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Abstract

Text-guided image editing, fueled by recent
advancements in generative AI, is becoming
increasingly widespread. This trend highlights
the need for a comprehensive framework to ver-
ify text-guided edits and assess their quality. To
address this need, we introduce EditInspector, a
novel benchmark for evaluation of text-guided
image edits, based on human annotations col-
lected using an extensive template for edit veri-
fication1. We leverage EditInspector to evaluate
the performance of state-of-the-art (SoTA) vi-
sion and language models in assessing edits
across various dimensions, including accuracy,
artifact detection, visual quality, seamless in-
tegration with the image scene, adherence to
common sense, and the ability to describe edit-
induced changes. Our findings indicate that
current models struggle to evaluate edits com-
prehensively and frequently hallucinate when
describing the changes. To address these chal-
lenges, we propose two novel methods that out-
perform SoTA models in both artifact detection
and difference caption generation.

1 Introduction

The ability to create and modify images is vital in
fields such as social media, marketing, and graphic
design. Recent advancements in generative AI have
greatly democratized this ability. In particular, nat-
ural language enables high-quality, customized vi-
sual content creation with minimal effort.

Text-guided editing models require a source im-
age and instruction (Kawar et al., 2023; Zhang
et al., 2022; Brooks et al., 2023; Wu et al., 2023b;
Zhang et al., 2024b), sometimes allowing multi-
turn editing (Sheynin et al., 2023; He et al., 2024;
Wu et al., 2023a; Cui et al., 2023). For more precise
spatial control a user might provide the source im-
age, a mask, and a text prompt specifying changes
for the masked area (Avrahami et al., 2022; Nichol

1https://editinspector.github.io/

et al., 2022; Couairon et al., 2022; Wang et al.,
2023; Zhang et al., 2024a). Extensive human evalu-
ations showed that mask-based text-guided editing
produces superior results compared to mask-free
editing (Wang et al., 2023; Zhang et al., 2024a).

Despite these advancements, evaluating the qual-
ity and accuracy of edits remains challenging, as
demonstrated in Figure 1. Current methods often
focus on whether the edited object matches the
requested attributes (Wang et al., 2023) or use rank-
ing scores for accuracy (Zhang et al., 2024a). How-
ever, they overlook pain points such as unintended
artifacts, misalignment with user expectation, vi-
sual quality, and adherence to common sense. For
example, in Figure 2, the edit changes teardrops to
stars as instructed, but unintentionally adds a line
and alters the wall’s appearance.

To address these challenges, we propose EditIn-
spector, a comprehensive benchmark for assessing
evaluators of text-guided image edits (Section 2).
EditInspector examines edits across five dimen-
sions: (1) whether the edit accurately follows the
instructions and aligns with user expectations; (2)
introduction of unintended artifacts; (3) technical
quality (low resolution, blur, etc.); (4) the accuracy
of a description of the main difference; and (5)
the accuracy of a detailed listing of the differences
between the original and the edited images.

We begin by creating a human evaluation frame-
work, shown in Figure 2, that assesses edits based
on the dimensions outlined above (Section 2.1).
Using this framework, we collected human anno-
tations as edit inspectors through crowdsourcing,
evaluating 783 edits from the MagicBrush (Zhang
et al., 2024a) test set of 1,053 edits, to introduce
the EditInspector benchmark (Section 2.2).

We then evaluate state-of-the-art vision and lan-
guage models (VLMs) as edit inspectors on the
EditInspector benchmark, comparing their perfor-
mance with human annotations, as shown in Fig-
ure 1. The results show that all models perform
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Original

Edited

Are there any artifacts?

1.5

4-Turbo 4 4o

NoYes Yes Yes No Yes

Does the difference caption: The floor on which the boxes are 
placed was changed to wood. accurately describe the difference?

1.5

4-Turbo 4 4o

NoYes No No Yes Yes

Was the edit technically precise?

1.5

4-Turbo 4 4o

NoYes No No Yes Yes

Was the edit contextually consistent?

1.5

4-Turbo 4 4o

NoYes No No Yes No

Was the edit executed accurately?

1.5

4-Turbo 4 4o

NoYes No No Yes Yes

Please describe all the differences between these 
two images

1.5
There are no differences between the images 
provided

4o
The floor has changed from a carpeted 
surface in the first image to a wooden 
surface in the second image

The carpet floor on which the boxes were 
placed was changed to wood. Another door is 
placed beside the original door of the fridge. 
The bottom of the fridge and its door is 
extended along with the yellow box. The text 
on the bottom right of the yellow box is 
missing and the text and image in the center 
is replaced with a different distorted image.

Figure 1: The assessments for the edit “Let the floor be made of wood” vary across different models, with 2–3
models answering each question correctly. Gemini 1.5 failed to detect any differences between the images, while
GPT-4o successfully identified only the main difference. See Appendix A.7 for full-size prompts.

poorly across all tasks, with accuracy hovering
around random chance (Section 3.3.1). Gemini-1.5
(Gemini Team, 2024) emerged as the top performer
for the edit inspector questions, achieving 70.3%
accuracy in the edit accuracy question. We evaluate
models’ ability to generate a summary of the main
change and a detailed list of all differences as an
upper-bound test of edit accuracy, artifact detection,
and visual quality. In this task, GPT-4o achieved
39% accuracy in describing the main difference
but detected only 12% of all differences, with only
40% aligning with human annotations, highlighting
significant hallucinations. (Section 3.3.2).

We tackle the challenges of artifact detection and
difference caption generation with two methods.
First, we developed a zero-shot pipeline using Gem-
ini as the visual backbone to generate instruction-
grounded difference captions and metadata (Sec-
tion 4.1). The pipeline analyzes image captions at
three zoom levels around the edit area and outputs
a difference caption, achieving 75% accuracy in
describing the main difference, compared to 39%
by the best SoTA model. Second, we introduced a
novel artifact detection method that achieves 64%
accuracy by analyzing object segmentation proba-
bilities around the edited area (Section 4.2).

Finally, we introduce an end-to-end fine-tuned
model that rivals much larger models, deliver-
ing competitive SoTA performance while reduc-
ing computational costs (Section 5). To train our
model we use two augmentation methods to gen-
erate 31,059 training instances. The first method
creates negative examples with objects closely re-
sembling the original (Section 5.1), and the second
reverses the edit direction, e.g., by changing an

“Add” edit to a “Remove” edit (Section 5.2).
In summary, our main contributions are: (1) A

comprehensive framework for image edit evalua-
tion, and the EditInspector benchmark, which we
release for future work and future model assess-
ment; (2) A thorough evaluation of SoTA VLMs as
edit inspectors, showing that, across all aspects,
none can effectively assess edits; (3) Two new
methods outperforming SoTA models for artifact
detection and difference caption generation; and,
(4) An end-to-end fine-tuned model that rivals
much larger models in performance.

2 EditInspector Dataset

Our goal is to develop a dataset and framework for
image editing verification that offers a comprehen-
sive evaluation of edits, addressing overlooked pain
points like unintended artifacts, instruction incon-
sistencies, scene misalignment, and technical flaws.
To achieve this, we introduced the human evalua-
tion framework in Section 2.1 and annotated 783
MagicBrush edits using it to create our benchmark
in Section 2.2. MagicBrush is a manually anno-
tated dataset for instruction-guided, mask-provided
image editing. The statistics and analysis of our
benchmark are presented in Section 2.3.

2.1 Human Evaluation Framework
Our motive was to develop a comprehensive frame-
work that evaluates multiple aspects of image edit-
ing. We tested and refined templates and questions
using internal and crowdsourced feedback, result-
ing in the framework shown in Figure 2.

The evaluation begins with Accuracy Level,
where annotators assess whether the edit follows
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Figure 2: This is an example of our annotation user interface. The edit appears to be accurately executed but includes
unexpected elements, such as differences in the door layers and a tilted star edge. There are mild artifacts, including
a shadow behind the wall and a thick gray line beneath the star cutout. Clicking the tree icons opens decision trees
that help annotators follow the evaluation guidelines (See Appendix A.16).

the instruction and meets user expectations. If it
fully follows the instruction, annotators select Ac-
curate or Accurate, But Unexpected if it deviates
from expectations. For partial adherence to the
instruction, they select Inaccurate, Reflects Instruc-
tion, and for no adherence, Inaccurate.

