2021, pages 8363–8367. IEEE.

Fei Huang, Pei Ke, and Minlie Huang. 2023. [tacl]
directed acyclic transformer pre-training for high-
quality non-autoregressive text generation. In The
61st Annual Meeting Of The Association For Compu-
tational Linguistics.

Fei Huang, Tianhua Tao, Hao Zhou, Lei Li, and Minlie
Huang. 2022a. On the learning of non-autoregressive
transformers. In International Conference on Ma-
chine Learning, pages 9356–9376. PMLR.

Fei Huang, Hao Zhou, Yang Liu, Hang Li, and Minlie
Huang. 2022b. Directed acyclic transformer for non-
autoregressive machine translation. In International
Conference on Machine Learning, pages 9410–9428.
PMLR.

Xiao Shi Huang, Felipe Perez, and Maksims Volkovs.
2022c. Improving non-autoregressive translation
models without distillation. In International Con-
ference on Learning Representations.

Jungo Kasai, James Cross, Marjan Ghazvininejad, and
Jiatao Gu. 2020a. Parallel machine translation with
disentangled context transformer. arXiv preprint
arXiv:2001.05136.

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross,
and Noah Smith. 2020b. Deep encoder, shallow
decoder: Reevaluating non-autoregressive machine
translation. In ICLR.

Yoon Kim and Alexander M Rush. 2016. Sequence-
level knowledge distillation. In EMNLP, pages 1317–
1327.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of
the 2004 conference on empirical methods in natural
language processing, pages 388–395.

Jason Lee, Elman Mansimov, and Kyunghyun Cho.
2018. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1173–1182.

Xiaobo Liang, Zecheng Tang, Juntao Li, and Min Zhang.
2023. Open-ended long text generation via masked
language modeling. In ACL.

Xiaobo Liang, Lijun Wu, Juntao Li, and Min Zhang.
2022. Janus: Joint autoregressive and non-
autoregressive training with auxiliary loss for se-
quence generation. In EMNLP, pages 1067–1073.

Yusheng Liao, Yanfeng Wang, and Yu Wang. 2024.
Leveraging diverse modeling contexts with collabo-
rating learning for neural machine translation. arXiv
preprint arXiv:2402.18428.

Zhengrui Ma, Chenze Shao, Shangtong Gui, Min Zhang,
and Yang Feng. 2023. Fuzzy alignments in directed
acyclic graph for non-autoregressive machine trans-
lation. arXiv preprint arXiv:2303.06662.

OpenAI. 2023. Gpt-4 technical report.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of NAACL-HLT
2019: Demonstrations.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Lihua Qian, Hao Zhou, Yu Bao, Mingxuan Wang, Lin
Qiu, Weinan Zhang, Yong Yu, and Lei Li. 2021.
Glancing transformer for non-autoregressive neural
machine translation. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing, pages 1993–
2003.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. Comet: A neural framework for mt
evaluation. arXiv preprint arXiv:2009.09025.

Nikolay Savinov, Junyoung Chung, Mikolaj Binkowski,
Erich Elsen, and Aaron van den Oord. 2021. Step-
unrolled denoising autoencoders for text generation.
arXiv preprint arXiv:2112.06749.

Jascha Sohl-Dickstein, Eric Weiss, Niru Mah-
eswaranathan, and Surya Ganguli. 2015. Deep un-
supervised learning using nonequilibrium thermody-
namics. In ICML, pages 2256–2265. PMLR.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob
Uszkoreit. 2019. Insertion transformer: Flexible se-
quence generation via insertion operations. In ICML,
pages 5976–5985. PMLR.

29860

Zecheng Tang, Pinzheng Wang, Keyan Zhou, Juntao
Li, Ziqiang Cao, and Min Zhang. 2023. Can diffu-
sion model achieve better performance in text gener-
ation? bridging the gap between training and infer-
ence! arXiv preprint arXiv:2305.04465.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. arXiv
preprint arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Yisheng Xiao, Lijun Wu, Junliang Guo, Juntao Li,
Min Zhang, Tao Qin, and Tie-yan Liu. 2022. A
survey on non-autoregressive generation for neural
machine translation and beyond. arXiv preprint
arXiv:2204.09269.

