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Abstract

BERT-family have been increasingly explored
for adaptation to scenarios beyond language
understanding tasks, with more recent efforts
focused on enabling them to become good in-
struction followers. These explorations have en-
dowed BERT-family with new roles and human
expectations, showcasing their potential on par
with current state-of-the-art (SOTA) large lan-
guage models (LLMs). However, several cer-
tain shortcomings in previous BERT-family,
such as the relatively sub-optimal training cor-
pora, learning procedure, and model architec-
ture, all impede the further advancement of
these models for serving as general and compet-
itive LLMs. Therefore, we aim to address these
deficiencies in this paper. Our study not only
introduces a more suitable pre-training task
that helps BERT-family excel in wider applica-
tions to realize generality but also explores the
integration of cutting-edge technologies into
our model to further enhance their capabilities.
Our final models, termed Bidirectional General
Language Models (BiGLM), exhibit perfor-
mance levels comparable to current SOTA
LLMs across a spectrum of tasks. More-
over, we conduct detailed analyses to study
the effects of scaling and training corpora for
BiGLM. To the best of our knowledge, our
work represents the early attempt to offer a
recipe for building novel types of scalable, gen-
eral, and competitive LLMs that diverge from
current autoregressive modeling methodology.
Our codes and models are available on Github1.

1 Introduction

Generative large language models (LLMs) have
significantly influenced various aspects of society,
reshaping how we access and interact with informa-
tion and knowledge (Touvron et al., 2023a,b; Team
et al., 2023; OpenAI, 2023). Among them, almost
all the recent models adopt the decoder-only model

* Juntao Li is the Corresponding Author.
1 github.com/LitterBrother-Xiao/BiGLM

architecture with the autoregressive (AR) modeling
paradigm, with the representative being the GPT
series models (Radford et al., 2019; Brown et al.,
2020; OpenAI, 2023). While this recipe has demon-
strated effectiveness in achieving scalability and
generality in current LLMs (Tay et al., 2022; Bi-
derman et al., 2023; Touvron et al., 2023a), it also
exposes several challenges, such as the well-known
teacher forcing problem (Zhang et al., 2019), gen-
eration hallucinations (Ji et al., 2023; Rawte et al.,
2023; Zhang et al., 2023; Tonmoy et al., 2024), and
reduced efficiency during inference (Xiao et al.,
2022; Xia et al., 2024; Zhang et al., 2024a). These
challenges serve as a catalyst for us to attempt to
find, at least discuss the potential of alternative
approaches for developing scalable, general, and
competitive large language models.

Hence, we investigate the potential of BERT-
family, which adopt the encoder-only model archi-
tecture with the masked language modeling (MLM)
paradigm. Our explorations are driven by several
key observations: (1) BERT-family have been one
of the most widely used language models in pre-
vious years (Devlin et al., 2018; Liu et al., 2019),
which contain variants boasting billions of model
parameters (Conneau and Lample, 2019; Shoeybi
et al., 2019), showcasing its scalability potential.
(2) The bi-directional attention mechanism inher-
ent in BERT-family, equips these models with a
profound understanding of semantic information,
earning them a reputation for excelling in various
language understanding tasks. (3) With theoreti-
cally indicating that BERT-family can generate co-
herent textual content (Dong et al., 2019; Wang and
Cho, 2019), researchers have leveraged these mod-
els in non-autoregressive generation tasks and yield
positive feedback (Chan and Fan, 2019; Jiang et al.,
2021; Su et al., 2021; Liang et al., 2023b,a). Re-
cently, Xiao et al. further demonstrate that BERT-
family can also become instruction followers with
instruction tuning. These explorations all indicate
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Figure 1: The presentation of the evolution of BiGLM.

the potential of generality for BERT-family.
Despite these positive attempts of BERT-family,

we also notice the following shortcomings among
them, such as the mismatching of pre-training
paradigm for generation tasks and several sub-
optimal designs of pre-train models including the
model architecture, training procedure and data
compositions compared to the up-to-date LLMs.
Therefore, we aim to address these deficiencies and
make the following contributions to build a novel
type of scalable, general, and competitive LLMs:

• We introduce a feasible pre-training task to
train new variants of BERT-family termed
as Bidirectional General Language Models
(BiGLM), which provide a recipe for building
LLMs beyond autoregressive modeling.

• We explore the potential of integrating the
cutting-edge technologies whose effectiveness
has been verified in current AR models into
BiGLM to further enhance its capabilities.

• We evaluate BiGLM on a range of scenarios, in-
cluding task-specific fine-tuning, zero-shot rea-
soning, and multitask learning. Results demon-
strate that BiGLM can reach the performance
levels that are on par with, and in some cases
surpassing the previous SOTA models.

• We further conduct detailed analyses to study
the effects of scaling and training corpora for
our models, providing better understandings of
BiGLM for current LLM community.

2 Bidirectional General Language Models

We draw lesson from the traditional masked lan-
guage modeling (MLM) pre-training objective,
which makes the model to learn to predict the spe-
cific masked tokens and has been widely used in
BERT-like models (Devlin et al., 2018; Liu et al.,
2019). Specifically, MLM first replaces partial to-
kens with the special masked token (e.g., [MASK])

in the training instance, and enables the model to
predict the corresponding masked parts as follows:

LMLM = −
∑

ct∈Cmask

logP(ct|Cobs; θ), (1)

where Cmask and Cobs denote the masked and un-
masked parts in the training instance C, respec-
tively. ct denotes each masked token, and θ denotes
the trainable parameters of the model. In conven-
tional BERT-like models (Devlin et al., 2018), the
masked tokens Cmask are typically randomly se-
lected with a fixed small proportion (e.g., 0.15) of
tokens within each training instance. While this
pre-training task facilitates the learning of sentence-
level representations, it falls short in capturing lan-
guage generation capabilities compared to the tra-
ditional pre-trained AR language models trained
with the widely-used causal language modeling
objective (i.e., next token prediction task).

