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Abstract

Large Language Model (LLM) Uncertainty
Estimation (UE) methods have become cru-
cial tools for detecting hallucinations in re-
cent years. While numerous UE methods have
been proposed, most existing studies evalu-
ate them in isolated short-form QA settings
using threshold-independent metrics such as
AUROC or PRR. However, real-world deploy-
ment of UE methods introduces several chal-
lenges. In this work, we systematically exam-
ine four key aspects of deploying UE meth-
ods in practical settings. Specifically, we as-
sess (1) the sensitivity of UE methods to de-
cision threshold selection, (2) their robustness
to query transformations such as typos, adver-
sarial prompts, and prior chat history, (3) their
applicability to long-form generation, and (4)
strategies for leveraging multiple UE scores for
a single query. Our evaluations on 19 UE meth-
ods reveal that most of them are highly sensitive
to threshold selection when there is a distribu-
tion shift in the calibration dataset. While these
methods generally exhibit robustness against
previous chat history and typos, they are sig-
nificantly vulnerable to adversarial prompts.
Additionally, while existing UE methods can
be adapted for long-form generation through
various strategies, there remains considerable
room for improvement. Lastly, ensembling
multiple UE scores at test time provides a no-
table performance boost which highlights its
potential as a practical improvement strategy.
Code is available at: https://github.com/
duygunuryldz/uncertainty_in_the_wild.

1 Introduction

Generative Large Language Models (LLMs) have
been deployed in various real-world applications,
including code copilots, chatbots, and medical as-
sistants (Sabouri et al., 2025; Ahrabian et al., 2025).
Their widespread usage has raised significant safety
considerations, particularly regarding reliability

*Equal contribution.

(Bengio et al., 2025; Tak et al., 2025). Despite
advancements over the previous wave of language
models, these models can still produce incorrect
or misleading text, a problem commonly known as
hallucination or confabulation (Ravi et al., 2024).

Detecting hallucinations in LLM outputs is a fun-
damental challenge, with various approaches such
as fact-checkers (Wang et al., 2024), tool-based
detectors (Chern et al., 2023), LLM-collaboration-
based methods (Feng et al., 2024), and Uncertainty
Estimation (UE) methods. Among these, UE meth-
ods are particularly valuable as they only rely on
the model itself and have shown promising per-
formance across diverse datasets (Vashurin et al.,
2025).

Numerous UE methods have been proposed to
detect hallucinations (Azaria and Mitchell, 2023;
Zhao et al., 2024). However, these are typically
tested in isolated short-form QA settings with sim-
ple prompts and evaluated using threshold-free met-
rics like AUROC and PRR (Malinin and Gales,
2021; Duan et al., 2024). Despite their value, the
challenges of real-world deployment remain largely
unexplored and are crucial for future research.

Motivated by these concerns, we investigate four
essential aspects of deploying a UE method in the
real-world (wild), as also outlined in Figure 1:
Sensitivity of Decision Threshold: Since the out-
puts of UE methods are typically continuous, se-
lecting a threshold is necessary to make binary de-
cisions (e.g., hallucination or not). This threshold
is calibrated using a specific dataset to meet target
performance levels. We explore whether the thresh-
olds selected for UE methods achieve the desired
performance in practice, evaluating their stability
and effectiveness across different data distributions.
Robustness to Input Transformations: We assess
the resilience of UE methods to previously gener-
ated context, typos in the prompts, and adversarial
prompts designed to confuse UE methods.
Applicability to Long-Form Generations: While
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Figure 1: Left: Existing pipeline for UE. The uncertainty score is calculated for short-form QA and evaluated using
a threshold-free metric such as AUROC. Right: Reconsidering LLM uncertainty estimation methods in the wild.
We ask four critical questions addressing challenges in deploying UE methods in real-world scenarios.

many UE methods are proposed and tested for
short-form QA, real-world questions often require
extended answers containing multiple claims. We
examine whether these methods designed for short-
form QA can be adapted to long-form generations.
Reconcilability of Diverse UE Scores: UE meth-
ods often produce varying judgments for the same
input. Ensembling their outputs can enhance perfor-
mance, potentially surpassing individual methods.

With our comprehensive evaluation of 19 UE
methods, our findings across the four investigated
aspects can be summarized as follows:

• Most UE methods are highly sensitive to de-
cision threshold selection, particularly when
the calibration data distribution differs from
the test data distribution.

• The majority of the methods demonstrate re-
silience to previous context and typos in the
prompt, but they exhibit significant perfor-
mance drops with adversarial prompts.

• UE methods not originally designed for long-
form generation can be adapted to this setting
through additional steps. However, their ef-
fectiveness remains lower compared to their
performance in short-form tasks.

• Ensembling multiple UE scores can yield
meaningful performance improvements, even
when using a very small set of data. Notably,
simple ensembling strategies, such as averag-
ing UE scores, can be very effective.

Based on these findings, we encourage re-
searchers to evaluate the sensitivity of their pro-
posed UE methods to threshold selection and input
transformations. There is also potential for devel-
oping advanced techniques to apply UE methods
to long-form generation. Finally, we believe that
further exploration of ensembling strategies may
unlock even greater performance improvements.

2 Preliminaries

2.1 Uncertainty Estimation of LLMs

Although various Uncertainty Estimation (UE)
methods for LLMs have been proposed recently,
there is no universally accepted definition of UE in
the context of LLMs (Vashurin et al., 2025). Some
research formalizes LLM uncertainty by decom-
posing into aleatoric (data) and epistemic (model)
uncertainties, leveraging LLM sampling distribu-
tions (Aichberger et al., 2024; Abbasi-Yadkori
et al., 2024). However, many heuristic-based UE
methods in the literature do not conform to these
theoretical frameworks.

Therefore, we adopt a broad, practical defini-
tion of UE, following previous works (Jiang et al.,
2024; Huang et al., 2024). Formally, an uncer-
tainty estimation method U is defined as a function
U : V∗ × V∗ → R, where V represents the vocabu-
lary, and V∗ denotes all possible token sequences.
For a given query x and generated response ŷ, an
effective U should assign a low uncertainty score
(indicating higher confidence) if ŷ is reliable in
the given context. In tasks such as factual QA
or mathematical reasoning, common evaluation
benchmarks for UE methods, reliability refers to
the correctness of ŷ with respect to the set of ground
truth(s) Y . Formally, a desirable U should maxi-
mize E

[
1U(x1,ŷ1)<U(x2,ŷ2) · 1ŷ1∈Y1∧ŷ2 /∈Y2

]
where

(x1, y1), (x2, y2) ∼ D, with D being a dataset,
ŷ1 ∼ p(·|x1), ŷ2 ∼ p(·|x2) representing the
model’s sampling distributions.

2.2 Evaluation of UE Methods

As discussed in the previous section, UE methods
serve as proxies for predicting the correctness of
model-generated responses, producing scores that
typically lie within a continuous range. Conse-
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quently, their evaluation is commonly performed
by setting the correctness of a generation as binary
labels (0 or 1)*, using UE scores as predictions,
and computing threshold-free metrics such as AU-
ROC and AUPRC (Kuhn et al., 2023; Vashurin
et al., 2025). In addition to these, the Predic-
tion Rejection Ratio (PRR) (Malinin and Gales,
2021) evaluates UE performance by constructing
a rejection-precision curve, which measures the
precision of the retained (non-rejected) samples
at different rejection thresholds based on uncer-
tainty scores. PRR is computed as the area under
this curve and is further normalized by the areas
under the curves of the best possible (oracle) and
random rejection-precision strategies. This normal-
ization makes PRR resilient to label imbalances in
the dataset (Malinin and Gales, 2021). PRR ranges
from 0.0 (random performance) to 1.0 (perfect per-
formance). In this study, we primarily use PRR as
our evaluation metric due to its robustness against
variations in data distribution.

