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Abstract

The rapid evolution of scientific fields intro-
duces challenges in organizing and retriev-
ing scientific literature. While expert-curated
taxonomies have traditionally addressed this
need, the process is time-consuming and ex-
pensive. Furthermore, recent automatic tax-
onomy construction methods either (1) over-
rely on a specific corpus, sacrificing general-
izability, or (2) depend heavily on the general
knowledge of large language models (LLMs)
contained within their pre-training datasets, of-
ten overlooking the dynamic nature of evolv-
ing scientific domains. Additionally, these ap-
proaches fail to account for the multi-faceted
nature of scientific literature, where a single re-
search paper may contribute to multiple dimen-
sions (e.g., methodology, new tasks, evaluation
metrics, benchmarks). To address these gaps,
we propose TaxoAdapt, a framework that dy-
namically adapts an LLM-generated taxonomy
to a given corpus across multiple dimensions.
TaxoAdapt performs iterative hierarchical clas-
sification, expanding both the taxonomy width
and depth based on corpus’ topical distribution.
We demonstrate its state-of-the-art performance
across a diverse set of computer science confer-
ences over the years to showcase its ability to
structure and capture the evolution of scientific
fields. As a multidimensional method, TaxoAd-
apt generates taxonomies that are 26.51% more
granularity-preserving and 50.41% more coher-
ent than the most competitive baselines judged
by LLMs.

1 Introduction

Driven by increased research interest and acces-
sibility, the rapid proliferation of scientific litera-
ture and subsequent creation of new branches of
knowledge (e.g., the rise of generative models in
the last five years) has made organizing and retriev-
ing domain-specific knowledge increasingly chal-
lenging (Bornmann et al., 2021; Aggarwal et al.,
2022). Taxonomies enhance data organization,

Corpus A → BERT: Pre-training of Deep 
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Corpus B → InstructGPT: Training LMs to follow 
instructions with human feedback, DPO, …

NLP 
Methods

Neural 
Networks

Statistical

Machine 
Learning

Rule-
Based

Transformer

Encoder-
Only

RNN

Pre-Training 
Techniques

Unsupervised

Bidirectional

LSTM

NLP 
Tasks

Text 
Generation

Text 
Classification

NLP 
Methods

Instruction 
Following

Encoder-
Only

Decoder-
Only

Learning 
Paradigms

Reinforcement 
Learning RLHF

Reward Model 
Training

Policy 
Optimization…

Figure 1: Each paper within a corpus contributes to
different dimensions of scientific literature. We show
how corpora from different eras of NLP (e.g., BERT-era;
RLHF-era) can influence their respective dimension-
specific taxonomies (we highlight certain subtrees).

support search engines, capture semantic relation-
ships, and aid discovery. While expert-curated and
crowdsourced taxonomies have traditionally struc-
tured topics into hierarchies (e.g., text classifica-
tion → spam detection), manual curation is time-
consuming and struggles to keep pace with rapidly
evolving fields (Bordea et al., 2016; Jurgens and
Pilehvar, 2016).

Prior efforts in automating taxonomy construc-
tion (ATC) fall into two categories: corpus-driven
methods that extract topics and relationships di-
rectly from text, and LLM-based approaches which
generate taxonomies based on pre-existing knowl-
edge. While corpus-driven methods effectively cap-
ture meaningful, domain-specific topics, they rely
on rigid approaches that are restricted to only terms
within the corpus vocabulary and lack extensive
background knowledge, given their pre-LLM ori-
gins (Liu et al., 2012; Shen et al., 2018; Shang et al.,
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2020; Zhang et al., 2018). Conversely, LLM-based
methods generate large-scale, general-purpose tax-
onomies but currently lack mechanisms to align
them with specialized knowledge, solely relying on
their background knowledge of domains and their
key topics (Chen et al., 2023; Shen et al., 2024;
Zeng et al., 2024; Sun et al., 2024).

Moreover, as of now, both approaches over-
look the multidimensional nature of scientific lit-
erature. A research paper may study and/or con-
tribute to multiple aspects of the scientific method
(tasks, methods, applications, etc.), based on which
we could organize papers differently. When new
knowledge emerges, we must adapt existing tax-
onomies. For example, in Figure 1, InstructGPT
(Ouyang et al., 2022) introduces both “Instruction
Following” as a novel NLP task and “Reinforce-
ment Learning with Human Feedback” (RLHF)
as an NLP method, highlighting the limitations of
uni-dimensional taxonomies. Limiting ATC design
to the task dimension is a critical oversight— ob-
scuring the broader, evolving impacts of research.
Ultimately, both corpus and LLM-based methods
fail to provide a multidimensional view of scien-
tific literature. To address these gaps, we propose
TaxoAdapt, a framework that dynamically grounds
LLM-based taxonomy construction to scientific
corpora across multiple dimensions. TaxoAdapt
operates on three core principles:

Knowledge-augmented expansion leads to
specialized, relevant taxonomies. State-of-the-
art LLMs struggle to accurately model specialized
taxonomies in domains like computer science (Sun
et al., 2024), particularly leaf-level entities. Exist-
ing LLM-based methods require pre-defined entity
sets or are limited to entity-level context for taxon-
omy construction (Zeng et al., 2024; Chen et al.,
2023), critically limiting the degree of domain-
specific knowledge which they can exploit. Al-
ternatively, TaxoAdapt leverages document-level
reasoning; by using each paper’s title and abstract,
it identifies which dimensions a paper contributes
to (e.g., methods, datasets) and how. For example,
as shown in Figure 1, when expanding the “Trans-
former” node under NLP methods, TaxoAdapt se-
lectively analyzes papers centered on Transformer-
based architectures (e.g., BERT)– helping to derive
subcategories like “Encoder-Only”. Unlike min-
ing important entities, this document-grounded ap-
proach enhances taxonomic precision by aligning
expansion with corpus knowledge specific to each
dimension, layer, and node.

Hierarchical text classification provides cru-
cial signals for targeted exploration. Scientific
fields evolve rapidly, with new subdomains emerg-
ing and existing ones merging or fading (Singh
et al., 2022). Figure 1 illustrates this: Corpus
A (2018–2022) emphasizes BERT-like encoders,
while Corpus B (2022–present) highlights “RLHF”
as a training method and “Instruction Following”
as a key task behind InstructGPT and its succes-
sors. LLM-generated taxonomies often overlook
such trends, favoring concepts broadly represented
within the training data (e.g., high-level tasks like
text classification). To address this, TaxoAdapt
dynamically adapts the taxonomy by employing
hierarchical text classification to determine which
nodes should be expanded and how. A node with
a high density of papers (e.g., RLHF) indicates
further exploration and warrants depth expansion
(e.g., Reward Model Training, Policy Optimiza-
tion). Conversely, if a node has many unmapped
papers (e.g., if “Decoder-Only” did not exist under
“Transformer”), it signals parallel research to exist-
ing children (e.g., “Encoder-Only”), necessitating
width expansion. Nodes with minimal presence in
the corpus (e.g., LSTMs) will consequently not be
explored further.