BiGLM aims to build a general pre-trained
language model which simultaneously possesses
the ability of language understanding and gener-
ation. Firstly, motivated by the previous works
which adapt the traditional MLM to generation
tasks (Ghazvininejad et al., 2019; Liang et al.,
2023b,a; Xiao et al., 2024), we first decompose
each training instance into two parts to simulate
a scenario akin to conditional generation. Then,
drawing inspiration from prior practice (Song et al.,
2019; Li et al., 2022; Guo et al., 2020; Xiao et al.,
2023), we further assign different masking strate-
gies for these two parts to enable BiGLM learn the
understanding and generation capabilities, respec-
tively. Besides, we adopt specific attention masking
mechanism to enhance the consistency between the
training and inference process for BiGLM.

2.1 Pre-train Task

Specifically, as shown in Figure 2, given a
specific training instance with the max context
length L: C = {c1, c2, ..., cL−1, cL}, BiGLM de-
composes C into a tuple (X,Y ) based on a
decomposition position i, i ∈ (1, L), where
X = {c1, c2, ...ci−1, ci} denotes the prefix tokens,
and Y = {ci+1, ci+2, ...cL−1, cL} denotes the suf-
fix tokens. This decomposition position controls
the minimum length of the X and Y . In prac-
tice, we set a ratio α, α ∈ (0, 0.5) in advance,
and randomly sample the position i from α ∗ L
to (1 − α) ∗ L. Then, the prefix tokens are used
to provide context information and help the model

29819



Figure 2: The pre-training task of BiGLM, where each
specific training instance is decomposed into the prefix
and suffix tokens. We assign random masking strategy
with relatively small ratio for prefix tokens to learn
understanding ability and uniform masking for suffix
tokens to learn generation ability for BiGLM.

understand the whole sentence, we randomly sam-
ple a small ratio of mask tokens, which is sim-
ilar to the traditional MLM in BERT, denoted
as (Xmask, Xobs) = RANDOM_MASK(X,βX), where
Xmask and Xobs denote the masked and unmasked
parts in X , βX denotes the masking ratio. The
suffix tokens tend to help the model learn the gener-
ation capability, we adopt uniform masking as men-
tioned in CMLM (Ghazvininejad et al., 2019), de-
noted as (Ymask, Yobs) = UNIFORM_MASK(Y, βY ),
where βY is sampled from a uniform distribu-
tion U(0, 1). Then, BiGLM learns to predict the
masked tokens based on different contexts. In prac-
tice, we adopt an adaptive masking function for the
masking ratio βX as mentioned in Xiao et al. (2023)
to replace the fixed masking ratio in the traditional
MLM for X , as βX = λ1 − λ2 ∗ βY , where λ1 and
λ2 determines the masking ratio range of X . This
operation can achieve more diverse masking condi-
tions in X for BiGLM to learn and is based on the
intuition that once more tokens in Y are masked,
X should provide more context information (i.e.,
lower βX ). Moreover, we prevent the query of each
token in X attending the tokens in Y in the atten-
tion module as shown in Figure 2 during training
to keep consistent with the inference process since
there is no target sequence in advance. Finally, the
training loss of BiGLM can be computed as:

LBiGLM = −
∑

xt∈Xmask

logP(xt|Xobs; θ)

−
∑

yt∈Ymask

logP(yt|Xobs, Yobs; θ).
(2)

2.2 Trails for BiGLM
In this section, we pre-train different model variants
from scratch to conduct evaluation experiments for

BiGLM2. Specifically, we first verify the neces-
sity of two key components of our modified pre-
training task, i.e., the decomposition of the training
instance and the specific attention masking strat-
egy. Then, we further conduct ablation studies to
compare different methods to determine the decom-
position points and various masking ratios for the
prefix tokens in the training sequence.

Data and Architecture For the pre-training cor-
pora, we adopt a deduplicated version of FineWeb-
edu (Lozhkov et al., 2024) developed by SmolLM-
Corpus (Ben Allal et al., 2024) which contains
around 220B tokens, denoted as deduplicated
FineWeb-edu. As for the model architecture, we
follow the most practice in previous BERT-family
to build an encoder-only language model with bi-
directional attention mechanism, and further incor-
porate several modifications to align with current
language models (Touvron et al., 2023a; Biderman
et al., 2023): 1) We use Rotary Positional Em-
bedding (RoPE) (Su et al., 2024) to replace the
traditional absolute/relative position encoding to
inject positional information. 2) We replace the tra-
ditional ReLU with swiglu (Shazeer, 2020) as our
activation function 3) We adopt RMSNorm (Zhang
and Sennrich, 2019) as our normalization method
rather than the common layer normalization. We
adopt a model version containing around 124M pa-
rameters whose num-layers/hidden-size/num-attn-
heads are 12/768/12 to conduct experiments.

Training Details We pre-train all the model vari-
ants from scratch with a max length of 2048, batch
size of 1024, and the training steps as 50k, i.e.,
totally with around 100B tokens. The learning
rate is set as 3e-3 and decreases with cosine de-
cay strategy. We utilize the Megatron-Deepspeed 3

library, and train all the models on 64 NVIDIA
A100-PCIE-80GB GPU cards. As for the specific
variants, we train the common BiGLM and then
successively omit the attention masking strategy
(i.e., w/o attn) and the decomposition process (i.e.,
w/o both) to obtain three variants. For the ablation
studies, we compare the different decomposition
ratios and different masking factors for X and Y .
The details are presented in Appendix C.

Evaluation Details After the training process,
we evaluate the models without fine-tuning on a

2In this paper, all the evaluation experiments are only con-
ducted on English language data.

3https://github.com/microsoft/Megatron-DeepSpeed
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Methods ARC-E ARC-C PIQA Sciq Wino. LogiQA Race SIQA BoolQ Hella. Truth. AVG.