Yisheng Xiao, Ruiyang Xu, Lijun Wu, Juntao Li, Tao
Qin, Tie-Yan Liu, and Min Zhang. 2023. Amom:
Adaptive masking over masking for conditional
masked language model. Proceedings of the AAAI
Conference on Artificial Intelligence, 37(11):13789–
13797.

Pan Xie, Zexian Li, and Xiaohui Hu. 2021. Mvsr-
nat: Multi-view subset regularization for non-
autoregressive machine translation. arXiv preprint
arXiv:2108.08447.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

A Details for Follow-up Methods

We supplement the details for follow-up methods of
CMLM we adopted for explorations as mentioned
in Section 2.

JM-NAT Guo et al. introduce a jointly masked
sequence-to-sequence model. Unlike the tradi-
tional CMLM which only masks the target se-
quence during training, JM-NAT also masks the
source sequence to help train the encoder more
rigorously. Besides, in order to alleviate the prob-
lem of translating duplicate words, they propose to

train the decoder based on the consecutive masking
of the decoder input with an ngram loss function
rather than the original uniform masking.

Disco Kasai et al. propose an attention-masking
based model, Disentangled Context (DisCo) trans-
former. During training, Disco is learned to pre-
dict each target token given an arbitrary subset of
the other reference tokens, which is more efficient
than just predicting masked tokens in the origi-
nal CMLM. During inference, unlike the previous
Mask-Predict algorithm which just updates masked
tokens in each decoding step (i.e., predicting Ymask

based on Yobs), Disco introduces an easy-first pol-
icy where each token will be predicted in each
step dependent on relatively easier tokens (i.e., pre-
dicting each Yi based on Y<i, where Y<i denotes
tokens whose prediction confidence is higher than
Yi in the previous iteration). Disco stops decoding
when no new tokens are generated in one specific
decoding step. This easy-first policy can largely
improve the inference latency.

Multitask-NAT Hao et al. introduces Multitask-
NAT which utilizes a shared encoder and separated
decoders for both AR and NAR modeling during
training. They assume that AR training can bring
benefits for NAR training and aim to adopt multi-
task learning to transfer the AR knowledge to NAR
models through encoder sharing.

RewriteNAT Geng et al. propose RewriteNAT, a
new framework that contains a Locator and Revisor
module that locate the incorrect words within pre-
viously generated translations and then revise them,
respectively. Specifically, the Locator module can
transform the problem of determining which tokens
to be masked in the next decoding step into a binary
classification problem instead of depending on the
self-predicted confidence, i.e., the Locator will pre-
dict a special symbol ([MASK] or [KEEP]) for each
token. Once the token is predicted as [MASK], it
will be masked again, and vice versa. RewriteNAT
can finish the generation process once the Locator
module predicts all the target tokens as [KEEP].

SMART Ghazvininejad et al. introduce Semi-
Autoregressive Training (SMART) to help the train-
ing process better match the Mask-Predict algo-
rithm with multiple decoding steps. Specifically,
since the model can not see the ground truth tokens
during inference, it only takes the model prediction
in the previous decoding steps as partially observed

29861

tokens to make predictions. This leads to incon-
sistency compared with training methods. Thus
SMART first constructs a mixed training example
and then encourages the model to recover from the
model prediction errors during training,

CMLMC Huang et al. propose Condi-
tional Masked Language Model with Correction
(CMLMC) which incorporates a self-correction
mechanism into traditional CMLM and several
modifications on the decoder structure such as ex-
posing the positional encodings and incorporat-
ing causal attention layers to differentiate adja-
cent tokens. CORR is the corresponding variant
which only adopts the self-correction mechanism
without the structure modifications in CMLMC.
Specifically, except for adopting masking meth-
ods in target sequence during training, CMLMC
also replaces the partially unmasked tokens with
model predictions based on a fully masked tar-
get sequence. Then CMLMC learns to predict
the masked tokens and correct the replaced to-
kens simultaneously during training. During in-
ference, this self-correction mechanism helps the
model to correct the unreliable tokens in the un-
masked subset. During training, CMLMC first
adopts the same masking operation in CMLM
training as mentioned in Section 2 in the cur-
rent paper to split the target sequence Y into
Yobs and Ymask, and then learns to predict Ymask

based on Yobs and the source sequence X, as
LCMLM = −∑

yt∈Ymask
logP (yt|Yobs, X; θ).

