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Abstract

Watermarking AI-generated text is critical for
combating misuse. Yet recent theoretical work
argues that any watermark can be erased via
random walk attacks that perturb text while
preserving quality. However, such attacks rely
on two key assumptions: (1) rapid mixing (wa-
termarks dissolve quickly under perturbations)
and (2) reliable quality preservation (automated
quality oracles perfectly guide edits). Through
large-scale experiments and human-validated
assessments, we find mixing is slow: 100%
of perturbed texts retain traces of their origin
after hundreds of edits, defying rapid mixing.
Oracles falter, as state-of-the-art quality detec-
tors misjudge edits (77% accuracy), compound-
ing errors during attacks. Ultimately, attacks
underperform: automated walks remove wa-
termarks just 26% of the time – dropping to
10% under human quality review. These find-
ings challenge the inevitability of watermark
removal. Instead, practical barriers – slow mix-
ing and imperfect quality control – reveal water-
marking to be far more robust than theoretical
models suggest. The gap between idealized at-
tacks and real-world feasibility underscores the
need for stronger watermarking methods and
more realistic attack models.

1 Introduction

The rapid proliferation of generative AI has cre-
ated an urgent need for mechanisms to authenti-
cate machine-generated content. Watermarking –
embedding statistical signals into AI outputs to
verify provenance – serves as a vital safeguard
against misinformation, IP theft, and academic
fraud. While traditional methods employ visual
patterns (e.g., pixel-level changes in images), sta-
tistical watermarking for text encodes impercep-
tible signals at lexical or semantic levels through

* Equal contribution.

specially selected patterns of tokens (Liu et al.,
2024b). However, recent work by Zhang et al.
(2024a) (“Watermarks in the Sand,” WITS) chal-
lenges the viability of watermarking, asserting that
any such scheme can be defeated without degrading
output quality through a simple random walk attack
(see also, e.g., Kirchenbauer et al. (2024); Kudi-
tipudi et al. (2024); Krishna et al. (2023)). This
impossibility result threatens to undermine the ac-
countability and security of generative AI, leaving
no viable path to enforce ethical standards or trace
misuse.

The text-based WITS attack employs two pri-
mary components: (1) a perturbation oracle P that
iteratively modifies text, and (2) a quality oracle
Q to ensure that the edits are reasonable. These
induce a random walk on a (potentially enormous)
graph G, where nodes represent possible texts y
and edges denote size-bounded perturbations (e.g.,
single-word swaps or paraphrases). Under cer-
tain assumptions, the random walk converges to
a stationary distribution – a stable equilibrium over
nodes that remains unchanged under further per-
turbations. Crucially, this stationary distribution is
a function of P and therefore independent of any
particular watermarking scheme. As the random
walk approaches this equilibrium, the likelihood
of encountering a Q-approved unwatermarked text
increases. Notably, the WITS attack prioritizes
quality equivalence over semantic equivalence: it
seeks unwatermarked texts that score similarly un-
der Q , even if their meaning diverges significantly
from the original.

While elegant in theory, the WITS argument
relies on two key assumptions (KA) that warrant
further scrutiny. Specifically, WITS assumes that:
KA1. The transition probabilities assigned to

quality-preserving perturbations are high
enough to ensure rapid mixing. Formally,
this means that the second-largest eigenvalue
(in absolute value) of the transition matrix is
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sufficiently close to zero to ensure rapid mix-
ing ((Zhang et al., 2024a), Theorem 5).

KA2. The quality oracle Q can reliably pre-
serve output quality throughout the attack.
But if Q is unreliable – either by admitting
low-quality outputs or by blocking valid edits –
the attack either fails to escape the watermark
or produces low-quality outputs that are no
longer competitive with the original.

Taken together, KA1 is concerned with attack
efficiency and KA2 further requires that the results
remain meaningfully close to the initial text quality.
To investigate whether these assumptions hold in
practice, we designed analyses carefully tailored
to study each assumption. For KA1, acquiring the
eigenvalues of the transition matrix is infeasible
due to its intractable size. Instead, we approximate
mixing behavior by testing whether random walks
retain memory of their starting states. If the ran-
dom walk efficiently mixes, perturbed texts should
lose memory of their starting points, making them
indistinguishable from those originating elsewhere
in the graph. Conversely, if stationary mixing is
slow, initial states should remain identifiable even
after many perturbations.

For KA2, we crafted a dataset of perturba-
tions annotated with human quality judgments and
benchmarked a variety of automated oracles to de-
termine their reliability. We then used the best
oracle to guide the random-walk attacks and cross-
checked the quality of the final perturbed texts to
fairly estimate the robustness of several representa-
tive watermarking schemes – KGW (Kirchenbauer
et al., 2023), SIR (Liu et al., 2024a), and Adap-
tive (Liu and Bu, 2024). Our approach therefore
addresses three primary research questions:
RQ1. Can stationary distributions for watermark-

ing be reached under practical constraints?
Even after hundreds of perturbations, starting
states remain 100% distinguishable, strongly
suggesting that stationary distributions are not
within efficient reach.

RQ2. Are LLM-based quality oracles sophisti-
cated enough to guide a random-walk attack?
The top-performing oracle attained an F1-
score of 77.4%, leaving significant room for
errors to accumulate during the attack. This
suggests that current generative oracles do not
conform to the widely held belief that “verifi-
cation is easier than generation.”

RQ3. How effective are random-walk attacks in
breaking watermarks when controlling for

quality? Our improved random-walk attacks –
whether operating on a word, span, sentence,
or document level – succeeded in erasing the
watermarks only 26.1% of the time on average.
After humans reviewed the perturbed texts to
determine if quality was truly preserved, suc-
cess dropped to an average 10.5%.

Overall, our findings demonstrate a disconnect
between theoretical assumptions and practical re-
alities. These findings highlight the trade-offs ad-
versaries face: preserving quality necessitates min-
imal edits, but escaping detection requires riskier
perturbations that compromise output quality. By
bridging theoretical critique with empirical vali-
dation, this work challenges the inevitability of
strong watermarking’s failure and offers a path
forward for developing robust watermarking tech-
niques grounded in real-world constraints.

2 Background

2.1 Theoretical Foundations

In this section, we outline the main objects and
assumptions that underpin our analysis, following
(Zhang et al., 2024a). For formal definitions and
more details, refer to Appendix A.

Let M be a generative model mapping prompts
x 2 X to outputs y 2 Y according to a probability
distribution. Let Q : X ⇥ Y ! [0, 1] be a function
that returns a quality score for y as a response to
prompt x. We assume that the adversary has oracle
access to Q. Notice that the watermarked model
can be used as the quality oracle since we are not
editing y using Q, whether or not this is sufficient
to approximate Q is the content of KA2.

Let P : X ⇥ Y ! Y be a randomized perturba-
tion oracle that generates an alternative response
y0 from an original response y for the same prompt
x. For the attack to succeed, P must preserve
the quality of y with constant nonzero probabil-
ity ✏pert 2 (0, 1] (Definition A.1).

Starting from a watermarked response y0, we
iteratively apply P to generate mutations by setting
yi = P(x, yi�1). To maintain high quality, each
mutation must satisfy Q(x, yi) � q (for some q 2
[0, 1]); otherwise, it is rejected.

We now formalize the graph G�q
x underlying the

random walk induced by this process as the graph
whose nodes are the output space of M when given
x as input such that Q(x, y) � q, and whose edges
are all pairs (y, y0) such that Pr

⇥
y0 = P(x, y)

⇤
>

0, with the weight of the edge given by Pr
⇥
y0 =
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P(x, y)
⇤

(Definition A.5).
To ensure the success of the WITS attack, we

need to impose mixing assumptions on the random
walk, irreducibility (Definition A.3) and aperiodic-
ity (Definition A.4). Together, these assumptions
ensure that the random walk converges to a unique
stationary distribution ~⇡ (Definition A.2). In partic-
ular, after a sufficient number of steps, the proba-
bility of being at any node becomes independent of
the initial state. This is critical for the WITS attack
analysis: irreducibility guarantees that the random
walk is not trapped within a single connected com-
ponent, and aperiodicity prevents cyclic behavior
that could hinder convergence. Given the enor-
mous size of G, aperiodicity is expected to hold.
We discuss the irreducibility assumption further in
Section 5.

We now define the mixing time of an irreducible
and aperiodic graph:

Definition 2.1 ((Zhang et al., 2024a), Definition
9). Let G = (V, E) be an irreducible and aperi-
odic weighted directed graph with transition ma-
trix ~P . For any ✏dist 2 (0, 1], the ✏dist-mixing time
tmin(✏dist) of ~P is the smallest t such that for every
starting distribution p0 2 Rn, we have

|pt � ~⇡| =
���(~P>)t · p0 � ~⇡

���  ✏dist,

where pt denotes the distribution over the vertices
after t steps.

After tmin(✏dist) steps, with probability at least
1 � ✏dist, a sample drawn from the random walk
behaves as if drawn from the stationary distribution
– i.e. independent of the original watermarked text.

Moreover, the mixing time tmin(✏dist) can be
bounded in terms of the second largest eigenvalue
g (in absolute value) of ~P and the minimum sta-
tionary probability ⇡min = min{~⇡(1), . . . ,~⇡(n)}

tmin(✏dist)  O

✓
1

1� g
· log

✓
1

⇡min · ✏dist

◆◆
.

In practice, particularly for prompts with high en-
tropy where the number of acceptable outputs (and
hence the size of ~P ) is extremely large, estimating
g and thus tmin(✏dist) becomes challenging. This
difficulty directly relates to KA1 and underscores
the adversary’s challenge in determining when to
halt the random walk. This is discussed further in
Appendix H.

It is important to note that for an attack to be
considered successful, the adversary A must be

significantly weaker than the model M. Otherwise,
A could simply ignore the watermarked output y
and generate a fresh answer to x, thereby trivially
bypassing the watermark. Also notice that the step
size of P directly impacts the mixing time of the
random walk, which motivates the choice of our
perturbation oracles.

At a high level, Theorem 2 in (Zhang et al.,
2024a) proves that if these mixing conditions are
satisfied, the random walk attack breaks any water-
marking scheme with running time proportional to

1
1�g . Moreover, the attacker can control the trade-
off between quality of the final unwatermarked text
and the probability of removing the watermark.

2.2 Watermark Attack Landscape
Attacks against watermarks can be classified along
three axes. First, by detector access: white-box
or API-enabled adversaries can query the water-
mark detector, whereas black-box attacks require
no detector access and rely on universal evasion tac-
tics. Second, by generality: universal attacks ap-
ply to all watermarking schemes, whereas scheme-
specific attacks target only particular schemes, such
as token-level schemes. Third, by semantics-
altering: preserving attacks maintain the original
meaning, while semantics-altering attacks are more
powerful because they enjoy expanded freedom to
explore a larger set of high-quality, unwatermarked
options.

