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Abstract

Developing robust automatic speech recogni-
tion (ASR) systems for Arabic requires effec-
tive strategies to manage its diversity. Exist-
ing ASR systems mainly cover the modern
standard Arabic (MSA) variety and few high-
resource dialects, but fall short in coverage
and generalization across the multitude of spo-
ken variants. Code-switching with English and
French is also common in different regions of
the Arab world, which challenges the perfor-
mance of monolingual Arabic models. In this
work, we introduce a suite of ASR models op-
timized to effectively recognize multiple vari-
ants of spoken Arabic, including MSA, various
dialects, and code-switching. We provide open-
source pre-trained models that cover data from
17 Arabic-speaking countries, and fine-tuned
MSA and dialectal ASR models that include
at least 11 variants, as well as multi-lingual
ASR models covering embedded languages in
code-switched utterances. We evaluate ASR
performance across these spoken varieties and
demonstrate both coverage and performance
gains compared to prior models.

1 Introduction

The advent of large self-supervised acoustic mod-
els has transformed speech technology, enabling
transfer learning and improving performance for
both high-resource and low-resource languages.
Prominent examples of such models include vari-
ous versions of wav2vec (Schneider et al., 2019;
Baevski et al., 2020), HuBERT (Hsu et al., 2021),
and SpeechT5 (Ao et al., 2022), which have pre-
dominantly been trained on English datasets. Their
multi-lingual variants, e.g. XLS-R (Babu et al.,
2022) with 53 and 128 languages, in addition to
models that include both self-supervised and super-
vised pre-training, such as Whisper (Radford et al.,
2023) with approximately hundred supported lan-
guages, MMS (Pratap et al., 2024) with thousands

* These authors contributed equally to this work.

of languages, and UniSpeech (Wang et al., 2021),
illustrate the potential for cross-lingual transfer
learning for more inclusive ASR. Yet, while these
models indeed show great potential for transfer
learning to new languages, even those unseen in
training, they remain suboptimal for some target
languages. A case in point is the Arabic Text and
Speech Transformer (ArTST), a model pre-trained
exclusively on Arabic, which has demonstrated
superior performance for Modern Standard Ara-
bic (MSA), surpassing larger multilingual models
like Whisper and MMS in benchmark tests, in ad-
dition to establishing a new state-of-the-art per-
formance compared to previous efforts for Arabic
ASR. This highlights the advantage of monolin-
gual pre-training when large amounts of unlabeled
data for the target language are available. While
the model showed some potential for dialectal cov-
erage, it was trained and validated exclusively on
MSA data, which questions its applicability for
spoken dialectal variants of Arabic. Evaluations on
code-switched data showed poor performance of
ArTST compared to multilingual models (Kadaoui
et al., 2024), demonstrating the delicate trade-off
between monolingual and multilingual optimiza-
tion. Arabic is a pluricentric language (Schup-
pler et al., 2024), diverse in regional variations,
and models trained on MSA frequently struggle to
adapt to these variations. This limitation is partic-
ularly acute given that many Arabic dialects are
underrepresented and considered low-resource in
speech technology research. Consequently, there
is a need for optimized ASR systems that embrace,
rather than overlook, the linguistic diversity of the
Arabic-speaking world.

In light of these challenges, we conduct various
investigations aimed at understanding and enhanc-
ing the dialectal diversity and performance of Ara-
bic ASR systems. We focus on four inquiries aimed
at optimizing potential strategies for integrating di-
alectal variation into ASR systems. First, we mea-
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Figure 1: The architecture of SpeechT5/ArTST, which contains an encoder-decoder module and six modal specific
pre/post-nets. During self-supervised pre-training (left), quantized tokens are shared across speech and text
modalities. Hidden states and latent units are mixed up and used as the inputs of the cross-attention module in the
decoder. The fine-tuning stage for ASR is shown on the right. Refer to Ao et al. (2022) for more details.

sure the impact of incorporating a broad collection
of Arabic dialects during the model’s pre-training
phase. We hypothesize that a wider dialectal foun-
dation could improve the model’s performance
across various dialects in the fine-tuning stage. Sec-
ond, we quantify the comparative effectiveness of
dialect-specific fine-tuning versus a more holistic,
multi-dialectal fine-tuning strategy. The third ques-
tion examines the model’s capacity for zero-shot
transfer to dialects not explicitly included in fine-
tuning. Finally, we evaluate the model on code-
switched utterances, and examine the effect of mul-
tilingual pre-training and fine-tuning on both mono-
lingual and code-switched datasets. Our key find-
ings from experiments spanning over 17 variants of
spoken Arabic are: (1) pre-training with more data
and wider dialectal coverage improves performance
across most dialectal variants, including MSA, (2)
multi-dialectal fine-tuning improves performance
for low-resource dialects, but may not be optimal
for high-resource dialects, (3) multi-dialectal pre-
training and fine-tuning has higher potential for
zero-shot transfer to unseen dialects, and (4) multi-
lingual pre-training and fine-tuning greatly boosts
performance on code-switching, while negatively
impacting monolingual performance due to lan-
guage interference. Our pretraining checkpoints
and joint models were trained exclusively on open-
source data and are released as open-source, open-
weights models. All scripts required to reproduce
our results including model training, evaluation,
and checkpoints, are publicly available .