RoBERTa-base 36.07 25.68 58.98 61.8 51.78 26.27 27.94 35.62 61.19 33.97 25.12 40.40

BiGLM 52.95 26.37 60.55 85.1 49.80 28.17 28.04 38.16 60.64 34.56 24.96 44.48
w/o attn. 51.09 23.89 59.90 83.8 52.56 29.03 27.37 38.08 61.53 32.80 25.95 44.18
w/o both. 41.58 22.69 56.58 76.6 49.96 27.80 28.80 38.11 60.40 31.23 24.84 41.69

Table 1: Results of various pre-training variants. Wino., Hella., and Truth. denote the WinoGrande, Hellaswag,
and Truthfulqa datasets, AVG. denotes average result. attn. denotes the attention masking strategy.

range of widely-used zero-shot reasoning tasks, in-
cluding ARC-easy, ARC-challenge (Clark et al.,
2018), BoolQ (Clark et al., 2019), PIQA (Bisk
et al., 2020), SIQA (Sap et al., 2019), Wino-
Grande (Sakaguchi et al., 2021), LogiQA (Liu
et al., 2020), Race (Lai et al., 2017), Sciq (Jo-
hannes Welbl, 2017), Hellaswag (Zellers et al.,
2019), and Truthfulqa (Lin et al., 2021). We
adopt Language Model Evaluation (Gao et al.,
2021) framework to evaluate these datasets un-
der a zero-shot setting (Biderman et al., 2023)
and report normalized accuracy for PIQA, ARC-
challenge, LogiQA, Hellaswag, and accuracy for
other tasks (Biderman et al., 2023).

Results The results on zero-shot reasoning tasks
are presented in Table 1, we can find that (1) the
corresponding two key components are necessary
for our pre-training task. The decomposition of the
training instance and assigning different masking
are more critical for the success of BiGLM, while
removing it leads to significant performance de-
clines; (2) we also report the performance of previ-
ous competitive BERT-like model (i.e., RoBERTa-
base (Liu et al., 2019)) with comparable parame-
ters but trained with much more tokens (around 2T
tokens), our model, even trained with only 100B
tokens based on the same pre-training task (i.e.,
w/o both), can also achieve better performance, in-
dicating the effectiveness of modifying the model
architecture and pre-training data corpus. As for
the ablation studies presented in Appendix C, we
can find that all the variants perform comparably.

3 Enhanced Strategies for BiGLM

In this section, we explore the feasibility of inte-
grating several effective cutting-edge technologies
into BiGLM to further enhance the capabilities.

3.1 Model Architecture

Deeper Model Additional to the common modi-
fications as mentioned in 2.2, recent work has pro-
posed that while training a language model, going

deeper is more crucial than going wider for per-
formance improvement (Liu et al., 2024). In other
words, after determining the total model parame-
ters, we prefer adding the number of layers rather
than wider the hidden-size. As a result, we fol-
low the model designs in (Liu et al., 2024) to
train a deeper BiGLM but with comparable param-
eter. Specifically, we set the num-layers/hidden-
size/num-attn-heads as 30/576/9 to replace the orig-
inal 12/768/12. Furthermore, we also adopt the
method of grouped query attention (Chowdhery
et al., 2023; Ainslie et al., 2023) which reduces the
original parameters to allow more layers. The cor-
responding results are presented in Table 2, we can
find the deeper model (BiGLM++) outperforms the
original BiGLM by around 0.5 score on average.
However, we need to recognize that the training
time of the deeper model is around 2x than the
common BiGLM in our experiments.

Dropout Module We evaluate the necessity of
Dropout (Srivastava et al., 2014), which serves as a
simple way to avoid over-fitting but been omitted in
recent LLMs (Touvron et al., 2023a,b). We include
this exploration based on that all previous BERT-
family, even with billion parameters, still adopt
the dropout module (Conneau and Lample, 2019;
Shoeybi et al., 2019). The corresponding results
are presented in Table 2, i.e., BiGLM v.s., BiGLM
w/o dropout. We can find that omitting the dropout
module leads to around 1 score improvement on
average, indicating that the dropout module is also
not necessary for BiGLM.

3.2 Training Procedure
Learning Rate Scheduler While researchers
adopt Cosine Learning Rate Scheduler (Cosine
LRS) to train most LLMs, Hu et al. have seek for
better one, i.e., the Warmup-Stable-Decay Learn-
ing Rate Scheduler (WSD LRS), which divides the
training process into three stages: 1) the warm-up
stage as the same as previous practice, 2) the stable
training stage with the learning rate unchanged, 3)
the annealing stage with the learning rate decreas-
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Methods ARC-E ARC-C PIQA Sciq Wino. LogiQA Race SIQA BoolQ Hella. Truth. AVG.

BiGLM 52.95 26.37 60.55 85.1 49.80 28.17 28.04 38.16 60.64 34.56 24.96 44.48
w/o dropout 53.76 26.40 60.78 87.2 51.73 28.33 30.12 38.49 62.03 35.01 25.17 45.37

BiGLM++ 53.70 25.34 60.55 85.8 51.86 28.12 28.80 38.54 62.05 34.74 24.99 44.95
w/ mixdata 55.13 25.51 61.97 88.5 51.85 28.36 30.43 37.93 62.02 35.67 25.31 45.70

no annealing 51.34 24,74 60.56 84.4 54.06 27.54 30.05 37.32 61.99 34.30 25.21 44.68
rawdata annealing 52.95 26.28 61.91 86.3 52.09 28.38 30.33 38.98 61.74 34.93 24.73 45.33
rawdata annealing++ 53.21 25.97 62.32 86.3 52.17 28.28 30.17 38.96 62.01 35.25 25.02 45.42
syndata annealing 50.04 26.02 62.68 79.4 51.70 28.02 29.47 37.78 61.53 35.13 25.46 44.29
mixdata annealing 52.44 25.68 61.37 85.4 50.51 28.13 29.19 38.15 61.74 35.31 24.75 44.79

Table 2: Results of adopting the enhanced strategies in BiGLM.

ing linearly. This scheduler provides a simpler way
for continue training and has been adopted in recent
competitive models, e.g., Llama 3.1 (Vavekanand
and Sam, 2024) and Falcon-Mamba (Zuo et al.,
2024). In Hu et al. (2024) where WSD LRS is first
proposed, 10% of total training steps are adopted
for annealing, i.e., final 5k steps for annealing for
BiGLM since the total training steps is 50k. Dur-
ing the annealing stage, we adopt the same training
data distribution (i.e., deduplicated FineWeb-edu)
as that in the stable training stage. Besides, con-
sidering the relatively lower learning efficiency of
BERT-family (Wettig et al., 2022), we trail for a
longer annealing stage (i.e., rawdata annealing++
in Table 2) with final 10k steps for annealing after
40k training steps. We present the corresponding
results in Table 2, demonstrating that (1) we report
a baseline that does not adopt the annealing stage
(i.e., no annealing), i.e., a total of 50k steps for the
warm-up and stable training stage, which results in
a 0.27 score decline on average compared with the
one trained with Cosine LRS (i.e., BiGLM++); (2)
WSD LRS (i.e., rawdata annealing) outperforms
Cosine LRS, and longer annealing stage leads to
better performance, indicating that BiGLM needs
more training steps during the annealing stage.