Taxonomy-aware clustering enables mean-
ingful expansion. Multiple factors determine
which entities should be used to expand a given
node: (1) maintaining hierarchical, granular re-
lationships (e.g., identify a dimension-specific
child of “Transformer” and a sibling of “Encoder-
Only”), (2) prioritizing presence within the cor-
pus, and (3) minimizing redundancy. Recently,
LLMs have shown strong entity clustering abili-
ties (Viswanathan et al., 2023; Zhang et al., 2023).
Thus, TaxoAdapt utilizes its knowledge of the di-
mension, layer, and papers mapped to the spe-
cific node being expanded to determine granularity-
consistent candidate entities. It then utilizes this
information to guide the clustering of the candidate
entities, maximizing coverage while minimizing
redundancy during expansion.

Overall, TaxoAdapt aligns the multidimensional
taxonomy generation (and expansion) process to a
corpus. We summarize our contributions below:

• To the best of our knowledge, TaxoAdapt
is the first framework to ground LLM-based
taxonomy construction to a corpus and study
this task from multiple dimensions.

• We propose a novel classification-based ex-
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pansion and clustering framework for targeted,
meaningful corpus exploration.

• Through quantitative experiments and real-
world case studies, we show that TaxoAd-
apt outperforms baselines in taxonomic cover-
age, granular-consistency, and adaptability to
emerging research trends.

Reproducibility: Our dataset and code is
available at https://github.com/pkargupta/
taxoadapt.

2 Related Works

Prior research on taxonomy construction can be
broadly categorized into three types: manual,
corpus-driven, and LLM-based methods.

Manual Curation. Previous works (Bordea et al.,
2016; Jurgens and Pilehvar, 2016; Yang et al.,
2013) focused on extracting hand-crafted tax-
onomies from candidate nodes or designing sys-
tems to support the creation of human-assisted tax-
onomies. These taxonomies involve mostly man-
ual work, making them expensive both during the
creation process and for future maintenance, espe-
cially given the rapid evolution of scientific fields.
Thus, ATC is highly needed.

Corpus-driven Methods. A line of research (Lu
et al., 2024; Lee et al., 2022a,b; Zhang et al., 2018;
Huang et al., 2020) employed clustering to extract
entities and their relationships from the corpus,
identifying semantically coherent concept terms
to complete a given seed taxonomy. Alternatively,
NetTaxo (Shang et al., 2020) leveraged the meta-
data of corpus documents as additional signals to
construct taxonomies from scratch. Without clus-
tering, HiExpan (Shen et al., 2018) utilized a rela-
tion extraction module to perform depth expansion.
Although these approaches maintain a high degree
of specificity to the corpus, their lack of LLM us-
age limits access to broader background knowl-
edge, which is crucial for preserving hierarchical
and granular node relationships.

LLM-based Methods. Many recent works ex-
plore the potential of leveraging LLMs for tax-
onomy expansion or construction. Researchers
aimed to answer whether LLMs are good replace-
ment of traditional taxonomies and knowledge
graphs, and they found that LLMs still could not
capture the highly specialized knowledge of tax-
onomies and leaf-level entities well (Sun et al.,

2024). In terms of LLM usage, prompting with-
out explicit fine-tuning on any data outperformed
fine-tuning-based methods (Chen et al., 2023). Tax-
oInstruct (Shen et al., 2024) unified three relevant
tasks (entity set expansion, taxonomy expansion,
and seed-guided taxonomy construction) by un-
leashing the instruction-following capabilities of
LLMs. Although different iterative prompting ap-
proaches (Zeng et al., 2024; Gunn et al., 2024) have
been proposed, there does not exist an LLM-based
method that aligns well with the evolving scientific
corpus to the best our knowledge. This reinforces
our motivation of designing TaxoAdapt.

3 Methodology

As shown in Figure 2, TAXOADAPT aims to align
LLM taxonomy generation to a specific corpus,
improving adaptability to evolving research cor-
pora. Our framework synergizes both LLM gen-
eral knowledge and corpus-specific knowledge for
automatically constructing more rich and relevant
taxonomies.

3.1 Preliminaries
3.1.1 Problem Formulation
We assume that as input, the user provides a topic t
(e.g., natural language processing), a set of dimen-
sions D (e.g., tasks, datasets, methods, evaluation
metrics), and a scientific corpus P . We assume that
each paper p ∈ P is relevant to t and studies at least
one d ∈ D. TaxoAdapt aims to output a set of |D|
taxonomies Td∈D, maximizing the quantity of pa-
pers p ∈ P mapped across all nodes nd ∈ Td. The
topic t and dimension d ∈ D form the root topic n0

of each taxonomy Td (e.g., “natural language pro-
cessing tasks”). In order to provide an additional
level of flexibility, we define each taxonomy as a
directed acyclic graph (DAG) since certain nodes
may have two parents (e.g., the scientific question
answering (QA) task may be placed under both
“question_answering” and “scientific_reasoning”).

3.1.2 Initial LLM-Based Taxonomy
Construction

Recent works (Chen et al., 2023; Sun et al., 2024;
Zeng et al., 2024; Shen et al., 2024) have ex-
plored leveraging LLMs for taxonomy construc-
tion, showing their potential for generating high-
level, general-purpose taxonomies (although, these
are not guaranteed to be representative of a spe-
cific corpus). Given the difficulty of acquiring
expert-curated taxonomies across multiple domains
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Figure 2: We propose TAXOADAPT, a framework which dynamically constructs a LLM-enhanced, corpus-specific
taxonomy using classification-based expansion signals. The diagram demonstrates a width expansion example, but
the same logic is applied to depth expansion (simply without the additional sibling context).

and the lack of methods addressing taxonomy con-
struction across multiple dimensions, we utilize
an LLM to generate |D| initial single-level tax-
onomies (Td∈D) for TaxoAdapt to expand. This
allows us to demonstrate TaxoAdapt’s effective-
ness while minimizing user input requirements.
Nonetheless, this taxonomy can also be replaced
by any specific taxonomy which the user desires.