For any selection other than Accurate, annotators
are asked to explain under Contextual Consistency
how the edit failed to meet expectations or align
with the instruction, image scene, or common sense.
Under the Technical Precision question annotators
comment on pixel-level details like resolution, blur-
riness, and smoothness.

For example, in Figure 2 a teardrop cutout was
changed to a star-shaped hole, but all annotators
marked it as “Accurate, But Unexpected” due to the
tilted star edge and the unexpected material appear-
ance, as seen in Contextual Consistency feedback.

Next, the Artifacts evaluation involves anno-
tators identifying any unintended distortions or
anomalies in the edit. Artifacts are classified into
two levels: Significant or Mild, based on their sever-
ity. In the example in Figure 2, two Mild artifacts
are present: an unintended shadow and an extra
line beneath the star-shaped hole.

Finally, to collect a difference caption that de-
scribes all differences between the original and
edited images as an upper-bound evaluation, we

start with an automatically generated caption that
describes the main difference (Section 4.1). Hu-
mans then review it, either accepting or correcting
it and expand it to include additional differences if
artifacts are present, as shown in Figure 2.

2.2 Human Annotation
We employed Amazon Mechanical Turk (AMT) to
evaluate image edits using human annotators, as
shown in Figure 2, with three annotations per edit.
Quality annotators were selected through a paid
qualification test, and multiple steps were taken to
ensure the instructions were clear and accessible in
the UI (See Appendices A.6 and A.17).

2.3 Human Evaluation Analysis
Majority vote label distribution is presented in Ta-
ble 1. Despite the task’s subjectivity, agreement
averaged 80% to 86%, compared to random chance
of 25% for Accuracy and 33% for Artifacts. Ma-
jority agreement hit 95% for Accuracy and 97%
for Artifacts. Full agreement among all annotators
was achieved for 42% to 57% of edits. In 85% of
examples, the edit reflected the instruction (“Accu-
rate” or “Accurate, But Unexpected”), while 38%
of edits contained significant artifacts.

The edit types were distributed as follows: Add
35.8%, Change Attribute 21.6%, Remove 7.3%,
and Replace 31.3%, based on the image cap-
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Category Statistics (%)

Accuracy
Level

Accurate: 8%
Accurate
Unexpected: 77%

Inaccurate: 6%
Inaccurate
Reflects: 4%

Artifacts
Level Significant: 38% Mild: 57%

No Artifact: 2%

Technical
Precision Yes: 31% No: 69%

Visual
Consistency Yes: 18% No: 82%

Diff Caption
Accuracy Yes: 60% No: 40%

Table 1: Distribution of majority vote labels across cat-
egories. In 85% of examples, the edit reflected the
instruction (“Accurate” or “Accurate, But Unexpected”),
while 38% of edits contained significant artifacts.

tion pipeline metadata in Section 4.1. Fig-
ure 3 shows the percentage of issues reported
by annotators in the Contextual Consistency and
Technical Precision feedback, with resolution
and shape/proportion concerns being particularly
prominent. See Appendix A.9 for a full overview.

3 Auto-Evaluation

Using the EditInspector benchmark, we evaluate
the ability of SoTA VLMs to serve as edit inspec-
tors. The evaluation consists of two components:
the first assesses the models’ ability to verify edit
accuracy and alignment with user expectations,
while the second serves as an upper-bound test,
examining their ability to generate captions that
describe the main differences and all differences,
including unintended artifacts (Section 3.3.2).

3.1 Models

We evaluate GPT-4, GPT-4o, GPT-4-turbo (Ope-
nAI, 2024), Gemini-Pro-Vision (Gemini Team,
2023), Gemini-Pro-1.5 (Gemini Team, 2024),
Qwen2.5-VL (Bai et al., 2025) and InternVL3 (Zhu
et al., 2025) on all tasks using their latest versions
as of August 2024 (Section A.12). We prioritized
prompts that best conveyed user instructions and
improved overall performance (See Appendix A.7).

3.2 Auto-Evaluation Setup

Edit Inspector Questions. Preliminary experi-
ments revealed that models struggled to handle
multiple categories, especially in detecting mild
artifacts. To enhance clarity and relevance, we
simplified the categorization by replacing multiple-
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Figure 3: Frequency of issues identified by human an-
notators in the Contextual Consistency and Technical
Precision textual feedback. Shape/Proportion concerns
being particularly prominent.

choice questions with binary questions. For the
accuracy question, both “Accurate” and “Accurate
But Unexpected” were grouped under “Accurate,”
while in the artifacts question, only “Significant
Artifacts” were counted as artifacts.

Difference Caption Generation. Traditional cap-
tion metrics (BLEU, METEOR, ROUGE, CIDEr)
rely on N-gram overlaps but fail to distinguish
edited objects, penalize stylistic variations, ignore
edit sequences, and miss semantic misalignments.
As shown in Table 2, these limitations lead to mis-
leadingly high scores for incorrect captions. Sec-
tion A.1 provides further examples and analysis.

To address these limitations, we propose two
novel evaluation metrics tailored for all differences
caption comparisons: Model Precision (MP) and
Hallucination Rate (HR). MP is the percentage
of human-annotated differences matching model-
detected ones, while HR is the percentage of model-
detected differences that do not correspond to any
human-annotated differences.

We calculate these metrics by generating Dif-
ference Triplets (DTs) with the source object, tar-
get object, and action type for each change in the
model and human captions. The two resulting sets
of DTs are then used to compute MP and HR. A
match between two DTs is determined if the edit
action types are identical, and the source and target
objects are similar, as evaluated by GPT-4o. The
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Example Metrics

Ground Truth Caption: The main difference is
the first image has a blue vase, and the second
image has a brown vase.
Generated Caption: The main difference is the
first image has a squirrel, and the second image
does not.

MP: 0
BL: 0.68
RO: 0.81
ME: 0.78

Ground Truth Caption: A brown squirrel was
added to the image.
Generated Caption: The difference between the
two images is that the first image has a blue vase.
The second image has a blue vase and a squirrel
next to it.

MP: 1
BL: 0.55
RO: 0.60
ME: 0.57

Ground Truth Caption: In the first image, the
tree was removed, and new flowerbed was added.
Generated Caption: In the first image, the
flowerbed was removed, and new tree was added.

MP: 0
BL: 0.73
RO: 0.79
ME: 0.76

Table 2: Comparison of traditional linguistic metrics
(BLEU, ROUGE, METEOR) against our proposed eval-
uation metric (MP). The first example shows high scores
despite missing the edited object. The second penalizes
correct but longer captions. The third fails to detect
reversed edits, while our metric captures these issues.

similarity check between source and target objects
is relaxed, allowing matches for objects with differ-
ent attributes. A stricter check would have caused
models to fail completely.

In addition, we introduced MPsoft and HRsoft,
which count DT matches also in case of a reversed
source and target object match, offering a more
comprehensive analysis of model performance. See
Section A.2 for mathematical formulations of the
metrics, and Section A.4 for an intuitive example.

We evaluate the model’s main difference cap-
tion by comparing it to the main difference ex-
tracted from the human-provided difference cap-
tion, which describes all of the edit’s differences.
GPT-4 is used to assess whether the main model-
identified difference matches the human one. Ex-
tracting the main difference is not complex, as the
main change is typically mentioned first.

3.3 Auto-Evaluation Results

3.3.1 Edit Inspector Questions Results The
results for the Yes/No questions are presented in Ta-
ble 3. GPT-4o achieved the highest score on most
questions except ‘Edit Accuracy’ and ‘Difference
Caption Accuracy’, where Gemini-1.5 scored the
highest. Below, we summarize our main observa-
tions from these results.