2.3 Investigated UE Methods

Throughout this paper, we examine 19 UE methods,
categorizing each according to its primary concep-
tual approach. We identify four distinct categories
for this classification:
Probability-Based Methods utilize probabilities
of tokens in the generated sequence. Length-
Normalized Scoring (LNS) (Malinin and Gales,
2021) is the average of the log-probabilities of
the generation, while MARS (Bakman et al., 2024)
computes the weighted-average of that regarding
the token importance in answering the question.
LARS (Yaldiz et al., 2025) trains a small-scale
transformer that takes the question, generation to-
kens, and token probabilities. Entropy (Malinin
and Gales, 2021) calculates the average of length-
normalized scores over a set of sampled genera-
tions for the same question. Semantic Entropy (SE)
(Kuhn et al., 2023) clusters the semantically-similar
generations while SentSAR and SAR (Duan et al.,
2024) considers relevancy scores of the sampled
generations during entropy calculation.
Internal State-Based Methods make use of the
internal states of the LLM, which are only appli-
cable to white-box models. INSIDE (Chen et al.,
2024) utilize the middle layer activations of the last
tokens of multiple generations to the same question.

*We utilize GPT-4o-mini as correctness evaluator, using
the query, generated response, and ground truth(s) (Lin et al.,
2024; Bakman et al., 2024)

Attention Score (Sriramanan et al., 2024) analyses
the attention maps of the LLM. SAPLMA (Azaria
and Mitchell, 2023) trains a classifier whose input
is the activations of the last token of the generation.
Output Consistency-Based Methods sample mul-
tiple generations to the query, then utilize their
pair-wise similarity information, hence usable with
black-box models. Degree Matrix Uncertainty, Ec-
centricity Uncertainty, SumEigV (Lin et al., 2024),
and Kernel Language Entropy (KLE) (Nikitin et al.,
2024) utilize different linear algebra techniques
over the pair-wise similarity matrix of the sampled
generations. Degree Matrix-C and Eccentricity-C
(Lin et al., 2024) output a generation-specific score
for each generation by using the similar ideas in
Eccentricity Uncertainty and Degree Matrix Un-
certainty. Self-Detection (Zhao et al., 2024) para-
phrases the question and analyses the similarity of
the responses to the paraphrased questions.
Self-Checking Methods query the LLM itself
about the uncertainty of the generation. P(true)
(Kadavath et al., 2022) asks if the response is true
by providing the question, sampled generations,
and the answer. Verbalized Confidence (Tian et al.,
2023) prompts the LLM to assign a confidence
score to the response between 0 and 1.

It is important to note that only LARS and
SAPLMA are supervised techniques, requiring la-
beled QA data, whereas all other methods are un-
supervised. For brevity, detailed explanations of
these methods are provided in Appendix C.

3 Sensitivity of Decision Threshold

3.1 Problem Statement

UE methods typically produce outputs in a continu-
ous range. However, integrating a UE method into
a real-world application requires making discrete
decisions, such as whether to accept or reject a
generated response. The sensitivity of this binary
decision can vary depending on the application.
Consequently, such scenarios require selecting an
appropriate threshold to achieve the desired perfor-
mance for decision-making.

Determining a threshold t for a target application
requires a labeled calibration dataset Dcal. Using
this dataset and a desired metric M with a target
performance level m∗, a threshold t is randomly
picked from the set {t : M(U,Dcal, t) = m∗}.

This threshold is then applied during testing. The
key question is whether the desired performance
m∗ is maintained at test time. If not, two main
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factors may contribute: (1) a distribution shift be-
tween the calibration and test data, or (2) the UE
method itself being sensitive to such scenarios. To
investigate this phenomenon, we examine 19 UE
methods (listed in Section 2.3) across two tasks and
varying levels of calibration-test distribution shifts.

3.2 Experimental Design
Models We evaluate UE methods on two recent
models: Llama-3-8B (AI@Meta, 2024) and GPT-
4o-mini (OpenAI, 2023).
Datasets We use TriviaQA (Joshi et al., 2017)
and NaturalQA (Kwiatkowski et al., 2019) as
closed-book QA datasets and GSM8K (Cobbe
et al., 2021) as mathematical reasoning dataset in
the experiments. We use 1000 samples for the test
set and 500 samples for the calibration dataset. All
experiments are conducted 5 times with different
seeds and the average performance is provided.
Metric Different applications require varying
precision-recall trade-offs, so we introduce a met-
ric to assess threshold generalization at test time.
For each target recall r∗ ∈ [0, 1], we determine an
optimal threshold t using a calibration set. Hallu-
cinations (incorrect generations) are class 1, and
correct answers are class 0 which makes recall the
proportion of hallucinations correctly identified by
the UE method.

To assess threshold generalization, we measure
the deviation |r∗−r|, where r is the recall achieved
on the test set using threshold t. By averaging these
deviations over a setR of recall values of interest,
Average Recall Error (ARE) is defined as:

ARE =
1

|R|
∑

ri∈R
|r∗i − ri|.

In our experiments, we setR to span the full recall
range from 0 to 1.0., with increments of 0.001.
Distribution Shift Simulation We systemati-
cally examine how distribution shifts between cali-
bration and test data impact threshold selection per-
formance through two experimental setups. First,
we use TriviaQA as the test data, calibrating with
TriviaQA for an in-domain setting, NaturalQA for
a same-task distribution shift, and GSM8K for
an out-of-domain scenario. Second, we test with
GSM8K and calibrate separately with TriviaQA
and GSM8K, where GSM8K is in-domain and Triv-
iaQA is out-of-domain.

3.3 Results and Discussion
The ARE results for TriviaQA are presented in Ta-
ble 1. The findings indicate that the majority of

UE methods achieve a low ARE (<0.05) when the
threshold is calibrated on a separate subset of Trivi-
aQA, with the exception of Verbalized Confidence
and Self-Detection. However, as expected, the error
rate increases with greater data distribution shifts,
making GSM8K calibration the most erroneous
when UE methods are tested on TriviaQA.

Probability-based and output consistency-based
methods generally outperform internal state-based
and self-checking methods. However, only MARS,
Semantic Entropy, and Eccentricity consistently
achieve low error across calibration datasets, while
all others exceed 0.10 ARE in at least one setting.

These results highlight the need to align the cali-
bration data distribution with the test (deployment)
environment to ensure reliable binary decision-
making using UE methods. Furthermore, we en-
courage researchers to test their proposed UE meth-
ods under distribution shift conditions, particularly
for threshold sensitivity. Robustness to such shifts
is a highly desirable property, as it reduces reliance
on an optimal calibration dataset. Lastly, the ARE
results for GSM8K, provided in Appendix D.1,
aligns with the findings observed in TriviaQA.

Llama3-8b GPT-4o-mini
Calib. Dataset TrivQA NQA GSM TrivQA NQA GSM

LNS 0.030 0.093 0.103 0.055 0.035 0.049
MARS 0.035 0.025 0.077 0.050 0.046 0.040
Entropy 0.032 0.103 0.101 0.072 0.048 0.066
SE 0.035 0.065 0.073 0.060 0.029 0.045
SentSAR 0.041 0.105 0.123 0.074 0.041 0.093
SAR 0.028 0.059 0.107 0.068 0.023 0.077
LARS 0.035 0.117 0.130 0.048 0.125 0.289
DegMat 0.041 0.033 0.169 0.051 0.051 0.142
DegMat-C 0.038 0.030 0.141 0.058 0.049 0.126
SumEigV 0.042 0.035 0.191 0.051 0.053 0.165
KLE 0.047 0.062 0.173 0.076 0.056 0.115
Eccent 0.040 0.037 0.069 0.057 0.049 0.050
Eccent-C 0.040 0.039 0.098 0.063 0.048 0.051
Self-D. 0.082 0.086 0.113 0.110 0.127 0.096
P(True) 0.035 0.087 0.255 0.123 0.163 0.200
Verb. C. 0.172 0.182 0.280 0.084 0.131 0.142
Atten. S. 0.027 0.027 0.261 - - -
INSIDE 0.040 0.096 0.295 - - -
SAPLMA 0.046 0.029 0.142 - - -

Table 1: ARE of UE methods when the threshold is
calibrated on various datasets and tested on TriviaQA.

4 Robustness to Input Transformations

4.1 Problem Statement
Previous UE works primarily evaluate their meth-
ods in isolated environments, where a question
is presented to the model using a simple benign
prompt, and the model’s response is directly sam-
pled. However, in real-world applications, inputs
can arrive in various forms. We expect a robust UE
method’s performance should not be affected much
under these various input forms.
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Figure 2: PRR performance of UE methods with Llama-3 8b, evaluated under a regular prompt (no transformation)
and various input transformations, including adding context, typos, and adversarial prompts.