3.3 Data Composition

Pre-training Data Previous non-autoregressive
works (Ghazvininejad et al., 2019; Kasai et al.,
2020; Huang et al., 2022; Xiao et al., 2023) which
also adopts the MLM objective for training have
demonstrated that data distillation is quite impor-
tant for competitive performance. They train their
models with the data generated by the autoregres-
sive models rather than the raw data, which can sim-
plify the modalities in training data and reduce the
modeling difficulties. This also alleviates the well-
known multi-modality problem (Gu et al., 2018)
which affects the performance of BERT-family for
generation tasks (Liang et al., 2023a,b). However,

the data composition is not well explored for pre-
vious BERT-family. Thus, we adopt the Cosmope-
dia v2 (Ben Allal et al., 2024), which is a collec-
tion of synthetic textbooks and stories generated by
mistralai/Mixtral-8x7B-Instruct-v0.14 (Jiang et al.,
2024) and contains around 39B tokens, to serve as
the distillation data to verify the effectiveness of
synthetic data. Specially, we compared the models
trained on only the deduplicated FineWeb-edu and
the mixture of deduplicated FineWeb-edu and Cos-
mopedia v2 for the same total tokens, as shown in
Table 2, i.e., BiGLM++ v.s., w/ mixdata, training
on the mixture data leads to significant performance
improvements by 0.75 scores on average.

Annealing Data Previous works (Hu et al., 2024;
Vavekanand and Sam, 2024) have pointed out the
annealing stage always needs higher-quality train-
ing data, e.g., selective code and math data or
exquisite synthetic data, to enable the better conver-
gence of the model. Thus, we explore the effects
on different data compositions during the annealing
stage. Rather than adopting the same distribution as
mentioned in Section 3.2, we include two variants
which adopt only the synthetic data and the mixture
data during the annealing stage, with results pre-
sented in Table 2 and termed as syndata annealing
and mixdata annealing. Contrary to the common
intuition, while including the higher-quality syn-
thetic data, adopting syndata annealing and mix-
data annealing both leads to performance declines,
especially with syndata annealing, we attribute this
to the mismatching of the data distribution between
the stable training and the annealing stage.

4 Experiments

Based on the above observations in Section 3.2,
we adopt a mixture of deduplicated FineWeb-edu
and Cosmopedia v2 to pre-train three versions
of BiGLM with different parameters, termed as

4https://huggingface.co/mistralai
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Methods
MNLI m/mm SQuAD XSUM MSQG

Accuracy EM / F1 R-1 / R-2 / R-L R-L / B-4 / MR
BERT-Base 84.3 / - 80.5 / 88.5 39.1 / 15.3 / 31.0 38.3 / 9.5 / 22.0
Roberta-Base 84.6 / - 83.0 / 90.4 41.5 / 17.5 / 33.5 38.5 / 10.5 / 22.7
BART-Base 84.1 / - - / 90.8 38.8 / 16.2 / 30.6 38.2 / 10.2 / 22.9
BiGLM-136M 84.7 / - 83.1 / 90.6 41.6 / 17.3 / 33.6 39.2 / 10.6 / 23.6
BERT-Large 86.7 / 85.9 88.0 / 93.7 39.8 / 15.8 / 31.9 38.9 / 10.2 / 22.9
Roberta-Large 90.2 / 90.2 88.9 / 94.6 44.5 / 20.4 / 36.3 40.1 / 11.2 / 23.6
DeBERTaV3-Large 91.8 / 91.9 - / - - / - / - - / - / -
BART-Large 89.9 / 90.1 88.8 / 94.6 45.1 / 22.2 / 37.2 38.8 / 9.2 / 24.3
BiGLM-360M 90.2 / 90.3 88.9 / 94.5 44.6 / 21.0 / 36.4 40.2 / 11.2 / 24.4
DeBERTa-1.5B 91.7 / 91.9 - / - - / - / - - / - / -
Megatron-1.3B 90.9 / 91.4 89.1 / 94.9 - / - / - - / - / -
Megatron-3.5B 91.4 / 91.4 90.0 / 95.5 - / - / - - / - / -
BiGLM-1.3B 91.2 / 91.3 89.8 / 95.2 46.2 / 22.7 / 38.0 40.8 / 11.5 / 24.9
BiGLM-3.5B 91.7 / 91.9 90.1 / 95.5 47.1 / 23.3 / 38.7 41.3 / 11.8 / 25.3

Table 3: Result of task-specific scenarios. The evaluation metrics are simplified: EM / F1 : exact match score / F1
score, R-1 / R-2 / R-L : ROUGE-1 / ROUGE-2 / ROUGE-L, R-L / B-4 / MR : ROUGE-L / BLEU-4 / METEOR.

BiGLM-136M, BiGLM-360M, and BiGLM-1.3B.
Besides, we include the above-mentioned common
model modifications and omit the dropout module.
Then, we we follow the deeper model architectures
in (Liu et al., 2024) to train BiGLM-136M and
BiGLM-360M, and follow the common design to
train BiGLM-1.5B and BiGLM-3.5B considering
the training efficiency. We set the max length as
2048 and batch size as 1024, then train BiGLM
for a total of 300k steps (around 600B tokens).
Additionally, we adopt the WSD LRS to train all
the models with 20% time for the annealing stage.
More details are presented in Appendix A.