Struggling with Inaccurate Edits and Artifact
Classification. Detection of inaccurate edits was
challenging, with most models correctly classify-

ing only 0-30%, except Qwen2.5-VL(39%) and
GPT-4o (47%). All models mistakenly predicted
edits as visually consistent, with precision scores
between 0-22.3%. Differentiating artifacts from
non-artifacts was also challenging. While GPT-4o
had the highest accuracy (65.7%) it missed many
artifacts with low recall (52.7%). All models fre-
quently misclassified non-artifacts (18-30%), with
Gemini misclassifying 72%.

Assessing the accuracy of inconsistent edits
is challenging. There is a strong conditional de-
pendency between the edit accuracy and contextual
consistency questions. A discrepancy up to 40%
was observed in the accuracy question when edits
lacked contextual consistency. Conversely, mod-
els had difficulty with the contextual consistency
question in accurate edits, with a 23% drop in per-
formance. This dependency was also present (up to
12%) between the caption accuracy and contextual
consistency questions.

Remove edits are challenging for models.
While Gemini 1.5, GPT-4, GPT-4-turbo, and In-
ternVL3 struggled with ‘Remove’ edits, showing
accuracy gaps up to 65% in edit accuracy, GPT-4o
excelled with 91% accuracy, making it the only
model to handle these edits well.

Alongside Yes/No questions, we assessed mod-
els’ feedback on Contextual Consistency and Tech-
nical Precision, finding it misaligned with human
feedback in most cases (see Appendix A.8).

3.3.2 Difference Caption Generation Results
Main Differences Captions: Table 3 shows the
percentage of instances where the model-identified
main difference matched the human-reported one,
with GPT-4o leading at 39% accuracy. Across all
models, performance improved by up to 98% with
accurate edits, a trend also seen in generating all
differences captions. ‘Remove’ edits had the lowest
performance, with accuracy dropping by up to 50%
compared to the best-performing ‘Replace’ edits.

All Differences Captions: Table 3 shows that
GPT-4o and Qwen2.5-VL achieves the highest
Model Precision (MP) at 12%, while Qwen2.5-VL
demonstrates the lowest Hallucination Rate (HR)
at 58%, along with notable improvements in soft
metrics, suggesting confusion between source and
target objects. Overall performance remains sub-
optimal, as model predictions often misalign with
human annotations. On average, models describe
1-3.1 differences per image, whereas human anno-
tators identified six differences on average. This
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Gemini Gemini-1.5 GPT-4 GPT-4o GPT-4
Turbo

Qwen2.5
VL InternVL3 LLaVA LLaVA

(Supervised)

Edit Inspectors Questions

Accuracy 49.9% 70.3% 67.3% 67.8% 66.9% 67.7% 70.2% 58.9% 67.2%
Contextual
Consistency 50.4% 51.1% 50.4% 55.7% 48.2% 49.5% 49.2% 52.0% -

Technical
Precision 50.1% 46.3% 53.7% 55% 49.3% 48.4% 46.7% 50.1% -

Artifacts 49.4% 58.5% 50.7% 65.7% 52.8% 50% 49.8% 47.6% 51.7%
Difference
Caption Acc 53.9% 66.3% 63.9% 64.3% 64% 58.2% 58.2% 50.0% 54.5%

Differences Caption Generation

Main
Difference 31% 31% 27% 39% 24% 38% 26% 8% 10%

MP - 8% 8% 12% 8% 12% 7% - -
MPsoft - 9% 10% 14% 9% 14% 10% - -
HR - 67% 78% 60% 75% 58% 87% - -
HRsoft - 65% 75% 56% 72% 52% 83% - -

Avg. Diff - 1 2.5 1.8 1.5 1.5 3.1 - -
No Diffs - 24% 0.7% 0.3% 6% 0.7% 3.4% - -

Table 3: Combined performance on Edit Inspectors questions, and the Difference Caption Generation task. GPT-4o
model demonstrates the best performance in Edit Inspectors questions, achieving the highest or third-highest
scores across all questions. Qwen2.5-VL achieves the highest precision in predicting differences, with the lowest
hallucination rate. Avg. Diff indicates the average number of differences detected per edit, while No Diffs represents
the percentage of edits where no differences were predicted. Human annotators identified an average of 6 differences
per edit. The main difference row reports the percentage of predicted main difference captions correctly describing
the main difference. The LLaVA (Supervised) column presents the performance of the finetuned model; see Section
5.3 for further analysis.

gap highlights models’ difficulty in capturing subtle
differences and their tendency to overlook details
or introduce hallucinated changes.

Additionally, we observed that models tend to
hallucinate less where the edits are accurately per-
formed, leading to a 29% improvement in HR and
a threefold increase in MP across all models.

Models vary significantly in predicting no dif-
ferences between images. For example, Gemini-
1.5 predicts no differences in 24% of the examples,
compared to only 0.3% for GPT-4o. Gemini-1.5’s
higher rate of “no difference” predictions lowers its
HR but causes it to identify fewer differences than
GPT-4o, which detects 80% more differences while
keeping a lower HR. When the edit is contextually
consistent, most models predict no differences up
to 3 times more often, suggesting they are more
sensitive to semantic flaws than pixel-level ones.

Models struggle with Remove edits while ex-
celling in Add edits. All models perform best on
Add edits and worst on Remove edits, with Model
Precision (MP) differing by up to 2.7x. The Hallu-
cination Rate (HR) for Remove edits is significantly
worse, increased up to 50% compared to Add edits.

Models are sensitive to scene complexity (i.e.,

the number of objects). Figure 6 in the Appendix
shows that as the number of objects increases, all
models exhibit declining precision and rising hallu-
cination rates. GPT-4 and GPT-4-turbo, in partic-
ular, struggle more with complex scenes, showing
sharp increases in hallucinations. While Gemini-
1.5 and GPT-4o also degrade, their decline is less
steep. This trend was not observed in the Edit In-
spector questions (Yes/No questions).

4 New Methods

To tackle the challenges models face in gen-
erating accurate difference captions and detect-
ing unintended artifacts, we developed a zero-
shot pipeline for producing detailed, instruction-
grounded captions (Section 4.1) and an artifact de-
tection method using segmentation model proba-
bilities (Section 4.2). Our methods are competitive
with the best models, and in the main difference
generation task outperform them by 36% margin.

4.1 Difference Caption Pipeline

Our pipeline generates detailed, instruction-
grounded difference captions and rich metadata by
selecting image captions of the edited object area
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Figure 4: Example of our pipeline generating an instruction-grounded difference caption with rich metadata. Edit
images are split into three zoom levels, with Gemini extracting and prioritizing captions to generate the metadata.

that align with the edit instructions. It achieves
75% accuracy in describing the main edit, sur-
passing GPT-4o’s 39% accuracy.

The pipeline extracts image captions at three
zoom levels around the edit in-painting mask for
both the source and target images. We then select
the captions that best match the edit instructions,
measured by the number of shared nouns or their
synonyms using WordNet (Fellbaum, 1998). Using
these grounded captions and the edit instruction,
we employ a one-shot prompt with GPT-4 (OpenAI,
2024) to generate a detailed difference caption with
metadata, as shown in Figure 4.

We found this method most effective for gen-
erating a main difference caption. Other meth-
ods, such as asking object-specific questions or
requesting long image descriptions, often resulted
in significant hallucinations and incorrect or biased
descriptions. This issue persisted with different
visual backbones, such as GPT-4 (OpenAI, 2024),
LLAVA 1.5 (Liu et al., 2024), etc. Integrating hu-
man instructions with edited area descriptions al-
low information sharing as seen in Figures 16, 22.

4.2 Artifact Detection

We developed two artifact detection methods using
the extracted metadata from our pipeline. The first
method uses the Detic model (Zhou et al., 2022)
to analyze the segmentation probability of each
object intersected by the edit mask. A drop of the
probability score by more than 4% as a result of
the edit is considered an artifact.