With few exceptions (Pang et al., 2024), most
attack operate in a purely black-box setting. Two
broad families of attacks dominate the literature.
The first type, stealing attacks, exploit imple-
mentation details of particular watermarking al-
gorithms in order to remove or spoof the water-
mark (Jovanović et al., 2024; Zhang et al., 2024b;
Huang et al., 2024). Stealing attacks often assume
a token-level watermark and therefore break down
against schemes that watermark in the semantic
space (Liu and Bu, 2024; Liu et al., 2024a; Hou
et al., 2024). These types of targeted attacks can
be mitigated through modest countermeasures such
as rotating secret keys or randomizing token-bias
patterns. While these targeted attacks are impor-
tant for driving research improvements, we expect
them to have limited practical impact because prac-
titioners can always switch to another watermark-
ing scheme without the same vulnerability. The
second and most common type of attack is a para-
phrasing attack (Chang et al., 2025; Cheng et al.,
2025; Krishna et al., 2023; Diaa et al., 2025). Some
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paraphrasing attacks translate back and forth from
another language, such as (He et al., 2024).

Most existing attacks, either intentionally or un-
intentionally, preserve the semantics of the water-
marked text. WITS stresses that it does not require
semantic fidelity and instead implements semanti-
cally agnostic modifications in a fully black-box,
detector-independent manner. By abandoning both
syntactic bias patterns and the need to retain origi-
nal meaning, WITS seeks to circumvent all possi-
ble watermarking schemes. Table 1 provides a com-
parative overview of these attack characteristics. A
rigorous empirical evaluation of WITS under real-
istic deployment conditions is therefore critical to
guiding the design of watermarking methods with
demonstrable robustness guarantees.

Attack Type Black-box General Semantics

API-guided
Stealing X
Paraphrasing X X
WITS X X X

Table 1: Comparison of watermark attacks on black-box
access, generality, and semantics-altering capability.

3 Evaluation Setup

We now describe the main components of our eval-
uation: the watermarking schemes, the dataset, the
automated quality metrics, and the perturbation ora-
cles. We defer quality-oracle details to RQ2, where
we benchmark and justify using InternLM as our
primary Q in our attacks.

Watermarkers. We evaluate three widely used
watermarking schemes W: KGW (Kirchenbauer
et al., 2023), SIR (Liu et al., 2024a), and Adap-
tive (Liu and Bu, 2024). Each embeds signals
into generated text to enable authorship attribu-
tion. KGW utilizes a “red-green” list of tokens
determined by the rolling hash of the previous k
tokens (typically k = 3 to 5). The logit scores
for “green” tokens are boosted slightly to promote
their selection. SIR follows a similar structure but
instead relies on the semantic embeddings of pre-
ceding tokens, making it a form of “semantic” wa-
termarking. Adaptive restricts its modifications
to tokens in high-entropy regions to preserve text
quality while still embedding a watermark. Be-
cause SIR and Adaptive each incorporate semantic

context, both qualify as semantic watermarking
schemes designed to resist attacks that preserve
meaning through paraphrase. We note that these
watermarking schemes produce detection scores
on different scales: some, such as Adaptive, use a
0–100 scale, whereas KGW and SIR compute a z-
statistic. Additional details about the watermarkers
can be found in Appendix B.1.

Dataset. As noted in Section 2, the number of
valid responses to a prompt (i.e., its entropy) in-
fluences the structure of the perturbation graph G.
To systematically investigate the relationship be-
tween entropy and attack success, we constructed
a dataset for RQ1 and RQ3 featuring entropy-
controlled prompts in three domains relevant to au-
thorial accountability: education, journalism, and
creative writing.

For each domain, we designed a series of
prompts with increasing specificity. For instance, a
broad request might be “Write a 500-word news ar-
ticle,” while a more constrained one could read
“Write a 500-word news article about a global
climate summit”(see Appendix B.2 for more de-
tails). We used the Llama-3.1-70B-Instruct
model (denoted as M) to generate three water-
marked texts per prompt for each of the three wa-
termarking schemes, resulting in 270 watermarked
texts. To provide a baseline, we also generated 90
unwatermarked texts from the same model. In ad-
dition, we included unwatermarked outputs from
GPT-4o to represent scenarios with higher quality
text that adversaries might favor. For each water-
marking scheme, we computed the mean water-
mark detection score and its standard deviation on
the unwatermarked texts to establish a reference
range against which we measure whether a per-
turbed text remains distinguishable.

Automatic Quality Metrics. We automatically
evaluated text quality with several metrics. First,
we used InternLM (Cai et al., 2024) as a reward
model to acquire a numerical quality score. We
used GPT-2 (Radford et al., 2019) to calculate per-
plexity, with lower values indicating higher fluency
and predictability. In addition, we counted the num-
ber of grammatical errors using a standard grammar
checker (languagetool, 2023), and we computed the
unique bigrams in each text to assess lexical diver-
sity. Table 6 in Appendix B.3 summarizes these
metrics for both unwatermarked and watermarked
texts before attack.
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Perturbation Oracles Our perturbation oracles,
denoted as P, apply adversarial edits at dif-
ferent levels of granularity. WordMutator and
EntropyWordMutator replace individual tokens,
with the latter concentrating on high-entropy to-
kens that are most likely to carry stronger wa-
termark signals. SpanMutator, which is the pri-
mary text-based perturbation approach used by
Zhang et al. (2024a), masks n = 6 contiguous to-
kens and refills them using T5-XL (Raffel et al.,
2019). SentenceMutator paraphrases a single
sentence at each step with Llama-3.1-8B, while
DocumentMutator, Document1StepMutator, and
Document2StepMutator attempt a full-document
paraphrase, either in one pass or in multiple passes.
We allow a sufficient number of steps (e.g., 1000
for token-level edits and 100 for document-level
edits) to maximize the opportunity for watermark
removal. Further technical details on each P are
provided in Appendix B.4.

4 Analysis

We now empirically examine the WITS assump-
tions by asking: (RQ1) whether the random-
walk attacks reach a stationary distribution, (RQ2)
whether LLM-based quality oracles reliably guide
the attack, and (RQ3) how often watermark re-
moval preserves text quality.

4.1 RQ1. Can Stationary Distributions Be
Reached Under Practical Constraints?

WITS posits that repeated perturbations rapidly
decouple a text from its starting state, eventually
sampling from a stationary distribution. If mix-
ing is slow, however, watermark removal becomes
impractical in real-world applications. Although
the second-largest eigenvalue (g) of the transition
matrix provides a formal measure of mixing speed,
computing g directly is infeasible due to the high
dimensionality of G. Instead, we measure whether
the final texts can be traced back to their initial
forms. If this tracing remains accurate even after
many perturbations, it suggests that the random
walk has not mixed sufficiently.

To approximate mixing, we propose a novel
lineage distinguisher test. First, we choose two
initial responses for each prompt. We then run
a random-walk attack, perturbing one starting
text until a P-specific step budget is used up
(e.g., 1000 steps for WordMutator). Periodically
sampled texts along this walk are then classified

by Llama-3.1-70B-Instruct, which attempts to
identify their true origin. Since well-mixed texts
should be indistinguishable from random samples
in G, classification accuracy should collapse to
chance if a stationary distribution is reached.

4.1.1 Results
Table 2 summarizes results of a multi-stage clas-
sification approach designed to balance accuracy
and cost. We first use Llama-3.1-70B-Instruct
with a zero-shot prompt in a best-of-2 (see Ap-
pendix C for details). If Llama-3 produces a tied
result (considered a failure), we escalate to the
stronger (but more expensive) GPT-4o (OpenAI,
2024b). Any remaining cases are then passed to
o3-mini-high (OpenAI, 2025). At no point were
both trials wrong in a best-of-2. Across all tests,
Llama-3.1-70B-Instruct alone achieves 98.84%
accuracy. GPT-4o correctly resolves nearly all of
the remaining 53 failures, and o3-mini-high suc-
ceeds on the last four, yielding a final 100% suc-
cess rate. This consistently high distinguishability
shows that random walks do not adequately mix
within the allotted steps, thus contradicting KA1
and indicating that the attacked texts remain too
similar to their originals for watermark removal to
rely on a converged stationary distribution.

4.2 RQ2. Are LLM-based quality oracles
sophisticated enough to guide a
random-walk attack?

A core assumption of WITS-style attacks is that
verifying output quality is at least as easy as gener-
ating content ((Zhang et al., 2024a), §4.1.2). This
assumption aligns with the common belief that rec-
ognizing high-quality work – whether in music, cin-
ema, or literature – is simpler than creating it. How-
ever, this premise has not been rigorously tested in
the context of generative LLMs. If Q is unreliable
– either by approving degraded outputs or blocking
valid transformations – the attack stalls or yields
low-quality text. To examine this assumption sys-
tematically, we built and benchmarked a variety
of LLM-based oracles, measuring their ability to
preserve quality while guiding watermark removal.

The Sandcastles Benchmark. We created the
Sandcastles dataset to evaluate oracle reliabil-
ity by sampling 100 diverse prompts from
arena-human-preference-55k (Chiang et al.,
2024), generating watermarked responses, and ap-
plying up to 20 iterative perturbations. At the 1st,
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P Oracle Steps Tests Llama-3.1-70B GPT-4o o3-mini-high

Word 1000 720 0 0 0
EntropyWord 1000 720 0 0 0
Span 250 720 12 1 0
Sentence 150 720 38 3 0
Document 100 421 2 0 0
Document1Step 100 576 0 0 0
Document2Step 100 678 1 0 0

Total / Failed Tests 4555 53 4 0

Cumulative Distinguished (%) 98.84 99.91 100

Table 2: Summary of failed distinguisher tests per P, along with the step budget and total tests. Classification
is first performed by Llama-3.1-70B, followed by GPT-4o on its failures, then o3-mini-high on any remaining
cases. The overall 100% success rate indicates that the attacked texts never lose memory of their starting points,
contradicting KA1 and suggesting that a stationary distribution is not reached in practice.

10th, and 20th steps, we collected human annota-
tions comparing the perturbed text to its original.
To ensure unbiased evaluation, annotators were pre-
sented with two texts, A and B, without knowing
which had been perturbed. They provided ternary
preference judgments, selecting either A, B, or tie.

For oracle training and evaluation, we binarized
judgments: preferences for the perturbed text or
a tie were labeled as "Quality Preserved," while
preferences for the original were labeled as "De-
graded." This simplification provides a clearer eval-
uation signal while preserving human preference
patterns. The final dataset includes 795 anno-
tated perturbations, with additional statistics in Ap-
pendix E.2.

Constructing and Evaluating Oracles. As
a baseline, we followed the WITS sugges-
tion to reuse the watermarking model M
(Llama-3.1-70B-Instruct) as a quality oracle.
After initial trials revealed positional biases and in-
consistencies with human judgments, we explored
several improvements. We ran oracle queries
multiple times with flipped text orders, explic-
itly explained that the task involved assessing
mutation quality (MutationOracle), and supple-
mented prompts with a changelog of all edits
(DiffOracle). We then fine-tuned the strongest
of these oracles on the Sandcastles training set
(MutationOracle+FT, DiffOracle+FT). In paral-
lel, we evaluated six reward models from the Re-
wardBench leaderboard,1 each producing contin-
uous scores that we thresholded (e.g., a 0.46 de-
viation from the original in InternLMOracle) to
classify outputs as high-quality or degraded. Fi-

1https://huggingface.co/spaces/allenai/
reward-bench

nally, even though cost concerns make large pro-
prietary models impractical for full attacks, we
tested GPT-4-Turbo, GPT-4o, and a fine-tuned ver-
sion GPT-4o+FT to gauge whether more power-
ful models offer significant improvements. Ad-
ditional details on these oracle variants appear in
Appendix E.1.