3.1.3 Taxonomy Expansion
Taxonomy expansion involves both depth and
width expansions of a provided taxonomy, Td. We
formally define these below:

Definition 1 (DEPTH EXPANSION) Expanding a
leaf node ni,d ∈ Td by identifying a set of child
entities ni

j,d ∈ N i
d, which topically falls under ni,d

and contains equally granular entities (e.g., ni
1,d

and ni
2,d should be equally topically specific).

Definition 2 (WIDTH EXPANSION) Expanding
the children of a non-leaf node ni,d, where
its existing children ni

j,d ∈ N i
d represent an

incomplete set of entities that need to be further
completed by additional, unique sibling nodes,
n′i
d ∈ N ′i

d. N ′i
d and N i

d are non-overlapping and
at the same level of granularity.

Note that we do not assume a user-provided set
of entities for either, which has historically been
the case (Zeng et al., 2024; Shen et al., 2018).

3.2 Multi-Dimension Classification

Scientific literature is inherently multifaceted, with
individual papers often contributing to multiple as-
pects of a domain– such as tasks, methodologies,
and datasets. Thus, we must construct a set of tax-
onomies Td∈D that captures the diverse aspects of

scientific knowledge. TaxoAdapt seeks to align
taxonomy Td’s construction with the dimension-
specific contributions featured within a corpus.
Thus, we study if and how to minimize the noise
present from papers that do not make any contribu-
tions towards dimension d. For example, a paper
that only proposes a new text classification dataset,
but still utilizes standard F1-metrics would intro-
duce noise for constructing the “evaluation method”
taxonomy and consequently, may be omitted. To
explore this, we partition the corpus based on the
dimensions each paper contributes to before we
perform taxonomy expansion.

We treat this task as a multi-label classification
problem. Recent works have shown that LLMs
are successful at fine-grained classification in a
multitude of domains (Zhang et al., 2024b,a). Thus,
we prompt the LLM to classify the paper p, where
in-context, we provide the dimension options and
their definitions. We define each dimension d ∈ D
with respect to the type of contribution we would
expect a paper pi,d to make. By default, we assume
each paper always falls under the task dimension.
We make this assumption because every work has
a contribution that is aligned to a specific goal/task.
Ultimately, we utilize the output labels for each
paper p ∈ P in order to partition the corpus P into
|D| potentially overlapping subsets: Pd ⊆ P . We
define each of our selected dimensions below:

• Task: We assume all papers are associated with a task.

• Methodology: A paper that introduces, explains, or re-
fines a method or approach, providing theoretical founda-
tions, implementation details, and empirical evaluations to
advance the state-of-the-art or solve specific problems.

• Datasets: Introduces a new dataset, detailing its creation,
structure, and intended use, while providing analysis or
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benchmarks to demonstrate its relevance and utility. It fo-
cuses on advancing research by addressing gaps in existing
datasets/performance of SOTA models or enabling new ap-
plications in the field.

• Evaluation Methods: A paper that assesses the perfor-
mance, limitations, or biases of models, methods, or
datasets using systematic experiments or analyses. It fo-
cuses on benchmarking, comparative studies, or proposing
new evaluation metrics or frameworks to provide insights
and improve understanding in the field.

• Real-World Domains: A paper which demonstrates the
use of techniques to solve specific, real-world problems or
address specific domain challenges. It focuses on practical
implementation, impact, and insights gained from applying
methods in various contexts. Examples include: product
recommendation systems, medical record summarization,
etc.

3.3 Top-Down Taxonomy Construction

An LLM-generated taxonomy may not sufficiently
capture all the topics within a corpus, especially in
emerging research areas. These areas are underrep-
resented in the LLMs’ general-purpose background
knowledge but are highly represented within the
input corpus (e.g., the node “RLHF” in Figure 1).
Given that domain-specific trends are continually
evolving in scientific literature, we must ensure
that both the depth and breadth of the underlying
research landscape are accurately represented.

To determine which nodes require deeper ex-
ploration, we employ hierarchical classification.
Adapting an LLM-based text classification model
(Zhang et al., 2024b), we enrich the taxonomy
nodes (e.g., by adding keywords) to support top-
down classification from ni,d to ni

j,d. Specifically,
given a dimension-specific paper p mapped to ni,d,
we adapt this model to determine whether p (based
on its title and abstract) maps to any child node
ni
j,d ∈ N i

d via multi-label classification using node
labels and descriptions. We define ni,d’s density
ρ(ni,d) as the number of papers |Pi,d| mapped to
it, leveraging ρ(ni,d) to decide whether its children
(or lack thereof) should be expanded.

3.3.1 Depth & Width Expansion Signals
When many papers accumulate at a given leaf node
ni,d, as indicated by a high value of ρ(ni,d), it sug-
gests that the topic represented by ni,d is being
explored in greater depth within the corpus– which
the current taxonomy does not adequately reflect.
Longer taxonomy paths signify popular research
topics within the corpus. Figure 1 illustrates this:
the path to “bidirectional” is significantly deeper
than to “rule-based”, reflecting the rise of bidi-
rectional pre-trained language models in Corpus

A and the subsequent decline of rule-based meth-
ods. In this scenario, if ρ(ni,d) ≥ δ (user-specified
threshold), TaxoAdapt performs depth expansion
(Definition 1) by identifying a set of child entities
N i

d that partition the topic into finer, granularity-
consistent subtopics. For instance, as shown in
Figure 1, if ρ(“encoder-only”) ≥ δ, this warrants
further decomposition– such as deepening the path
to include “pre-training techniques”– to capture
the ongoing, specialized research in that area.

A complementary signal is provided by the un-
mapped density ρ̃(ni,d) of a non-leaf node. This
arises when a node ni,d has a significant number
of papers mapped to it (a high ρ(ni,d)) that are not
allocated to any of its existing child nodes N i

d.

Definition 3 (UNMAPPED DENSITY) Let Pi,d

denote the set of all papers associated with node
ni,d, and let nj,d ∈ N i

d denote the set of children
under node ni,d. The unmapped density is then
given by:

ρ̃(ni,d) =

∣∣∣∣∣Pi,d −
|N i

d|⋃

j=0

Pj,d

∣∣∣∣∣ (1)

If ρ̃(ni,d) exceeds a predefined threshold δ, this
indicates that a significant portion of the corpus
within ni,d is not adequately represented by its
current children. In such cases, TaxoAdapt ini-
tiates width expansion by generating additional,
non-overlapping sibling nodes n′i

j,d ∈ N ′i
d to cover

the underrepresented research areas. For instance,
the “decoder-only” node in Figure 1, where a
high ρ̃(“NLP Methods”) signaled that the single
“encoder-only” node did not adequately capture the
surge in decoder-only architectures. Once node
ni,d is triggered for either depth or width expan-
sion, TaxoAdapt determines the new set of child
entities N ′i

d through a pseudo-label clustering pro-
cedure (Section 3.3.2).