The second method identifies elements that inter-
sect with the mask area, have disappeared from the
image, and do not overlap with the edited object’s
bounding box. This often occurs when the mask is

large, but the edited object is small.
Combined, our methods achieve 64% bal-

anced accuracy in detecting “Significant” ar-
tifacts, competitive only with GPT-4o scoring
65.7%. Figure 5 shows the first artifact detection
method. If the small car intersecting with the in-
painting area had been unintentionally removed, it
would illustrate the second method.

An oracle that combines the optimal predictions
from GPT-4o and our artifact detection method
reaches a score of 86.8% with 100% precision.
This indicates that our artifact method and GPT-
4o correctly classify different sets of examples.

5 Model Supervision

We introduce an end-to-end fine-tuned LLaVA
(Language-Vision Alignment) model that rivals
much larger models in performance. It offers
edit evaluation abilities equivalent to SoTA models
while significantly reducing computational costs,
providing an efficient solution for AI-generated
image edit evaluation.

We trained the model using the MagicBrush train
set consists of 8,808 edits. A balanced set of 5,422
edits was used for artifact detection. For edit accu-
racy and caption generation, the entire set was used,
and 31,059 training instances were produced using
the two augmentation methods described below.
Further details are provided in Appendix A.11.

5.1 Negative Edit Augmentation
This method generates negative edits by selecting a
deceptive target object and producing correspond-
ing metadata, including instructions and difference
captions. In Figure 7, a similarly sized scene object
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Figure 5: The first method for detecting artifacts using the Detic model for the edit “turn the stop sign to a lollipop”.
Comparing Detic probabilities for objects intersecting the turquoise in-painting mask between the pre-edit (left) and
post-edit (right) images reveals two artifacts, the truck and small car, whose probability drops exceeds our threshold.

(an umbrella) was chosen as the deceptive target,
and new metadata was generated using GPT-3.5
with few-shot prompting. For Add and Replace ed-
its, the deceptive object is a visually similar absent
object, like a cactus instead of a potted plant. For
Change Attribute edits, attributes are modified, like
altering a coat’s color from blue to red.

5.2 Reverse Edit Augmentation

This augmentation focuses on reversing the edit
using few-shot prompts with GPT-3.5. Add edits
are changed to Remove edits, Replace edits involve
switching the source and target objects, and Change
Attribute edits reverse the attribute modification.
For example, in Figure 7, the edit “Remove one
potted plant” is reversed to “Add one potted plant.”
Applied on top of the negative augmentation, this
process expands the dataset fourfold, providing
comprehensive training data for our model.

5.3 Supervision Results

Our model demonstrates competitive perfor-
mance against SoTA VLMs. As shown in Table 3,
it outperforms Gemini, GPT-4, and GPT-4-turbo
in artifact detection, with only Gemini-1.5 (58.5%)
and GPT-4o (65.7%) performing better. For Edit
Accuracy, it achieves 67.2%, surpassing Gemini
(49.9%) and GPT-4 Turbo. It also maintains com-
petitive performance in the Difference Caption Ac-
curacy (54.5%), surpassing Gemini model (53.9%).
These results validate our augmentation methods
and highlight the value of our training data.

6 Additional Editing Methods

To keep up with the latest image editing models and
provide more robust evaluations of models as Edit
Inspectors, we used 100 edits from the MagicBrush
test set to generate mask-guided image edits using
UltraEdit (Zhao et al., 2024) and Imagen3 (Imagen-
Team-Google et al., 2024).

We annotated these edits using the same meth-
ods described in Section 2.2, with the distribution
shown in Table 5. Comparing the human labels,
we found that MagicBrush edits achieved the high-
est overall accuracy (85.3%). Imagen3 had the
highest “Visual Consistency” (37.7%), “Technical
Precision” (61.6%), and the fewest edits without ar-
tifacts (10.10%). UltraEdit showed the lowest “Vi-
sual Consistency” (10.67%) and lowest accuracy
rate (31%), highlighting variation in edit quality
across models. These findings show that the latest
image editing models exhibit notable weaknesses.

Tables 6, 7, and 8 show model performance as
Edit Inspectors. We observe a consistent decline in
performance on the Edit Inspectors Questions for
both Imagen3 and UltraEdit edits. GPT-4o remains
relatively strong in identifying main differences,
but its performance, as well as that of other models,
drops across core quality dimensions such as accu-
racy, technical precision, etc. In contrast, perfor-
mance on Difference Caption Generation remains
comparatively stable. These results further sup-
port our observation that current models struggle
to evaluate edits comprehensively and frequently
hallucinate when describing changes.
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7 Related Work

Recent advances in text-guided image editing en-
able modifications via natural language (Sheynin
et al., 2023; He et al., 2024; Wu et al., 2023a; Cui
et al., 2023), with some models supporting multi-
turn refinement (Cui et al., 2023). Others use spa-
tial masks for precise, localized edits (Avrahami
et al., 2022; Nichol et al., 2022; Wang et al., 2023),
which offer better control than text-only methods
(Wang et al., 2023; Zhang et al., 2024a).

Edit quality is often measured using pixel-level
similarity (L1/L2 norms) and CLIP-based cosine
similarity (Radford et al., 2021). However, these
metrics poorly align with human judgment (Basu
et al., 2023), offering only quantitative scores with-
out qualitative insights.

Image editing benchmarks like EditBench
(Wang et al., 2023) and EditVal (Basu et al., 2023)
assess editing models through automatic and hu-
man evaluations, focusing on instruction adherence
and object or scene preservation. In contrast, our
work evaluates models as edit inspectors on over-
looked edit aspects such as scene integration, pixel-
level issues, and artifact detection. We also intro-
duce the category “Accurate, But Unexpected” to
capture technically correct edits that deviate from
user expectations and collect textual feedback and
detailed difference captions to provide deeper in-
sights into edit quality.

8 Conclusion

In this work, we introduce EditInspector, a public
benchmark for assessing evaluators of text-guided
image edits across several dimensions: accuracy, ar-
tifact detection, visual quality, seamless integration
with the image scene, adherence to common sense,
and the ability to describe edit-induced changes.
Using the EditInspector benchmark, we show that
state-of-the-art vision and language models per-
form poorly as edit inspectors and cannot effec-
tively assess edits. To address these limitations, we
propose two novel methods and fine-tune an edit
inspector that outperforms these models. We hope
that our benchmark and proposed methods will
drive advancements in edit evaluation and inspire
further research in this domain.

9 Future Work

Future work can refine difference caption genera-
tion and explore new approaches to address existing
model limitations. Additionally, several directions

could further expand the benchmark’s coverage and
evaluation capabilities:

• Incorporating complex multi-object and
multi-operation edits: Expanding the bench-
mark to edits involving multiple objects and
operations, such as simultaneously adding
new objects while removing others, would
enable a broader assessment of model gener-
alization.

• Supporting multi-turn edit evaluation: Ex-
tending the benchmark to include sequential
edits would allow evaluation of models’ abil-
ity to maintain visual and semantic consis-
tency across multiple editing steps.

10 Limitations

Our benchmark is based exclusively on the Mag-
icBrush dataset for evaluating edits, which, while
covering diverse scenarios, is limited to natural im-
ages and mask-guided edits. Recent studies have
shown promising results with free-text methods
(Sheynin et al., 2023) and growing interest in edit-
ing of synthetic images. Additionally, the distribu-
tion of edit types in the test set reflects the natural
distribution of human edits from the MagicBrush
dataset, as determined by a human study. While
this mirrors real-world editing trends, it may not
equally represent all edit types. These limitations
highlight distinct research directions that could be
explored independently of our current work.
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A Appendix

A.1 Common Caption Comparison Metrics

Common metrics for comparing image captions,
such as BLEU, METEOR, and ROUGE, rely on
N-gram overlaps between generated and reference
texts. However, they fall short of our core require-
ment to ensure accurate alignment between the
edited objects and actions described in the cap-
tions. As shown in Table 4, while these metrics
suggest that GPT-4 generates captions most sim-
ilar to the ground truth, in practice, it is the least
accurate model, exhibiting the highest hallucina-
tion rate and the largest number of average changes
detected. Below, we provide a brief explanation
of these metrics, followed by several scenarios il-
lustrating their limitations in effectively evaluating
difference captions.