More formally, we apply a transformation func-
tion T to a query x such that T (x) preserves the
same ground truth set Y as the original query.
This ensures that the transformation does not al-
ter the fundamental meaning of the query. Let
D∗ := {(T (x), Y ) | (x, Y ) ∈ D} represent the
transformed version of the original dataset D. A
robust UE method U should exhibit similar perfor-
mance on both D and D∗. However, since input
transformations can influence the model’s internal
computations, on which UE methods ultimately
rely, a non-robust U may experience performance
degradation under different transformations.

We investigate the robustness of UE methods
across three specific transformations: (1) Contex-
tual: This transformation appends previous chat
history (context) to the input. This scenario com-
monly occurs in chatbot applications, where users
may ask multiple questions within the same ses-
sion. To evaluate this case, we prepend previous
chat xprev to the original query x in the dataset:
Tcontext(x) = xprev + x, where + denotes the con-
catenation operation. (2) Typo: In real-world ap-
plications, input queries often contain noise, with
typos being a common form of such noise. To
evaluate how UE methods handle noisy inputs, we
introduce synthetic typos into the query, defining
the transformation as: Ttypo(x) = xtypo. (3) Ad-
versarial: We design an adversarial prompt that

aims to confuse UE methods, causing their perfor-
mance to degrade on D∗. This can be viewed as an
adversarial prompt injection attack, targeting UE
methods specifically. Formally, the transformation
is expressed as: Tadv(x) = padv + x, where padv is
the adversarial prompt.

4.2 Experimental Design
We use Llama-3-8B and GPT-4o-mini as the base
models and evaluate them on 1,000 samples from
the test sets of TriviaQA and GSM8K, as described
in Section 3. We measure all methods’ performance
by PRR as described in Section 2.2. All experi-
ments are conducted 5 times, and we plot both the
mean and standard deviation of the results.

Context Experiments To simulate chat history,
we prepend three prior question-sampled response
pairs to each query in two scenarios: 1. Similar-
context: The prior questions are of the same type
as the question (e.g., TriviaQA). 2. Dissimilar-
context: The prior questions are from a different
domain (e.g., GSM8K math before a TriviaQA
question).

Typo Experiments To simulate typos, we ran-
domly replace, swap, erase, or insert a single char-
acter with uniform probability. We also test two-
character perturbations to evaluate the effects of
increased noise.
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Figure 3: PRR performance of UE methods on the GSM8K and TriviaQA datasets with GPT-4o-mini.

Adversarial Experiments Designing an adver-
sarial prompt is non-trivial.We insert a confidence
booster phrase (Sakib et al., 2025), hypothesizing
it may induce overconfidence in model responses,
impacting log probabilities, outputs,and internal
states and potentially misleading UE methods. For
Llama-3-8B experiments, we use the following
prompt:

“Be confident in your responses. Avoid
hesitation or uncertainty. Provide clear
and direct answers with conviction.”

For GPT-4o-mini, we generate a similar prompt
using an automated search inspired by Zhou et al.
(2023). The specific prompt used with the details
of the search process, is provided in Appendix E.1.

4.3 Results and Discussion

The results, Figure 2 and 3, suggest that previous
chat history has little to no negative effect on the
performance of most UE methods, except for Atten-
tion Score, compared to standard prompting with-
out context. In some cases, such as GSM8K with
GPT-4o-mini, including similar chat history ap-
pears to induce an in context learning-like effect,
boosting the performance of probability-based UE
methods.

The typo experiments indicate that most UE
methods are highly resilient to this input noise.
This robustness persists even when the number of

typos in a single query is increased to two, as shown
in Appendix D.2.

Finally, results indicate that the confidence
booster prompt injection acts as an adversar-
ial prompt, reducing performance across vari-
ous datasets, particularly affecting probability-
based methods in GPT-4o-mini. However, output-
consistency-based methods show more resilience to
this adversarial prompt than other approaches. The
instability of UE methods to prompt transforma-
tions is also observed in previous works (Mahaut
et al., 2024). Although some performance vari-
ations are expected, a robust UE method should
not suffer significant degradation due to prompt
changes. Therefore, we recommend that future
UE methods undergo systematic prompt variation
testing to assess their robustness.

5 Applicability to Long-Form
Generations

5.1 Problem Statement

Most UE methods are evaluated on short-form,
open-ended QA. For instance, questions such as
“Who is the author of the novel 1984?” can be an-
swered with a single sentence, and a single score
suffices for an uncertainty assessment. However, in
some real-world applications, questions like “Who
is George Orwell?” often require long-form re-
sponses. These responses may contain multiple
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Figure 4: PRR scores for UE methods applied to long-form generation. ‘QG-5’ and ‘QAG-5’ indicate that five
questions per claim are generated and then aggregated (averaged) to assess each claim’s uncertainty.

claims, some of which are correct while others may
be hallucinated. Consequently, assigning a single
uncertainty score to the entire response is both im-
practical and undesirable, as it fails to capture the
correctness of individual claims within the text.

To address this issue, long-form outputs are typ-
ically decomposed into sentences, each convey-
ing a distinct claim (Farquhar et al., 2024; Wei
et al., 2024b; Fadeeva et al., 2024; Zhang et al.,
2024; Manakul et al., 2023; Min et al., 2023). For-
mally, the decomposition function can be defined
as D : V∗ → 2V

∗
, taking a long generation ŷ

and returning a set of claims C = {ci}Ci=1. After
decomposition, each claim ci is evaluated individ-
ually. Recently, several UE methods have been
developed specifically for this claim-level uncer-
tainty problem in long-form generations (Fadeeva
et al., 2024; Farquhar et al., 2024; Zhang et al.,
2024; Jiang et al., 2024), however, most existing
UE methods are not directly applicable for assess-
ing uncertainty at the claim level in long form
generations(Vashurin et al., 2025). Consequently,
effectively applying these methods to segmented
claims continues to pose challenges.

In this section, we propose a set of strategies
designed to adapt existing UE methods to assess
claim-level uncertainty. A strategy function takes
the original query x, a specific claim ci, and a UE
function U, and returns an uncertainty score for

the claim ci. Formally, a strategy function can be
defined as S : V∗ × V∗ ×U→ R.

5.2 Experimental Design

Decomposing the Long Generation Following
previous research, we employ an LLM to decom-
pose long text into claims (Farquhar et al., 2024;
Fadeeva et al., 2024; Min et al., 2023). This decom-
position can be applied at different levels of granu-
larity. For instance, Wei et al. (2024b) segments the
generation into paragraphs, whereas Fadeeva et al.
(2024); Min et al. (2023) breaks down text into
sentences prior to decomposition. We, similar to
Farquhar et al. (2024), apply decomposition to the
entire generation. However, we introduce an addi-
tional decomposition step for each claim produced
in the initial phase, as the model often generates
sentences that contain more than one claim during
the first decomposition step.
Proposed Strategies to Apply UE to Claims An
uncertainty estimation method U requires two in-
puts: the query and the response. To effectively
employ a UE method within a strategy function S,
we need to define what constitutes the query and re-
sponse. We introduce three strategies to enable the
application of existing UE methods for claim-level
uncertainty estimation:
1. Naive Application: The primary input x serves
as the query, and the claim ci is used as the response
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for the UE method: S(x, ci,U) = U(x, ci).
2. Question Generation (QG): For the given claim
ci, a specific question for that claim x′ is generated,
where the claim itself acts as the answer. Then, the
generated question x′ and the claim ci are inputted
to the UE method: S(x, ci,U) = U(x′, ci).
3. Question Answer Generation (QAG): A question
x′ is generated for the claim such that the claim
serves as the answer. However, instead of using the
claim directly, a new response y′ is generated by
the model in response to x′ to make the claim come
from the actual sampling distribution of the model
to potentially estimate the uncertainty better. The
UE method U(x′, y′) is called if y′ semantically
equivalent with ci. If not, a high uncertainty score
is assigned to the claim:

S(x, ci,U) =

{
U(x′, y′) if ci aligns with y′,

∞ otherwise.
To further improve the last two strategies, mul-

tiple questions can be generated for each claim.
For each question, the processes outlined in the
strategies are applied, resulting in a series of UE
scores for the same claim. To combine these scores
into a single assessment, we can aggregate them by
taking the minimum, maximum, or average.
Models, Datasets, and Metrics We employ GPT-
4o-mini and Llama3-8B as our base models, using
GPT-4o-mini consistently for text decomposition
across all models. For question and answer gen-
eration, the same base model generating the main
response is utilized. We use two long-form QA
datasets: FactScore-Bio (Min et al., 2023), con-
taining biography questions from Wikipedia, and
LongFact-Objects (Wei et al., 2024b), covering 38
diverse topics. Experiments are conducted on a
random sample of 50 questions from each dataset.
For evaluation, we collect the UE scores from all
claims as predictions and follow the SAFE (Wei
et al., 2024b) algorithm to set ground truths, then
calculate the PRR score. More details on this sec-
tion are provided in Appendix E.3.