3.3.2 Taxonomy-Aware Clustering
Assuming that node ni,d has been marked for ex-
pansion, we must identify a set of child entities
(N ′i

d if ni,d is a leaf node, otherwise N i
d) which

satisfy the following criteria:

1. Maintaining the hierarchical, granular relation-
ships which currently exist within the taxonomy
(parent-child and sibling-sibling relationships).

2. Maximizing presence within either the set of
unmapped papers ρ̃(ni,d) (width expansion), or
ρ(ni,d) (depth expansion).
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3. Minimizing redundancy between the child enti-
ties N i

d ∪N ′i
d .

Subtopic Pseudo-Labeling. In order to main-
tain the hierarchical relationships within the taxon-
omy, we utilize the LLM to generate dimension and
granularity-preserving pseudo-labels based on each
paper pi,d ∈ Pi,d’s title and abstract. We prompt
the LLM to determine its dimensional subtopic rel-
ative to ni,d as its parent (ni,d’s label, dimension,
description, and path of ancestors) and ni,d’s exist-
ing children, if any.

Subtopic Clustering. Given that each pa-
per is represented by its corresponding pseudo-
label, clustering these pseudo-labels allows us
to maximize the number of papers (ρ̃(ni,d) or
ρ(ni,d)) represented. Moreover, effective cluster-
ing inherently minimizes redundancy as it aims to
produce distinct, non-overlapping sets of papers.
We specifically exploit LLM’s clustering abilities
(Viswanathan et al., 2023; Zhang et al., 2023) as
this allows us to easily integrate dimension and
granularity-specific information into the context
and preserve these features within our clusters. In-
cluding the same context provided during Subtopic
Pseudo-Labeling, in addition to the complete list
of paper-subtopic pseudo-labels, we prompt an
LLM to determine the primary sub-[dimension]
topic clusters (e.g., sub-task, sub-methodology)
that would best encompass the list of pseudo-labels,
providing a label and description for each cluster.
These generated clusters consequently form N ′i

d if
ni,d is a leaf node (depth expansion) and otherwise
N i

d (width expansion).
We iteratively classify, identify expansion sig-

nals, and perform taxonomy-aware clustering level-
by-level. We provide the full top-down taxonomy
construction algorithm in Algorithm 1. Ultimately,
this process ends when either no nodes are signaled
for expansion or the maximum taxonomy depth is
reached—outputting our final Td,∀d ∈ D.

4 Experimental Design

We explore TAXOADAPT’s performance using a
hybrid of both open (Llama-3.1-8B-Instruct)
and closed source (GPT-4o-mini) models. We do
this to showcase how we can optimize the cost of
the classification and pseudo-labeling steps (both
run on Llama) while not needing to sacrifice perfor-
mance. We discuss our experiment setting details
in Appendix A.

Algorithm 1 Top-Down Taxonomy Expansion
Require: Topic t, Dimension d ∈ D, Corpus P , den-

sity_thresh = δ, max_depth=l
1: Td ∈ T = initialize_taxonomy(t,D) {T .depth = 0}
2: Pd ⊆ P ← multi_dim_class(t,D) {Section 3.2}
3: q = queue(∀Td ∈ T )
4: while len(q) > 0 and T.depth ≤ l do
5: ni,d ← pop(q)
6: if isLeaf(ni,d) then
7: ni

j,d ∈ N i
d ← expand_depth(ni,d, t) {Section

3.3.2}
8: q.append(ni,d)
9: else

10: classify_children(ni,d, t, d) {Section 3.3.1}
11: if ρ̃(ni,d) > δ then
12: n′i

j,d ∈ N ′i
d ← expand_width(ni,d, t) {Section

3.3.2}
13: if |N ′i

d | > 0 then
14: classify_children(ni,d, t, d)
15: for ni

j,d ∈ N i
d do

16: if ni
j,d.level < l andρ(ni

j,d) > δ then
17: q.append(ni

j,d)
18: return T

4.1 Dataset
In order to evaluate TAXOADAPT’s abilities to
adapt to different corpora and reflect evolving re-
search topics, we select several conferences span-
ning different subdomains within computer science.
These conferences and their respective sizes are
shown in Table 1, where we collect the title and
abstract for each paper. We choose to explore our
method specifically within computer science such
that our dimensions can remain consistent across
all conferences: task, methodology, dataset, evalua-
tion methods, and real-world domains. We also in-
clude one conference from two different years (e.g.,
EMNLP’22 and EMNLP’24) in order to showcase
how our method reflects the evolution of its respec-
tive field.

Table 1: Topic t and number of papers (size) per dataset.

Conference Size Topic t

EMNLP 2022 828 Natural Language ProcessingEMNLP 2024 2954

ICRA 2020 1000 Robotics

ICLR 2024 2260 Deep Learning

Total Papers 7,042

4.2 Baselines
TaxoAdapt aligns LLM-based taxonomy con-
struction to a specialized, multidimensional cor-
pus. Consequently, we choose to compare our
method with both corpus-driven and LLM-based
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approaches. Note that all LLM-based baselines uti-
lize GPT-4o-mini as their underlying model. We
provide detailed information on each baseline in
Appendix B.

1. LLM-Only → Chain-of-Layer (Zeng et al.,
2024): Given a set of entities, solely relies on
an LLM (no corpus) to select relevant candidate
entities for each taxonomy layer and construct
the taxonomy from top to bottom.

2. LLM + Corpus → Prompting-Based: An itera-
tive baseline which prompts the LLM to identify
relevant papers to the dimension, child nodes,
and their corresponding papers.

3. Corpus-Only → TaxoCom (Lee et al., 2022a):
A corpus-driven, handcrafted taxonomy com-
pletion framework that clusters terms from the
input corpus to recursively expand a handcrafted
seed taxonomy.

4. No-Dim and No-Clustering are TaxoAdapt abla-
tions which remove the dimension-specific par-
titioning and subtopic clustering respectively.

4.3 Evaluation Metrics
We design a thorough automatic evaluation suite
using GPT-4o and GPT-4o-mini to determine the
quality of our generated taxonomies, using both
node-level and taxonomy-level metrics. For each
judgment, we ask the LLM to provide additional
rationalization (all prompts are in Appendix H):

• (Node-Wise) Path Granularity: Does the path
to node ni,d preserve the hierarchical relation-
ships between its entities (is each child ni

j more
specific than the parent ni,d)? Scored 0 or 1 by
GPT-4o.