• BLEU: Computes the number of matches in
unigrams, bigrams, trigrams, and 4-grams be-
tween generated and reference text. Includes a
brevity penalty to discourage shorter outputs.

• ROUGE: ROUGE-1 calculates the F1 score
for unigrams. ROUGE-2 calculates the F1
score for bigrams.

• METEOR: Incorporates features such as stem-
ming, synonym matching, and paraphrase
recognition. Computes the unigram F1 score.

• CIDEr: Measures the similarity between gen-
erated and reference captions using TF-IDF
weighted n-grams (unigrams to 4-grams). Em-
phasizes consensus between generated cap-
tions and multiple human references while
penalizing overuse of common n-grams.

Although these metrics are widely used in image
captioning, they have severe limitations when eval-
uating difference captions for image edits.
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Gemini-1.5 GPT-4 GPT-4o GPT-4 Turbo

Differences Caption Generation

Main Difference 31% 27% 39% 24%
MP 8% 8% 12% 8%
HR 67% 78% 60% 75%

METEOR 0.11 0.22 0.19 0.19
ROUGE-1 0.15 0.36 0.29 0.30
ROUGE-2 0.04 0.09 0.08 0.07
BLEU 0.01 0.02 0.03 0.02

Table 4: Comparison of models on the Difference Caption Generation task. GPT-4 achieves the best results on
METEOR, ROUGE-1, and ROUGE-2 metrics, while GPT-4o ranks highest in BLEU.

Miss Weighting the Edited Objects and Actions.
These metrics struggle to differentiate between crit-
ical objects and less significant words in the con-
text of difference captions. For instance, consider
the ground truth caption: "The main difference
between the two images is the first image has a
blue vase and the second image a brown vase."
If the generated caption states, "The main differ-
ence between the two images is the first image
has a squirrel and the second image does not," lin-
guistic metrics might still assign relatively high
scores (e.g., BLEU: 0.68, ROUGE-1 Recall: 0.81,
METEOR: 0.78) due to superficial word overlaps.
However, these scores fail to reflect the semantic
misalignment between the captions. In contrast,
our proposed metric assigns a score of 0, accu-
rately reflecting the discrepancy in the identified
edited object and action.

Accounting for Unchanged Objects, Varying
Length, and Stylistic Differences. Conventional
metrics often penalize captions that include men-
tions of unchanged objects, vary in length, or differ
stylistically, even when accurately describing the
detected changes. For instance, consider the gen-
erated caption: "The difference between the two
images is that the first image has a blue vase. The
second image has a blue vase and a squirrel next to
it." Our metric would assign this caption a perfect
score of 1, as it correctly identifies the key differ-
ence (the addition of the squirrel) in alignment with
the ground truth caption: "A brown squirrel was
added to the image." In contrast, linguistic met-
rics would score close to 0 due to the inclusion of
details about the unchanged "blue vase" and penal-
ties for variations in length and phrasing. This
demonstrates the robustness of our metric in han-
dling linguistic variability while focusing on the
accuracy of detected changes.

Capturing the Order of Edits. The above men-
tioned metrics overlook the importance of edit se-
quence order. For instance, consider the ground
truth captions: "In the first image, the tree was re-
moved, and a new flowerbed was added" and the
generated caption "In the first image, the flowerbed
was removed, and a new tree was added." Although
both captions involve the same objects (tree and
flowerbed) and actions (added and removed), the
sequence of edits conveys entirely different mean-
ings. The n-gram based metrics would assign high
scores to these captions because they mention the
same words (objects and actions), regardless of
their order, failing to penalize semantic misalign-
ment. In contrast, our metric explicitly evaluates
the edit sequence order, ensuring that generated
captions accurately reflect the correct sequence of
changes.

A.2 Mathematical Explanation of Metrics
We evaluate model performance on all differences
captions using two metrics: Model Precision
(MP) and Hallucination Rate (HR). These are
computed based on Difference Triplets (DTs), de-
fined as:

DT = (source object, target object, action type),

where source object is the original object affected
by the edit, target object is the resulting object
of the edit, and action type is the type of edit
(e.g., "add," "remove," "replace"). Model Preci-
sion (MP): Measures the percentage of human-
annotated DTs (H) matched by model-detected
DTs (M):

MP =
|H ∩M|

|H| × 100,

where |H ∩ M| is the number of matched DTs,
and |H| is the total human-annotated DTs. Hallu-
cination Rate (HR): Measures the percentage of
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model-detected DTs (M) not matching any human-
annotated DTs (H):

HR =
|M \ H|
|M| × 100,

where |M \ H| is the number of hallucinated DTs,
and |M| is the total model-detected DTs. Soft
Metrics: MPsoft and HRsoft allow matches when
source and target objects in DTs are reversed:

MPsoft =
|Hsoft ∩M|

|H| × 100,

HRsoft =
|M \ Hsoft|

|M| × 100.

Matching Criteria: A DT match requires iden-
tical action type and similar source/target objects
(assessed by GPT-4). Relaxed matching (Hsoft)
accounts for reversed source and target objects.

A.3 Additional Editing Methods

UltraEdit Annotation Agreement. Accuracy
stood out with a high complete majority rate (78%)
and the highest average agreement rate (92.67%).
For the more detailed accuracy levels, majority
vote was reached in 81% of cases, though the com-
plete majority rate dropped to 53%, with an average
agreement rate of 95% among those with a majority
vote.

In the artifacts category, annotators reached a
64% complete majority rate, with an average agree-
ment rate of 88%. The more granular artifact
levels followed a similar pattern, with 98% major-
ity vote, 52% complete majority rate, and 82.67%
average agreement.

Technical Precision showed a complete major-
ity in only 36% of cases, with a moderate average
agreement rate of 78.67%. Finally, Visual Con-
sistency achieved a strong 91% complete majority
rate, and a 73% average agreement rate, reflecting
consistent annotator judgment in this category.

Imagen3 Annotation Agreement. Accuracy
achieved a complete majority rate of 83.84% and
the highest average agreement rate (94.61%) across
all categories. For the more detailed accuracy
levels, majority vote was reached in 95.96% of
cases, though the complete majority rate dropped to
36.36%, with an average agreement rate of 76.09%.

In the artifacts category, annotators reached a
58.59% majority vote and a 64% complete majority
rate, with an average agreement rate of 86.20%.

The more granular artifact levels showed a 94.95%
majority vote, 46.46% complete majority rate, and
78.79% average agreement.

Technical Precision had a complete majority
rate of 44. 44% and an average agreement rate of
81.48%. Visual Consistency achieved a 45.45%
complete majority rate and 81.82% average agree-
ment, indicating relatively stable annotator consen-
sus in this category.

MagicBrush Annotation Agreement. Accuracy
levels in MagicBrush exhibited strong annotator
alignment, with a 95% majority vote rate and an
average agreement rate of 80.67%, though the com-
plete majority rate was moderate at 52%.

For the artifacts levels, annotators reached a
99% majority vote, with an average agreement
rate of 83% and a complete majority rate of 51%,
closely mirroring previous patterns observed in Im-
agen3.

Technical Precision (annotated as good quality)
showed a complete majority in 41% of cases, with
an average agreement rate of 80.33%.

Finally, Visual Consistency achieved a 57%
complete majority rate and the highest average
agreement rate in MagicBrush at 85.67%, suggest-
ing relatively consistent annotator judgments in this
category.

A.4 Metrics Example

We calculate the MP and HR metrics using Figure 1
GPT-4o and the human-annotated difference cap-
tion. The ground truth lists the following human-
annotated differences (H):

(carpet floor,wooden floor,Replace),

(None, door,Add),

(fridge bottom, extended fridge bottom,Change),

(yellow box, extended yellow box,Change),

(yellow box text,None,Remove),

(text, image,Replace)

GPT-4o detects only one difference:

M = {(carpet floor,wooden floor,Replace)}.