"https://github.com/mbzuai-nlp/ArTST

2 Related Work

Arabic speech recognition research has a long his-
tory, but the majority of this research has focused
on Modern Standard Arabic (MSA), the formal
variant predominant in news broadcasts and offi-
cial communications. A review article covering
peer-reviewed publications between 2011 and 2021
estimates that 89% of papers on Arabic ASR cover
MSA, and only a quarter cover some dialectal vari-
ant of Arabic (Dhouib et al., 2022). Recent re-
search in end-to-end ASR for Arabic, as presented
in Hussein et al. (2022), demonstrates the poten-
tial of contemporary deep learning techniques for
decoding spoken Arabic, but it was also limited to
MSA. Large-scale multilingual ASR models, such
as Whisper (Radford et al., 2023) and MMS (Pratap
et al., 2024), cover many languages within their
scope, including Arabic. They utilize language em-
beddings or adapters to enhance language coverage
and performance within the same model, but their
performance across languages vary considerably.
For instance, while Whisper demonstrates strong
zero-shot capabilities on MSA, its zero-shot accu-
racy drops substantially on dialects, and additional
finetuning on dialectal data is needed to improve
performance (Waheed et al., 2023). Recent work
has shown that smaller, Arabic-specific student
models distilled from large models like Whisper
can achieve comparable or even superior perfor-
mance, especially on dialectal data, with good gen-
eralization to unseen dialects (Waheed et al., 2024).
Specialized Arabic models like ArTST (Toyin et al.,
2023), primarily pre-trained on MSA, have shown
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competitive results on MSA tasks and even out-
performed larger multilingual models on some
mixed-dialect datasets like QASR (Mubarak et al.,
2021). However, due to its monolingual pretrain-
ing, the model was shown to perform poorly in
code-switched Arabic-English speech (Al Ali and
Aldarmaki, 2024). This illustrates that strong MSA
performance is not a reliable predictor for dialectal
or code-switching capabilities, with a substantial
gap persisting between SOTA MSA and dialectal
performance. The development of diverse datasets
such as QASR (multi-dialectal broadcast news)
(Mubarak et al., 2021), SADA (Saudi Arabic)
(Alharbi et al., 2024), ArZen (Egyptian-English
code-switching) (Al-Sabbagh, 2024), and Mixat
(Emirati-English code-switching) (Al Ali and Al-
darmaki, 2024), and other public datasets cover-
ing various dialects and code-switched instances
presents an opportunity for improving the general-
ization of ASR systems to diverse spoken varieties.

3 Methodology

Based on prior work, we start with the premise that
monolingual training is more suitable for maximiz-
ing performance in Arabic ASR. However, the cur-
rent Arabic SOTA models have limited coverage of
spoken varieties and struggle with code-switching
due to their monolingual training. Our objective is
to maximize performance while also widening the
coverage to include MSA, regional dialects, and
instances of code-switching. To that end, we start
with an Arabic-centric ASR model, ArTST (Toyin
et al., 2023), as the foundation for our investigation.
Figure 1 illustrates the high-level architecture of
ArTST for self-supervised pre-training and fine-
tuning. This model is based on the SpeechT5 ap-
proach (Ao et al., 2022), and supports multi-modal
fine-tuning. The first version of the model was
pre-trained on the MGB2 (Ali et al., 2016) dataset,
which consists of newswire data, mainly in MSA,
with a small subset of dialectal variants. In this
work, we attempt to understand the factors that en-
able both high performance and wide coverage; we
explore the following questions:

1. Is pretraining on dialectal data beneficial
for improving down-stream dialectal perfor-
mance, and would it negatively impact MSA
performance?

2. Is it better to finetune ASR models jointly
on multiple dialects or fine-tune on a specific
target dialect?

3. Can we achieve reasonable zero-shot perfor-
mance on unseen dialects?

4. Can we optimize performance in code-
switched utterances using multilingual pre-
training?

5. What is the effect of multilingual pretraining
and finetuning on monolingual Arabic perfor-
mance? (i.e. language interference).

The remaining sections detail our experimental
settings and findings of these questions.

3.1 Terminology

For the rest of the paper, we will refer to Arabic
variants using abbreviations. The categories below
are based on regions and countries, and do not re-
flect any official classification of dialectal families:

MSA: Modern Standard Arabic. This is a com-
mon official variant of Arabic used in news, books,
and education. CA: Classical Arabic. This is an
old variant of Arabic found on religious texts and
old books. It resembles MSA, but also contains
outdated lexical items and structures.

GLF: A broad category of dialects spoken in the
Arabian Peninsula, in particular the Gulf region,
which, in our data sources, include SAU: Saudi,
KUW: Kuwait, UAE, OMA: Oman, QAT: Qatar,
IRA: Iraq, and YEM: Yemen.

LEV: Levantine dialects, which, in our data
sources, include SYR: Syria, JOR: Jordan, LEB:
Lebanon, and PAL: Palestine.

NOR: North African dialects, including EGY:
Egypt, TUN: Tunisia, MOR: Morocco, ALG: Al-
geria, MAU: Mauritania, and SUD: Sudanese.