• (Level-Wise) Sibling Coherence: Determine
whether a set of siblings nj ∈ N i of parent node
ni,d form a coherent set with the same level of
specificity and granularity. Scored from 0 to 1 by
GPT-4o.

• (Node-Wise) Dimension Alignment: Is the node
ni,d relevant to the dimension d of the root topic
t? Scored 0 or 1 by GPT-4o.

• (Node-Wise) Paper Relevance: Is the node ni,d

relevant to at least 5% of the corpus? Scored 0 or
1 per node by GPT-4o-mini (due to longer paper
context and thus, cost). Final score is averaged
across all nodes.

• (Level-Wise) Coverage: Given a set of siblings
nj ∈ N i of parent node ni,d, determine what
portion of relevant papers of ni,d are covered

by (relevant to) at least one node in the siblings.
Scored by GPT-4o-mini (due to longer paper
context and thus, cost).

In addition to this automatic evaluation, we also
conduct a supplementary human evaluation for
these evaluation metrics. We provide the LLM-
human agreement analysis in Appendix C. We also
provide human evaluation of the subtopic pseudo-
labeling and clustering steps (Section 3.3.2) in Ap-
pendix D.

5 Experimental Results

Overall Performance & Analysis. Table 2 shows
the performance of TAXOADAPT compared with
the baselines on a wide variety of node, level, and
taxonomy-wise metrics. From the results, we can
see that TaxoAdapt’s taxonomies are 26.51% more
granularity-preserving, 50.41% more coherent,
5.16% more dimension-specific, 5.18% more rele-
vant to the corpus, and 9.07% more representative
of the corpus, compared to the most competitive
baseline across all datasets and dimensions. These
results indicate that TaxoAdapt is significantly bet-
ter at aligning to a corpus across multiple dimen-
sions, while still greatly improving the structural
integrity of the constructed taxonomies. Based on
our thorough set of experiments, we are able to
draw several interesting insights:

TAXOADAPT constructs well-balanced, co-
hesive taxonomies. We observe that the base-
lines tend to generate significantly imbalanced tax-
onomies, where several of the nodes have only a
single child. Furthermore, each level tends to have
an uncohesive mixture of granularities (e.g., “Sen-
timent Analysis”, “Emotion Detection” as siblings).
This is especially the case for TaxoCom, which
has a significantly low path granularity while hav-
ing the highest relevance and coverage score. This
is due to it selecting highly coarse-grained nodes
(e.g., NLP tasks → significant improvements →
closed source, out of domain, text based, . . . ). In
contrast, TaxoAdapt preserves the hierarchical re-
lationships between the topics of taxonomy with
cohesive sets of children for each non-leaf node,
where the children ni

j ∈ N i of node ni have high
relevance and coverage of ni’s corresponding set of
papers Pi. Furthermore, each child node ni

j is rele-
vant to at least 5% of the papers within the corpus
P , reflected in increased path granularity, sibling
cohesiveness, and coverage scores shown in Table
2. We can attribute these gains to TaxoAdapt’s hi-
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Table 2: Comparison of models on all datasets, averaged across all dimensions. All values are normalized and
scaled by 100. The highest scores for each metric are bolded, and the second-highest scores are marked with a †.

Models EMNLP’22 EMNLP’24

Path Sib Dim Rel Cover Path Sib Dim Rel Cover

Chain-of-Layers 46.87 67.67 94.61 77.65 50.54 49.56 67.67† 92.56† 82.13 48.66
With-Corpus LLM 66.14 33.93 88.82 72.87 39.35 49.51 29.74 83.56 84.13† 39.20
TaxoCom 23.85 33.89 89.81 91.31 64.53 13.89 59.42 86.97 95.96 64.81

TaxoAdapt 81.09 82.92 100.00 82.69† 55.81† 83.04 77.86 98.04 88.76† 60.29†

- No Dim 88.47 82.30 99.49 81.46 62.26 89.98 76.97 99.05 86.23 66.42
- No Clustering 76.45† 69.33† 98.49† 81.63 50.38 65.15† 62.15 92.31 80.22 60.80

Models ICRA’20 ICLR’24

Path Sib Dim Rel Cover Path Sib Dim Rel Cover

Chain-of-Layers 52.92 43.46 95.06 95.00 55.96 40.75 43.16 95.92 69.66 48.50
With-Corpus LLM 74.58 32.54 97.34 94.18 45.50 70.44 29.70 88.37 67.78 33.62
TaxoCom 43.05 54.21 99.06† 96.28† 60.75† 30.00 67.00 91.27 86.88 56.25†

TaxoAdapt 86.69 91.59 100.00 97.82 52.09 78.93† 81.47 99.62† 71.99† 53.96
- No Dim 91.82 89.59† 100.00 92.95 67.97 86.32 76.45† 100.00 69.45 62.54
- No Clustering 87.74† 85.76 100.00 93.97 50.86 65.69 67.85 93.13 68.56 54.60

Table 3: Standard deviation of model performance
across all datasets and dimensions.

Models Path Sib Dim Rel Cover

Chain-of-Layers 0.078 0.109 0.008 0.043 0.005
With-Corpus LLM 0.054 0.036 0.010 0.027 0.004
TaxoCom 0.041 0.035 0.039 0.016 0.022
TaxoAdapt 0.027 0.021 0.007 0.043 0.015

erarchical classification and taxonomy-aware clus-
tering steps based on the lower performance of
ablation, No Clustering. We also note that TaxoAd-
apt primarily uses Llama-3.1-8B as its backbone
model for classification and clustering, which is
a significantly weaker model than the baselines’
complete dependence on GPT-4o-mini.

TAXOADAPT is robust to different research
dimensions. In addition to each of TaxoAdapt’s
nodes ni,d ∈ Td better reflecting its corresponding
dimension (Dim), TaxoAdapt exhibits robustness
to the different research dimensions. Specifically,
Table 3 showcases the standard deviation of each
model’s scores averaged across all dimensions and
datasets. We observe that TaxoAdapt features the
lowest standard deviations across all granularity
metrics, while simultaneously scoring the highest
for each (Table 2). We further explore this finding
through ablation “No-Dim”, which removes the ini-
tial dimension-specific partitioning of the corpus
P into Pd∈D ⊂ P (Section 3.2). We observe that

partitioning the corpus improves granularity, but
also negatively impacts relevance and coverage–
only a narrowed, dimension-specific pool is con-
sidered relevant for dimension-specific taxonomy
construction.