Model Precision (MP): Model Precision (MP)
measures the percentage of human-annotated DTs
(H) matched by model-detected DTs (M):

MP =
|H ∩M|

|H| × 100.
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Category Imagen3 (%) UltraEdit (%) MagicBrush (%)

Accuracy
Level

Accurate: 15.82
Accurate Unexpected: 46.46
Inaccurate: 18.86
Inaccurate Reflects: 18.86

Accurate: 6.3
Accurate Unexpected: 46
Inaccurate: 31
Inaccurate Reflects: 16.7

Accurate: 16
Accurate Unexpected: 69.3
Inaccurate: 7
Inaccurate Reflects: 7.7

Artifacts
Level

Significant: 36.7
Mild: 53.2
No Artifact: 10.1

Significant: 29.3
Mild: 65
No Artifact: 5.7

Significant: 36.7
Mild: 58
No Artifact: 5.3

Technical
Precision

Yes: 61.6
No: 38.3

Yes: 37.6
No: 62.3

Yes: 39
No: 61

Visual
Consistency

Yes: 37.7
No: 62.3

Yes: 10.7
No: 89.3

Yes: 22
No: 78

Table 5: Distribution of annotation values across categories for Imagen3, UltraEdit, and MagicBrush. The table
summarizes the percentage breakdown for each evaluation category. Notably, MagicBrush had the highest percentage
of overall Accurate edits, while Imagen3 showed the strongest performance in Technical Precision.

GPT-4 GPT-4o GPT-4
Turbo

Qwen2.5
VL InternVL3 LLaVA LLaVA

(Supervised)

Edit Inspectors Questions

Accuracy 63% 51.8% 57.5% 62.1% 54.4% 52.6% 54.3%
Contextual
Consistency 48.5% 41.6% 37.1% 58.2% 61.9% - -

Technical
Precision 53.4% 46.4% 48.5% 43.8% 46.2% - -

Artifacts 42.9% 56.3% 51% 50% 41% 52.7% 55.6%
Difference
Caption Acc 55.6% 55.6% 57.5% 54.4% 44.4% 50% 48.1%

Differences Caption Generation

Main
Difference 36% 44% 36% 8% 22% 4% 9%

MP 7% 9% 7% 7% 8% - -
MPsoft 9% 11% 8% 9% 12% - -
HR 82% 74% 80% 84% 90% - -
HRsoft 80% 68% 77% 80% 86% - -

Avg. Diff 2.5 1.9 1.5 2.5 3.4 - -
No Diffs 0.8% 0% 4.5% 0.8% 3.2% - -

Table 6: Models performance on UltraEdit edits across models Edit Inspectors questions and Difference Caption
Generation. The first section reports binary question accuracy on core evaluation criteria (Accuracy, Contextual
Consistency, Technical Precision, and Artifacts). The second section presents difference caption metrics: percentage
of predicted main difference captions correctly describing the main difference, hallucination rates (HR), and average
number of predicted differences. Avg. Diff indicates the mean number of differences per edit, and No Diffs reports
the percentage of edits with no predicted differences.
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GPT-4 GPT-4o GPT-4
Turbo

Qwen2.5
VL InternVL3 LLaVA LLaVA

(Supervised)

Edit Inspectors Questions

Accuracy 55.3% 49.9% 49.2% 52.9% 51.5% 54.4% 58.8%
Contextual
Consistency 47.7% 49.5% 55.6% 42.1% 48.9% - -

Technical
Precision 51.4% 50.9% 49.1% 47.5% 54.5% - -

Artifacts 47.1% 56.5% 49.5% 50.0% 48.6% 43.6% 48.8%
Difference
Caption Acc 54.2% 58.2% 55.9% 51.8% 50.8% 50% 53.9%

Differences Caption Generation

Main
Difference 29% 44% 27% 29% 13% 4% 11%

MP 9% 11% 8% 10% 9% - -
MPsoft 11% 12% 9% 12% 12% - -
HR 78% 73% 82% 73% 92% - -
HRsoft 73% 70% 80% 67% 88% - -

Avg. Diff 2.5 1.9 1.5 1.5 3.2 - -
No Diffs 0.8% 0% 4.5% 1.2% 4% - -

Table 7: Models performance on Imagen3 edits Edit Inspectors questions and Difference Caption Generation.
The first section reports binary question accuracy on core evaluation criteria (Accuracy, Contextual Consistency,
Technical Precision, and Artifacts). The second section presents difference caption metrics: percentage of predicted
main difference captions correctly describing the main difference, hallucination rates (HR), and average number
of predicted differences. Avg. Diff indicates the mean number of differences per edit, and No Diffs reports the
percentage of edits with no predicted differences.

GPT-4 GPT-4o GPT-4
Turbo

Qwen2.5
VL InternVL3 LLaVA LLaVA

(Supervised)

Edit Inspectors Questions

Accuracy 73.7% 71% 60% 64% 63.6% 58.5% 62.3%
Contextual
Consistency 48.2% 56.7% 59.7% 38.4% 45.6% - -

Technical
Precision 49.2% 47.6% 49.8% 47.5% 42.6% - -

Artifacts 51.6% 60.6% 54.1% 50% 52.5% 44.8% 56.2%
Difference
Caption Acc 63.2% 60.7% 61.1% 59.8% 58.4% 50% 46.5%

Differences Caption Generation

Main
Difference 34% 50% 34% 37% 25% 5% 12%

MP 8% 11% 7% 11% 8% - -
MPsoft 8% 12% 8% 1% 11% - -
HR 75% 61% 78% 63% 88% - -
HRsoft 74% 57% 75% 59% 83% - -

Avg. Diff 2.5 1.9 1.5 1.5 3.4 - -
No Diffs 0.8% 0% 4.5% 0.6% 2.3% - -

Table 8: Models performance on MagicBrush edits Edit Inspectors questions and Difference Caption Generation.
The first section reports binary question accuracy on core evaluation criteria (Accuracy, Contextual Consistency,
Technical Precision, and Artifacts). The second section presents difference caption metrics: percentage of predicted
main difference captions correctly describing the main difference, hallucination rates (HR), and average number
of predicted differences. Avg. Diff indicates the mean number of differences per edit, and No Diffs reports the
percentage of edits with no predicted differences.
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The only match between H and M is:

(carpet floor,wooden floor,Replace)

Therefore:

|H ∩M| = 1, |H| = 6,

MP =
1

6
× 100 ≈ 16.67%.

Hallucination Rate (HR): Hallucination Rate
(HR) measures the percentage of model-detected
DTs (M) that do not match any human-annotated
DTs (H):

HR =
|M \ H|
|M| × 100.

Here, all model-detected DTs match human-
annotated DTs, so:

M\H = ∅, |M| = 1,

HR =
0

1
× 100 = 0%.

MP = 16.67%, HR = 0%.

A.5 Detailed Description of New Methods

Caption Pipeline We introduce a structured
pipeline to generate difference captions that de-
scribe the specific visual changes between the
source and edited images. This pipeline combines
both image-level and region-level vision-language
descriptions with a prompt-based large language
model (LLM) querying strategy to produce rich
and accurate textual metadata for each edit.

The process begins by extracting bounding boxes
from the user-provided edit mask. If a single bound-
ing box is found, we crop the source and target im-
ages in two ways: a tight crop and a padded version,
where the box is either doubled in size or expanded
to cover at least 15% of the image dimensions. If
multiple bounding boxes are present or if cropping
fails, we fall back to using the full images.

We then apply a vision-language model (Gemini)
to generate descriptions of the cropped and full
image regions. For each image, we obtain textual
descriptions of the masked region, the full image,
and the padded area (if applicable). These serve as
candidate visual contexts for the next stage of the
pipeline.

To ensure that the most relevant image region is
used for caption generation, we apply a noun-based

grounding mechanism to select the best image de-
scription for each image. We extract nouns from
the instruction and compare them—using both ex-
act matches and synonym overlap—to nouns in
each candidate region description. If the default
crop lacks sufficient alignment, we select the re-
gion (tight crop, padded crop, or full image) with
the highest degree of noun-level overlap. When
no region aligns directly, we fall back to the one
that shares object mentions with at least one other
candidate. This step ensures that the final prompt
is grounded in a region of the image that is seman-
tically aligned with the user instruction.