3.2 Pre-Training Data & Settings

To examine the effect of pre-training data cover-
age on downstream performance, we pre-trained
ArTST from scratch? on both MSA and dialectal
data. We sourced our data from various datasets, in-
cluding: MGB2 (Ali et al., 2016), QASR (Mubarak
et al., 2021) MGB3 (Ali et al., 2017), MGBS5 (Ali
et al., 2019), CIArTTS (Kulkarni et al., 2023), ASC
(Halabi et al., 2016), and Common Voice (Ardila
et al., 2020), SADA (Alharbi et al., 2024), and
others. We also used MADAR (Bouamor et al.,
2018) and NADI (Abdul-Mageed et al., 2023) text

*We used the scripts and configurations provided in
github.com/mbzuai-nlp/ArTST
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Dataset Dialect Hours ‘Words
QASR MSA 2000 hrs  13.33M
MGB2 MSA 1000 hrs 731 M
MGB3[ASR] EGY 2.83hrs  18.93K
MGBS5[ASR] MOR 6.74hrs 5697 K
SADA (Alharbi et al., 2024) SAU 418 hrs 325M
Mixat (Al Ali and Aldarmaki, 2024) UAE 15hrs  57.94K
TARIC-SLU (Mdhaffar et al., 2024) TUN 8hrs  72.00K
ParallelCorp (Almeman et al., 2013) MSA 32 hrs 30.66K
GLF 32 hrs 27.26K
LEV 32 hrs 18.43K
EGY 32 hrs 48.56K
MASC (Al-Fetyani et al., 2021) MSA 612.28 hrs 3.80 M
SAU 45224 hrs  301.92K
SYR 211.33 hrs 1.06 M
EGY 175.36 hrs 1.03M
JOR 4221 hrs  330.83 K
LEB 2520 hrs  155.76 K
IRA 17.37hrs  121.12K
TUN 1217 hrs  34.34K
Multiple  10.57 hrs ~ 80.08 K
UAE 9.87 hrs 6.42 K
MOR 8.60hrs  58.38K
PAL 6.17hrs  45.35K
KUw 4.04hrs  32.37K

Table 1: Summary of Dataset Statistics for Fine-Tuning:
Hours of Audio, Word Counts, and Associated Dialects.
Multiple is mix of several dialects not neccessary from
the listed dialects (no information from the source).

datasets for pretraining. In our experiments, we
compare the following:

* v1: This variant is as described in Toyin et al.
(2023), pretrained only on MSA.

¢ v2: In this variant, we use a mixture of MSA
and dialectal data in pretraining.

¢ v3: In this variant, we use a mixture of MSA,
dialectal, and multilingual data in pretraining.

See Table 12 in Appendix A for details of all the
datasets used in pre-training.

3.3 Dialectal Fine-Tuning

The datasets we use for dialectal fine-tuning are
shown in Table 1. We collected as many open-
source data as needed to maximize coverage of
dialects. Note that, for MGB5 and MGB3, as the
data is based on YouTube videos, many of the orig-
inally referenced videos are no longer available, so
at the time of our experiments, only 2.5 hours of
training were available for MGB3 and 2 hours for
MGBS5. Furthermore, multi dialectal datasets, such
as MASC (Al-Fetyani et al., 2021), have unbal-
anced representation of dialects. The high-resource
dialects in our collection include SAU, SYR, EGY,
and MSA; each has at least 200 hours of transcribed
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Figure 2: Distribution of dialectal speech data in pre-
training and fine-tuning. MSA data are not shown.

ASR data. UAE, MOR, JOR, LEB, IRA, and TUN
have a medium amount of fine-tuning data between
10 and 50 hours. KUW and PAL are low-resource
dialects with less than 10 hours of transcribed data
in total. Finally, we left ALG, YEM, and SUD
from the MASC dataset for zero-shot testing.
Figure 2 illustrates the distribution of dialectal
data we use for pre-training and fine-tuning our di-
alectal model. We exclude MSA from the figure as
it has disproportionally more data than all dialects.

3.4 Multi-Lingual Fine-Tuning

In addition to the above dialectal data, we used
English, French, and Spanish sets for multi-lingual
fine-tuning and code-switching experiments de-
scribed in section 8. English and French are com-
monly spoken in various Arabic-speaking coun-
tries, and to a lesser extent, Spanish is spoken in
some parts of North Africa. More details about the
datasets used in these experiments are provided in
section 8.

3.5 Experimental Settings

For partitioning the data into training, development,
and test sets, we adhered to the official splits pro-
vided with each dataset. We followed the data
preparation and training methodology established
in the original ArTST implementation. For com-
prehensive details regarding the model architec-
ture and data preprocessing, readers are directed to
Toyin et al. (2023).

Computational Details The pre-training was ex-
ecuted on a cluster of 4 A100 GPUs over a duration
of 14 to 21 days for each model. We used Adam
optimizer with a learning rate of 2 x 10™4, span-
ning 335K updates, and a warm-up phase of 64K
updates. The maximum speech token length was
set at 250K (equivalent to 15.625 seconds). Each
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fine-tuning experiment was run on one A100 GPU
over a duration of 7 days (MGB2, QASR, MASC,
SADA) or 2 days for smaller sets (MGB3, MGBS,
etc.). We used Adam optimizer with a tri-stage
scheduler with learning rate of 6 x 10~°. The total
computational budget for all experiments is esti-
mated to be ~6000 GPU-hours.