TAXOADAPT constructs taxonomies which re-
flect evolving research. In Figure 3, we demon-
strate how TaxoAdapt’s taxonomies adapt to cor-
pora from different eras of natural language pro-
cessing research (EMNLP’22 → EMNLP’24).
We showcase the task dimension, where due to
the rapid increase in EMNLP submissions and
accepted papers, features more nodes overall
(EMNLP’22: 62 nodes; EMNLP’24: 99 nodes).
Furthermore, between the two conference years,
we see certain nodes fall in research presence
(e.g., masked language modeling) and others signif-
icantly rise (e.g., language modeling, instruction-
based language models, bias in language models).
We also see certain research trends start to arise
as a result of performing width expansion based
on initially unmapped papers (e.g., personalized
language models). Overall, Figure 3 demonstrates
the power of considering classification-based sig-
nals for knowledge-augmented expansion. We
include an additional case study of how the tax-
onomy evolves for the real-world domain dataset
using the EMNLP datasets in Appendix G.

Open-Source-Only Performance. As men-
tioned in Section 4, we optimize the cost of
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Figure 3: We show the evolution of NLP Tasks from EMNLP’22 to EMNLP’24. Due to space constraints, we
highlight specific subtrees of interest, emphasizing nodes which feature commonly-known topical trends within
NLP. We also show the number of papers that TaxoAdapt maps to each of the nodes (Section 3.3) in parentheses.

(EMNLP'22) natural language processing tasks (828 papers)

dialogue systems (86) text generation (185) text summarization (64)language modeling (459) text classification (80)

few-shot text classification (29)

hierarchical text classification (14)

document classification (34)

hate speech detection (6)

sentiment classification (34)

abstractive (9)

extractive (36)

multi-document (9)

dialogue generation (26)

conditional text generation (143)

style transfer (8)

conversational question answering (9)

dialogue evaluation (21)

multimodal dialogue (6)

task-oriented dialogue systems (55)

multilingual language modeling (42)

sequence labeling (19)

multimodal language modeling (49)

knowledge graph reasoning (44)

masked language modeling (19)

language understanding (255)

question answering (151)

open-domain qa (75)

complex qa (42)

extractive qa (16)

domain-specific qa (21)

visual qa (14)

story generation (8)

text summarization (128)

abstractive (37)

extractive (12)

sentence simplification (17)

multimodal (18)

meeting summarization (10)

code summarization (9)

narrative summarization (13)

language modeling (2093)

multilingual language modeling (203)

instruction-based language modeling (193)

bias in language models (139)

multimodal language modeling (389)

contextual language modeling (156)

personalized language modeling (39)

adversarial language modeling (80)

language model fine-tuning (806)

(EMNLP'24) natural language processing tasks (2954 papers)

Legend:

User-Specified Root

Initial (initial LLM-generated taxonomy)

Width (node added during width expansion)

Depth (node added during depth expansion)

dialogue systems (245) question answering (416) text generation (758) text classification (274)

Models EMNLP’22 ICRA’20

Path Sib Dim Rel Cover Path Sib Dim Rel Cover

Chain-of-Layers 46.87 67.67 94.61 77.65 50.54 52.92 43.46 95.06 95.00 55.96†

With-Corpus LLM 66.14 33.93 88.82 72.87 39.35 74.58 32.54 97.34 94.18 45.50
TaxoCom 23.85 33.89 89.81 91.31 64.53 43.05 54.21 99.06 96.28 60.75

TaxoAdapt ( + ) 81.09 82.92 100.00 82.69 55.81† 86.69† 91.59† 100.00 97.82† 52.09
TaxoAdapt 69.92† 74.33† 98.70† 88.69† 51.95 92.08 95.11 100.00 98.20 49.10

Table 4: Comparison of performance across models on EMNLP’22 and ICRA’20 datasets.

TaxoAdapt by assigning certain tasks to open-
source models as opposed to closed-source: (1)
Llama-3.1-8B: Dimension classification + hier-
archical classification signals + subtopic pseudo-
labeling; (2) GPT-4o-mini: Preliminary/initial tax-
onomy construction (Section 3.1.2; considered as
input into our core framework) and subtopic clus-
tering. Hence, our core framework is built heav-
ily using an open-source model, Llama-3.1. We
demonstrate our method’s performance using en-
tirely an open-source model on the EMNLP’22 and
ICRA’20 datasets in Table 4.

As we can see through TaxoAdapt’s results us-
ing only an 8B open-source model, its performance
across both of the datasets is still very competi-
tive compared to the GPT-based baselines, even
exceeding our main Llama-GPT variant of TaxoAd-
apt. This shows that TaxoAdapt is very robust to
different model settings.

Synergizing LLM General and Corpus-
Specific Knowledge. Appendix E presents a case
study and discussion which showcases the power
of our corpus-driven, taxonomy-aware framework

in synergizing both an LLM’s general knowledge
and the corpus-specific knowledge for generating
more rich and relevant taxonomies.

Non-CS Domain Robustness. Appendix F pro-
vides an additional quantitative study on TaxoAd-
apt’s performance for a biology dataset— show-
casing that TaxoAdapt still achieves high perfor-
mance even within more specialized domains.

6 Conclusion

We introduce TaxoAdapt, a novel framework for
constructing multidimensional taxonomies aligned
with evolving research corpora using LLMs.
TaxoAdapt dynamically adapts to corpus-specific
trends and research dimensions. Our comprehen-
sive experiments demonstrate that TaxoAdapt sig-
nificantly outperforms existing methods in gran-
ularity preservation, dimensional specificity, and
corpus relevance. These results highlight TaxoAd-
apt’s capabilities as a scalable, multidimensional,
and dynamically adaptive method for organizing
scientific knowledge in rapidly evolving domains.
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7 Limitations

TaxoAdapt relies on LLMs to classify papers into
specific dimensions. Although existing works have
shown the success of LLMs on fine-grained classi-
fication, this classification relies on the parametric
knowledge of LLMs, which could be a limitation
when LLMs’ knowledge becomes outdated. For
example, when a dataset paper proposes a new
benchmark that has the same (or similar) name as
an existing methodology, LLMs might incorrectly
assign it to the methodology dimension. However,
this is a rare edge case, and TaxoAdapt already gen-
erates more dimension-specific taxonomies than
baselines as discussed above.

The potential downstream use cases of this tax-
onomy is to assist with better retrieval (Kang et al.,
2024) and as a more experimental idea, exploit
TaxoAdapt’s coarse and fine-grained signals of
where the field is going to inform LLM-based re-
search assistants of both:

1. a comprehensive idea of what potential
dimension-specific techniques are “available”
and on-the-rise.

2. which areas are under-explored for a specific
dimension, relative to the research problem
they are trying to solve.