A predefined prompt template is then populated
with the instruction and the selected image descrip-
tions. This prompt is passed to GPT-4, which
returns a structured response containing multiple
fields: the predicted action type, short and ex-
tensive difference captions, a revised instruction,
source and target object names, and a brief expla-
nation of the edit.

To ensure reliability, the pipeline includes fall-
back mechanisms if the model returns an invalid
action type (e.g., "None"), reattempting generation
with alternative image regions. Only examples with
valid, well-formed responses are retained.

Artifact Detection - Edit Mask Intersection
Our segmentation-based artifact detection method
analyzes object presence and score variation around
the edited region to identify potential unintended
artifacts. For each object detected by the Detic
model in the source and target images, we compute
the intersection between its segmentation mask and
the user-provided edit mask. We use the object’s
binary mask contours rather than bounding boxes,
allowing for precise spatial comparisons. To im-
prove robustness, we perform these comparisons
at two different resolutions: the source image size
and the edited image size, since mask-based scores
can fluctuate slightly (by a few percentage points)
when resized.

To reduce noise, we exclude very small regions
(objects with less than 2.4% intersection with the
mask) as well as objects that are almost entirely
contained within the mask (above 97% intersec-
tion), as these are typically intentional edit targets
or too minor to evaluate reliably. In addition, we
focus specifically on objects that are partially af-
fected by the edit those whose segmentation masks
intersect with the edit region by more than 0% but
less than 40%. This range helps isolate objects that
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may have been unintentionally damaged during the
edit process, as opposed to ones that were fully
changed.

For each object class, we retain all detected in-
stances that meet these intersection criteria. To
avoid expensive pixel-level comparisons between
non-overlapping objects, we first check whether
their bounding boxes intersect. This provides a
fast pre-filter, since if the bounding boxes do not
overlap, their masks cannot intersect either. Only
objects with overlapping bounding boxes are fur-
ther compared across the source and edited images
to measure changes in detection confidence. An
object is flagged as containing an artifact if its con-
fidence score drops by more than 4% after the edit,
provided it is not fully masked or too small.

Artifact Detection - Unintended Object Addi-
tions or Removals In addition to evaluating
score-based degradations near the edit mask, we
introduce a second method designed to detect unin-
tended additions or removals of secondary objects
within the mask area. This method specifically ap-
plies to Add and Remove edits, where the risk of
unintentionally modifying unrelated parts of the
scene is higher. Unlike the first method, which
looks at changes in detection confidence, this ap-
proach focuses on complete object disappearance
or appearance that may not be aligned with the
instruction.

The process begins by identifying the main edit
object bounding boxes from the source and target
images using object detection. These bounding
boxes are used to define the intended region of
change.

Next, we detect all other objects present in the
source and edited images, and classify them as
secondary objects. We then filter out any objects
whose class labels are semantically similar to the
main object. This includes direct matches, shared
noun forms, and synonym relationships. This filter-
ing step ensures that we focus only on truly unre-
lated objects that are not supposed to be changed.

From this filtered set of secondary objects, we
further isolate those that intersect with the mask
area but do not spatially overlap with the main
object’s bounding boxes. This spatial condition
helps distinguish unintended changes from those
that are part of the intended edit.

Finally, we compare the presence of these sec-
ondary objects across the source and edited im-
ages. For Remove actions, if a secondary object

is present in the source image but missing in the
edited image, we flag it as an unintended removal.
For Add actions, if a new secondary object appears
in the edited image that was not in the original,
we flag it as an unintended addition. If at least
one such change is detected, we mark the edit as
containing a secondary artifact.

This method captures a different failure mode
than the first: it identifies whole-object additions or
losses in the masked area that are not part of the in-
tended instruction. Full implementation details, in-
cluding semantic class filtering, mask-intersection
checks, and bounding box exclusion, are available
in our released code.

A.6 Additional Annotation Information
Each image edit was annotated by three annotators,
with annotations conducted in batches of 27-54
edits. Annotators were paid at a rate of $0.70 per
sample, resulting in an average hourly wage of $18.

To ensure the quality of annotations, we imple-
mented a qualification test to select quality annota-
tors. We provided detailed instructions, including
decision trees that visually guide the answering pro-
cess. These decision trees were accessible via the
user interface (“tree icon”), allowing annotators to
follow the guidelines while annotating image edits.

Additionally, a settings window was available,
enabling annotators to customize the UI, including
font size, width, and padding, to suit their personal
preferences (See Appendix A.16).

To assess annotation consistency, we computed
Fleiss’ Kappa for each question. The accuracy
question showed moderate agreement (κ > 0.41),
suggesting annotators generally aligned on whether
an edit was accurate. The artifact question, arti-
fact severity level, accuracy level, and difference
caption accuracy all exhibited fair agreement (κ
between 0.21 and 0.40), indicating moderate con-
sistency across annotators. In contrast, the visual
consistency and technical precision questions ex-
hibited only slight agreement (κ between 0.01 and
0.20), highlighting greater subjectivity or ambigu-
ity in how these aspects were interpreted.

A.7 Tasks Prompts
Model performance varied greatly with different
prompts, suggesting that models may struggle to
fully understand the task. We selected prompts that
conveyed the user instructions and improved the
overall performance.

• Difference Caption Accuracy Task (Yes/No)
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You are provided with before and after images
of an image edit for the edit instruction "{}".
Does the difference caption "{}" describe the
difference between the two images (Answer
only Yes/No)?

• Visual Consistency Task (Yes/No) You are
provided with before and after images of an
image edit for the edit instruction "{}". Is the
edited object or its area (in remove/replace
actions) consistent with the edit instruction
and the image scene in terms of shape, size,
brightness, shadows, texture, color, etc. (An-
swer only Yes/No)?

• Is Accurate Task

You are provided with before and after images
of an image edit for the edit instruction "{}".
Was the edit instruction "{}" accurately exe-
cuted and does it reflect the intended change
(Answer only Yes/No)?

• Artifacts Task

You are provided with before and after images
of an image edit for the edit instruction "{}".
Are there any artifacts or alterations in the
image not intended to be affected by the edit
"{}" (Answer only Yes/No)?

• Technical Precision Task (Yes/No)

You are provided with before and after im-
ages of an image edit for the edit instruction
"{}". Does the edited object or its area (in
remove/replace actions) maintain the image
resolution, exhibit blur, show any smoothness,
etc. (Answer only Yes/No)?

• Generate all differences caption You are pro-
vided with before and after images of an im-
age edit. Please describe all the differences
between these two images. Focus only on
the differences; do not include any irrelevant
information. Ignore any style differences be-
tween the images, such as changes in artistic
style, color grading, or filters.

• Generate main differences caption Please
describe the main difference between the two
images.

A.8 Textual Feedback
We compared the predicted feedback from the mod-
els with human annotations by using a zero-shot

prompt with GPT-4o that determines whether two
pieces of feedback share any common points (yield-
ing a simple Yes or No). The models’ feedback
matched human feedback only in a very small per-
centage of cases. The contextual consistency feed-
back shared common points with human feedback
in 7%-28% of cases, while technical precision feed-
back did so in 4%-51% of instances.

A.9 Categories of Feedback Issues

• Shape/Proportion: Captures distortions in
the shape, size, or proportions of objects.

– Keywords: shape, proportion, size, dis-
torted, too big, too small

– Example: "The bird has an odd shape
and is also yellow."

• Blur/Fuzziness: Deals with visual issues re-
lated to blurred or unclear edges, lack of sharp-
ness, and fuzziness.

– Keywords: blurry, fuzzy, smudged,
blurred edges, not clear

– Example: "The cat’s fur is smoothened
and texture is changed."

• Texture: Focuses on objects with unrealistic
or unnatural textures, often described as too
smooth or grainy.

– Keywords: texture, smooth, grainy,
patchy, unnatural

– Example: "The building texture is unnat-
ural."