4.1 Task-specific Fine-tuning

Datasets and Models We evaluate BiGLM for
task-specific fine-tuning scenarios with the follow-
ing dataset, i.e., MNLI (Williams et al., 2017) and
SQuAD (Rajpurkar et al., 2016) for understanding
tasks, XSUM (Narayan et al., 2018) and MSQG
(MicroSoft Question Generation) for generation
tasks. The details of these datasets are presented in
Appendix B. For the baseline models, we adopt two
representative BERT-family models (BERT (De-
vlin et al., 2018), RoBERTa (Liu et al., 2019) and
DeBERTaV3 (He et al., 2020)). Besides, we also
include BART (Lewis et al., 2019), which can per-
form well in both language understanding and gen-
eration tasks. We further adopt the model versions
of BERT containing 1.3B and 3.5B parameters
which are provided in Shoeybi et al. (2019) to com-
pare with BiGLM-1.3B and BiGLM-3.5B.

Settings We fine-tune BiGLM on XSUM and
MSQG following the previous practice (Liang et al.,
2023a; Xiao et al., 2024), which utilizes the Mask-
Predict decoding algorithm (Ghazvininejad et al.,
2019) to adapt the BERT-family to language gen-
eration scenarios. Besides, we follow the practice
in the traditional BERT-family for SQuAD, but for
MNLI, rather than adopting the representation of
the [cls] token to predict the label class in the tradi-
tional BERT-family, we enable BiGLM to predict
the real label with a specific prompt (Bach et al.,
2022). During fine-tuning, we train for a total of
5 epochs for MNLi and SQuAD, and 50 epochs
for XSUM and MSQG. We validate BiGLM af-
ter each epoch and select the best one as our final
model. As for the evaluation metrics, we follow
Liu et al. (2021) to adopt ROUGE-1/2/L (Lin and
Hovy, 2002) for XSUM, BLEU-4 (Papineni et al.,
2002), Rouge-L and METEOR (Lavie and Agar-
wal, 2007) for MSQG. Besides, we report accuracy
for MNLI, exact match, and F1 score for SQuAD
following previous BERT-family (Liu et al., 2019).

Results The corresponding results are presented
in Table 3, we can find that for these models un-
der 1B parameters: (1) BiGLM can outperform the
most baselines on MNLI and MSQG. (2) BiGLM
achieve comparable and in some cases superior
performance on SQuAD and XSUM. (3) BiGLM-
360M achieves relatively inferior performance on
XSUM compared to BART-Large. We attribute
this to the non-autoregressive generation paradigm
which falls short in generating longer targets. Be-
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Models LogiQA Sciq ARC-E ARC-C Wino. BoolQ PIQA SIQA Race Hella. Truth. AVG.

RWKV-169M (300B) 24.73 75.2 47.52 23.46 50.67 62.17 64.04 37.00 26.89 32.25 22.25 42.41
SmolLM-135M (600B) 27.04 83.5 61.61 28.75 53.28 62.17 68.08 39.66 31.77 42.61 25.21 47.61
BiGLM-136M (600B) 28.88 86.2 59.43 27.65 53.32 62.23 65.83 38.18 32.93 40.51 25.67 47.35

RWKV-430M (300B) 24.42 79.0 52.23 25.17 52.80 62.05 68.44 38.84 28.71 40.78 22.28 44.98
Qwen2-500M (7T) 29.34 90.8 54.55 28.84 57.46 58.84 69.91 42.78 33.97 49.08 24.48 49.10
SmolLM-360M (600B) 28.57 90.7 70.20 36.18 56.99 61.25 71.04 41.15 34.74 53.51 24.60 51.76
BiGLM-360M (600B) 29.29 91.8 67.95 34.25 54.72 62.17 67.78 41.33 37.13 52.97 25.80 51.38

RWKV-1.5B (300B) 27.80 84.9 60.82 29.01 55.33 52.95 72.36 41.20 32.54 52.95 21.79 48.33
TinyLlama-1.1B (3T) 25.81 89.3 61.66 32.68 59.43 61.56 73.56 42.27 36.94 46.70 22.28 53.17
Qwen2-1.5B (7T) 31.03 94.5 66.37 36.95 65.82 68.93 75.08 45.91 36.36 65.34 30.35 56.05
Gemma-2B (3T) 30.26 94.3 74.41 41.55 65.35 65.35 78.29 48.06 36.08 71.43 22.15 57.02
SmolLM-1.7B (1T) 28.57 93.2 76.47 46.25 60.93 62.57 76.01 43.20 36.84 65.74 24.26 55.83
BiGLM-1.3B (600B) 30.67 94.7 74.12 42.12 58.27 63.25 74.02 43.65 38.86 63.25 25.83 55.43

RWKV-3B (300B) 28.11 86.0 64.81 33.28 59.98 62.08 74.32 41.15 33.78 59.97 19.83 51.21
Sheared-LLaMA-3B (2T) 28.26 91.1 67.30 33.58 65.04 60.76 76.93 42.07 38.09 68.99 23.99 54.19
Qwen2.5-3B (7T) 33.49 95.4 77.31 47.44 68.43 74.95 78.51 49.95 38.37 72.54 32.07 60.77
Open-LLaMA-3B (1T) 28.57 92.2 69.28 36.35 61.80 62.91 74.97 42.22 37.32 64.31 22.40 53.85
BiGLM-3.5B (600B) 32.02 96.1 78.78 47.21 64.97 66.12 77.12 45.87 40.09 72.08 26.17 58.79

Table 4: Results of zero-shot reasoning scenarios.

sides, for those over 1B parameters, BiGLM-1.3B
outperforms Megatron-1.3B and there only exists
a tiny gap compared to Megatron-3.5B. BiGLM-
3.5B outperforms all the baseline models.

4.2 Zero-shot Reasoning

Datasets and Models We adopt a range of zero-
shot common sense reasoning and reading com-
prehension tasks as mentioned in Section 2.2. For
baseline models, we adopt the previous LLMs con-
taining the comparable parameters with BiGLM,
including RWKV (Peng et al., 2023), SmolLM (Al-
lal et al., 2024), Gemma (Team et al., 2023), several
Llama and Qwen variants (Zhang et al., 2024b; Xia
et al., 2023; Geng and Liu, 2023; qwe, 2024).