As these rely on more specialized adaptations of
our method (and thus are out of scope), we leave it
to future work to explore these potential avenues.
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A Experimental Settings

We explore TAXOADAPT’s performance using a
hybrid of both open (Llama-3.1-8B-Instruct)
and closed source (GPT-4o-mini) models. We
do this to showcase how we can optimize the
cost of the classification and pseudo-labeling steps
(both run on Llama) while not needing to sacrifice
performance. We construct initial, deterministic
single-level taxonomies using GPT-4o-mini (Sec-
tion 3.1.2). For all other modules of our framework,
we sample from the top 1% of the tokens and set
the temperature to 0.1. We set the density threshold
δ = 40 papers and the maximum depth l = 2. As-
suming that the depth of the root is 0 and due to the
nature of the task, the size of the taxonomy has the
potential to grow exponentially, especially given
that the number of child nodes to be inserted is
dynamically chosen. Hence, we set the maximum
number of levels in the constructed taxonomy to be
three (l = 2). For δ, we choose this by identifying
a reasonable number of papers that can fall under a
fine-grained category of sufficient interest (avoid-
ing the construction of a very large taxonomy with
extremely fine-grained topics). We do not set a dy-
namic threshold purposefully, so that the expansion
can also be influenced by the growth of the field.

B Baselines

Our primary motivation for TaxoAdapt is to demon-
strate its capabilities of aligning the LLM-based
taxonomy construction to a specialized, multidi-
mensional corpus. Consequently, we choose to
compare our method with both corpus-driven and
LLM-based approaches. Note that all LLM-based
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baselines utilize GPT-4o-mini as their underlying
model.

1. LLM-Only → Chain-of-Layer (Zeng et al.,
2024): A method which is provided a set of en-
tities and solely relies on an LLM (no corpus)
to select relevant candidate entities for each tax-
onomy layer and gradually build the taxonomy
from top to bottom. We adapt this method to
use an LLM to suggest entities based on the root
topic t and dimension d.

2. LLM + Corpus → Prompting-Based: Given
that no methods currently exist which guide
LLM taxonomy construction based on a corpus,
we design our own prompting-based baseline.
Specifically, we conduct an iterative process,
where we first ask the LLM to identify relevant
papers to the dimension, relevant child nodes,
and their corresponding papers. We continue
this process until the maximum depth is reached.

3. Corpus-Only → TaxoCom (Lee et al., 2022a):
A corpus-driven taxonomy completion frame-
work that clusters terms from the input corpus
to recursively expand a handcrafted seed taxon-
omy. We use the same single-level taxonomy
from Section 3.1.2 as the seed input, but modify
the label names to similar concepts if they do
not already exist within the corpus.

Table 5: Consensus percentages of path granularity, sib-
ling coherence, dimension alignment, and node-paper
relevance between LLMs and the human evaluator.

Granularity Coherence Alignment Relevance

0.900 0.700 0.700 0.875

C LLM-Human Agreement Analysis

Since our automatic evaluation suite is mainly us-
ing GPT-4o and GPT-4o-mini, we conduct a small-
scale human evaluation to test the reliability of our
metrics. Using EMNLP’24, one human evaluator
is responsible for validating the LLMs evaluation
output on the task dimension of TaxoAdapt’s tax-
onomy. We show the consensus percentage (the
percentage of cases where both the LLM and the hu-
man evaluator agree on an instance) on path granu-
larity, sibling coherence, and dimension alignment
metrics as defined in Section 4.3. For path gran-
ularity, we select 30 random paths from TaxoAd-
apt’s taxonomy and let the human evaluator make

independent judgment about the hierarchical rela-
tionships between entities (scored 0 or 1 by the
evaluator). Similarly, we select 10 random sets of
siblings with respect to parent nodes for the eval-
uator to judge sibling coherence (scored 0.67 or
1 by the evaluator for reasonable or strongest co-
herence), and 30 random nodes are studied about
their alignment to the task dimension (scored 0
or 1 by the evaluator). As for (node-wise) paper
relevance and (level-wise) coverage metrics, since
they are about evaluating node-paper relevance, we
randomly select 16 node-paper pairs (8 pairs are
considered relevant while the other 8 are consid-
ered irrelevant by GPT-4o-mini) for the evaluator
to judge relevance in order to validate these two
metrics.

Consensus percentage is shown in Table 5. The
agreement percentages between the LLMs and the
human evaluator range from 70% to 90%, indicat-
ing strong overall agreement. Thus, this human
evaluation reinforces the validity of our metrics, so
we decide to use them as our automatic evaluation
metrics.

D Human Evaluation on Subtopic
Pseudo-Labeling & Clustering

Table 6: Alignment scores for different pseudo-label
types.

Pseudo-Label Type Dimension Paper

Width Expansion 0.8 0.8
Depth Expansion 0.85 0.75

We have performed two human evaluations
to demonstrate the validity of subtopic pseudo-
labeling and subtopic clustering (Section 3.3.2).
Specifically, for pseudo-labeling, we define two
binary criteria for verifying the LLM-generated
pseudo-labels:

1. Dimension Alignment: The pseudo-label
aligns with the overall dimension of the tax-
onomy.

2. Paper Alignment: The pseudo-label aligns
with the titles and abstracts of its correspond-
ing papers.

We select 20 papers from width-expanded nodes
and 20 papers from depth-expanded nodes. Since
each paper comes with a pseudo-label, a human

29845



Biology Papers Path Sib Dim Rel Cover

Chain-of-Layers 52.69 62.99 98.67 61.50 49.95
TaxoAdapt ( + ) 91.08 72.81 98.67 68.23 39.70

Table 7: Performance comparison on Biology Papers dataset.

evaluator counts how many labels fulfill these cri-
teria. The proportions of pseudo-labels satisfying
each criterion are shown in Table 6.

It is clear to see that the vast majority of pseudo-
labels are aligned to both their respective dimen-
sions and papers. This demonstrates the validity
and effectiveness of prompting LLMs to generate
pseudo-labels for preserving granularities of our
taxonomy.

As for subtopic clustering, each cluster comes
with a name, a description, and a list of pseudo-
labels. We define two binary evaluation criteria:

1. Relevance: A cluster name needs to capture
the majority of its pseudo-labels.

2. Coherence: All the pseudo-labels of a cluster
need to make sense within this cluster.

Randomly selecting 20 clusters, our human eval-
uator counts the number of clusters that fulfill our
criteria. The proportions of clusters satisfying each
criterion are shown in Table 8:

Table 8: Evaluation of cluster quality based on name
relevance and coherence. Values indicate the proportion
of satisfactory clusters.