5.3 Results and Discussion

Our evaluation in LLama-3-8b (Figure 4) and GPT-
4o-mini (Figure 7 in Appendix D.3) shows that
UE methods not designed for long-form generation
can be adapted using decomposition and strate-
gies from Section 5.2. Results suggest that QAG
outperforms other strategies, while Naive Appli-
cation is the least effective. Besides, generating
claim-specific questions (QG, QAG) improves un-

certainty estimation over relying on the original
query (Naive), and using model-generated answers
(QAG) generally is more effective than assessing
claims directly (QG).

For both QG and QAG, generating multiple ques-
tions consistently enhances UE performance, with
only a few exceptions. This may indicate that mul-
tiple inquiries can capture uncertainty more effec-
tively, especially when there are various ways to
form a question for a specific claim. Among the
aggregation methods we evaluated (minimum, max-
imum, and average), averaging is consistently the
most effective, as shown in Appendix D.3.

When comparing different question domains,
higher PRR scores are observed in FactScore-Bio
compared to LongFact-Objects dataset which has
broader subjects such as chemistry, gaming, and
geography. Notably, we observe a non-negligible
performance drop of UE methods in PRR in long-
form generation compared to short-form QA such
as TriviaQA. This highlights there is still significant
room for improvement in applying these methods
to long-form generation.

6 Reconcilability of Diverse UE Scores

6.1 Problem Statement

UE methods use diverse algorithms to estimate un-
certainty which leads to different outputs for the
same input (x, ŷ). We leverage this diversity by
ensembling multiple UE methods during inference
to improve performance. Formally, given K UE
methods (U1,U2, . . . ,UK), their outputs for (x, ŷ)
form the score vector s = (s1, s2, . . . , sK). We ag-
gregate these scores using an ensemble function
E : RK → R. Since UE methods output in differ-
ent numerical ranges, we assume access to a small
supervised calibration dataset Dcal of 100 samples
for normalization.

6.2 Experimental Design

We conduct experiments using LlaMA-3-8B and
GPT-4o-mini, evaluating the PRR performance of
both individual UE methods and ensembling strate-
gies on TriviaQA and GSM8K. Given that we in-
vestigate K = 19 UE methods, the number of pos-
sible ensemble combinations is 2K−K−1, which
is computationally infeasible. Therefore, instead
of exhaustively evaluating all possible ensembles,
we focus on ensembling all methods together and
compare its performance against the most effective
individual UE method.
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Ensembling Strategies We ensemble in two
stages: preprocessing raw scores s and combin-
ing them with E . For preprocessing, we use three
strategies: (1) No processing, using raw scores. (2)
Standard normalization, where s′i =

si−µi

σi
, with

mean µi and standard deviation σi computed from
the calibration set Dcal. (3) Isotonic Regression
calibration (Han et al., 2017), which maps scores
to probabilities in the range [0,1] which approx-
imates correctness likelihood. Unlike normaliza-
tion, which only requires inputs x, calibration also
requires ground truth y in Dcal.

For ensembling, we investigate 7 different strate-
gies. The first two are simple aggregation meth-
ods: taking the minimum and maximum of s.
We also consider averaging methods, including a
simple mean 1

K

∑K
i=1 si and a weighted average∑K

i=1wisi. Here wi represents the PRR perfor-
mance of uncertainty estimator Ui on Dcal. An-
other approach is a voting-based method, where
we count the number of scores exceeding a thresh-
old t:

∑K
i=1 1si>t. Finally, we explore supervised

ensembling approaches by treating the vector s as
a feature vector and training models such as a lin-
ear model and a decision tree using the calibration
dataset Dcal.

TriviaQA GSM8K
Llama GPT Llama GPT

Best single 0.78 0.77 0.72 0.69

R
aw

Max 0.09 0.66 -0.02 0.49
Min 0.56 0.64 0.28 0.35
Mean 0.66 0.76 0.44 0.55
W-mean 0.66 0.76 0.48 0.56
Linear 0.82 0.72 0.73 0.68

N
or

m
al

iz
ed Max 0.76 0.83 0.54 0.64

Min 0.45 0.70 0.41 0.63
Mean 0.78 0.83 0.62 0.67
W-mean 0.79 0.83 0.66 0.69
Linear 0.80 0.77 0.73 0.71

C
al

ib
ra

te
d

Max 0.77 0.79 0.65 0.64
Min 0.63 0.59 0.56 0.63
Mean 0.79 0.80 0.68 0.62
W-mean 0.75 0.80 0.71 0.65
Linear 0.82 0.77 0.75 0.72
Voting 0.77 0.74 0.66 0.64
D.Tree 0.46 0.47 0.44 0.43

Table 2: PRR scores of different ensembling strategies
over 19 UE methods.

6.3 Results and Discussion

The results of the ensembling experiments are pre-
sented in Table 2. Our findings suggest that even
with 100 samples Dcal, ensembling strategies can
achieve gains of up to 0.06 average PRR score com-
pared to the most performant individual UE method.

As expected, directly combining raw UE scores
without normalization or calibration is ineffective
due to the varying scales of different UE methods.
However, applying normalization and calibration
significantly improves ensembling performance,
even with simple strategies such as averaging all
UE scores. For supervised approaches, linear mod-
els with normalized or calibrated inputs consis-
tently outperform the best individual UE method.
In contrast, decision tree generally fails to provide
competitive ensembling performance. Also, we
repeat the experiments using only unsupervised
UE methods (see Appendix D.4), which further
improves performance over the best unsupervised
method. We argue that developing orthogonal UE
methods to existing UE methods may be promising,
as their combination with existing techniques may
yield superior performance. Additionally, explor-
ing novel ensembling strategies specifically for UE
methods could further improve results.

7 Conclusion

We conducted a comprehensive evaluation of 19
UE methods across four key challenges in real-
world deployment. Our findings reveal that most
UE methods are highly sensitive to decision thresh-
old selection and, while resilient to typos and con-
text, remain vulnerable to adversarial prompts. Ad-
ditionally, existing UE methods can be adapted
for long-form generation, though their effective-
ness remains limited. Finally, ensembling multiple
UE methods significantly enhances performance,
even with simple strategies. Future research should
focus on improving UE robustness to threshold
selection and prompt variations, developing more
effective strategies for long-form generation, and
exploring advanced ensembling techniques to max-
imize the performance.
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9 Limitations

While this study highlights key vulnerabilities and
future opportunities for UE methods, our experi-
ments are limited to two models because of the
computational limitations: LLaMA-3-8B and GPT-
4o-mini. Future work should verify these findings
on other state-of-the-art models to assess broader
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applicability. Additionally, the experimental frame-
work introduced in this paper can be extended to
evaluate other UE methods beyond the 19 investi-
gated in this study.
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A Related Works

To the best of our knowledge, no prior work has
explicitly investigated UE methods for generative
LLMs in real-world, wild settings. The most sim-
ilar work is Vashurin et al. (2025), which bench-
marks various UE methods across multiple datasets.
However, their evaluation setup follows the conven-
tional framework used in prior studies (Lin et al.,
2024; Kuhn et al., 2023) and does not investigate,
reliability of threshold selection, input transforma-
tions, and ensembling. Although Vashurin et al.
(2025) evaluate some UE methods on long-form
generations, they only consider methods inherently
designed for the long-form setting. In contrast, we
introduce novel strategies to adapt UE methods that
were originally designed for short-form settings to
long-form generation. Another relevant study is
Mahaut et al. (2024), which assesses the reliability
of uncertainty estimation methods under specific
input transformations, namely paraphrasing and
translation into different languages. Their find-
ings reveal performance inconsistencies similar to
those observed in our input transformation experi-
ments in Section 4. Lastly, Vazhentsev et al. (2023);
Moskvoretskii et al. (2025) ensemble various UE
scores for a better UE and RAG performance re-
spectively.