We report both Quality Preserved (QP) Precision
and Overall F1 to assess oracle performance. High
QP Precision reduces false-positive approvals of
degraded texts, a critical safeguard against cumula-
tive quality erosion during multiple perturbations.
The Overall F1 captures an oracle’s overall ability
to classify text quality accurately.

4.2.1 Results

Table 3 summarizes each oracle’s runtime, return
type, and performance. Our results show that
current LLM-based quality oracles remain incon-
sistent, limiting the feasibility of using them to
guide watermark removal attacks. Even the best-
performing oracle (GPT-4o+FT) attains an Over-
all F1 of only 77.4%, implying that nearly one
in five perturbations is misclassified. Fine-tuning
and the use of powerful models like GPT-4o and
GPT-4-Turbo do reduce errors somewhat, but not
to a level sufficient for reliably guiding multi-step
attacks. Such misclassifications critically com-
pound over repeated perturbations: for instance,
an oracle with a QP Precision of 70.9% (such as
our locally-hosted DiffOracle, discussed later)
has an over 96% probability (1� 0.70910) of mis-
takenly approving at least one degraded text within
just 10 sequential steps. This forces adversaries to
either accept significant quality degradation or op-
erate with very low attack efficiency. Given that the
original WITS attack was run for up to 200 steps
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Oracle Model QP Prec. Overall F1

MutationOracle Llama-3.1-70B-Instruct (Dubey et al., 2024) 84.62 66.93
Prometheus2Absolute GPT-4-Turbo (OpenAI, 2024a) 76.15 67.55
InternLMOracle internlm2-20b-reward (Cai et al., 2024) 65.69 69.84
DiffOracle Llama-3.1-70B-Instruct (Dubey et al., 2024) 71.74 70.85
DiffOracle+FT Llama-3.1-70B-Instruct + Fine-tuning 69.07 76.94
MutationOracle+FT GPT-4o (OpenAI, 2024b) + Fine-tuning 74.51 77.38

Table 3: Performance of selected quality oracles on human-annotated data (full results in Appendix E.1). QP
Precision measures accuracy in preserving high-quality outputs, while Overall F1 reflects general classification
performance. Despite fine-tuning, no oracle fully aligns with human judgments, challenging KA2 and limiting their
reliability in guiding random-walk attacks.

(Zhang et al., 2024a), the likelihood of substan-
tial error accumulation in such prolonged attacks
becomes extremely high, regardless of watermark
removal.

Table 3 summarizes each oracle’s runtime, re-
turn type, and performance. Our results show that
current LLM-based quality oracles remain incon-
sistent, limiting the feasibility of using them to
guide watermark removal attacks. Even the best-
performing oracle (GPT-4o+FT) attains an Over-
all F1 of only 77.4%, implying that nearly one
in five perturbations is misclassified. Fine-tuning
and the use of powerful models like GPT-4o and
GPT-4-Turbo do reduce errors somewhat, but not
to a level sufficient for reliably guiding multi-step
attacks. This misclassification compounds over re-
peated perturbations, forcing adversaries to either
accept noticeable quality loss or proceed with low
attack efficiency.

Among locally hosted models, the most ro-
bust approaches used difference-aware or mutation-
aware prompts – DiffOracle (QP Precision:
70.9%) and MutationOracle (QP F1: 66.9%).
Even after fine-tuning, however, these oracles
still frequently labeled degraded outputs as high-
quality. Moreover, high-scoring reward models
from RewardBench (e.g., INFORMOracle at 95.1,
SkyworkOracle at 94.3) often performed worse
than simpler approaches, suggesting that generic
reward modeling does not align well with the nu-
ances of watermark-focused attacks. Collectively,
these errors highlight a key limitation: LLM-based
verification is not as reliable as assumed. We dis-
cuss the potential causes for these limitations in
Section 5.

Extended Comparison. While GPT-4o+FT
achieves the best results overall, its high cost
makes it impractical for many-step attacks. We
therefore ran a human evaluation comparing two
locally hosted oracles – the best boolean-based

(DiffOracle+FT) and the best floating-point
(InternLMOracle) – in a 150-step attack using
SentenceMutator, which induced the most
mixing in RQ1. Human judges found that
InternLMOracle preserved quality in 47.78% of
samples, compared to 40.0% for DiffOracle+FT
(Table 13). Bayesian analysis indicated an 85.08%
probability that InternLMOracle is genuinely
superior (Appendix E.4), leading us to select
InternLMOracle for further experiments despite
its remaining error rate.

4.3 RQ3. How effective are random walk
attacks in breaking watermarks when
controlling for quality?

Attack Methodology. We apply various pertur-
bation oracles to texts watermarked by KGW, SIR,
or Adaptive. At each step, a candidate edit is
proposed and accepted only if our quality oracle
(InternLMOracle) labels it as high-quality. We
track watermark detection scores and terminate
when a fixed number of mutation steps is reached
(details in Appendix G). An attack is deemed suc-
cessful if the final detection score is less than
µuw + 2�uw, where µuw and �uw are, respectively,
the mean and standard deviation of unwatermarked
texts’ detection scores. Under the assumption that
scores follow a normal distribution, being below
this threshold places the text in a region where
fewer than 2.3% of unwatermarked samples lie
above it, making it highly unlikely to be flagged
as watermarked. We define the attack success rate
(ASR) as the proportion of final texts that satisfy
this criterion. We record two key states along each
attack trace: (1) smin, corresponding to the lowest
watermark score achieved (as if an attacker had real-
time detector feedback), and (2) sfin, produced
when the perturbation budget is exhausted without
direct detector feedback. This distinction clarifies
how close attacks can come to fully erasing the
watermark under ideal versus practical conditions.
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W P Oracle µw0 µwt ASRmin ASRfin Reviewed QP ¬QP Q-ASRfin

Adaptive Word 99.27 70.37 0.00 0.00 0 0 0 0.00
Adaptive EntropyWord 99.27 82.45 0.00 0.00 0 0 0 0.00
Adaptive Span 99.27 67.21 1.54 1.54 2 2 0 1.54
Adaptive Sentence 99.27 59.93 35.34 19.21 20 8 12 7.68
Adaptive Document 99.27 58.55 48.78 45.24 20 8 12 18.10
Adaptive Document1Step 99.27 70.94 1.16 1.16 2 2 0 1.16
Adaptive Document2Step 99.27 73.39 5.33 4.71 8 5 3 2.94

SIR Word 5.32 1.74 78.22 57.89 20 1 19 2.89
SIR EntropyWord 5.32 3.30 39.68 27.54 20 0 20 0.00
SIR Span 5.32 1.57 60.71 37.40 20 5 15 9.35
SIR Sentence 5.32 0.52 87.65 74.71 20 13 7 48.56
SIR Document 5.32 0.93 61.54 46.09 20 6 14 13.83
SIR Document1Step 5.32 2.54 14.04 14.04 12 11 1 12.87
SIR Document2Step 5.32 3.07 68.09 49.06 20 12 8 29.44

KGW Word 0.28 0.17 47.54 20.00 20 4 16 4.00
KGW EntropyWord 0.28 0.22 3.45 0.56 1 0 1 0.00
KGW Span 0.28 0.20 38.46 32.35 20 14 6 22.65
KGW Sentence 0.28 0.14 89.47 56.52 20 7 13 19.78
KGW Document 0.28 0.18 62.50 44.44 20 8 12 17.78
KGW Document1Step 0.28 0.27 12.66 8.54 14 7 7 4.27
KGW Document2Step 0.28 0.18 9.09 7.78 10 4 6 3.11

Averages (%) 36.44 26.13 40.48 59.52 10.47

Table 4: Attack success rates (ASR) across different perturbation strategies. Human review reveals an average of
59.52% of successfully attacked texts have degraded quality. µw0 represents the initial watermark score at step 0,
while µwt represents the final watermark score after t mutation steps.“min” refers to the point where the watermark
score is at its lowest during the attack while “fin” refers to score at the final step of the attack. “Reviewed” indicates
the number of human-reviewed examples where the watermark was broken. QP and ¬QP represent the number of
cases where human reviewers judged the attacked text as quality-preserving or degraded, respectively. Q-ASRfin is
the re-estimated attack success after controling for quality, calculated as ASRfin ⇥ (QP/Reviewed).

Quality Evaluation. Since automatic metrics
can overlook subtle forms of degradation, we also
ran a human evaluation using 10 volunteer anno-
tators, primarily with STEM backgrounds, but no
specialized linguistic expertise. Each annotator
compared a watermarked text with its final attacked
version, randomly labeled as text_A or text_B,
and chose whether one was superior or if they were
equivalent. Instructions (Appendix F) emphasized
fluency, style, coherence, and prompt relevance.
We gathered up to 20 successfully attacked texts
per watermark-oracle pairing, then determined how
often annotators judged the attacked text to be at
least as good as the original. This proportion was
used to adjust the baseline Q-ASRfin value, giving a
more realistic estimate of attack success. Optional
free-form comments, provided in 19 of 289 annota-
tions, were also analyzed. While this limited sam-
ple offers indicative rather than exhaustive insights,
common themes like factual errors and continuity
issues emerged, further illustrating practical chal-
lenges in preserving text quality post-attack (see
Appendix F.1 for more details).

4.3.1 Results
Table 4 shows that watermarks remain highly re-
sistant to random-walk attacks, especially under

quality constraints. Across all perturbation strate-
gies, final attack success rates (ASRfin) are low at
26.1% on average, with Adaptive proving the most
robust. After human review, adjusted success rates
(Q-ASRfin) drop by an average of 59.52%, with no
fairly evaluated attack succeeding more than half
the time.

The effectiveness of attacks varies by pertur-
bation type. Document-level edits perform best
against Adaptive and KGW, while sentence-level
perturbations show the highest success against
SIR and KGW. Yet, even sentence-level muta-
tions fail in most cases when quality is consid-
ered. Adaptive remains resistant to all strategies,
especially entropy-controlled and word-level muta-
tions, where no attack succeeds (Q-ASRmin = 0.00).
Word-level perturbations generally fail across all
watermarking schemes.

Overall, these findings highlight a major limita-
tion for adversaries: while watermark removal is
theoretically possible, preserving quality remains
a significant obstacle. Even under ideal conditions
– full perturbation budgets and access to detection
feedback – successful attacks often fail to maintain
human-perceived text quality.
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5 Discussion

The Tricky Irreducibility Assumption. An-
other core assumption underlying the WITS frame-
work that is difficult to evaluate empirically is that
P induces an irreducible graph G�q

x . In other
words, in theory, any high-quality text state is reach-
able from any starting point via a sequence of edits
that all remain above the quality threshold q. How-
ever, this assumption is highly nontrivial, especially
considering (a) the inherent limitations of P, (b)
the fact that edits are often local, and (c) the possi-
bility that some transitions may necessarily involve
brief dips below the threshold.

To see why irreducibility might fail in practice,
consider two high-quality responses to a prompt
asking for a story: assume that one is Star Wars and
another is The Lord of the Rings (LOTR). For one
to transform into the other while remaining above
the threshold, there would need to be a sequence of
high-quality intermediate texts that blend elements
of both franchises. If our threshold q is stringent
– say, requiring not just correct language but also
stylistic consistency and thematic clarity – then
many “blend” stages would likely be muddled or
incoherent, causing the text to fall below q.