• Lighting/Brightness: Involves issues where
shadows are inconsistent or missing, or where
lighting is overexposed or underexposed.

– Keywords: shadows, lighting, brightness,
overexposed, underexposed

– Example: "The white bright part on the
pan gives it an unrealistic look."

• Color: Captures cases where colors are over-
saturated, under-saturated, or do not align
with the scene.

– Keywords: color, too bright, saturated,
unnatural color

– Example: "The fox is bright and incon-
sistent with the rest of the image."
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• Unreal/Artificial Look: Describes objects
that appear cartoonish, toy-like, or overly ar-
tificial, failing to blend with the rest of the
scene.

– Keywords: cartoon, toy, artificial, fake,
graphical

– Example: "The helicopter’s texture re-
sembles a toy."

• Placement: Refers to objects that are mis-
aligned or incorrectly oriented in the scene.

– Keywords: placement, misaligned, incor-
rect angle, orientation

– Example: "The curtain is hanging in the
air instead of the bar."

• Missing/Extra Objects: Captures cases
where objects are unexpectedly added or re-
moved, causing inconsistencies.

– Keywords: missing, removed, added, ex-
tra, inconsistent

– Example: "The man’s face was removed
and replaced by a mask."

• Edges: Focuses on issues related to sharp,
uneven, or poorly blended edges.

– Keywords: edges, sharp, uneven, jagged
– Example: "The edges of the pizza are not

even."

• Resolution: Refers to cases where the visual
clarity or quality of the image is degraded,
often appearing pixelated or with visual noise.

– Keywords: resolution, clarity, pixelated,
low quality

– Example: "The image of the bird looks
pixelated and low in resolution."

A.10 Analysis Methodology
Our categorization process followed these steps:

1. Examining the Workers’ Feedback: We re-
viewed detailed textual feedback from work-
ers who evaluated the instruction-based edits.
Each piece of feedback was carefully analyzed
to identify recurring issues.

2. Identifying Categories: We identified com-
mon themes in the feedback and organized
them into meaningful categories representing
distinct visual and technical issues.

3. Extracting Keywords for Categories: For
each category, we identified specific keywords
and phrases that workers frequently used to
describe the issues. These keywords were
used to group similar feedback together.

4. Generating Statistics: We quantified the fre-
quency of each category across the entire
dataset to understand which types of issues
were most prevalent. This analysis provided
insights to guide future improvements in the
edits.

A.11 Supervision Details
The model was fine-tuned for 1 epoch using
AdamW with a 2 × 10−4 learning rate. Since it
accepts a single image input, we concatenated the
before-and-after images.

A.12 Model Versions
• GPT Models

– GPT-4o (Released: 2024-08-06)
– GPT-4 Turbo (Released: 2024-04-09)
– GPT-4 (Version: 0613)

• Gemini Models

– Gemini 1.5 Pro (001)
– Gemini 1.0 Pro (001)

• Image Editing Models

– imagen-3.0-capability-001 via Ver-
tex AI API, guidance scale set to 12

– UltraEdit (Original publicly available
version)

A.13 Additional Experiments
Hallucination Rates as a Function of the Num-
ber of Objects Figure 6 presents the precision
and hallucination rates as a function of the number
of objects in the edited images. There is a perfor-
mance drop in all models as the number of objects
in the images increases, highlighting a trend where
more complex scenes contribute to higher halluci-
nation rates and lower precision.

Out-of-Distribution Evaluation of the
EditInspector Model To evaluate the out-
of-distribution (OOD) performance of our
fine-tuned model, we conducted an additional
experiment using a balanced set of 120 samples
from the Image Editing Request (IER) dataset.
The IER dataset consists of human-authored edits,
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Figure 6: Comparison of model precision and hallucination rates as a function of the number of objects in the edited
images. The performance of all models decreases as the number of objects in the images increases, highlighting a
trend where more complex scenes contribute to higher hallucination rates and lower precision.

originally collected from Reddit, and created using
tools like Photoshop. Each edit is paired with a
free-form language instruction, covering a wide
range of real-world edits across both local and
global scenarios.

We selected 30 high-quality, localized edits that
are content-safe and appropriate for public release.
Each edit was then reversed by swapping the source
and target images and inverting the instruction, re-
sulting in 60 examples. This approach allowed us
to both increase the number of test cases and evalu-
ate the model’s ability to handle edit directionality
and instruction symmetry.

For each edit (original and reversed), we also
created a manually crafted distractor instruction
and difference caption, introducing plausible but
incorrect variations. For example, if the original in-
struction removed an elephant, the distractor might
reference removing a nearby person. This setup
challenges the model to distinguish accurate vs.
misleading edits in realistic and diverse scenarios.

We tested both the base LLaVA model and our
fine-tuned model on two key tasks: (1) Edit Accu-
racy, and (2) Difference Caption Accuracy.

Edit Accuracy Task: The fine-tuned model
achieved a balanced accuracy of 59.2%, compared
to 54.2% for the base model.

Notably, the base model showed a strong bias to-
ward answering "Yes" on nearly all examples (111
out of 120), resulting in a true negative rate of only
3.3%. In contrast, the fine-tuned model exhibited
a more balanced response, predicting "Yes" for 63
out of 120 edits, with a significantly higher true

negative rate of 56.6%.
Difference Caption Accuracy Task: The base

model again defaulted to "Yes" for all edits, yield-
ing a 0% true negative rate.

The fine-tuned model provided more calibrated
responses, splitting answers approximately evenly
and achieving a true negative rate of 56.7%.

These results demonstrate that our fine-tuned
model generalizes better to unfamiliar editing dis-
tributions. It shows a stronger grasp of task seman-
tics, provides more accurate judgments in OOD
scenarios, and avoids the base model’s tendency to
over-predict positive responses.

A.14 Augmentation methods
A.15 Licenses
All use of scientific artifacts is consistent with their
intended use. This work focuses on evaluating
existing models in the English language using im-
ages from the MagicBrush dataset and does not
introduce new models, generate new images, or
employ technologies that could pose ethical, soci-
etal, or safety risks. We collected anonymous hu-
man annotations using Amazon Mechanical Turk
crowdsourcing platform. The images are used in
accordance with the MagicBrush license, and the
evaluation code and dataset are released under the
CC-BY-4.0 license.

A.16 Annotation UI
A.17 Annotation Examples
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Figure 7: Illustration of our augmentation methods for a remove edit. The pre-edit image (left) shows a potted
plant, while the post-edit image (right) depicts the scene with the plant removed. In the first augmentation method,
the instruction and difference caption is modified by replacing the “potted plant” with an object of similar size
(umbrella). In the second augmentation, we reverse the edit by switching the order of the images, changing the
instruction and difference caption from “remove potted plant” to “add potted plant,” and introducing a negative
instruction for a visually similar object (e.g., cactus plant), which is absent in the post-edit image.

Figure 8: The accuracy scheme tree that was provided to annotators to guide the answering process.
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Figure 9: The contextual consistency scheme tree that was provided to annotators to guide the answering process.

Figure 10: The technical precision scheme tree that was provided to annotators to guide the answering process.

29524



Figure 11: The artifacts scheme tree that was provided to annotators to guide the answering process.

Figure 12: The difference caption instructions provided to annotators to guide the answering process.
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Figure 13: The setting menu for customizing the form font size, width etc.

Figure 14: Example of image edit verification sample - before image (Add a wild pig).
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Figure 15: Example of image edit verification sample - after image (Add a wild pig).

Figure 16: Example of image edit verification sample - before image (Cake on the plate).
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Figure 17: Example of image edit verification sample - after image (Cake on the plate).

Figure 18: Example of image edit verification sample - before image (Delete the table).
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Figure 19: Example of image edit verification sample - after image (Delete the table).

Figure 20: Example of image edit verification sample - before image (Empty the table).

Figure 21: Example of image edit verification sample - after image (Empty the table).
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Figure 22: Example of image edit verification sample - before image (Cut a pineapple).

Figure 23: Example of image edit verification sample - after image (Cut a pineapple).
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