Besides, CMLMC adopts an extra correction
task, specifically, CMLMC selects partial to-
kens in Yobs and replaces them as unreliable to-
kens, denotes as Yrep, and the remaining tokens
in Yobs is Yunrep. These unreliable tokens are
achieved from the model predictions based on a
fully masked target sequence. Then, CMLMC
learns to correct these unreliable tokens Yrep,
as LCORR = −∑

yt∈Yrep
logP (yt|Yunrep, X; θ).

Overall, CMLMC simultaneously learns to pre-
dict the masked tokens and correct the unreli-
able tokens in a training step, as LCMLMC =
LCMLM + LCORR.

AMOM Xiao et al. propose an Adaptive Mask-
ing Over Masking (AMOM) strategy based on
CMLM which contains two different adaptive
masking mechanisms which work on the inputs
of encoder and decoder respectively. Specifically,
based on the ratio of the target sequence, AMOM
also masks the specific number of tokens in the

source sequence to make the encoder optimization
easier. Besides, AMOM conducts an extra masking
step where the masking ratio of the target sequence
in this step is adaptive to the correction ratio of
the model prediction. This two-step masking strat-
egy can help the model capture the masking ratio
changes in various decoding steps during inference.
Specifically, based on the original masking opera-
tion in CMLM, AMOM also masks several tokens
in source sequence X conditional on the masking
condition of Ymask (called adaptive X masking in
AMOM paper), denoted as X̂ , but it does not need
to predict them during training, thus AMOM first
learns to predict Ymask based on Yobs and Xobs,
as LAda−X = −∑

yt∈Ymask
logP (yt|Yobs, X̂; θ).

Then, AMOM will adopt an extra masking oper-
ation to split the new Y (the new Y is achieved
by combining Yobs and the model predictions for
Ymask in the first training step) into new masked
and unmasked parts (called adaptive Y masking
in AMOM paper), denoted as Y ′

mask and Y ′
obs,

then AMOM will predict Y ′
mask based on Y ′

obs

and X̂ ′, where X̂ ′ is the newly masked X for the
as LAda−Y = −∑

yt∈Y ′
mask

logP (yt|Y ′
obs, X̂

′; θ).
Overall, AMOM adopts two-step training sched-
ules, as LAMOM = LAda−X + LAda−Y .

AMOMC AMOMC combines the training sched-
ules in CMLMC and AMOM. Specifically given
X and Y , AMOMC first splits Y into Ymask and
Yobs similar to CMLM, then it will mask several
tokens in X as mentioned in AMOM, then the
first task is to learn to predict Ymask based on
Yobs and X̂ . Then AMOMC constructs the sam-
ples to learn the correction task as mentioned in
CMLMC, i.e., AMOMC selects partial tokens in
Yobs and replaces them as unreliable tokens, de-
notes as Yrep, and the remaining tokens in Yobs is
denoted as Yunrep, then AMOMC learns to cor-
rect Yrep based on Yunrep and X̂ . Besides, af-
ter AMOMC predicts the tokens in Ymask in the
first training step, we obtain a new Y , denoted
as Y ′, then AMOMC adopts the extra masking
step as mentioned in AMOM to split Y ′ into Y ′

obs

and Y ′
mask, then AMOMC learns to predict Y ′

mask

based on Y ′
obs and X̂’, Overall, AMOMC adopts

two steps to predict the corresponding masked to-
kens in Y, and one step to correct the unreliable to-
kens, as LAMOM = LAda−X+LAda−Y +LCORR.