Hence, it is reasonable to suspect that the high-
quality subgraph might contain distinct “islands”
that cannot reach one another without temporarily
leaving G�q

x . In fact, when humans write – one
character at a time – they invariably pass through
numerous low-quality states (partial words, half-
formed sentences) before arriving at any one of the
various ways of saying something of quality. Local
edit operators, such as those that insert or delete
single tokens or small chunks of text, face a similar
risk: even a small disruption can degrade quality if
the threshold is strict.

That said, irreducibility might still be recov-
ered if we loosen our assumptions. For instance,
we might allow momentary dips in quality dur-
ing transitions so long as the process does not
“get stuck” below q; or we could permit larger,
more context-aware edits that can leap more
cleanly between stylistic domains. In practice,
these motivations led to the development of the
Document2StepMutator, which aims to ensure
that modifications are localized enough to avoid
substantial quality degradation, yet also sufficiently
broad to permit meaningful jumps. This design
tries to strike a balance between remaining “near”
high-quality states most of the time and retaining

enough flexibility to move across different regions
of the text space – ideally preventing the formation
of disconnected “islands” of high-quality text.

Why do LLMs Struggle to Verify? While hu-
mans intuitively find verification easier than gen-
eration, this asymmetry may actually reverse for
LLMs due to their probabilistic architecture and
training paradigms. The core tension arises from
LLMs’ design as next-token predictors (Brown
et al., 2020), which optimizes them for fluency
over factual accuracy or logical rigor (Bender et al.,
2021; Lin et al., 2021). Though techniques like
chain-of-thought prompting (Wei et al., 2022) can
simulate self-checking, the models remain funda-
mentally tuned to generate plausible continuations
– not to verify them.

Compounding this, LLMs lack exposure to the
iterative critique processes that shape human judg-
ment. Trained on polished outputs (Dodge et al.,
2021), they rarely encounter explicit revisions (e.g.,
drafts with margin notes like "this plot point con-
tradicts Chapter 3") that teach cause-effect relation-
ships between quality and text structure (Stiennon
et al., 2020). Consequently, their "critiques" often
reduce to surface-level heuristics (e.g., associating
complex syntax with professionalism) rather than
principled reasoning.

Whether verification is inherently harder for
LLMs may hinge on whether “quality” is reducible
to “likelihood.” If not, their adeptness at generating
fluent text may paradoxically hamper verification,
as polished outputs mask subtle shortcomings (Ben-
der et al., 2021), creating a hall-of-mirrors effect
where plausibility is mistaken for truth.

6 Conclusion

Our findings reveal that watermark removal via
random-walk attacks is far less certain than theoret-
ical work suggests. Slow mixing and imperfect
quality verification create significant real-world
barriers. These insights invite deeper investiga-
tion: evolving watermark schemes could exploit
the difficulty of consistent, high-quality edits, while
attackers must grapple with the costs and risks of
large-scale text manipulation. Our study also high-
lights the need for quality measures that align with
human judgment, not surface features. Addressing
these challenges – mixing speed, oracle reliability,
and quality standards – will ensure watermarking
remains viable against sophisticated attacks.
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Limitations

While our findings highlight practical barriers to
random-walk attacks, several limitations constrain
their generalizability. First, we focus on three wa-
termarking schemes (KGW, SIR, Adaptive) and
specific perturbation oracles. Other schemes (Pan
et al., 2024; Ren et al., 2024) and attack methods,
especially those with advanced error-correction
or alternative pathways (e.g., Rastogi and Pruthi
(2024)), may yield different results.

Second, while human verification is critical to
assessing attack success – a factor often overlooked
in prior work – our findings rely on a small, po-
tentially non-representative group of annotators.
Broader user studies, richer datasets, and more
diverse oracle designs are needed to validate our
conclusions across varied scenarios, though such
efforts would require significant resources.

Third, our analyses rely on LLM-based oracles
fine-tuned for quality judgment, which still mis-
classify 20% of edits. Future breakthroughs in text
evaluation – such as low-cost reasoning models
(DeepSeek-AI et al., 2025) or specialized reward
functions – could improve verification accuracy to
the levels required to sustain viable attacks.

Finally, while we tested hundreds of perturba-
tions, resource constraints limited exploration of
arbitrarily large edit sequences. In theory, infinite
steps might approach WITS’s stationary distribu-
tion, but our results reveal substantial practical bar-
riers. Computational costs further hinder scalabil-
ity: DocumentMutator (based on DIPPER (Krishna
et al., 2023)) took 213 seconds per attack step, ren-
dering large-scale edits impractical.
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A Appendix: Formal Definitions

In this section, we provide formal definitions of objects mentioned in Section 2 and elaborate on some
definitions. As with the background section, most of these are directly from (Zhang et al., 2024a). Let us
begin by providing formal definitions of objects mentioned in Section 2.

Definition A.1 (✏pert-Preserving Perturbation Oracle, (Zhang et al., 2024a), Definition 6). Let P :
X ⇥ Y ! Y be a randomized oracle that, given (x, y), outputs a new response y0. The oracle P is said to
be ✏pert-preserving if for every x 2 X and y 2 Y ,

Pr
h
Q
�
x,P(x, y)

�
� Q(x, y)

i
� ✏pert.

Definition A.2 ((Zhang et al., 2024a), Definition 8). Let G = (V, E) be a weighted directed graph, and ~P
be the transition matrix of G. We say that ~⇡ 2 Rn is a stationary distribution for ~P if: ~P> · ~⇡ = ~⇡.

Definition A.3. A weighted directed graph G = (V, E) is irreducible if for any pair of vertices u, v 2 V ,
there exists a directed path from u to v with non-zero weight. In other words, there exists some t � 1
such that ~P t(i, j) > 0.

Definition A.4. A weighted directed graph G = (V, E) is aperiodic if the greatest common divisor of the
lengths of all directed cycles in G is 1.

Let us now formally define the (hierarchically ordered) graph representations of P based on a prompt
x 2 X and the quality threshold q 2 [0, 1].

Definition A.5 ((Zhang et al., 2024a), Definition 7). Fix an arbitrary prompt x 2 X and consider the
graph Gx = (Vx, Ex) whose vertex set is the output space of M (i.e., Vx = Y) and whose edge set Ex

consists of all pairs (y, y0) such that

Pr
⇥
y0 = P(x, y)

⇤
> 0.

We assign weights w : Ex ! [0, 1] to the edges by defining

w(y, y0) = Pr
⇥
y0 = P(x, y)

⇤
.

Note that while the vertices of the graph are determined by the prompt x 2 X and the watermarking
model M, the edges and their weights are determined solely by P. Let us now incorporate quality into the
graph representation. Let G�q

x be the subgraph of Gx given by

V�q
x = {y 2 Y | Q(x, y) � q},

E�q
x = {(y, y0) 2 Y ⇥ Y | Q(x, y) � q,Q(x, y0) � q, Pr

⇥
y0 = P(x, y)

⇤
> 0},

Notice that we can carry the same weight assignment to this subgraph. Iteratively applying P on this
graph and rejecting low-quality mutations produces a random walk where

~P(y,y0) = Pr
⇥
y0 = P(x, y)

⇤
.

Before presenting the WITS impossibility result, we formally define watermarking schemes and related
notions.

Definition A.6 ((Zhang et al., 2024a), Definition 3). Let M = {Mi : X ! Y } be a class of generative
models with key space K. A secret-key watermarking scheme for M consists of two efficient algorithms:

• Watermark(M): A randomized algorithm that, given a model M 2M, outputs a secret key k 2 K
and a corresponding watermarked model Mk : X ! Y .

• Detectk(x, y): A deterministic algorithm that, given a secret key k 2 K, a prompt x 2 X , and an
output y 2 Y , returns a bit b 2 {0, 1} indicating whether the watermark is present (b = 1) or absent
(b = 0).
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We now define the false-positive rate ✏pos of a watermarking scheme. Notice that if we sample y
$ � ~⇡,

we expect that y is unwatermarked with probability ✏pos. Since for every good watermarking scheme we
need ✏pos to be very small, this implies that outputs sampled from ~⇡ will be unwatermarked with high
probability, i.e. with probability approximately 1� ✏pos.

Definition A.7 ((Zhang et al., 2024a), Definition 4). A watermarking scheme ⇧ has a false positive
✏pos-rate if, for every model M 2 {Mi : X ! Y }, for every prompt x 2 X , and for every output y 2 Y ,

Pr[Detectk(x, y) = 1]  ✏pos.

Let us now define what it means for an adversary to break a watermarking scheme ⇧. Notice that one
might consider weaker notions of breaking a watermarking scheme, but they will be implied by the WITS
result.

Definition A.8 ((Zhang et al., 2024a), Definition 5). Let ⇧ = (Watermark, Detect) be a watermarking
scheme for a class of generative models M = {Mi : X ! Y } with associated quality function
Q : X ⇥ Y ! [0, 1]. We say that an adversary A ✏-breaks ⇧ if for every M 2 M, for every prompt
x 2 X , we have:

Pr
⇥
Detectk(x, y0) = 0 and Q(x, y0) � Q(x, y) : y

$ �Mk(x), y0 $ � A(x, y)
⇤
� ✏

where the probability is taken over (k,Mk) output by Watermark(M) and the random coins of A.

We now introduce an additional technical definition that enables the attacker to trade off between output
quality and attack success probability. Let v 2 [0, 100] denote the desired quality percentile. In other
words, the attacker aims to produce an unwatermarked output whose quality falls within the top v-th
percentile among all responses generated by M on a given prompt x. To formalize this, define the set of
achievable quality scores as

QM,x =
n

q : Pr[Q(x,Mk(x)) = q : (k,Mk)
$ �Watermark(M)] > 0

o

and let qM,x denote the v-th percentile of QM,x. We then define the overall minimum quality threshold as

qmin = min
M2M, x2X

{qM,x} .

We now state the WITS impossibility result.

Theorem 1 ((Zhang et al., 2024a), Theorem 6). Let ⇧ = (Watermark, Detect) be a watermarking
scheme for a class of generative models M = {Mi : X ! Y} with an associated quality function
Q : X ⇥ Y ! [0, 1]. Let P : X ⇥ Y ! Y be a perturbation oracle (defined over the same prompt space
X and output space Y as the class M) with the same associated quality function Q : X ⇥ Y ! [0, 1]
as ⇧. For every non-watermarked model M 2M, for every prompt x 2 X , for every quality q 2 qmin,
let ~⇡x,q be the unique stationary distribution of the transition matrix ~Px,q of G�q

x . Let nx,q = |V�q
x |,

⇡
(x,q)
min = min{~⇡x,q(1), . . . ,~⇡x,q(nx,q)} and g be the second largest eigenvalue of ~Px,q in terms of absolute

value. Let terr > 0 be a tunable parameter. Let tx,q be the ✏dist-mixing time of ~Px,q, defined as follows:

tx,q = !

 
1

1� g
· log

 
1

⇡
(x,q)
min · ✏dist

!!

Assume the following holds:

1. The watermarking scheme ⇧ has a false positive ✏pos-rate;

2. The perturbation oracle P is ✏pert-preserving;

3. For every non-watermarked model M 2M, for every prompt x 2 X , for every quality q 2 [qmin, 1],
the q-quality x-prompt graph representation G�q

x of P is irreducible and aperiodic.
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Then, there exists an oracle-aided universal adversary AP(·,·),Q(·,·) that ✏-breaks ⇧ by submitting at
most t queries to P where

✏ =
⇣
1� v

100

⌘
(1� ✏pos)(1� ✏dist)

 
1�

t�terr�1X

k=0

✓
t

k

◆
(✏pert)

k(1� ✏pert)
t�k

!
,

and

t = max
x2X ,q2[qmin,1]

{tx,q} + terr.