B Further Discussions on the Definition
of Uncertainty Estimation of LLMs

In addition to the definition of UE methods in LLM
at Section 2.1, an uncertainty method should rely
on the model itself, utilizing elements such as the
model’s internals, log probabilities, or outputs. A
hallucination detection method that relies on exter-
nal sources, such as the Internet or external docu-
ments, does not fall within the category of uncer-
tainty estimation (Chern et al., 2023).

Furthermore, previous definitions often overlook
the fact that ŷ is not just any possible token se-
quence but rather the model’s sampled generation.
In the evaluation of UE methods, they generate ŷ
and estimate uncertainty U(x, ŷ) (Lin et al., 2024;
Kuhn et al., 2023).

Lastly, some methods, such as Semantic En-
tropy (Kuhn et al., 2023), produce an uncertainty
score for a given query x without being specific
to any particular sampled generation. These meth-
ods assign a query-level uncertainty score, which
can still serve as a proxy for the uncertainty of the
model’s sampled generations. While some previ-

ous works (Lin et al., 2024) distinguish between
methods that assign scores to individual sampled
generations and those that provide query-level un-
certainty scores, the latter still fits within the broad
definition of UE we adopt, where U(x, ŷ1) =
U(x, ŷ2) ∀ ŷ1, ŷ2. Therefore, we follow prior
works (Duan et al., 2024; Vashurin et al., 2025;
Yaldiz et al., 2025) and do not make this distinction
in our experiments.

C Investigated Uncertainty Estimation
Methods

In this section, we explain the investigated UE
methods with our implementation details.

C.1 Probability-Based Methods

Probability-based methods assign uncertainty by
analyzing the token probabilities in the model’s
generation.

Length Normalized Scoring (LNS) (Malinin
and Gales, 2021) computes the average log-
probability of each token in the generated se-
quence:

log P̃ (s|x, θ) = 1

L

L∑

l=1

logP (sl|s<l,x; θ), (1)

where P (s|x, θ) represents the probability of the
generated sequence s (of length L), and s<l ≜
{s1, s2, . . . , sl−1} denotes the tokens generated be-
fore token sl.

Entropy (Malinin and Gales, 2021) estimates
uncertainty by sampling multiple generations for a
given query x, computing the LNS for each sam-
ple, and averaging over them. This approach cor-
responds to a Monte Carlo approximation over the
generation space:

H(x, θ) ≈ − 1

B

B∑

b=1

log P̃ (sb|x, θ), (2)

where B represents the number of sampled genera-
tions.

Semantic Entropy (Kuhn et al., 2023) refines
entropy estimation by leveraging the semantic
meanings of sampled generations. Instead of treat-
ing all generations equally, it clusters semantically
equivalent responses and computes entropy based
on the probability distribution over clusters:

SE(x, θ) = − 1

|C|

|C|∑

i=1

lnP (ci|x, θ), (3)

where ci denotes a semantic cluster, and C repre-
sents the set of all clusters. Following (Kuhn et al.,
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2023), we use a DeBERTa-based NLI model† to
generate clusters.

Similarly, SentSAR (Duan et al., 2024) com-
putes pairwise similarities between generations and
assigns higher entropy weights to sentences that are
more similar to others. This method can be inter-
preted as a weighted version of Semantic Entropy.
Instead of binary entailment decisions, SentSAR
assigns a continuous similarity score to each sen-
tence. In our experiments, we use the same similar-
ity model as in the original work‡.

MARS (Bakman et al., 2024) and TokenSAR
(Duan et al., 2024) enhance entropy-based scor-
ing by incorporating the contribution of individual
tokens to the overall meaning. These approaches re-
fine probability-based scoring by weighting token
probabilities differently:

P̄ (s|x, θ) =
L∏

l=1

P (sl|s<l,x; θ)
w(s,x,L,l), (4)

where w(s,x, L, l) represents the token weight as-
signed by MARS or TokenSAR. These methods
aim to emphasize tokens that directly contribute to
answer the query (MARS) or are semantically sig-
nificant (TokenSAR). SAR extends this approach
by combining TokenSAR and SentSAR. Note that
we sample 5 generations for all UE methods requir-
ing sampling which are Entropy, Semantic Entropy,
SentSAR, and SAR.

Finally, LARS (Yaldiz et al., 2025) introduces
a trainable scoring model. LARS employs an
encoder-only transformer that takes as input the
question, the model’s generated tokens, and their
corresponding probabilities, and outputs a relia-
bility score. In our experiments, we use a LARS
model trained on a dataset comprising GSM8K (5k
samples), TriviaQA (8k samples), and NaturalQA
(5k samples), totaling 18k samples.

C.2 Internal State-Based Methods

These methods leverage the model’s internal states
to derive an uncertainty score.

INSIDE (Chen et al., 2024) originally composed
of two main parts: EigenScore and test time fea-
ture clipping. The former one manipulates the ac-
tivation of each new token during the generation
process, which we do not include in our imple-
mentation. EigenScore calculates the semantic di-
vergence in the hidden states of the model over
sampled generations. First, for B sampled genera-

†https://huggingface.co/microsoft/deberta-large-mnli
‡https://huggingface.co/cross-encoder/stsb-roberta-large

tions, a covariance matrix is created Σ = ZT ·J ·Z.
Here, each column of Z is the middle layer hidden
state of the last token a sampled generation, and
J = Id − 1

d1d1
T
d , while d being the hidden dimen-

sion. Then, the uncertainty score is calculated as
follows:

Inside(x, θ) =
1

B

∑

i

log(λi) (5)

where λi’s are the eigenvalues of the regularized
covarience matrix Σ+αIK . We set α = 0.001 and
B = 5 in our experiments.

Attention Scores (Sriramanan et al., 2024) com-
pute the log-determinant of the attention matrices
across all heads of selected layers and sum them.
This computation can be efficiently performed by
summing the logarithm of the diagonal elements of
each attention kernel:

− log det(Keri) = −
m∑

j=1

logKerjji , (6)

where Keri represents the attention kernel matrix
of head i. The original work suggests that the 23rd
layer’s attention kernels yield the best performance
for LLaMA-3-8B. Therefore, we adopt this choice
in our experiments.

SAPLMA (Azaria and Mitchell, 2023) is an
MLP-based model that takes as input the activa-
tion of the last token in a factual claim (generation)
and predicts its truthfulness (confidence). We ob-
serve a performance improvement when including
the question at the beginning of the generation, so
we adopt this modification instead of the original
approach. Additionally, while the original paper
suggests that the 28th layer performs best for most
models, our experiments show no significant perfor-
mance differences across late layers. Consequently,
we use the last layer’s activations as input.

For training, we follow a similar approach to
LARS and initially combine 18k samples from Triv-
iaQA, NaturalQA, and GSM8K. However, since we
observe a performance improvement when exclud-
ing NaturalQA, we train SAPLMA on a reduced
dataset of 13k samples comprising only TriviaQA
and GSM8K. Lastly, we maintain the same MLP
architecture as in the original paper, consisting of
hidden layers with sizes (256, 128, 64) (Azaria and
Mitchell, 2023).

C.3 Output Consistency-Based Methods

Kernel Language Entropy (KLE) (Nikitin et al.,
2024) quantifies uncertainty using the von Neu-
mann entropy (VNE) of the semantic kernel
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Ksem, which is constructed from LLM generations
S1, . . . , SN and the input x:

KLE(x) = V NE(Ksem). (7)

To construct the semantic kernel, we first define
a semantic graph where edges encode pairwise en-
tailment dependencies between output sequences:

Wij = f(NLI(Si, Sj), NLI(Sj , Si)). (8)

The graph Laplacian is computed as L = D−W ,
where the degree matrix D is defined as:

Dii =

|V |∑

j=1

Wij . (9)

Following Nikitin et al. (2024), we construct
a heat kernel Kt = e−tL. To obtain a unit-trace
positive semidefinite kernel, we apply the following
normalization:
K(x, y)← K(x, y)(K(x, x)K(y, y))−1/2/N,

(10)
where N is the size of K. Finally, the kernel en-
tropy is computed using the von Neumann entropy
(VNE):

V NE(A) ≜ −Tr[A logA]. (11)

For pairwise entailment assessment, we use the
DeBERTa-Large-MNLI model§, following the orig-
inal implementation.