29862

Models Parameters IWSLT’14 DE→EN WMT’14 EN↔DE WMT’16 EN↔RO

CMLM

learning rate 5e-4 7e-4 5e-4
warmup_step 4k 10k 10k

dropout 0.3 0.2 0.3
update_step 300k 300k 300k

GPU 1xGTX 3090 4xGTX 3090 4xGTX 3090

AMOMC

learning rate 5e-4 7e-4 5e-4
warmup_step 30k 40k 15k

dropout 0.3 0.2 0.3
update_step 175k 150k 120k

GPU 1xGTX 3090 4xGTX 3090 4xGTX 3090

Table 6: Training hyper-parameters for CMLM and
AMOMC.

B Training Hyper-parameters

During our experiments, we set training hyper-
parameters for CMLM in the same way as CMLM
realization in the Fariseq library, and for AMOMC,
we follow those adopted in CMLMC (Huang et al.,
2022c). Now, we present these training hyper-
parameters in Table 6.

C More Explorations between Iterative
NAR and AR Models

Researchers commonly assess the effectiveness of
iterative NAR models by comparing their perfor-
mance (generation quality and inference efficiency)
with their AR counterparts. This section delves
into further exploration of experimental settings for
a comprehensive comparison.

Problems and Explorations. Firstly, the struc-
ture of deep encoder and shallow decoder (DESD)
has been proven effective for AR models to in-
crease inference speed and improve generation
quality but does not work well for iterative NAR
models (Kasai et al., 2020b). We assume that their
experimental setting, which only adopts the de-
coder with one layer, is too strict for iterative NAR
models, resulting in their relatively biased con-
clusion that iterative NAR models fail to benefit
from DESD. Therefore, we experiment with more
layer allocation schemes based on the structure of
DESD to explore: do iterative NAR models re-
ally fail with deep encoder and shallow decoder?
(§C.1) Besides, most previous works on iterative
NAR models adopt the same decoding steps (4
and 10) for all the testing instances with different
lengths (Ghazvininejad et al., 2019; Huang et al.,
2022c). Comparatively, as AR models only predict
the next token in each decoding step, they need de-
coding steps proportional to the length of the target
sentence to achieve the final results. Thus, they
adopt more decoding steps for longer sentences.
Since the general knowledge for iterative NAR

models is that longer sentences need more decod-
ing steps, adopting the fixed decoding steps for all
the target sentences naturally causes inconsistent
comparisons with AR models. Consequently, we
explore: can iterative NAR models achieve better
performance beyond fixed decoding steps? (§C.2)
Finally, we summarize the above two questions and
conclude briefly (§C.3).

Experimental Settings. We adopt two popular
iterative NAR models (CMLM and CORR) as men-
tioned in Section 2) and their AR counterpart (the
vanilla Transformer) to conduct detailed analytical
experiments. The training and inference settings
are the same as mentioned in Section 3. We re-
port the decoding time during inference, i.e., we
select S1 measured by LGPU

1 to compare the infer-
ence efficiency following the previous work (Kasai
et al., 2020b; Helcl et al., 2022)), S1 denotes the
translation latency by running the model with one
sentence at a time on a single GPU.

C.1 Do Iterative NAR Models Really Fail with
Deep Encoder and Shallow Decoder?

Exploration Process. We adopt the structure of
DESD on two backbone iterative NAR models and
the vanilla AR Transformer to make comparisons.
We conduct experiments with different layer al-
location schemes, each marked as x-y. x and y
denote the number of encoder and decoder layers,
respectively. Specifically, we design the schemes
based on two rules: (1) We keep the total layers of
encoder and decoder as 12 following the common
setting (6-6), then assign different layer allocations
for them, e.g., 7-5, 8-4, 9-3, etc. (2) We keep the
layers of encoder as 12 (12-1) following the setting
in Kasai et al. (2020b), and adopt more decoder
layers, e.g., 12-2 and 12-3.