Settings The evaluation for BiGLM is the same
as mentioned in Section 2.2. For these baseline
models, we also adopt Language Model Evaluation
framework to re-run their public released models
in Huggingface5 to obtain their final performance.

Results The corresponding results are presented
in Table 4, demonstrating that considering the av-
erage performance compared to baselines: (1) for
these models with less than 1B parameters, BiGLM
outperform most previous LLMs and achieve com-
parable performance with the current state-of-the-
art lightweight SmolLM; (2) while BiGLM-1.3B is
trained for 600B tokens, it only slightly underper-
forms SmolLM-1.7B and Qwen2-1.5B which are
trained for 1T and 7T tokens, respectively. Besides,
considering specific single dataset, BiGLM can
perform best on several datasets, Sciq, BoolQ, and

5https://huggingface.co

Methods MMLU SuperGLUE Genset
ZS / FS AVG ACC. B-2 / D-2

Flan-T5-Small (87M) 30.05 / 29.76 50.58 29.17 / 0.55
Flan-T5-Base (250M) 33.44 / 34.28 64.97 32.46 / 0.62
Flan-T5-Large (780M) 41.54 / 42.03 74.04 38.28 / 0.63
Flan-T5-XL (3B) 48.68 / 49.24 76.56 36.53 / 0.63
Instruct-XMLR (3B) 41.36 / 40.17 74.16 35.83 / 0.70
BiGLM-136M 31.14 / 32.98 53.21 31.23 / 0.72
BiGLM-360M 39.61 / 40.03 68.45 35.29 / 0.71
BiGLM-1.3B 46.17 / 46.59 75.53 40.18 / 0.71
BiGLM-3.5B 51.05 / 52.18 77.12 43.19 / 0.73

Table 5: Result of multitask learning scenarios. The
metrics are simplified: ZS / FS: accuracy under zero-
shot/few-shot settings, AVG ACC: average score on
SuperGLUE, B-2 / D-2: BLEU-2 / Distinct-2.

Truthfulqa for BiGLM-135M and BiGLM-360M,
Sciq and BoolQ for BiGLM-360M. (3) The perfor-
mance of BiGLM-3.5B is similr to BiGLM-1.3B,
which only underperforms Qwen2.5-3B.

4.3 Multitask Learning
Datasets and Models We evaluate BiGLM for
multitask learning scenario after multitask instruc-
tion tuning (Chung et al., 2022; Taori et al., 2023),
which ability of BERT-family has also been men-
tioned in (Xiao et al., 2024). We utilize FLAN
dataset (Wei et al., 2021) which is composed of
numerous tasks with the instruction format, to fine-
tune BiGLM, then we adopt a held-in benchmark
(SuperGLUE (Wang et al., 2022)), a held-out one
(MMLU (Hendrycks et al., 2021)), and a subset
containing several instances sampled from held-
out generation tasks including WIKI-AUTO (Jiang
et al., 2020) for text simplification, Quora Ques-
tion Pairs (QQP) for paraphrase generation, and
PersonaChat (Zhang et al., 2018) for dialogue gen-
eration. For baselines, we adopt Flan-T5 (Wei
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(a) Train Loss (b) Accuracy of ARC

Figure 3: Results of scaling effects for BiGLM.

et al., 2021) and instruct-XMLR (Xiao et al., 2024),
whose details are presented in Appendix B.

Settings We fine-tune BiGLM on FLAN dataset
for 5 epochs, and adopt a held-in validation set to
evaluate the model after each epoch, then we select
the best one as our final model. During training, we
set the learning rate as 5e-5 and adopt the linear
decay schedule. For MMLU, we report the corre-
sponding zero-shot and few-shot results following
previous practice, and for SuperGLUE, we report
the average accuracy. Moreover, for other gen-
eration tasks, we randomly sample 100 instances
from each dataset to compose a subset, denoted as
Genset. We report BLEU (Papineni et al., 2002)
and Distinct (Li et al., 2015) to measure the n-gram
level precision and the diversity of generated texts.

Results Table 5 presents the corresponding re-
sults, we can find that (1) BiGLM-1.3B outper-
forms Instruct-XMLR in all scenarios, indicating
the effectiveness of our various methods for train-
ing new BERT-family. (2) Compared with Flan-T5
models which trained with more tokens (1T) dur-
ing pre-training stage, BiGLM can also reach the
performance level with specific model parameters.

5 Analysis

5.1 Scaling Effects for BiGLM

In this section, we study the scaling effects for
BiGLM which plays a vital role in the success
of LLMs (Hoffmann et al., 2022; Touvron et al.,
2023a). Specifically, we study the loss and per-
formance changes across different model versions
throughout the training process. For performance,
we present the average accuracy score of ARC-easy
and ARC-challenge. We present the corresponding
curves in Figure 3, we can find that (1) increasing
the model parameters can bring significant perfor-
mance improvements and reduce the training loss.
(2) We can also verify the effectiveness of WSD
LRS as mentioned in Section 3.2 while witnessing

(a) Train Loss (b) Accuracy of ARC

Figure 4: Results of models trained with different data.

an evident drop in training loss and improvement in
performance after 240k training steps in the figure.

5.2 Effects on Pre-training Corpora
As the training corpora has shown great effects on
final capabilities of LLMs, we conduct an analytic
experiments of the loss and performance changes
during training trained with data. Specifically, ex-
cept adopting the mixed data and raw data as men-
tioned in Section 3.3, we also include the Pile (Gao
et al., 2020; Biderman et al., 2022), which is a cu-
rated collection of English language datasets and
has been widely used for training language mod-
els (Biderman et al., 2023; Peng et al., 2023). We
train BiGLM-136M for 100B tokens and the cor-
responding results are shown in Figure 4, demon-
strating that: (1) while lower loss can be achieved
with the pile data, it does not lead to better perfor-
mance, indicating that data distribution is highly
related to the training loss. (2) Compared with raw
data and mixed data, adopting the mixed data can
achieve lower loss and better performance. Overall,
we can only conduct consistent comparisons based
on the training loss while there is no significant
distribution differences between two corpora.