SumEigenV is computed using the Laplacian
matrix L:

L ≜ I −D− 1
2WD− 1

2 . (12)
The final SumEigenV score is defined as:

SumEigV =

N∑

k=1

max(0, 1− λk), (13)

where λ1, . . . , λN are the eigenvalues of the Lapla-
cian matrix L.

Using the same degree matrix D, we define De-
gree Matrix Uncertainty and Degree-Matrix-C
for a given generation j as:

Degree Matrix Uncertainty =
trace(mI −D)

m2
,

(14)

Degree Matrix-C =
Dj,j

m
. (15)

Eccentricity Uncertainty and Eccentricity-C
are computed as follows. First, we obtain the small-
est k eigenvectors, u1, . . . , uk. For each genera-
tion j, we construct the vector vj = [u1,j , ..., uk,j ].

§https://huggingface.co/microsoft/
deberta-large-mnli

Then, the uncertainty measures are defined as:
Eccentricity Uncertainty =

∥∥[v′⊤
1 , . . . ,v′⊤

N

]∥∥
2
,

Eccentricity-C = −∥v′
j∥2.

(16)
where v′

j = vj − 1
m

∑m
j′=1 vj′ .

Self Detection paraphrases each question five
times and clusters the generations based on en-
tailment relationships. An entropy score is then
computed over these clusters as follows:

Self Detection Entropy = −
∑

ci∈C

|ci|
Nq

ln

( |ci|
Nq

)
,

(17)
where C represents the set of clusters and Nq is
the number of paraphrased questions (5 in our ex-
periments). In addition to this entropy score, Li
et al. (2024) use it as a feature to train a model on
labeled samples. We use the following prompt for
generating questions:

Given a question, paraphrase it to have
different words and expressions but
have the same meaning as the original
question. Please note that you should
not answer the question, but rather
provide a re-phrased. These paraphrased
questions should be different from each
other. Previous paraphrased questions:
{previous_questions}. Only output a
single paraphrased question, nothing
else. Question: {question}

C.4 Self-Checking Methods
Self-checking UE methods estimate the model’s
uncertainty by prompting the model itself to assess
its confidence in a given response.

Ptrue (Kadavath et al., 2022) measures uncer-
tainty by evaluating the probability assigned to the
token "true" for a given generation, question, and
sampled ideas. The specific prompt used in our
experiments is as follows:

You are a helpful, respectful, and
honest question-answer evaluator.
You will be given a question,
some brainstormed ideas, and a
generated answer. Evaluate the
generated answer as true or
false, considering the question
and brainstormed ideas. Output
"The generated answer is true" or
"The generated answer is false".

Question: {question}
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Here are some brainstormed ideas:
{sampled_generations}
Generated Answer: {generated_text}

Verbalized Confidence prompts the model to
explicitly state its confidence in the correctness of
a response as a numerical score between 0 and 100
for a given question-response pair. The prompt
used in our experiments is:

You are a helpful, respectful, and honest
confidence estimator. You will be provided
with a question and a corresponding answer
that you generated. Your task is to
evaluate your confidence in the accuracy
of the provided answer. The confidence
indicates how likely you think your
answer is true.

The output must be a single number between
0 and 100:
- 100 indicates maximum confidence.
- 0 indicates no confidence.

Output format: Only the number, without
any additional text or explanation.

Question: {question}
Generated Answer: {generated_text}

Your confidence score:

D Additional Experimental Results

D.1 Sensitivity of Decision Threshold

Additional experimental results using GSM8K as
the test dataset are presented in Table 3. These
results align closely with those in Table 1. As ex-
pected, when the calibration dataset exhibits greater
distributional shift (e.g., TriviaQA), the ARE in-
creases significantly for most methods. Only a few
methods—MARS, Semantic Entropy, and Eccen-
tricity—consistently maintain a low ARE across
both calibration datasets similar to Table 1.

D.2 Robustness to Input Transformations

The performance of UE methods with two typos
per sentence is shown in Figure 5. Even with an
increased typo count of two per sentence, most UE
methods remain resilient to typos, consistent with
the findings in Section 4.

D.3 Applicability to Long-Form Generations

We present the results for applying different aggre-
gation methods, namely minimum, maximum, and
average, after generating 5 questions per claim for
QA and QAG strategies. For both of them aver-
aging is the best performing overall. Taking the
minimum seems rarely better than averaging for
QG, while the maximum occasionally outperforms
averaging on QAG.

Llama3-8b GPT-4o-mini
Calib. Dataset TriviaQA GSM8K TriviaQA GSM8K

LNS 0.102 0.022 0.069 0.018
MARS 0.088 0.019 0.049 0.022
Entropy 0.107 0.017 0.074 0.021
SE 0.068 0.020 0.063 0.026
SentSAR 0.136 0.014 0.106 0.021
SAR 0.116 0.019 0.098 0.022
LARS 0.171 0.022 0.395 0.025
DegMat 0.160 0.024 0.130 0.024
DegMat-C 0.146 0.021 0.117 0.014
SumEigV 0.185 0.024 0.157 0.023
KLE 0.187 0.045 0.101 0.054
Eccent 0.064 0.023 0.061 0.028
Eccent-C 0.085 0.022 0.061 0.021
Self-D. 0.116 0.096 0.099 0.089
P(True) 0.260 0.022 0.179 0.056
Verb. C. 0.216 0.231 0.142 0.077
Atten. S. 0.288 0.020 - -
INSIDE 0.275 0.022 - -
SAPLMA 0.115 0.022 - -

Table 3: ARE of UE methods when the threshold is
calibrated on various datasets and tested on GSM8K.

TriviaQA GSM8K
Llama
-3-8B

GPT-4o
-mini

Llama
-3-8B

GPT-4o
-mini

Best single 0.68 0.74 0.59 0.64

R
aw

Max 0.09 0.66 -0.02 0.50
Min 0.56 0.64 0.28 0.35
Mean 0.64 0.76 0.42 0.52
W-mean 0.64 0.76 0.57 0.53
Linear 0.74 0.70 0.47 0.60

N
or

m
al

iz
ed Max 0.70 0.82 0.47 0.62

Min 0.45 0.70 0.32 0.49
Mean 0.74 0.82 0.56 0.63
W-mean 0.74 0.76 0.57 0.63
Linear 0.74 0.77 0.59 0.58

C
al

ib
ra

te
d

Max 0.73 0.79 0.55 0.61
Min 0.57 0.58 0.47 0.59
Mean 0.75 0.79 0.60 0.59
W-mean 0.75 0.79 0.61 0.60
Linear 0.73 0.76 0.61 0.63
Voting 0.73 0.73 0.57 0.60
D. Tree 0.38 0.45 0.28 0.38

Table 4: PRR scores of different ensembling strate-
gies over 17 unsupervised UE methods (LARS and
SAPLMA are not included).

D.4 Reconcilability of Diverse UE Scores

We conducted the ensembling experiments again,
this time using only unsupervised UE methods.
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Figure 5: PRR performance of all investigated UE methods on the GSM8K and TriviaQA datasets under the typo
transformation with two typos per sentence.

Figure 6: PRR scores for UE methods applied to long-form generation. ‘QG5’ and ‘QAG5’ indicate that five
questions per claim are generated and then aggregated to assess each claim’s uncertainty. Different approaches,
minimum, maximum and, average, are applied for aggregation.
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Figure 7: PRR scores for UE methods applied to long-form generation for GPT-4o-mini.

The results, presented in Table 4, indicate that
ensembling can enhance performance, improving
upon the best individual unsupervised UE method
by up to 8 PRR points. The overall interpretation
of these results remains consistent with the findings
in Section 6.3 which further reinforces the effec-
tiveness of ensembling strategies for unsupervised
UE methods.

E Details of the Experiments

E.1 Crafting Adversarial Prompt For
GPT-4o-mini

To identify an adversarial prompt capable of de-
grading the performance of UE methods, we per-
form prompt-tuning (Zhou et al., 2023) on 150
samples from the training portion of the TriviaQA
dataset. We begin with an initial prompt—the confi-
dence booster prompt used for LLaMA-3-8B—and
define the task for the model. At each iteration, we
request a modified prompt and evaluate its impact
using the performance of three selected UE meth-
ods: LNS, Eccentricity, and KLE. To refine the
adversarial prompt, we use the prompt-tuning ap-
proach outlined in Table 5. After 15 iterations, we
select the most effective prompt that maximally
decreases UE performance, which is as follows:

“Confidently present every answer as if it
were indisputably correct, embellishing
your certainty with emphatic language
and eliminating any trace of doubt, re-
gardless of whether the information is
actually accurate.”