Main Findings. Figure 2 presents the corre-
sponding results, we can find that: (1) The number
of decoder layers of iterative NAR models signifi-
cantly affects the inference speed. Comparatively,
the number of encoder layers has little effect. (2)
Iterative NAR models can also perform well with
the structure of DESD (8-4, 9-3, 12-2, 12-3), and
accelerate the inference process (more than 1.5x
Speedup). (3) Decoder layers are essential for it-
erative NAR models; at least two decoder layers
are needed for iterative NAR models, and more
decoder layers achieve better performance. Only
one decoder layer harms performance seriously,

29863

31.5

32

32.5

33

33.5

34

34.5

35

35.5

6-6 7-5 8-4 9-3 10-2 11-1 12-1 12-2 12-3

Transformer

CMLM

CORR

B
le

u

Model

150

250

350

450

550

650

750

6-6 7-5 8-4 9-3 10-2 11-1 12-1 12-2 12-3

Transformer

CMLM

CORR

Model

L
a
te

n
cy

Figure 2: Results with different models and layer allocations.

33

33.2

33.4

33.6

33.8

34

34.2

34.4

6-6 7-5 8-4 9-3 10-2 12-2 12-3

Model

CMLM (Iter 10)

CMLM (Iter 0.3 * L)

CMLM (Iter 0.6 * L)

B
le

u

150

230

310

390

470

550

630

6-6 7-5 8-4 9-3 10-2 12-2 12-3

Model

CMLM (Iter 10)

CMLM (Iter 0.3 * L)

CMLM (Iter 0.6 * L)

L
a
te

n
cy

Figure 3: Results with different decoding steps (Iter) during inference. L denotes the length of the source sentence.

which is consistent with the findings in Kasai et al.
(2020b). Generally, the model with 12-3 layer allo-
cation achieves the best trade-off between genera-
tion quality and inference efficiency.

C.2 Can Iterative NAR Models Achieve Better
Performance Beyond Fixed Decoding
Steps?

Exploration Process We aim to design an adap-
tive algorithm to decide the decoding steps for each
testing instance. To keep consistent with AR mod-
els, we can design a mapping function according to
the sequence length. We select the relatively simple
and understandable linear mapping function, i.e.,
given the sequence length L, the decoding step is
α * L, α is 1 in AR models. We can further set it
smaller (e.g., 0.3 and 0.6) to realize relatively fast
decoding for iterative NAR models.

Main Findings. Figure 3 presents the corre-
sponding results, we can find that: (1) While adopt-
ing 0.3 * L decoding steps can improve the per-
formance on BLEU score slightly (about 0.2), the
inference latency of different models consistently
reduces compared with adopting fixed 10 decod-
ing steps. (2) Adopting 0.6 * L decoding steps
can further improve the performance of all mod-
els but hurt the speed, indicating that blindly in-

creasing the decoding steps is not advisable. (3)
Adopting feasible adaptive decoding steps for dif-
ferent test instances can benefit both generation
quality and inference efficiency. We recognize that
the simple linear mapping function with α = 0.3
may not be optimal, but it has been verified that
improvements can be achieved beyond fixed de-
coding steps. Furthermore, we also compare the
improvements in generation quality based on dif-
ferent source lengths. Specifically, we divide the
source sentences into five intervals by the corre-
sponding length and then compare the performance
improvements through increasing iterations. We
plot the performance improvements from fixed 10
to 0.3∗L decoding steps in Figure 4, demonstrating
that long sequences need more decoding steps.

C.3 Summary
In this section, we explore more settings during
comparison between iterative NAR and AR models.
Different from the findings in Kasai et al. (2020b),
our experiments demonstrate that the structure of
DESD can also work well for iterative NAR mod-
els by simply adopting one more decoder layer and
more performance improvement can be achieved
with more layer allocation schemes. Besides, adopt-
ing the fixed decoding steps leads to an inconsis-
tent setting since AR models adopt decoding steps

29864

adaptive to the sequence length. As a result, we de-
sign a simple adaptive mapping function to decide
the decoding steps for different testing instances,
and achieve both performance and inference speed
improvements. In general, we point out that com-
monly used and recognized settings still need ex-
ploration for iterative NAR models, and we should
consider more consistent settings when comparing
iterative NAR and AR models.

-0.1

0.1

0.3

0.5

[1, 10) [10, 20) [20, 30) [30, 40) [40, +∞)

CMLM

CORR

Figure 4: The performance improvements with more
iterations based on different source lengths.

29865