By carefully tuning the parameter terr and running the attack long enough so that ✏dist becomes negligibly
small, the adversary can achieve a success probability close to

⇣
1� v

100

⌘
(1� ✏pos).

For example, targeting the median quality output (i.e., setting v = 50) restricts the adversary’s success
probability to roughly half of the maximum achievable rate.

B Appendix: Evaluation Setup

B.1 Watermark Details
For KGW and SIR, we use the implementations contained within the MarkLLM package2 (Pan et al., 2024)
with their default configurations. For Adaptive, we used the author’s implementation3 and due to initially
poor results, experimented heavily with different configurations to find one that best balanced initial
quality and detectability for Llama-3.1-70B-Instruct. The three tunable parameters we explored were
alpha, which thresholds the amount of token entropy required to watermark it; delta, which controls the
strength of boosting for watermarked tokens; and delta_0, which is the strength for watermarking the
first M = 50 tokens, which are always watermarked. Our analysis lead us to use alpha = 2.0, delta =
1.5, delta_0 = 1.0. Despite this extensive search, we still encountered intermittent issues with controlling
for generation length. Since all texts were capped at a maximum of 1024 tokens due to fixed input sizes
for various embedding models, some Adaptive responses were truncated mid-sentence, contributing to
their unusually high number of grammatical errors as seen in Table 6.

By plotting the distributions for each quality metric in Figures 1 through 4, we noticed that Adaptive
and SIR were vulnerable to producing highly distorted text with numerous quality issues. For example,
a single Adaptive generation contained over 250 grammatical issues, largely due to inexplicable letter
case alterations (e.g. “Over ThE nexT FEw dAYs, maggie partICIpaTed EnThusiasticALly I-n All ThE
acTivities OffeRed aT WIllOW crEeEk...”). We did not regenerate bad responses because the distortions
were a natural consequence of the watermarking algorithm itself, and regenerating them would obscure an
important challenge to their real-world use. If the algorithm produces highly distorted text in some cases,
then an attack is actually more likely to repair quality, rather than merely preserving it. At least some
cases in our study fit this profile and the attack should be fairly credited even if it generally does not work
for texts that start at a higher standard of quality.

2https://github.com/THU-BPM/MarkLLM
3https://github.com/yepengliu/adaptive-text-watermark
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Figure 1: InternLM Quality Distribution by Watermarking Scheme W

Figure 2: Perplexity Distribution by Watermarking Scheme W
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Figure 3: Unique Bigrams Distribution by Watermarking Scheme W

Figure 4: Grammar Errors Distribution by Watermarking Scheme W
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B.2 Entropy-Controlled Prompt Dataset
To systematically evaluate the impact of response entropy on watermark robustness, we curated a dataset
featuring increasingly specific prompts across three domains: creative writing, education, and journal-
ism. For each domain, we start with a broad, high-entropy prompt and progressively add constraints to
reduce entropy. Below, we illustrate this progression with representative prompts at entropy level 1 (least
constrained), 5, and 10 (most constrained).

Entropy Level Prompt

Creative Writing
1 Write a 500-word story.
5 Write a 500-word story about Evan, an American tourist, who falls for Emilie, a

barista, during a spring festival in Paris.
10 Write a 500-word story about Evan, an American tourist, who falls for Emilie, a

barista, during a spring festival in Paris. They bond over their love for Claude
Monet’s ’Impression, Sunrise’ and the Hotel de Sully’s architecture, leading to walks
along the Seine. Their connection deepens amid shared laughter and explorations of
Le Marais. As the festival lights dance on the river, Evan shares his feelings with
Emilie under the starlit sky, promising to cherish the moments they’ve shared.

Education
1 Write a 500-word essay about the importance of space exploration.
5 Write a 500-word essay about the importance of space exploration, its role in

advancing human knowledge, and its potential to address global challenges like
climate change and resource scarcity, with a focus on technologies developed for
space missions.

10 Write a 500-word essay about the importance of space exploration, its role in
advancing human knowledge, and its potential to address global challenges like
climate change and resource scarcity, with a focus on technologies developed for
space missions, their applications on Earth, the possibility of colonizing other
planets like Mars, the ethical considerations of interplanetary exploration, and the
cultural significance of humanity becoming an interstellar species.

Journalism
1 Write a 500-word news article.
5 Write a 500-word news article about a global climate summit where world leaders

are discussing strategies to combat climate change, with a focus on renewable energy
investments and carbon reduction targets, highlighting a groundbreaking agreement
between the US and China.

10 Write a 500-word news article about a global climate summit where world leaders
are discussing strategies to combat climate change, with a focus on renewable energy
investments and carbon reduction targets, highlighting a groundbreaking agreement
between the US and China, featuring perspectives from small island nations affected
by rising sea levels, addressing protests outside the summit calling for stronger
climate justice measures, covering a controversial speech by a major oil industry
representative, analyzing the summit’s key outcomes and challenges, and placing it
in the broader context of international efforts to achieve net-zero emissions by 2050.

Table 5: Representative entropy-controlled prompts across three domains: creative writing, education, and journalism.
Entropy increases by adding specificity, progressively constraining the response space.

29715



B.3 Dataset Statistics
To ground our investigation into watermark robustness and attack efficacy, we established compre-
hensive baseline characteristics for both unwatermarked and watermarked texts. This foundational
analysis, summarized in Table 6, provides a comparative overview across several key dimensions. The
table details crucial watermark detection score distributions – including means for watermarked (µw)
and unwatermarked (µuw) texts, the unwatermarked standard deviation (�uw), and calculated detection
breakpoints – for three prominent watermarking schemes: Adaptive, SIR, and KGW. Furthermore, it
benchmarks texts from these schemes, alongside unwatermarked outputs from baseline models (GPT-4o
and Llama-3.1-70B-Instruct), using a suite of automated text quality metrics such as perplexity, gram-
mar error rates, and unique bigram diversity. Finally, operational statistics, including mean word count,
generation times, and watermark detection times, are presented. These collective data points serve as
critical references for evaluating the inherent impact of each watermarking method and for contextualizing
the outcomes of the attack experiments detailed in the main body of this paper.

Unwatermarked Watermarkered
GPT-4o Llama-3.1 Adaptive SIR KGW

Mean Watermarked Score (µw) – – 99.27 0.28 5.32
Mean Unwatermarked Score (µuw) – – 49.43 0.08 -0.83
Unwatermarked Standard Deviation (�uw) – – 3.37 0.07 1.05
Breakpoint (Score  µuw + 2�uw) – – 56.16 0.21 1.27

Quality Score 1.85 0.27 0.45 0.16 0.43
Perplexity 18.39 9.38 63.32 8.87 9.56
Grammar Errors 2.20 3.69 16.21 4.24 2.86
Unique Bigrams Diversity 574.06 494.59 603.64 479.90 512.44

Mean Word Count 637.93 633.00 646.62 675.47 666.84
Generation Time (s) 15.24 274.27 671.75 335.12 292.24
Detection Time (s) – – 240.77 5.78 0.15

Table 6: Summary statistics for unwatermarked and watermarked text across different watermarking schemes,
highlighting detection scores, automatic quality metrics, and runtime statistics.

29716



B.4 Perturbation Oracle Details

The perturbation oracles P define the mechanism by which adversarial modifications are applied to
watermarked text. These oracles generate perturbations of varying granularity, from token-level edits
to full-document paraphrasing, enabling a systematic analysis of their impact on watermark robustness.
Since prior work, including Zhang et al. (2024a), has not accounted for how different perturbation
strategies affect attack success, we explore a diverse set of perturbation oracles to quantify their relative
effectiveness.
• WordMutator: Randomly replaces individual tokens by masking and filling them using RoBERTa

(Liu et al., 2019).
• EntropyWordMutator: Similar to WordMutator, but uses GPT-Neo-2.7B (Black et al., 2021) to

target high-entropy tokens for replacement as they are most likely to carry watermark signals.
• SpanMutator: Randomly masks six contiguous tokens at a time and fills them using T5-XL (Raffel

et al., 2019). This is the only text-based perturbation oracle used in the WITS attack (Zhang et al.,
2024a).

• SentenceMutator: Randomly selects a sentence and paraphrases it creatively using Llama-3.1-8B
(Dubey et al., 2024), introducing higher-level semantic shifts.

• DocumentMutator: Uses the DIPPER paraphrase model (Krishna et al., 2023) to paraphrase multiple
sections of the document simultaneously.

• Document1StepMutator: Re-generates the entire document from scratch using Llama-3.1-8B,
producing the most extreme form of perturbation while preserving meaning, quality, and formatting.

• Document2StepMutator: Performs a two-step transformation, first selecting a random sentence and
paraphrasing it creatively with Llama-3.1-8B, then performs a global consistency editing to ensure
that the remaining text is consistent with the edited sentence.

These perturbation oracles serve two key purposes in our study: (1) they enable us to analyze how
the size of the perturbation affects movement within the perturbation graph G; and (2) they allow
us to determine whether specific perturbation oracles are more effective at breaking watermarks. By
systematically evaluating these oracles, we aim to establish whether certain perturbation strategies
inherently favor watermark removal and whether prior work has underestimated their impact on attack
success.

To ensure sufficient opportunity for watermark removal, we allow a large number of perturbation
steps, proportional to the average number of words edited per step. For example, WordMutator is given
1000 steps, while DocumentMutator is given 100. Additionally, we note that each perturbation oracle
was carefully calibrated to balance subtle modifications with sufficient impact on watermark signals,
ensuring reproducibility by fixing random elements such as token selection and sampling temperature.
Table 7 reveals a clear trade-off: while fine-grained oracles tend to preserve fluency, coarse-grained
methods introduce larger variations – a difference that is partly mitigated by the consistency editing in the
Document2StepMutator.

P Steps Edits PPL # Gram Err # Approval " Blocked # QScore " Time (s) #
Word 1000 1.8 40.4 10.2 0.80 0 -0.0688 0.10
EntropyWord 1000 1.1 16.8 9.2 0.82 0 -0.0949 0.28
Span 250 8.7 27.2 7.8 0.67 0 -0.0746 0.77
Sentence 150 31.3 21.0 4.6 0.74 0 0.2065 0.94
Document 100 216.0 11.2 9.1 0.36 0.12 -0.3151 213.12
Document1Step 100 138.2 10.6 2.1 0.42 0.12 0.0536 29.61
Document2Step 100 105.2 14.9 5.2 0.54 0.03 0.2089 34.78

Table 7: Performance metrics for each perturbation oracle. The columns report the number of attack steps, average
edits per step, average text perplexity (PPL), average number of grammar errors, average Q approval rate, average
rate at which Q blocks every perturbation for a given prompt, average InternLM quality score (QScore), and average
runtime per perturbation step in seconds. Emboldened values denote the best performance per metric.
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C Appendix: Distinguisher Prompt

Designing a distinguisher requires careful consideration, as failures can be difficult to attribute to either
implementation flaws or inherent limitations due to sufficient mixing. To address this challenge, we dedi-
cated significant effort to prompt engineering, developing 12 different distinguishers and systematically
benchmarking their performance. Somewhat unexpectedly, one of the simplest approaches proved to be
the most effective, and we describe it below.