Normalization Prior to model training, we im-
plemented the same data normalization steps out-
lined in Toyin et al. (2023). In addition, we applied
post-prediction normalization steps before calcu-
lating Word Error Rates (WER), following stan-
dard practices in Arabic ASR. All reported results
reflect post-normalization performance. The nor-
malization script, sourced from a publicly available
GitHub repository?, performs orthographic stan-
dardization of Alef, Yaa, and Taa characters.

4 Effect of Pre-Training Data

We first examine the effect of pre-training on down-
stream ASR performance. As described in section
3.2, we compare a model pre-trained mainly on
MSA (ArTST v1), and our multi-dialectal version
(henceforth v2). Note that pre-training does not
utilize aligned speech and text; it incorporates un-
aligned speech and text data for self-supervised
learning. For these experiments, we use the same
finetuning data, and only vary the pretraining sets.

4.1 Benchmarking MSA Performance

We first report results on benchmark datasets to
compare the performance of both models against
the state-of-the-art. MGB2 is the main benchmark
for MSA speech recognition. We evaluated the per-
formance of ArTST v1 and v2 fine-tuned in MGB2,
compared to existing SOTA models, in Table 2.
The results show that incorporating dialectal data
in pretraining does not negatively affect MSA per-
formance, as we achieve the best WER of 12.48%
and 12.39%, with and without LM fusion.

4.2 Benchmarking Dialectal Performance

Tables 3 and 4 show the performance of the models
on the dialectal MGB3 (Egyptian) and MGBS5 (Mo-
roccan) benchmarks. Each of these benchmarks
contain multiple references as dialectal speech has
no standard spelling. We report the average and
multi-refrence WER for our model variants, and
compare against the best model in each challenge,

3github.com/iamjazzar/arabic—nlp/blob/master/
normalization/orthographic_normalization.py

System WER(%) CER(%)
From (Hussein et al., 2022):

HMM-DNN 15.80 —
E2E, CTC + LM 16.90 —
E2E, Attention + LM 13.40 —
E2E, CTC, Attention + LM 12.50 —
ArTST vl + LM (Toyin et al., 2023) 12.78 6.33
v2 12.49 6.44
v2 + LM 12.39 6.51

Table 2: Comparing our performance against models
reported in Hussein et al. (2022) and Toyin et al. (2023),
which include the best performing models previously
reported on MGB2.

System Adaptation Fine-Tuning AV-WER MR-WER
Aalto MGB2 MGB3 37.50 29.30
ComVoice
‘Whisper Fleurs MGB3 39.04 24.92
Covost2
MMS BibleTrans MGB3 100.04 99.92
NewTestamentRec
vl MGB2 MGB3 37.08 29.39
v2 MGB2 MGB3 33.20 25.28

Table 3: WER(%) on MGB3 Egyptian ASR. Aalto is
the best system in the MGB3 challenge (Ali et al., 2017)

System Adaptation Fine-Tuning AV-WER MR-WER
RDI-CU MGB2 MGB5 59.40 37.60
ComVoice
Whisper Fleurs MGBS 164.13 227.34
Covost2
MMS BibleTrans MGBS 111.89 102.30
NewTestamentRec
vl MGB2 MGB5 49.39 27.95
v2 MGB2 MGB5 48.91 28.02

Table 4: WER(%) on Moroccan ASR. RDI-CU is the
best system in the MGBS5 challenge (Ali et al., 2019)

as well as the SOTA model in each benchmark.
Each model is first fine-tuned on MSA, then fine-
tuned again on the target MGB train sets. We also
report the results of the large multilingual models:
Whisper (Radford et al., 2023) and MMS (Pratap
et al., 2024), fine-tuned on the same set. We refer
to the Arabic data the models are previously fine-
tuned on as ‘Adaptation’ data. Starting with MSA
data before fine-tuning on the target dialect has pre-
viously been established as an effective strategy for
dialectal ASR (Ali et al., 2017).

In MGB3, dialectal pretraining (v2) results in
about 4% absolute reduction in WER, establishing
a new SOTA result on this benchmark. Smaller im-
provement in terms of Average WER is observed
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Zero-Shot

Fine-Tuning

Dataset Whisper MMS vl 2 olvowv2
TARIC-SLU (TUN) | 138.14 9354 10756 10646 | 14.70 14.80
ParallelCorp (MULT) | 99.17  83.16 12872 141.92 | 957 931
SADA (SAU) 8216 7828 3941 2977 | 3924 2901
MASC

SAU 4839 6530 6123 5872 | 2740 2733
SYR 2665 3321 2199 1837 | 18.64 17.42
EGY 4173 6604 5087 47.17 | 3847 3643
JOR 2865 5463 6123 3497 | 1972 21.08
LEB 4095 6458 3565 4266 | 3001 28.05
IRA 4169 5933 5046 4803 | 3110 34.64
TUN 4745 6058 5037 4667 | 1926 1852
MOR 6587 8084 7892 6687 | 4759 49.40
PAL 5320 8372 7794 7353 | 5588 53.53
KUW 3600 8171 6474 5202 | 5029 4624

Table 5: WER (%) in zero-shot and fine-tuning settings. We compare zero-shot performance of Whisper, MMS,
ArTST vl1, and Our dialectal pretraining (v2). ArTST vl and v2 are finetuned on MGB2 (MSA), whereas Whisper
and MMS are finetuned/pretrained with multi-lingual data, including Arabic.

for MGBS5, where there is no clear advantage ob-
served using our dialectal version. This difference
is likely a result of our pre-training having a lot
more Egyptian than Moroccan data (see Figure 2).