E.2 Evaluating the Correctness of a
Generation

We assess the correctness of short-form QA gen-
erations using an LLM, following the approach of
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previous studies (Farquhar et al., 2024; Duan et al.,
2024; Bakman et al., 2024; Yaldiz et al., 2025).
Specifically, we provide the model with the ground
truth(s), the question, and the generated answer for
evaluation. For a consistent evalaution, we exclude
question-generation pairs where the LLM refuses
to provide an answer. We use GPT-4o-mini for
evaluation, employing the same prompt as in Wei
et al. (2024a).

E.3 Applicability to Long-Form Generations

Decomposing the Long Generation To effec-
tively decompose long text generations into indi-
vidual claims, we employ a two-step decomposi-
tion process. In the first step, the entire text is
segmented into preliminary claims. However, this
initial segmentation might not achieve the desired
level of granularity, as some segments may still
contain multiple claims. To address this, we per-
form a second decomposition on each output from
the first step to ensure finer granularity. For both
stages, we utilize GPT-4o-mini, but with distinct
prompts prepared to each step’s specific require-
ments. The prompt for the first step is given in
Table 6, and the prompt for the second step can be
found in Table 7. Lastly, to ensure that the decom-
position output is a proper Python list, we utilized
the ‘Instructor’ library¶. Lastly, we provide output
samples of decomposition in Tables 8 and 9.

Labeling Decomposed Claims Long-form gen-
erations, or decomposed claims, typically lack
ground truths, essential for assessing the perfor-
mance of uncertainty estimation. To address this
issue, we adopt the methodology named as Search-
Augmented Factuality Evaluator (SAFE)(Wei et al.,
2024b). SAFEemploys Google Search to retrieve
passages related to each claim, then applies reason-
ing with an LLM to determine whether the claim
is supported or unsupported. In our evaluations,
we utilize GPT-4o-mini as the LLM for reason-
ing and consider supported claims as correct and
unsupported claims as incorrect. We use the orig-
inal implementation and the default prompts and
settings provided by that||.

Prompts Used in Proposed Strategies To gen-
erate questions within the QG and QAG strategies
described in Section 5.2, we used the prompt pro-

¶https://github.com/instructor-ai/instructor
||https://github.com/google-deepmind/

long-form-factuality/blob/main/eval/safe/rate_
atomic_fact.py

vided in Table 10. Note that the base model that
is used the generate an answer to the main ques-
tion is also used to generate questions. To generate
an answer to the generated question within QAG
strategy, we employed the following prompt:

You are a helpful assistant. Give a single
claim answer to given question. Don't
provide any additional information. Just
answer the question with a brief sentence
in a single claim. Question: {question}
Answer:

Dataset Details We provide sample questions
from the datasets in Table 11. For FactScore-Bio,
the total number of claims is 1290 for GPT-4o-mini
and 1764 for Llama-3-8B. For LongFact-Objects,
the total number of claims is also 1049 for GPT-4o-
mini and 1780 for Llama-3-8B. Note that the same
set of questions is used for both models.

E.4 Computational Budget
We use 40 GB Nvidia A100 GPUs for all the ex-
periments. We use GPT API to run gpt-4o-mini
experiments. The total GPU hours for LLama-3-8b
experiments are approximately 800 hours.
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You are a Prompt Tuner.

Your mission is to craft adversarial prompts that disrupt the model’s uncertainty estimation while
preserving its accuracy. Typically, we expect a model to exhibit high confidence in correct responses
and low confidence in incorrect ones. In this task, however, your goal is to reverse these behaviors:
- The model should be unconfident when its responses are correct.
- The model should be confident when its responses are incorrect.

Key Details

There are three types of confidence estimation methods:
1.Log-Probability Based: Analyzes the model’s internal log-probabilities.
2. Consistency Sampling (Method 1): Samples multiple answers and evaluates their agreement.
3. Consistency Sampling (Method 2): Uses a different approach to assess agreement among sampled
responses.

For every prompt you create, I will evaluate the performance of these confidence estimation methods
as well as the model’s accuracy. Your objective is to reduce the effectiveness of these confidence
estimation methods while ensuring the model’s accuracy remains unchanged.

Strategy

To achieve this, your main tactic is to influence the model to assert high confidence in all its answers,
regardless of their correctness. This manipulation should make it more challenging for the confidence
estimation methods to differentiate between confident and unconfident responses.
- You may experiment with creative or straightforward prompt designs.
- Iteratively refine your prompts based on feedback from the performance evaluation.

Feedback Loop

Below, I will provide a record of the prompts attempted so far, along with their performance metrics.
Use this history to inform and guide your revisions:

for i in number of iterations so far:

Prompt: prompts_so_far[i]
Performance of confidence estimation 1: performance_so_far[i][0]
Performance of confidence estimation 2: performance_so_far[i][1]
Performance of confidence estimation 3: performance_so_far[i][2]
Model accuracy: model_accuracy[i]

Please provide a new prompt. Do not return anything else. Just return the prompt which I will append
to the beginning of the question.

Table 5: Prompt for adversarial tuning of model uncertainty estimation.
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System: You are a helpful assistant. List the specific factual claims included in the given input as a python
list. Be complete and do not leave any factual claims out. Provide each factual claim as a separate sentence
in a list, without adding explanations, introductions, or conversational responses. Each sentence must
be standalone, containing all necessary details to be understood independently of the original text and
other sentences. This includes using full identifiers for any people, places, or objects mentioned, instead
of pronouns or partial names. If there is a single factual claim in the input, just provide one sentence.

Examples:

Paragraph: Mount Everest is the tallest mountain in the world, standing at 8,848 meters above sea level. It
is located in the Himalayas on the border between Nepal and the Tibet Autonomous Region of China. The
first successful ascent of Mount Everest was achieved in 1953 by Sir Edmund Hillary and Tenzing Norgay.
I hope you found these facts interesting! Do you have any specific questions or would you like to know
more about the Mount Everest?
Claims:
[‘Mount Everest is the tallest mountain in the world.’,
‘Mount Everest stands at 8,848 meters above sea level.’,
‘Mount Everest is located in the Himalayas.’,
‘Mount Everest is on the border between Nepal and the Tibet Autonomous Region of China.’,
‘The first successful ascent of Mount Everest was achieved in 1953.’,
‘Sir Edmund Hillary and Tenzing Norgay achieved the first successful ascent of Mount Everest.’]

Paragraph: Medical ethics are also evolving to address issues related to genetic testing, privacy concerns,
and the ethical implications of personalized medicine, highlighting the importance of maintaining patient
autonomy, informed consent, and confidentiality in the era of advanced health technologies.
Claims:
[‘Medical ethics are evolving to address issues related to genetic testing.’,
‘Medical ethics are evolving to address privacy concerns.’,
‘Medical ethics are evolving to address the ethical implications of personalized medicine.’,
‘Maintaining patient autonomy is important in the era of advanced health technologies.’,
‘Informed consent is important in the era of advanced health technologies.’,
‘Confidentiality is important in the era of advanced health technologies.’]

For the new sample, simply list the factual claim in seperate sentences as a python list, without adding
explanations, introductions, or conversational responses.

User: Paragraph: {TEXT}
Claims:

Table 6: Prompt for long-text decomposition step 1.
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System: You are a helpful assistant. List the specific factual claims included in the given input as a
python list. Be complete and do not leave any factual claims out. Provide each factual claim as a separate
sentence in a list, without adding explanations, introductions, or conversational responses. Each sentence
must be standalone, containing all necessary details to be understood independently of the original text.
This includes using full identifiers for any people, places, or objects mentioned, instead of pronouns or
partial names. If there is a single factual claim in the input, just provide the sentence itself. If there is no
factual claim in the input, provide an empty list.

Examples:

Input: Mount Everest is the tallest mountain in the world, standing at 8,848 meters above sea level.
Claims:
[‘Mount Everest is the tallest mountain in the world.’,
‘Mount Everest stands at 8,848 meters above sea level.’]