An important implementation detail is ensuring that our distinguisher does not pass tests due to random
chance (as there are only 2 options it must choose between). Each test consists, on average, of 10
periodically sampled texts throughout the random walk. The test is considered a failure if even one
sample fails, ensuring that the distinguisher can accurately deduce the origin throughout the entire attack.
Additionally, we find that when the distinguisher fails, it almost always selects response A as the origin.
We believe this to be due to positional bias. To combat this, every sample is distinguished as a best-of-2,
where the second trial swaps response A and response B. The sample is considered a failure if either trial
fails, minimizing the chance that the distinguisher succeeds by guessing. We remark that in every instance
where the distinguisher failed, the best-of-2 was a tie, and zero samples (out of 57650) were incorrectly
distinguished in both trials. This suggests the model was sometimes unable to overcome positional bias,
but was never directly wrong. In these cases, we defer the final verdict to a stronger model, ultimately
resulting in 100% accuracy.

The following Python code defines the main method of SimpleDistinguisher, implemented with
guidance (Lundberg et al., 2022) to support constrained decoding. This function is designed to analyze
response similarity while leveraging a predefined persona. The persona guides the AI model in determining
whether a given perturbed response (P) originated from one of two original responses (A or B).

1 persona = \
2 """
3 You are an expert in analyzing the similarity of responses.
4 You specialize in detecting whether one response has been derived from another

,! by carefully analyzing the content and structure of the text.
5 Your expertise in linguistic analysis allows you to distinguish which responses

,! are the most closely related.
6 Your goal is to provide a clear , concise , and accurate assessment of the

,! provided instructions.
7 """
8

9 @guidance
10 def distinguish(lm , persona , ** kwargs):
11 if persona:
12 with system ():
13 lm += f"{ persona }"
14 with user():
15 lm += f"""
16 ### Task Description:
17 1. Read the following 3 responses. They are labelled "A", "B", and "P".
18 2. "A" and "B" are original responses , and "P" was generated by

,! perturbing one of the original responses.
19 3. Identify which of the original responses the perturbed story was

,! derived from.
20

21 Original response A:
22 {kwargs ["A"]}
23

24 Original response B:
25 {kwargs ["B"]}
26

27 Perturbed response P:
28 {kwargs ["P"]}
29 """
30 with assistant ():
31 lm += f"""\
32 I believe the perturbed response P was derived from original response

,! {select (["A", "B"], name=" choice ")}.
33 """
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34 return lm

Listing 1: Distinguisher Prompt Template

C.1 A Challenging Distinguisher Example

As an example of the data used with the prompt above, we present an example that was particularly
challenging for our distinguishers. After 108 sentence-level perturbations, GPT-4o was unable to accurately
distinguish the origin. With around 30 seconds of reasoning, o3-mini-high correctly distinguished the
origin, but had to correct itself while reasoning. We remark that the final section on NASA’s Artemis
program makes distinguishing this example trivial for humans, suggesting that our distinguishers are
significantly weaker than humans. The perturbed text, along with the two original responses, are provided
below with some key phrases in bold.

Perturbed Text (GPT-4o Failed to Distinguish)

Venturing into space is a groundbreaking endeavor that unlocks a multitude of benefits, ex-
tending far beyond the realms of scientific discovery and territorial growth. Space exploration,
frequently overlooked, is a catalyst for scientific progress, driving the development of pioneering
technologies and addressing humanity’s most pressing challenges directly, making it a pursuit of
paramount importance that warrants greater acknowledgment and support. This essay examines
the importance of space exploration, its potential to broaden our understanding, and its ability
to contribute to resolving critical global challenges like environmental decay and resource
exhaustion. Understanding the cosmos is vital, as it allows us to grasp the intricate mechanisms
governing the universe and our place within it, ultimately expanding our comprehension of
reality itself. Exploring the vastness of the universe reveals a profound comprehension of the
fundamental laws that shape reality, the origin of life, and the intricate chronology of cosmic
evolution that has spanned eons of time. Delving deeper into our environment not only quenches
our innate desire for knowledge but also empowers us to make more informed choices about the
planet’s destiny, thereby shaping our relationship with the world that surrounds us. The pursuit
of space exploration has far-reaching consequences, resulting in numerous groundbreaking
discoveries that cumulatively contribute to a significant improvement in global well-being, man-
ifesting in a multitude of tangible advantages. The rapid evolution of technology, encompassing
satellite communication, GPS, and medical imaging, has significantly influenced our daily
routines, work, and relationships, transforming the way we interact and live our lives. Advances
in technology have not only bridged the world but have also led to better health outcomes world-
wide, significantly impacting our daily lives and perceptions. Beyond its contributions to science
and technology, space exploration provides a distinctive vantage point for understanding the
Earth and its interconnected systems. Viewing our planet from space offers a comprehensive
understanding of the interconnectedness of Earth’s atmospheric, oceanic, and terrestrial systems,
showcasing a cohesive entity that surpasses its individual components in complexity and unity.
Understanding the effects of human actions on the environment is crucial for tackling pressing
global issues, such as climate change, which is becoming more apparent with each passing day.
Satellite imagery has been instrumental in tracking climate shifts, monitoring the growth of our
oceans, and forecasting extreme weather events, all of which are crucial for comprehending
the intricate dynamics of our planet’s ever-changing environment. Creating a resilient and
lasting future demands a sophisticated understanding of climate change’s multifaceted impacts
and the strategic application of targeted solutions to minimize its effects with accuracy and
efficiency. One of the most significant benefits of space exploration is its potential to alleviate
the consequences of dwindling resources on Earth. As the global population grows, the need
for fundamental resources like food, water, and power is escalating, necessitating a significant
boost in production to meet the rising demand. Exploring space can reveal previously unknown
sources of essential materials, including minerals and water, which can be exploited to satisfy
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the growing need for these vital resources. By 2024, NASA’s Artemis mission seeks to create a
self-sustaining lunar community, ultimately paving the way for a permanent human settlement
on the Moon that enables ongoing exploration and habitation. This expedition may reveal
new helium-3 deposits, a scarce isotope that could serve as a fuel for nuclear fusion reactions,
offering a potential source of power. Ultimately, space exploration is crucial for expanding
our understanding of the universe, fostering groundbreaking technological advancements, and
tackling pressing global issues such as environmental degradation and resource depletion. Ven-
turing into the unknown reaches of space not only expands our comprehension of the cosmos,
but also paves the way for groundbreaking discoveries that, in turn, significantly influence our
daily lives and overall well-being. Satellite imaging provides a distinct viewpoint, allowing
us to comprehend the intricacies of the obstacles we encounter and tackle them with greater
success. As we venture deeper into the cosmos, we may stumble upon innovative answers to
humanity’s most critical challenges, thereby ensuring a thriving and sustainable world for future
generations to inherit.

Original Response A

Space exploration is an essential endeavor for humanity, offering numerous benefits that extend
beyond the realm of scientific discovery. While some may view it as a luxury or a frivolous
pursuit, the reality is that space exploration plays a vital role in advancing human knowledge,
driving technological innovation, and addressing some of the most pressing global challenges we
face today. In this essay, we will explore the importance of space exploration, its contributions
to human understanding, and its potential to help mitigate global crises like climate change and
resource scarcity. One of the primary reasons space exploration is essential is that it allows us to
expand our understanding of the universe and our place within it. By exploring the cosmos,
we gain valuable insights into the fundamental laws of physics, the origins of life, and the
evolution of the universe. This knowledge not only satisfies our innate curiosity but also informs
our understanding of the world around us, enabling us to make more informed decisions about
our planet and its resources. Furthermore, space exploration drives technological innovation,
which has numerous spin-off benefits for society. The development of new technologies, such
as satellite communications, GPS, and medical imaging, has transformed the way we live, work,
and interact with one another. These innovations have also improved our daily lives, from
enabling global connectivity to enhancing healthcare outcomes. In addition to its scientific and
technological benefits, space exploration also offers a unique perspective on the Earth and its
systems. By studying the Earth from space, we gain a deeper understanding of the complex
interactions between our atmosphere, oceans, and landmasses. This knowledge is essential
for addressing global challenges like climate change, where the impacts of human activity on
the planet are becoming increasingly evident. Space-based observations have played a critical
role in monitoring climate change, tracking sea-level rise, and predicting weather patterns.
These insights are essential for developing effective strategies to mitigate the effects of climate
change and ensure a sustainable future. Another significant benefit of space exploration is its
potential to address resource scarcity. As the global population continues to grow, the demand
for resources like food, water, and energy is increasing. Space exploration offers a unique
opportunity to identify new sources of resources, such as minerals and water, that can help meet
this demand. For example, NASA’s Artemis program aims to return humans to the Moon
by 2024, with the long-term goal of establishing a sustainable presence on the lunar surface.
This mission could potentially unlock new resources, such as helium-3, a rare isotope that could
be used as fuel for nuclear fusion. In conclusion, space exploration is essential for advancing
human knowledge, driving technological innovation, and addressing global challenges like
climate change and resource scarcity. By exploring the cosmos, we gain valuable insights into
the universe and our place within it, while also developing new technologies that improve our
daily lives. Furthermore, space-based observations offer a unique perspective on the Earth and
its systems, enabling us to better understand and address the complex challenges we face. As
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we continue to explore the vast expanse of space, we may uncover new solutions to some of
humanity’s most pressing problems, ensuring a sustainable and prosperous future for generations
to come.

Original Response B

Space exploration is an essential endeavor for humanity, offering numerous benefits that extend
beyond the realm of scientific discovery. It plays a vital role in advancing human knowledge,
driving technological innovations, and addressing pressing global challenges such as climate
change and resource scarcity. In this essay, we will explore the significance of space exploration
and its potential to shape the future of our planet and beyond. The pursuit of space exploration
is often viewed as a costly and ambitious endeavor, but it is essential to recognize the significant
contributions it makes to our understanding of the universe and the world we inhabit. By
venturing into space, we gain insights into the fundamental laws of physics, the origins of life,
and the evolution of the cosmos. These discoveries not only expand our scientific knowledge
but also inspire new generations of scientists, engineers, and innovators. Furthermore, space
exploration has led to numerous technological innovations that have transformed various aspects
of our daily lives. From the development of GPS and telecommunications to medical imaging
and weather forecasting, the spin-off benefits of space exploration have been substantial. These
innovations have improved the quality of life for millions of people around the world and have
also generated significant economic benefits. In addition to its scientific and technological
benefits, space exploration also offers a unique opportunity to address pressing global
challenges. For instance, the study of Earth from space provides critical insights into the
health of our planet and the impacts of climate change. Satellite imaging and remote sensing
technologies have enabled scientists to monitor deforestation, track ocean currents, and detect
changes in global temperature patterns. This information is essential for developing effective
strategies to mitigate the effects of climate change and promote sustainable development.
Another significant benefit of space exploration is its potential to provide new resources and
opportunities for economic growth. As the world’s population continues to grow, the demand
for resources such as food, water, and energy will increase. Space exploration offers a way to
address this challenge by accessing new sources of resources, such as asteroid mining and lunar
helium-3 extraction. These resources could provide a clean and sustainable source of energy,
reducing our reliance on fossil fuels and mitigating the impacts of climate change. Finally,
space exploration offers a unique opportunity for international cooperation and diplomacy. In an
era marked by increasing global tensions and conflict, space exploration provides a shared goal
that can bring nations together. Collaborative efforts such as the International Space Station and
the Artemis program have demonstrated the potential for space exploration to foster global
cooperation and understanding. In conclusion, space exploration is essential for advancing
human knowledge, driving technological innovations, and addressing pressing global challenges.
Its significance extends beyond the realm of scientific discovery, offering numerous benefits that
have the potential to shape the future of our planet and beyond. As we continue to explore the
vastness of space, we must recognize the importance of investing in this endeavor and working
together to address the challenges that lie ahead. By doing so, we can ensure that the benefits
of space exploration are shared by all and that the next generation of scientists, engineers, and
innovators is inspired to reach for the stars.