4.3 Zero-Shot & Fine-Tuning Results

To further quantify the effect of dialectal pre-
training, we evaluate the performance of our model
across different datasets. We first fine-tune models
on MSA using MGB2 dataset. We test the model
performance on dialects directly (zero-shot) and
with dialectal fine-tuning. The results are shown in
Table 5. On average, we see improvements in per-
formance in both zero-shot and fine-tuning exper-
iments using dialectal pretraining (v2) compared
to MSA-centric pretraining (v1). We also see that
both models perform better than Whisper and MMS
in zero-shot settings in most cases. There are some
exceptions, such as in KUW, where Whisper per-
forms better than all other models, including the
fine-tuned models, but in most cases v2 performs
best. This underscores the advantage of monolin-
gual models compared to multilingual performance,
as observed in Toyin et al. (2023) and Radford et al.
(2023). In addition, the results underscore the im-
portance of dialectal coverage in pretraining: the
cases where v2 performs worse than v1 are all di-
alects for which pretraining data are limited, such
as TUN (no pretraining data) and JOR (smallest
dialect size in pretraining).

5 Joint Models & Dialect ID

So far, models were first fine-tuned on MSA, fol-
lowed by additional fine-tuning on each target di-
alect. This results in a separate model per dialect,
which incurs memory costs and may have practical
limitations as it requires advance knowledge of the
dialect ID for deploying the correct model.

In this section, we assess the relative effective-
ness of individual dialectal fine-tuning compared
with joint dialect fine-tuning, where we train a sin-
gle model for all dialects. To that end, we joined
multiple dialectal train sets from MASC, as shown
in Table 6. We excluded ALG, YEM, SUD for zero-
shot evaluation. The resulting joint corpus consists
of 12 dialects including MSA, with approximately
1,501 hours in total. We fine-tuned a single joint
model using this data.

Dialect Hours Words Source
MSA 612.28 hrs 380 M MASC
SAU 45224 hrs  301.92 K SADA, MASC
SYR 211.33 hrs 1.06 M MASC
EGY 175.36 hrs 1.03M MGB3, MASC
JOR 4221 hrs  330.83 K MASC
LEB 2520 hrs  155.76 K MASC
IRA 17.37 hrs  121.12K MASC
TUN 12.17 hrs 3434 K TARIC-SLU, MASC
UAE 9.87 hrs 6.42 K Mixat, MASC
MOR 8.60hrs 58.38K MASC
PAL 6.17hrs  45.35K MASC
KUW 4.04hrs  3237K MASC

Table 6: Datasets used to train the joint models.
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Approach Zero-Shot Fine-Tuning No Dialect ID Dialect Forcing Dialect Inference
Fine-Tuning Data | MGB2 QASR | MGB2— Target Joint Mutli-Dialectal Set (Table 6)
SAU 58.72 4341 27.33 29.41 30.56 29.94
SYR 18.37  16.20 17.42 19.20 22.41 20.30
EGY 47.17  38.78 36.43 45.17 61.06 46.79
JOR 3497 2542 21.08 19.63 21.49 20.11
LEB 42.66  40.51 28.05 28.22 29.43 26.89
IRA 48.03  40.27 36.10 29.33 31.75 30.83
TUN 46.67 4593 26.67 37.23 28.47 27.74
MOR 66.87 5542 56.63 57.49 53.89 49.10
PAL 73.53  45.59 53.53 46.22 43.90 44.48
KUW 52.02  45.09 46.24 35.43 39.43 37.71
MSA 21.09  16.78 15.34 11.59 12.66 12.09
Macro Average 46.37  37.58 33.17 32.63 34.09 31.45

Table 7: WER (%) of various models compared with joint dialectal fine-tuning with different dialect ID strategies.

5.1 Dialect ID

We trained another model with the aforementioned
joint dataset, but with the inclusion of explicit di-
alect identifiers. We augmented the dictionary with
special tokens for dialect IDs, and used them to
prepend the decoding string:

<S> DIALECT Ty Tp ... T, </S>

For inference, we experimented with two strate-
gies: (1) Transcribing with dialect forcing, where
we manually add the dialect ID to condition the de-
coder output; the decoder is forced to start predic-
tions with the tokens <S> DIALECT . (2) Transcrib-
ing with dialect inference, where we let the model
predict the dialect token. We use this approach for
zero-shot ASR on unseen dialects (Table 9).