6 Conclusion

In this paper, we explore the potential of BERT-
family for building scalable, general and compet-
itive LLMs. By introducing a more feasible pre-
training task and further integrate several cutting-
edge technologies in BERT-family, our proposed
model variants, which is trained from scratch with
bidirectional attention mechanism and termed as
Bidirectional General Language Models (BiGLM),
can reach the performance levels that are on par
with, and in some cases surpassing the current
SOTA AR models with comparable parameters.
Our works represent the early attempts for seeking
novel types of LLMs, aiming to promote further de-
velopment of the BERT family and further provide
a new research direction for LLM community.
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Limitations

Due to computational limitations, we only scaled
BiGLM to 3.5B parameters, which is still consid-
erably smaller than the current mainstream large
language models with tens of billions of parame-
ters, such as LLaMA-65B, Qwen-2-72B, and sev-
eral GPT series models. Besides, the training data
(600B) is also relatively not enough for BiGLM-
1.5B and BiGLM-3.5B, leaving a problem that
whether BiGLM can breaking through standard
scaling laws. Additionally, previous works have
pointed out that training language models with
masked language modeling with bidirectional at-
tention mechanism need more time to train the
same tokens compared with current decoding-only
LLMs with autoregressive modeling, which may
lead to more computational costs.
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A Details of Pre-training

We present the details of the pre-training models in
Table 7.

B Details of Datasets and Models

We present the details for evaluation datasets here.

MNLI MNLI (Williams et al., 2017) consists of
pairs of premise and hypothesis sentences, as well
as labels indicating their relationship (i.e., entail-
ment, neutral, and contradiction). It has two test
sets, which comes from matching domains (MNLI-
m) and mismatching domains (MNLI-mm) of the
training set.

SQuAD SQuAD (Rajpurkar et al., 2016) is a
reading comprehension dataset consisting of ques-
tions posed by crowdsourcing workers on a set of
wikipedia articles, where the answer to each ques-
tion is a paragraph of text from the corresponding
article. Reseacher adopt this dataset to evaluate the
extractive question answering for language models.

XSUM XSUM (Narayan et al., 2018) dataset con-
tains 204,045/11,332/11,334 online articles and sin-
gle sentence summary pairs from the British Broad-
casting Corporation for training/validation/test.

MSQG MicroSoft Question Generation (MSQG)
is a large-scale dataset for question generation tasks
proposed in GLGE benchmark (Liu et al., 2021).

ARC AI2 Reasoning Challenge (ARC) () is
datasets composed of genuine grade-school level,
multiple-choice science questions. This is further
divided into a Challenge Set and an Easy Set, where
the former contains only questions answered incor-
rectly by both a retrieval-based algorithm and a
word co-occurrence algorithm.

LogiQA LogiQA (Liu et al., 2020) is constructed
from the logical comprehension problems from
publically available questions of the National Civil
Servants Examination of China, which are designed
to test the civil servant candidates’ critical thinking
and problem solving.

Sciq Sciq (Johannes Welbl, 2017) contains
13,679 crowdsourced science exam questions about
Physics, Chemistry and Biology. Among them, an
additional paragraph with supporting evidence for
the correct answer is provided.

WinoGrande WinoGrande (Sakaguchi et al.,
2021) is formulated as a fill-in-a-blank task with bi-
nary options, aiming to enable the language model
to choose the right option for a given sentence.

BoolQ BoolQ (Clark et al., 2019) a question an-
swering dataset with labels as yes/no. Each exam-
ple is a triplet of (question, passage, answer), with
the title of the page as optional additional context.

PIQA PIQA (Bisk et al., 2020) composes of sev-
eral natural language inference questions which
evaluates the ability of physical commonsense rea-
soning for language models,

SIQA Social_IQa(SIQA) (Sap et al., 2019) is
the first large scale benchmark for commonsense
reasoning about social situations, which contains
several multiple choice questions for probing emo-
tional and social intelligence in a variety of every-
day situations.

Race RACE (Lai et al., 2017) is a large-scale
reading comprehension dataset collected from En-
glish examinations, which are designed for middle
school and high school students.

Hellaswag Hellasawg (Zellers et al., 2019) is a
dataset for commonsense natural language infer-
ence to evaluate the ability of language models to
finish the specific sentence.

TruthfulQA TruthfulQA (Lin et al., 2021) aims
to measure whether a language model is truthful in
generating answers to questions. We transform this
datasets into the multiple choice questions follow-
ing previous practice.

MMLU MMLU (Hendrycks et al., 2021) is
a massive multitask test consisting of multiple-
choice questions from various branches of knowl-
edge, including humanities, social sciences, hard
sciences, and other areas that are important for
some people to learn. It covers 57 tasks in total in-
cluding elementary mathematics, US history, com-
puter science, law, and more.

SuperGLUE SuperGLUE (Wang et al., 2022)
is a enhanced version of GLUE containing more
difficult language understanding tasks.

WIKI-AUTO WIKI-AUTO (Jiang et al., 2020)
contains aligned sentences from English Wikipedia
and Simple English Wikipedia, which evaluates the
simplification abilities of the language models.
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QQP Quora Question Pairs (QQP) consists of
several pair of questions containing the same se-
mantics, which can viewed as paraphrase pairs.

PersonaChat PersonaChat (Zhang et al., 2018)
contains around 150k data triples formatted as (pro-
file, conversation, response).

Flan-T5 Flan-T5 (Wei et al., 2021) is trained on
FLAN instruction data based on the T5 pre-trained
language models.

Instruct-XMLR Instruct-XMLR (Xiao et al.,
2024) is instruction based fine-tuned based on
XLM-R with an encoder-only model archetecture.