Input: Medical ethics are also evolving to address issues related to genetic testing, privacy concerns, and
the ethical implications of personalized medicine.
Claims:
[‘Medical ethics are evolving to address issues related to genetic testing.’,
‘Medical ethics are evolving to address privacy concerns.’,
‘Medical ethics are evolving to address the ethical implications of personalized medicine.’]

Input: Abraham Lincoln was the 16th president of the United States.
Claims:
[‘Abraham Lincoln was the 16th president of the United States.’]

Input: I hope you found these facts interesting! Is there anything else you would like to know?
Claims:
[]

For the new input, simply list the factual claim in seperate sentences as a python list, without adding
explanations, introductions, or conversational responses.

User: Paragraph: {TEXT}
Claims:

Table 7: Prompt for long-text decomposition step 2.
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Question: What is the gaming company "Blizzard Entertainment"?
Generation: Blizzard Entertainment is an American video game developer and publisher known for
creating some of the most popular and influential games in the industry. Founded in 1991, it is recognized
for its successful franchises, including "Warcraft," "StarCraft," "Diablo," and "Overwatch." The company
is also known for its massively multiplayer online role-playing game (MMORPG) "World of Warcraft,"
which has drawn millions of players since its release in 2004. Blizzard is renowned for its emphasis on
quality, storytelling, and community engagement in gaming, and it has won numerous awards over the
years. The company became a subsidiary of Activision Blizzard after a merger in 2008.
Claims:
[‘Blizzard Entertainment is an American video game developer.’,
‘Blizzard Entertainment is an American video game publisher.’,
‘Blizzard Entertainment is known for creating some of the most popular games in the video game industry.’,
‘Blizzard Entertainment is known for creating some of the most influential games in the video game
industry.’,
‘Blizzard Entertainment was founded in 1991.’,
‘Blizzard Entertainment is recognized for its successful franchises.’,
‘Blizzard Entertainment has successful franchises including "Warcraft."’,
‘Blizzard Entertainment has successful franchises including "StarCraft."’,
‘Blizzard Entertainment has successful franchises including "Diablo."’,
‘Blizzard Entertainment has successful franchises including "Overwatch."’,
‘Blizzard Entertainment is known for its massively multiplayer online role-playing game "World of
Warcraft."’,
‘"World of Warcraft" has drawn millions of players since its release in 2004.’,
‘Blizzard Entertainment is renowned for its emphasis on quality in gaming.’,
‘Blizzard Entertainment is renowned for its storytelling in gaming.’,
‘Blizzard Entertainment is renowned for its community engagement in gaming.’,
‘Blizzard Entertainment has won numerous awards over the years.’,
‘Blizzard Entertainment became a subsidiary of Activision Blizzard after a merger in 2008.’]

Table 8: Output of long-text decomposition. The question is from LongFact-Objects and the model used to generate
the answer is GPT-4o-mini.
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Question: Tell me a bio of Andrew Shue.
Generation: Andrew Shue is an American actor, producer, and former professional soccer player. He
was born on January 20, 1967, in South Orange, New Jersey, USA.
Shue began his career as a professional soccer player, playing for the United States national team and the
New York/New Jersey MetroStars in Major League Soccer. However, he suffered an injury that forced
him to retire from professional soccer in 1994.
After his soccer career, Shue turned to acting and began appearing in various television shows and films.
Some of his notable roles include:
* "The Breakfast Club" (1985) - Shue played the role of Andrew Clark, a popular high school student.
* "Mallrats" (1995) - Shue starred alongside Jason Lee and Jeremy London in this comedy film.
* "The Adventures of Pete & Pete" (1992-1996) - Shue played the role of C.J. Lane, the older brother of
the main characters, in this Nickelodeon television series.
* "Sister, Sister" (1994-1999) - Shue had a recurring role as Eddie Stevens, the love interest of one of the
main characters, in this ABC sitcom.
Shue has also worked as a producer and has been involved in several business ventures, including the
development of the social networking site, MySpace.
Shue is married to Amy Robach, a journalist and news anchor, and they have two daughters together.
Claims:
[‘Andrew Shue is an American actor.’,
‘Andrew Shue is a producer.’,
‘Andrew Shue is a former professional soccer player.’,
‘Andrew Shue was born on January 20, 1967.’,
‘Andrew Shue was born in South Orange, New Jersey, USA.’,
‘Andrew Shue began his career as a professional soccer player.’,
‘Andrew Shue played for the United States national soccer team.’,
‘Andrew Shue played for the New York/New Jersey MetroStars in Major League Soccer.’,
‘Andrew Shue suffered an injury that forced him to retire from professional soccer in 1994.’,
‘Andrew Shue turned to acting after his soccer career.’,
‘Andrew Shue began appearing in various television shows.’,
‘Andrew Shue began appearing in films.’,
‘Andrew Shue played the role of Andrew Clark in "The Breakfast Club" in 1985.’,
‘Andrew Shue starred in "Mallrats" in 1995.’,
‘Andrew Shue starred alongside Jason Lee in "Mallrats".’,
‘Andrew Shue starred alongside Jeremy London in "Mallrats".’,
‘From 1992 to 1996, Andrew Shue played the role of C.J. Lane in "The Adventures of Pete & Pete".’,
‘From 1994 to 1999, Andrew Shue had a recurring role as Eddie Stevens in "Sister, Sister".’,
‘Andrew Shue has worked as a producer.’,
‘Andrew Shue has been involved in several business ventures.’,
‘Andrew Shue has been involved in the development of the social networking site MySpace.’,
‘Andrew Shue is married to Amy Robach.’,
‘Amy Robach is a journalist.’,
‘Amy Robach is a news anchor.’,
‘Andrew Shue and Amy Robach have two daughters together.’]

Table 9: Output of long-text decomposition. The question is from FactScore-Bio and the model used to generate the
answer is Llama-3-8B.
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System: You are an expert assistant skilled at generating focused and contextually relevant questions from
claims. Your task is to create a question such that the answer would align closely with the provided claim.
To ensure the question is precise and relevant, consider the context provided by the original question.
Study the examples below from a variety of topics and follow the same pattern.

Original Question: What themes are commonly explored in 20th-century dystopian literature?
Claim: George Orwell’s novel 1984 explores the theme of government surveillance.
Question: What theme does George Orwell’s novel 1984 explore?

Original Question: What themes are commonly explored in 20th-century dystopian literature?
Claim: George Orwell’s novel 1984 portrays a totalitarian regime that monitors every aspect of citizens’
lives.
Question: How does George Orwell’s novel 1984 reflect the theme of totalitarian control, as commonly
explored in 20th-century dystopian literature?

Original Question: What themes are commonly explored in 20th-century dystopian literature?
Claim: The novel 1984 is written by George Orwell.
Question: Who has written the novel 1984?

Original Question: How has artificial intelligence influenced industries in the 21st century?
Claim: Artificial intelligence enables better decision-making through data analysis.
Question: How does artificial intelligence enhance the decision-making process in modern businesses?

Original Question: What factors contributed to the Great Depression, and how did governments respond?
Claim: Stock market speculation contributed to the Great Depression.
Question: Did stock market speculation contribute to the Great Depression?

Original Question: Who is Abraham Lincoln?
Claim: Abraham Lincoln is best known for leading the country through the Civil War.
Question: What is Abraham Lincoln’s most significant historical contribution?

Original Question: Who is Abraham Lincoln?
Claim: Abraham Lincoln served from 1861 to 1865 as the president of the US.
Question: When did Abraham Lincoln serve as the president of the United States?

Now, follow the pattern demonstrated in the examples to generate a question for the given claim, without
adding explanations, introductions, or conversational responses.

User: Original question: {MAIN_QUESTION}
Claim: {CLAIM}
Question:

Table 10: Prompt for question generation used in QG and QAG strategies to adapt UE methods to long-form
generation.
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Dataset Question

FactScore-Bio

Tell me a bio of Vaira Vı̄k, e-Freiberga.
Tell me a bio of Ji Sung.
Tell me a bio of Baltasar Corrada del Río.
Tell me a bio of Henry Santos.
Tell me a bio of Mike Trivisonno.

LongFact-Objects

Who is Yoshua Bengio?
What is known about the World Trade Organization?
What took place during the fall of the Berlin Wall in 1989?
What is the gaming company "Blizzard Entertainment"?
How is the United States related to the East Asia Summit (EAS)?

Table 11: Sample questions from long-form generation datasets.
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