The results of the models trained with joint di-
alects compared to models trained on MGB2 and
QASR are shown in Table 7. Note that both MGB2
and QASR contain mostly MSA, but also a small
amounts of various dialects, but their exact distri-
bution is unknown. We also reproduce the fine-
tuning results from Table 5 for easy comparison.
We see that joint modeling results in improvement
for low-resource dialects, including: JOR, TUN,
and KUW, but degrades performance of the high-
resource SYR and EGY dialects. Interestingly, di-
alect forcing was worse on average than joint mod-
eling with no dialect ID, while dialect inference
resulted in the best performance overall. We sur-
mise that the model learns dialectal patterns that
do not perfectly align with the dialect ID as in-
dicated in the training data. Since the dialect IDs
are coarse country-level approximations, letting the
model infer the dialect based on the speech is the
best approach for most cases. Many dialectal sets,
such as SYR and SAU, contain a lot of MSA utter-
ances that are incorrectly identified as dialectal.

Figure 3 illustrates dialect inference errors. Note
that the number of errors is proportional to the test
data size. The overall dialect identification perfor-
mance is around 90%. Some low-resource dialects,
such as KUW, are predicted as their closest high-
resource variant, such as SAU, resulting in worse
performance compared to joint models without a
dialect ID, but on average, dialect forcing leads to
the lowest WER.

KUW =
] saudi
MOR =
EGY I |:| MSA
\\.
s N = UAE
> £ = Iraq
SYR B SIS = Palestine
SN
JOR B AN i [ Jordan
LEB ] - TS \‘\ 2 = Morocco
B - NP\ -= Lebanon
IRA ~ o
— = Kuwait
PAL [ S\~ [ Egypt
7l syria
= Tunisia

Figure 3: Dialect identification performance: true (left),
predicted (right). All lines are proportional to their ratio
over the total errors except for SAU—MSA, which is
reduced 5 times for clarity.

6 Effect of Data Adaptation

In the above experiments, we followed the strat-
egy of initializing the models by first fine-tuning
on MSA data. In most cases, we used MGB2 as
the base model, following previously established
results on Egyptian ASR (Ali et al., 2017). This
adaptation approach is meant to enhance the perfor-
mance on low-resource dialects, facilitating faster
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Adaptation
m — MGB2 QASR
MGB3 136.52 2528 19.53
MGBS5 9484  28.02 27.58
TARIC-SLU 30.46 14.80 14.48
ParallelCorp 28.97 9.31 9.08
SADA 29.77 2991  29.55
Mixat 100.0 3340 35.21

Table 8: WER (%) of fine-tuned models on various
datasets with different adaptation methods: —: no adap-
tation, MGB2, or QASR.

convergence with limited training samples. How-
ever, as pre-training on more diverse sets proved
to be effective, adaptation on more diverse data is
also likely to be fruitful. As observed in Table 7,
models trained on QASR resulted in far better zero-
shot performance, approaching the performance
of joint-dialects models. This is attributed to the
fact that QASR is both larger in size and known
to have more dialectal data compared to MGB2
(but both have no documented statistics of dialectal
coverage). To validate this observation, we experi-
mented with dialectal fine-tuning adapted from two
variants: one based on MGB2 and one based on
QASR (Mubarak et al., 2021), followed by dialect-
specific fine-tuning. Table 4 shows fine-tuning re-
sults with no adaptation (directly fine-tuning on
the target dialect), compared with starting from
MGB2 or QASR. First, our results corroborate the
previous findings that adapting models from MSA
results in large reduction in error rates. In all ex-
cept the Mixat dataset, starting from QASR results
in better performance compared to MGB2. How-
ever, the difference is negligible except on MGB3
Egyptian set (around 6% absolute WER reduction).
There are two factors that we speculate underline
this result: The small size of the MGB3 set, and the
existence of Egyptian dialect in the QASR corpus
more substantially than the other dialects. Overall,
using the QASR dataset as a basis for adapting di-
alectal models is recommended as it improves or
maintains performance.

7 Zero-Shot Performance

We show the zero-shot performance on the three
held-out sets: ALG, SUD, and YEM. We com-
pare the baseline, v1, with multi-dialectal pretrain-
ing (v2). We also compare models fine-tuned on
MGB2, QASR, or our joint dialectal set. The re-
sults are shown in Table 9. Our model achieves
slightly lower error rates compared to v1, even

Dialect ALG SUD YEM
System
ArTST v1—MGB2 73.18 69.20 41.64
v2—MGB2 70.82 69.31 39.45
v2—QASR 51.72 46.64 34.78
v2 —Joint 45.20 40.69 33.08
v2 —Joint (w. dialect inference) | 47.12 40.15 31.84

Table 9: WER% of various models on held-out dialects.

when fine-tuned on the same MGB2 set. Better per-
formance is achieved with QASR, which includes
some dialectal data. The joint dialectal fine-tuning
achieves the best performance on the held-out di-
alects. In general, performance in held-out sets
is on a par with low-resource dialects, with WER
above 30%. Table 13 in the Appendix shows the
zero-shot performance after fine-tuning on a single
target dialect.