C Results of Ablation Study

As mentioned in Section 2.2, we compare different
decomposition ratios (α in {0.1,0.2,0.3,0.4}), and
different factors (λ1, λ2) in {(0.3, 0.2), (0.5,0.2),
(0.5,0.4), (0.4,0.2)} to control the masking ratio
range for X , i.e., βX ∼ U(0.1, 0.3), U(0.3, 0.5),
U(0.1, 0.5), U(0.2, 0.4), respectively. Besides,
while the masking ratio for Y is typically sampled
from a uniform distribution U(0, 1), we also com-
pare different variants where βY ∼ U(0.1, 0.9),
U(0.2, 0.8), and U(0.3, 0.7). As the result shown
in Table 1 (BiGLM) is trained based on the setting
that α = 0.2, βX ∼ U(0.1, 0.3), βY ∼ U(0, 1),
we present the other ones in Table 8, we can find
that all the variants (i.e., different decomposition
ratios, masking ratios for X and Y ) achieve com-
parable performance compared to the first ver-
sion of BiGLM which is trained with , except
that adopting relative larger masking ratio for X
(βX ∼ U(0.3, 0.5)), indicating that larger masking
ratio for X which leads to fewer unmasked tokens
(i.e., useful context information) may increase the
learning difficulty and is not suitable for BiGLM.

D Training Cost Analysis

According to the training detailed as mentioned in
Section 4, we present the training cost (i.e., the
GPU hours of the training process) in Table 6.

Model GPU Hours

BiGLM-136M 11392
BiGLM-360M 22528
BiGLM-1.3B 45568
BiGLM-3.5B 100250

Table 6: The training cost.

E Related Works

The traditional BERT families (Devlin et al., 2018;
Liu et al., 2019; Clark et al., 2020; He et al., 2020;
Conneau et al., 2020; Warner et al., 2024; Fu et al.,
2024) have demonstrated excellent performance in
the NLP community. Their bidirectional model-
ing characteristic enables them to learn the context
representations well and facilitate the capture of
comprehensive semantic information, leading to
success in various language understanding tasks.
However, their language generation abilities are rel-
atively weak compared with autoregressive causal
language models (Lewis et al., 2019; Song et al.,
2019). Several previous works have introduced
different methods to empower them with language
generation abilities via non-autoregressive gener-
ation manner (Chan and Fan, 2019; Jiang et al.,
2021; Su et al., 2021; Liang et al., 2023b,a; Xiao
et al., 2024). However, the performance does not
reach the level of strong AR models. Besides,
they focus on simple generation tasks, and always
rely on the fine-tuning process. As a result, the
generation potential of the vanilla BERT-family
without fine-tuning, is under-explored. Further-
more, more capabilities of BERT-family should
be evaluated with the constantly updating require-
ments for language models. In this paper, we fill-in
this blank and pre-train a new version of BERT-
family, demonstrating their potential for building
scalable, general, and competitive large language
models. Among the previous works in BERT fami-
lies, Samuel has pointed out that BERT families can
be generative in-context learners and be adopted
for solving reasoning task, their models generate
the target tokens one-by-one in left-to-right order
similar to AR models but exist relatively large per-
formance gaps. Conversely, our proposed BiGLM
generate the target tokens without ordering con-
straint and achieve comparable performance with
current competitive AR models. Besides, more cur-
rent work (Warner et al., 2024) also incorporates
several enhanced training strategies which are also
mentioned in Section 3 into the training process to
enhance the capabilities of BERT family. However,
they still focus on improving the performance in
traditional NLU and text retrieval tasks which rely
the understanding ability of BERT family. Com-
paratively, we conduct evaluation experiments in
more range of testing scenarios such as text gener-
ation and common sense reasoning tasks to further
broader the applications of BERT family.

29832



Parameters BiGLM -136M BiGLM -360M BiGLM -1.3B BiGLM -3.5B

Num_layers 30 32 24 30
Hidden_size 576 960 2048 2560
Num_attn_heads 9 15 32 20
Num_key_value_heads 3 5 32 20
Init_std 0.02 0.02 0.013 0.013
Seq_length 2048 2048 2048 2048
Batch_size 1024 1024 1024 1024
Total_train_iters 300000 300000 300000 300000
Learning_rate 6e-4 6e-4 6e-4 6e-4
Annealing_iters 60000 60000 60000 60000
Annealing_min_lr 6e-5 6e-5 6e-5 6e-5
Clip_grad 1.0 1.0 1.0 1.0
Adam_beta (0.9,0.95) (0.9, 0.95) (0.9, 0.95) (0.9, 0.95)
Weight_decay 1e-2 1e-2 1e-2 1e-2

Table 7: Details of the pre-training models and setting.

Methods ARC-E ARC-C PIQA Sciq Wino. LogiQA Race SIQA BoolQ Hella. Truth. AVG.

BiGLM 52.95 26.37 60.55 85.1 49.80 28.17 28.04 38.16 60.64 34.56 24.96 44.48

α = 0.1 52.23 25.72 60.26 84.5 51.60 28.45 27.53 37.49 60.51 34.23 25.02 44.32
α = 0.3 52.14 25.46 60.41 85.6 50.43 27.19 27.46 38.37 61.13 34.02 24.68 44.29
α = 0.4 51.60 25.09 62.02 86.0 51.22 26.73 30.14 37.05 59.17 33.14 24.85 44.27

βX ∼ U(0.1, 0.5) 50.63 23.72 60.06 83.8 52.40 28.73 28.61 38.39 60.61 33.89 24.96 44.16
βX ∼ U(0.3, 0.5) 51.05 24.06 59.85 83.6 52.17 26.27 27.75 36.75 59.14 32.80 24.31 43.43
βX ∼ U(0.2, 0.4) 51.22 23.63 60.12 83.9 52.33 27.19 28.52 37.95 60.74 33.51 24.97 44.01

βY ∼ U(0.1, 0.9) 52.64 25.34 59.74 84.9 50.59 28.67 28.13 37.37 59.14 33.67 24.84 44.09
βY ∼ U(0.2, 0.8) 51.84 25.26 59.09 85.3 52.17 28.31 28.71 37.01 61.26 32.57 24.24 44.16
βY ∼ U(0.3, 0.7) 52.74 25.17 60.45 84.9 51.14 28.17 28.13 37.70 59.62 34.26 25.04 44.30

Table 8: Results of various pre-training variants. Wino., Hella., and Truth. denote the WinoGrande, Hellaswag,
and Truthfulqa datasets, AVG. denotes average result. attn. denotes the attention masking strategy.
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