D Extended Distinguisher Study

In addition to the main RQ1 result, we designed an even more challenging evaluation setting to test
whether sufficient mixing could obscure the lineage of perturbed texts. Specifically, we focus on the
strongest P, SentenceMutator, as it previously demonstrated the highest capacity to evade detection
by Llama-3.1-70B. To amplify its effect, we increase the perturbation budget from 150 to 500 steps,
allowing the random walk significantly more opportunities to approach the stationary distribution.
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Additionally, we constrain the attack to texts generated from the lowest-entropy prompts, ensuring that
candidate parent texts are highly similar to one another. This combination of (1) the strongest perturbation
oracle, (2) an extended attack budget, and (3) a highly confounded candidate pool creates the most
difficult setting for lineage attribution. If mixing is truly effective under these conditions, we would expect
distinguishability to approach random chance.

We find that although the task was more challenging, with more failures on average, o3-mini-high
still had no issues in distinguishing the origin in each test.

P Oracle Steps Tests Llama-3.1-70B GPT-4o o3-mini-high

Sentence 500 54 13 3 0

Cumulative Distinguished (%) 75.9 94.4 100

Table 8: Summary of failed distinguisher tests on the most challenging settings. Classification is first performed
by Llama-3.1-70B, followed by GPT-4o on its failures, then o3-mini-high on any remaining cases. The overall
100% success rate indicates that the attacked texts never lose memory of their starting points, contradicting KA1
and suggesting that a stationary distribution is not reached in practice.

D.1 Breakdown by Domain and Entropy
We find domain to be significant in distinguishability, but surprisingly, not entropy.

Domain Failed Distinguishes (Main) Failed Distinguishes (Challenge)

Journalism 6/1458 0/18
Creative Writing 7/1560 6/18
Education 40/1537 7/18

Table 9: Domain distribution for tests which Llama-3.1-70B failed to distinguish.

Entropy Failed Distinguishes (Main) Failed Distinguishes (Challenge)

1 7/462 N/A
2 4/457 N/A
3 8/468 N/A
4 9/462 N/A
5 3/450 N/A
6 1/468 N/A
7 6/450 N/A
8 2/438 N/A
9 5/456 N/A

10 8/444 13/54

Table 10: Entropy distribution for tests which Llama-3.1-70B failed to distinguish.
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E Appendix: Quality Oracles

E.1 Oracle Details
The quality oracles determine whether the perturbations introduced by various P preserve the original
text’s quality. Each oracle operates by querying an LLM with a prompt and some continuation text using
different strategies to assess preservation of meaning, fluency, and coherence. The quality decision is
based on whether the mutated text is judged to be as good as or better than the original. All oracle queries
include the original prompt to provide context for evaluation.

We implement and evaluate eight distinct quality oracles using guidance (Lundberg et al., 2022) to
support constrained decoding for ranking, scoring, and preference based assessments.
• RankOracle: Q is prompted to rank the two responses in terms of preference, and the order of texts

is then reversed in a second query. If the mutated text is preferred in both cases, quality is considered
preserved.

• SoloOracle: Q is prompted twice, independently grading each text on a numerical scale. If the
mutated text receives a score equal to or higher than the original, its quality is considered preserved.

• JointOracle: Similar to SoloOracle, but Q assigns numerical scores to both texts in the same
prompt. The order is flipped in a second query. Quality is preserved if the mutated text scores equal
to or higher than the original in both cases.

• RelativeOracle: Q is prompted to select the better response or declare a tie, repeating the query
with the order reversed. Quality is preserved if the mutated text is chosen in both cases or a tie is
declared.

• BinaryOracle: Q is asked a direct yes/no question: “Is the second text just as good or better than
the original?” If the response is “yes”, quality is preserved.

• MutationOracle: Similar to BinaryOracle, but the prompt explicitly states that the second text is
a modification of the original. The query is repeated with the order reversed. If both responses are
“yes”, quality is preserved.

• ExampleOracle: Similar to BinaryOracle, but includes an example (1-shot prompting) before
presenting the actual texts. If the response is “yes”, quality is preserved.

• DiffOracle: Q is provided with the original text, mutated text, and a computed diff between them.
It is asked whether these changes are acceptable. If the response is “yes”, quality is preserved.

These oracles serve as key components in our evaluation framework, allowing us to systematically
assess how to best approximate human judgments of quality. By incorporating multiple prompting
strategies, we ensure robustness in our analysis of watermark perturbation effectiveness.

E.2 Sandcastle Dataset Statistics
Since absolute quality scoring is difficult for humans (Chiang et al., 2024), we formulated the annotation
task as pairwise preference judgments with a tie option. Several coauthors, following standardized
guidelines, compared perturbed texts to their originals, unaware of which was which. Table 11 shows the
class distribution, where we merged "Attacked Better" and "Tie" into a Quality Preserved (QP) category
to support binary classification.

Quality Preserved Quality Degraded
Split Attacked Better Tie Original Better Total

Train 12 238 306 556
Test 1 103 135 239

Total 13 341 441 795

Table 11: Distribution of human quality assessments by split for the Sandcastles dataset. The table details counts
for cases where attacked outputs were rated as "Attacked Better" or "Tie" (grouped under Quality Preserved (QP))
versus "Original Better", along with overall totals for both training and test sets.
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E.3 Full Oracle Results
Table 12 provides a detailed comparison of quality oracles, including inference time, QP Precision, Overall
F1, and RewardBench scores where available. Despite fine-tuning, no oracle fully aligns with human
judgments, and high RewardBench scores do not guarantee strong performance in our setting. Proprietary
models like GPT-4o with fine-tuning perform best but are impractical for large-scale attacks. Locally
hosted models (MutationOracle, DiffOracle) offer a viable alternative but still misclassify degraded
outputs. These results highlight the challenges of using LLM-based oracles for reliable watermark attack
guidance.

Oracle Model Type Time (s) QP Prec. Overall F1 RB Score

SkyworkOracle Skywork-Reward-Gemma-2-27B-v0.2 (Liu et al., 2024c) FLOAT 2.22 43.51 26.39 94.3
RankOracle Llama-3.1-70B-Instruct (Dubey et al., 2024) BOOL 4.33 50.00 37.09 –
SoloOracle Llama-3.1-70B-Instruct (Dubey et al., 2024) INT 2.23 49.49 39.86 –
JointOracle Llama-3.1-70B-Instruct (Dubey et al., 2024) INT 3.62 53.85 40.85 –
INFORMOracle INF-ORM-Llama3.1-70B (Minghao, 2024) FLOAT 5.81 65.63 54.40 95.1
QRMOracle QRM-Gemma-2-27B (Dorka, 2024) FLOAT 3.28 50.68 56.98 94.4
RelativeOracle Llama-3.1-70B-Instruct (Dubey et al., 2024) CLASS 2.76 79.59 63.07 –
ExampleOracle Llama-3.1-70B-Instruct (Dubey et al., 2024) BOOL 1.33 79.59 63.07 –
BinaryOracle Llama-3.1-70B-Instruct (Dubey et al., 2024) BOOL 1.27 61.90 63.82 –
ArmoRMOracle ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024) FLOAT 0.33 65.71 64.26 90.4
OffsetBiasOracle Llama-3-OffsetBias-RM-8B (Park et al., 2024) FLOAT 0.32 62.22 65.30 89.6
Prometheus2Absolute prometheus-8x7b-v2.0 (Kim et al., 2024) FLOAT 7.28 74.78 66.73 74.5
Prometheus2Relative prometheus-8x7b-v2.0 (Kim et al., 2024) BOOL 7.36 74.78 66.73 74.5
Prometheus2Absolute GPT-4o (OpenAI, 2024b) INT 7.93 76.70 66.87 –
MutationOracle Llama-3.1-70B-Instruct (Dubey et al., 2024) BOOL 2.74 84.62 66.93 –
Prometheus2Relative GPT-4o (OpenAI, 2024b) BOOL 7.73 77.23 67.05 –
Prometheus2Relative GPT-4-Turbo (OpenAI, 2024a) BOOL 11.94 75.00 67.27 –
Prometheus2Absolute GPT-4-Turbo (OpenAI, 2024a) INT 12.46 76.15 67.55 –
InternLMOracle internlm2-20b-reward (Cai et al., 2024) FLOAT 0.86 65.69 69.84 90.6
DiffOracle Llama-3.1-70B-Instruct (Dubey et al., 2024) BOOL 1.83 71.74 70.85 –
MutationOracle+FT Llama-3.1-70B-Instruct + Fine-tuning BOOL 3.25 81.18 71.83 –
DiffOracle+FT Llama-3.1-70B-Instruct + Fine-tuning BOOL 1.80 69.07 76.94 –
DiffOracle+FT GPT-4o (OpenAI, 2024b) + Fine-tuning BOOL 0.46 75.51 77.32 –
MutationOracle+FT GPT-4o (OpenAI, 2024b) + Fine-tuning BOOL 0.84 74.51 77.38 –

Table 12: Overview of oracle performance on our human-annotated test set. For each oracle we report average
inference time, Quality-Preserved (QP) Precision, Overall F1, and RewardBench (RB) Score when available.
Despite fine-tuning on human judgements, no oracle perfectly capture human quality assessments, and high RB
Scores did not predict strong performance in our evaluation setting.
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E.4 InternLM vs DiffOracle
We compared the proportion of cases where humans agreed that the quality of generated outputs was
preserved. The results, summarized in Table 13, show that InternLMOracle had a higher agreement rate
(47.78%) than DiffOracle+FT (40.0%).

Oracle Agree QP Disagree QP

DiffOracle 40.00 60.00
InternLM 47.78 52.22

Table 13: Comparison of human agreement rates on quality preservation (QP) percentages between DiffOracle and
InternLM. InternLM shows a higher agreement rate, suggesting it aligns better with human judgments.

To quantify the probability that InternLMOracle is genuinely the better oracle, we adopt a Bayesian
approach, modeling the probability of agreement for each oracle as a Beta distribution:

pA ⇠ Beta(A + 1, NA �A + 1),

pB ⇠ Beta(B + 1, NB �B + 1)

where A and B are the counts of human agreement for DiffOracle+FT and InternLMOracle, respec-
tively, and NA and NB are the total evaluations for each oracle.

Using a Monte Carlo simulation with 100,000 samples, we estimate:

P (pB > pA) ⇡ 85.08%

indicating that InternLMOracle has an 85.08% probability of being the better judge in preserving
quality according to human evaluators. Given this high confidence, we justify the use of InternLMOracle
as the preferred oracle for further evaluations4.

F Appendix: Human Annotation Details

Annotators were provided with the following instructions when reviewing:

• Determine which is a better response to the prompt: text A, text B, or tie.

• Judge quality based on content, style, cohesion, and prompt relevance.

• Note: Formatting is not especially important for quality (e.g. paragraph breaks should be ignored).