8 Code-Switching Performance

The models analyzed so far were trained exclu-
sively on Arabic data. While small amounts of
code-switching (CS) exist in these sources, they
are insufficient to learn the characteristics of the
embedded languages. Large multi-lingual models
are generally more effective on CS data (Kadaoui
et al., 2024), even if they are less competent on
monolingual Arabic. To make our models more in-
clusive, improving performance in the presence of
code-switching is necessary. To that effect, we train
a multilingual version of the model (we will refer
to this as v3). The pre-training data for this version
are listed in Table 12 in the Appendix. We test v3
against vl and v2 on available CS data for Arabic:
ArZN (Al-Sabbagh, 2024) for Egyptian-English
speech, Mixat (Al Ali and Aldarmaki, 2024) for
Emirati-English speech, and TunSwich (Abdallah
et al., 2024) for Tunisian-French speech. We also
train a joint multi-lingual model (without dialect
or language ID). In addition to the datasets de-
scribed in Table 6, we add the multi-lingual and
code-switching data shown in Table 10.

In Table 11, we show the performance of mod-
els finetuned directly from the pretrained check-
points, or finetuned from existing ASR checkpoints
(MGB?2 checkpoint for v1, joint multi-dialectal
checkpoint for v2, and joint multi-lingual check-
point for v3). First, for models fine-tuned directly
on the target set, we observe that multilingual pre-
training significantly improves performance across
all CS test sets, resulting in more than 10% ab-
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Languages Hours  Words Source
EN 1601.92 hrs 10.35M CommonVoice
FR 732.02hrs  5.03M CommonVoice
SP 408.34hrs 2,79 M Common Voice
TUN-FR 10.89 hrs  70.86 K TunSwitch
UAE-EN 897 hrs 57.82K Mixat
EGY-EN 5.6l hrs 52.00 K ArzEn

Table 10: Additional datasets used to train the joint
multilingual model.

WER (%)
N
S

Adaptation data - - - MSA Dialectal Multilingual
Test Set vl v2 v3 vl v2 v3
MGB2 1342 125 13.0

ArzEn 4321 7759 3526 34.85 3371 27.43
TunSwitch 53.85 101.94 40.68 43.87  43.59 36.66
Mixat 4250 9241 3427 27.07 2573 21.66

Table 11: ASR Results using the various checkpoints:
vl, v2 and v3. We compare models trained directly
from the pretrained checkpoint vs. starting with an ASR
checkpoint trained with the specified adaptation data:
MSA adaptation using the MGB2 dataset; Dialectal
adaptation using data listed in Table 6; Multilingual
adaptation using data from Table 6 and Table 10.

solute reductions in WER for all test sets. This
clearly illustrates the advantage of multi-lingual
pretraining in code-switching scenarios. We also
evaluated models initialized from the joint models
followed by target fine-tuning on the CS train sets,
and this reduced error rates further. The best per-
forming model is the joint multilingual v3 mode,
with 4 to 7% absolute reduction in WER compared
to the second best model. We show examples of
ASR outputs from the three CS datasets using the
various models in Figure 6 in the Appendix.

Language Interference: We test the effect of
multi-lingual pre-training on MSA performance.
Language interference is known to negatively af-
fect monolingual performance (Toyin et al., 2023),
so we test our multilingual model on the MGB2
benchmark to quantify this effect (see Table 11).
The model achieves 13.0% WER, which is indeed
worse than the SOTA result we achieve with the
Arabic-only model (see Table 2), but the difference
at 0.5% absolute WER is rather small. When it
comes to dialects, however, we find that language
interference has a significant negative effect, result-
ing in 4% to 16% absolute increase in error rates,
as shown in Figure 4.

9 Conclusions

We presented the largest study on dialectal Ara-
bic ASR to empirically demonstrate the effect of

+16%
+6%

+5%

a0t +11% +11% +4% 100 +8%

+8% +7%

JOR LEB IRA
No Dialect ID

PAL KUW JOR LEB IRA PAL KUW

Dialect Inference

I Dialectal [ Multilingual

Figure 4: WER (%) and absolute difference on a subset
of dialects, comparing our joint dialectal fine-tuning vs.
joint multi-lingual fine-tuning on Arabic dialects.

various training paradigms on ASR performance.
We compared models pre-trained with and with-
out dialects, in high, low, and medium-resource
settings, in addition to zero-shot. We find that
overall, dialectal pre-training improves perfor-
mance in zero-shot and low-resource cases, and
mostly maintains performance on MSA and high-
resource dialects. We also find that all dialects
benefit from adaptation of models pre-fine-tuned
on MSA, and this effect is most noticeable for low
and medium-resource dialects. We experimented
with multi-dialectal fine-tuning, where we joined
the train sets of 12 dialects. We observe perfor-
mance improvements on average, and at least the
same performance as the target-dialect fine-tuning
setting, and the best performance on held-out di-
alects. Interestingly, while using dialect ID in de-
coding is effective, forcing the dialect ID results
in worse performance compared to dialect in-
ference. While joint training results in improved
performance for the medium and low-resource
dialects, target-dialect fine-tuning is more ef-
fective for high-resource dialects. Finally, we
experimented with multi-lingual pre-training and
fine-tuning for improving performance on code-
switched utterances, and achieved significant re-
ductions in error rates on all available test sets.
However, reductions in monolingual performance
were also observed due to language interference,
particularly for dialects, were WER increased by
4% to 16% for some dialects. To enable easier
adoption and further experiments, we released the
pretrained dialectal and multilingual checkpoints,
the fine-tuned MGB2 models, and the joint dialec-
tal and multilingual ASR models.
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Limitations