Relevance Coherence

Proportion 0.95 0.7

Both proportions indicate the validity of using
LLMs to determine topic clusters. We observe
that the proportion of coherent clusters is lower
than that of cluster name relevance, since we set
a stricter requirement for cluster coherence (all
pseudo-labels need to align with the cluster name
and description).

E Case Study on the Role of LLM
General Knowledge in Taxonomy
Construction

The underlying motivation of our work is how do
we adapt LLM-based taxonomy construction to a
specific corpus, which allows the process to be
knowledge grounded and result in a higher-quality

taxonomy overall. Hence, while any method uti-
lizing an LLM will benefit from its general knowl-
edge, we show that LLM general knowledge alone
is insufficient for our task. We demonstrate this
by comparing our method with Chain-of-Layers
(only uses an LLM) and With-Corpus LLM (both
described in Section 4.2 and Appendix B), where
we achieve significant performance gains across all
metrics– as shown in Table 2.

TaxoAdapt achieves better performance than
Chain-of-Layer across all metrics, which indicates
that solely using LLMs is not sufficient. We ob-
serve that Chain-of-Layer has a very low path gran-
ularity score, which demonstrates a poor hierarchi-
cal relationship among entities from top to bottom
of its taxonomy. A reason is that Chain-of-Layer
is not knowledge-grounded and thus cannot under-
stand fine-grained entities. Despite Chain-of-Layer
being provided fine-grained entities present within
the corpus as input, it still suffers from poor granu-
larity performance (also seen through the qualita-
tive example below). This indicates that its (GPT-
4o-mini’s) general knowledge is insufficient for un-
derstanding the hierarchical relationships between
these fine-grained entities. In contrast, TaxoAdapt
significantly outperforms it using a weaker base
model (Llama-3.1-8B) and solely being provided
the corpus as input.

• Language Model Training

– Parameter Sensitivity in Language Mod-
els

– Retrieval-oriented Language Model Pre-
training

* RetroMAE
– Efficient Masked Language Model Train-

ing

* Efficient Pre-training of Masked Lan-
guage Model via Concept-based Cur-
riculum Masking

– Intent Detection Frameworks

* Multi-Label Intent Detection
– Cross-lingual Summarization Datasets

* EUR-Lex-Sum
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– Scientific Document Representations

* Contrastive Learning

* Citation Embeddings

* Similarity-based Learning

* Scientific Document Representation
– Answer Sentence Selection Models

* Pre-training Transformer Models

Compared with With-Corpus LLM, TaxoAdapt
also delivers a significant improvement, indicat-
ing that even integrating corpus-specific informa-
tion with an LLM is insufficient. With-Corpus
LLM has a very low sibling coherence score, which
demonstrates its inability of forming coherent sets
of sibling nodes. Instead, with our taxonomy-aware
pseudo-labeling & clustering (No Clustering ab-
lation in Table 2), TaxoAdapt outperforms With-
Corpus LLM. This showcases the power of our
corpus-driven, taxonomy-aware framework.

F Non-Computer Science Domains

We originally selected computer science-based pa-
pers, as the field naturally features large-scale
publicly available papers organized at the confer-
ence level. However, we show TaxoAdapt’s per-
formance on a dataset of 1,000 biology papers
and compare it against the overall, most compet-
itive baseline, Chain-of-Layers (same experimen-
tal settings as the main paper). We can see that
despite heavily relying on a small open-source
model, TaxoAdapt features significant gains in
the majority of metrics. We note that coverage
score is lower, due to Chain-of-Layers generating
more coarse-grained nodes throughout the taxon-
omy (hence their low path granularity score). This
shows that TaxoAdapt still achieves high perfor-
mance even within more specialized domains.

G Case Study on Evolution of NLP
Real-World Domains

In Figures 4 and 5, we provide the final outputted
taxonomies from TaxoAdapt for the real-world do-
mains dimension of EMNLP’22 and EMNLP’24
respectively. We see that given the rise of large lan-
guage models, researchers are able to explore the
real-world applications of natural language process-
ing in more breadth and depth. This is indicated by
the initial LLM-generated nodes (e.g., healthcare,
e-commerce) being expanded upon in EMNLP’24
(e.g., medical record management, clinical decision
support, patient engagement, etc.). Furthermore,

we see more multimodal research as multimodal
models have significantly improved. Finally, we
see a prominent new node arise in 2024: “auto-
mated fact checking”. This strongly parallels the
rise of LLM hallucination as a major public con-
cern. Overall, both case studies on the task and
real-world domain dimensions indicate TaxoAd-
apt’s ability to capture evolving research corpora.

H LLM Evaluation Prompts

As described in Section 4.3, we show the LLM
prompt that we use to generate evaluation output
for computing automatic metrics in Figure 6.
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Figure 4: NLP Real-World Domains output taxonomy for EMNLP’22.

(EMNLP'22) NLP real-world domains

finance

healthcare

Legend:

User-Specified Root

Initial (initial LLM-generated taxonomy)

Width (node added during width expansion)

Depth (node added during depth expansion)

e-commerce

legal

education

social media analysis

multimodal interaction

gaming and interactive media

information retrieval and extraction

computational social sciences

information extraction

information retrieval

document summarization

product recommendation systems

social network analysis

social bias analysis

mental health analysis

human computer interaction

politics
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Figure 5: NLP Real-World Domains output taxonomy for EMNLP’24.

(EMNLP'24) NLP real-world domains

finance

healthcare

e-commerce

legal

education

humanitarian assistance

multimodal processing

gaming

social media analysis

automated fact checking

hate speech analysis

misinformation management

sentiment and opinion analysis

social behavior analysis

cross-platform misinformation detection

information verification

medical fact checking

video fact checking

multimodal fact checking

medical record management

clinical decisison support

patient engagement

medical text analysis

product_recommendation_systems

product_recommendation_methods

contract review

legal case retrieval

legal information extraction

legal question answering

judgement prediction

intelligent tutoring systems

educational assessment

educational technology

language learning

content generation

political discourse analysis

multimodal emotion recognition

multimodal translation

multimodal nlp in healthcare

multimodal nlp for creative expressions

multimodal nlp for security and privacy

multimodal nlp for human interaction

multimodal nlp for education and training

disaster response

mental health support

human-centered nlp

cross-cultural digital humanities

social phenomena in humanitarian settings

scientific fact checking

personalized fact checking

literature and academic fact checking

Legend:

User-Specified Root

Initial (initial LLM-generated taxonomy)

Width (node added during width expansion)

Depth (node added during depth expansion)
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Figure 6: LLM evaluation prompts used to compute path granularity, sibling coherence, dimension alignment, paper
relevance, and coverage.
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