These guidelines ensured that evaluations focused on meaningful quality differences rather than
superficial formatting artifacts.

F.1 Analysis of Human Annotator Comments on Text Quality
In the human evaluation phase described in Section 4.3 (RQ3), annotators compared watermarked texts
with their attacked versions and decided if quality was preserved. Annotators were also given the option
to provide free-form comments on their reasoning. Although only 19 comments were provided on the 289
quality annotations, these comments provide some insight into the specific types of quality issues, which
may not be fully captured by automated metrics or the primary quality judgment alone.

To better understand these human perceptions, the collected comments were thematically analyzed and
grouped into the following categories:

Factual & Prompt Adherence Errors: Issues where the text deviated from instructions in the generation
prompt or contained factual inaccuracies.
Examples from study: "Emelie was a waitress in the first story though it was advised in the prompt
she should have been a barista."; "Text A character name and Prompt name don’t match at all"; "It’s
a spring festival not Bastille Day, uttter phillistines!"; "summit occurred in 2113 lol".

4This surprising reversal of performance may be attributable to DiffOracle+FT managing too much noise in the changelog
of edits when attacks exceed 20 steps (the maximum attack length present in the Sandcastles dataset).

29725



Continuity & Consistency Errors: Problems with the internal logic or consistency of the narrative, such
as characters changing names or previously established plot points being contradicted.
Examples from study: "Emilie became Gil and that can be fine in real life, it’s not ok in this story";
"Evan changed to Emile in the middle"; "lowkey both are ass tho, continuity issues"; "They already
met, but then it started the story over again".

Plot & Story Structure Issues: Deficiencies in the overall narrative structure or development.
Examples from study: "They both started in the middle of the story".

Nonsensical or Unclear Content: Text that was difficult to understand, illogical, or generally incoherent.
Examples from study: "Both were full of nonesense".

Grammar & Syntax Errors: Mistakes in grammar, sentence construction, and word usage.
Examples from study: "many grammatical and syntactical errors in the second one"; "This is clunky
with wrong words and grammar".

Repetitive Language: Overuse of specific words or phrases.
Examples from study: "Could they have said Space exploration one more time?!"; "Repeated word
use of "numerous"."; "Repetative word usage was an issue for me".

Awkward Phrasing & Clunkiness: Text that was poorly worded or unnatural, even if grammatically
acceptable.
Examples from study: "This is clunky with wrong words and grammar".

Formatting & Presentation Quirks: Unusual or distracting elements in text presentation.
Examples from study: "weird letter signoff in A".

General Negative Sentiment: Overall low-quality assessments without highly specific details in the
comment itself.
Examples from study: "Both are crazy bad"; "lowkey both are ass tho"; "they both suck though
second one is slightly better".

Category Frequency Percent

Factual & Prompt Adherence Errors 5 23.81%
Continuity & Consistency Errors 4 19.05%
Repetitive Language 3 14.29%
General Negative Sentiment 3 14.29%
Grammar & Syntax Errors 2 9.52%
Plot & Story Structure Issues 1 4.76%
Nonsensical or Unclear Content 1 4.76%
Awkward Phrasing & Clunkiness 1 4.76%
Formatting & Presentation Quirks 1 4.76%

Total 21 100.00%

Table 14: Frequency of Human-Reported Quality Issues in Attacked Texts. The total frequency count (21) exceeds
the number of unique comments (19) in the analyzed sample because some comments addressed multiple issues and
were therefore assigned to more than one category.

Table 14 presents the frequency of comments falling into each category, based on the initial sample of
comments provided. This categorization helps to quantify the common types of degradation perceived by
human evaluators when assessing the impact of attacks on text quality.
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G Appendix: Extended Attack Results Analysis

Table 15 provides a detailed breakdown of attack performance, including automated quality metrics,
revealing several notable patterns. One interesting finding is that, in some cases, attacks appear to “improve”
certain quality metrics, such as perplexity and grammar error rates. This effect is most pronounced for the
Adaptive watermark, where the average perplexity and grammar errors decrease post-attack. However,
this improvement is largely driven by a few low-quality outliers in the original watermarked dataset,
rather than a systematic enhancement of text fluency. Despite these reductions in surface-level errors, the
InternLM quality score consistently drops, indicating that attacks tend to reduce overall coherence and
relevance, even when fluency-related metrics superficially improve.

Another trend is that unique bigram diversity (µdt) increases slightly in many cases, particularly for
sentence- and document-level attacks. This suggests that perturbations introduce more varied word
sequences, potentially disrupting structured patterns imposed by watermarking. However, this increase is
relatively small, meaning that while attacks may inject lexical diversity, they do not necessarily enhance
the text in a meaningful way. Instead, the most aggressive perturbation strategies—particularly sentence-
and document-level attacks—cause the largest drops in the InternLM quality score, reinforcing the idea
that these attacks are the most disruptive to text coherence. While they achieve the highest watermark
removal rates, they also tend to introduce noticeable degradation, making the resulting text less natural
and readable.

By contrast, perturbation strategies that fail to effectively break watermarks, such as word-level and
entropy-based edits, also have minimal impact on quality metrics. This suggests that these finer-grained
mutations are too minor to erase watermark signals while also being too weak to meaningfully degrade
text fluency. More broadly, the average attack success rate remains relatively low even before enforcing
quality constraints, with ASRfin at only 26.13%. After accounting for quality degradation, this drops
further to just 10.47%, confirming that successfully removing watermarks without compromising text
quality remains a substantial challenge for adversaries.
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G.1 Attack Dataset Statistics
Table 16 details the generation statistics for the perturbed text datasets used in our study. For each
perturbation oracle listed, it presents the configured number of perturbation steps, the expected (targeted)
number of unique perturbed texts, the actual number of texts successfully generated after quality control,
the numerical difference, and the percentage of ’missing’ texts. The ’Missing (%)’ values are a direct
result of our iterative quality assurance process, where, as specified in the table’s accompanying note,
a perturbation path for a text was abandoned if 50 consecutive modification attempts failed to meet the
quality criteria, triggering a backtrack.

P Oracle Steps Actual Expected Diff. Missing (%)

WordMutator 1000 270000 270000 0 0.00%
EntropyWordMutator 1000 267226 270000 2774 1.03%
SpanMutator 250 61041 67500 6459 9.57%
SentenceMutator 150 40500 40500 0 0.00%
DocumentMutator 100 22564 27000 4436 16.43%
Document1StepMutator 100 27000 27000 0 0.00%
Document2StepMutator 100 26589 27000 411 1.52%

Total 718160 729000 14080 1.93%

Table 16: Dataset statistics comparing actual and expected perturbed text counts across different perturbation oracles.
The "Missing (%)" figures indicate instances where a specific perturbation path was abandoned. This occurred if all
N = 50 attempts to apply a quality-preserving modification to a text version failed, necessitating a backtrack to the
previously successful version. Consequently, fewer actual perturbed texts were generated for that path than initially
expected.

G.2 Attack Success Rate vs. Detection Threshold
Figures 7, 6, and 5 plot the final attack success rate (ASR) for each perturbation oracle under the
KGW, SIR, and Adaptive watermarking schemes, respectively. The horizontal axis represents detection
thresholds measured in standard deviations above the mean detection score for unwatermarked text (i.e.,
0�, 1�, 2�, or 3�). A higher threshold allows more texts to be considered “unwatermarked,” so ASR
generally increases as we move to the right. The vertical axis indicates the fraction of attacked texts that
fall below each threshold once all permitted mutations have been applied.

Each curve corresponds to a specific mutator – Word, EntropyWord, Span, Sentence, Document,
Document1Step, or Document2Step – with line style distinguishing smin (dotted) from sfin (solid). In
general, token-level P (Word, EntropyWord, Span) make smaller, more localized edits, while document-
level P (Document, Document1Step, Document2Step) can restructure larger portions of text. Comparing
these curves reveals which P achieve higher ASR for each watermarking scheme and how sensitive those
results are to stricter or looser detection thresholds.

Overall, two main patterns emerge. First, as the detection threshold increases, more perturbed texts
evade being flagged, causing the ASR curves to rise. Second, the extent of this rise varies across both
watermarking schemes and P: some methods prove more effective at evading detection for KGW or SIR,
whereas Adaptive typically shows lower ASR across thresholds. This aligns with our broader observation
that larger, more context-aware edits (Document-based P) often outperform smaller, token-level edits, but
still rarely achieve high success rates without risking noticeable quality degradation.
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Figure 5: Attack success rate (ASR) vs. detection threshold for the Adaptive watermarking scheme. Each curve
represents a different perturbation oracle, with thresholds measured in standard deviations above the unwatermarked
mean.

Figure 6: Attack success rate (ASR) vs. detection threshold for the SIR watermarking scheme. The plot shows the
fraction of attacked texts falling below various thresholds (in standard deviations above the unwatermarked mean)
for multiple perturbation oracles.
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Figure 7: Attack success rate (ASR) vs. detection threshold for the KGW watermarking scheme. Different curves
correspond to various perturbation oracles, with the detection threshold defined as standard deviations above the
mean detection score of unwatermarked texts.

H Appendix: What factors contributed to attack inefficiency?

The efficiency of the WITS attack against private watermarking schemes is hampered by two interrelated
challenges. First, the attack relies on a random walk that must approach its stationary distribution, with the
mixing time critically dependent on the second-largest eigenvalue, g, of the transition matrix ~P . Not only
is computing g exactly infeasible, but even approximating it is extremely difficult. In practice, the size
and complexity of ~P—which depends on factors such as the mutator, prompt, and quality barrier—make
computing any information about ~P computationally intractable. As a result, the attacker must rely on
upper bounds for g to estimate the mixing time, a strategy that introduces significant uncertainty into the
overall attack duration. Notice that this isn’t an issue for public watermarking schemes since the attacker
can stop as soon as the watermark is removed.

Second, attempts to accelerate the mixing process—such as by increasing the step size of the pertur-
bation oracle—risk degrading the quality of the text. As quality decreases, so does the success rate of
mutations (i.e., the effective constant ✏pert no longer holds), which in turn negates the benefits of improved
mixing by requiring even more iterations to produce acceptable outputs.

In essence, there is a fundamental tension between reducing the mixing time to achieve attack efficiency
and maintaining the quality of the attacked text. A more refined theoretical analysis that balances these
competing factors is necessary to fully understand the capabilities of the WITS attack. We leave this
compelling direction for future work.

Figures 8, 9, 10, and 11 below illustrate the rolling success rate of mutations across various watermarking
schemes and mutator types, thereby supporting our first claim. In these computations, the window size is
defined as one-tenth of the total number of mutator steps (e.g., for the Sentence Mutator, 150/10 = 15
steps).

Notably, P characterized by larger step sizes exhibit lower success rates. Furthermore, the plots reveal
a modest correlation between the mutation success rate and the entropy level: prompts with lower entropy
tend to have reduced success rates. This phenomenon may be attributable to the fact that lower-entropy
prompts are generally longer, thereby increasing the difficulty of generating a mutated response that
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maintains high quality. Consequently, any interpretation of this correlation should be approached with
caution.

Figure 8: Rolling success rate for GPT-4o generations, which are unwatermarked.
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Figure 9: Rolling success rate for the KGW watermark.
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Figure 10: Rolling success rate for the SIR watermark.
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Figure 11: Rolling success rate for the Adaptive watermark.
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