One of the limitations in dialect-related work is
the coarse classification of dialect IDs; dialects in
our datasets are classified by regions or countries,
whereas actual dialectal variations are far more fine-
grained. For example, the Saudi dataset, SADA,
covers a large geographical area and many dialects,
but it is considered as one dialect based on our
classification. Moreover, the way the datasets are
collected do not guarantee that the data are indeed
dialectal. For instance, with manual inspection
of the Syrian test and dev sets from MASC, we
observed that all instances are in MSA rather than
Syrian dialects. In addition, Arabic dialects are spo-
ken varieties that do not have a standard spelling
system. This results in large variations in tran-
scriptions, but standard WER does not account for
these variations, resulting in more pessimistic re-
sults. With the exception of the MGB3 and MGB5
benchmarks where we report average and multi-
reference WER across 4 references, all datasets
have only a single reference.
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A Pre-Training Dataset Statistics

Table 12 shows the complete list of datasets used

for pre-training v1, v2, and v3.

B Inference examples

Figure 5 lists examples of ASR outputs using the
dialect-specific fine-tuned models. Note that the
‘errors’ in SAU, EGY, and JOR examples are in
fact alternative spellings.

Dataset Dialect Hours Words vl v2 v3 032 @Slaz 9 Bolall I3 (yaleS @Sl 1y 138 lLired
ASC MSA 37hrs  20.58K v v oasy @S g2 Golall I3 OolaSs @bl 71 135 plies | (SAU)
ArzEn[cs] EGY 561hrs  52.00K v 50 gl ool ol b ot gl
- - - ixall O > 03 o R o9
Common Voice Dla:;gngx 13?62041 hgr; 4193;3535 v j 3 gainally Glopll 151 06 035 (30 (rodusdl gaimall Ciuog (SYR)
Common Voice FR 732.02 5.03M v Lasis o ol Jew slowl iSS Hgeidl slownl casiy GUI goldl o)l o
ES 40834 279M v i g3l Jgao slawsl iS5 il slousl iS5 LUl polidll by | ECGY)
1ArTT; A 12 h 31K
AT ECGY 175.36 hrs 716 03 M < j sleddl sle) dpuilly Jobl 259 g0 wolll Dlolizdl 5o Usds )
IRA P37 12L12K v et dpully Jobl g ey diolall leliioll lisdy
. 'S .
JOR 4221 hrs  330.83K v 9251 ke oo Lowll 0L (B 4 ol 22l SS9 | (e
KUW 404 hrs  32.37K v 9>l Gle ot Lawdly 83y 408 (oly 3>lg JSo
LEB 2520 hrs  155.76 K v
MOR 8.60hrs 5838 K v S50 bobdg Iy digd ) hde (598 Oloe> 2l a2
MASC MSA 61228k 330M v 5 st Qi i) gall i 5 ol oo e | F)
PAL 6.17hrs  4535K v calind u?m PUSRE 9035 gy 5845 I dunilgill g 553l bls e g (TUN)
SAU 45224 hrs 301.92K v 0lisy5 o)l g3 6 5035 gumw 58 L udlsd g sl bl ol
SYR 211.33 hrs 1.06 M v
TUN 1217hrs  3434K v Hond >3 LAl @l am bpdlhs | (\opy
UAE 9.87 hrs 6.42 K v Yol sbo) >3l L3l diugs b 0amy banally
MGB2 Mostly MSA 1000 hrs 731M v vV Y ol a3y oS of T JbI Lle o Lo CauS @l awis e
QASR Mostly MSA 2000 hrs  13.33 M 7 Sl sl
MGB3[ASR] EGY 283hs 893K v Gl s psiy S ol I JUb3I Gle Ghojo o cieS &l s | (PAL)
MGB3[ADI] EGY 11.15 hrs — v v Sl
GLF 8.92 hrs — Vv )
LAV 927 hrs - v v OF $n 79 i g0 55 b s B OB )
MSA 9.39 hrs B v v Ule @5 Jaill dg=g pu 2h (598 1oz 353l g0l )
NOR 9.49 hrs — v v
MGB5[ASR] MOR 115.7hrs — v Figure 5: Examples of dialectal recognition after tar-
MGBS5[ADI] ALG 115.7hrs — v v _ . . .
Eoy P - v geted fine-tuning, following MGB2 adaptation.
IRA 815.8 hrs — v
JOR 25.9 hrs - v v .
KSA 2ot s B vy Figure 6 shows example outputs from each model
KUW 108.2 hrs — v v on the code-switching datasets: ArzEn (Egyptian-
LEB 116.8 hrs — Vv . . .. .
LIB 127 4 hrs _ v v English), TunSwitch (Tunisian-French), and Mixat
MAU 456.4 hrs - v v (Emirati-English).
MOR 57.8 hrs — v
OMA 58.5 hrs - v v
PAL 121.4 hrs — Y C Cross-Dialectal Performance
QAT 62.3 hrs — v v
SUD 477 hy - v v .
SYR 1105 1o - oy Table 13 shows the cross-dialectal performance,
UAE 108.4 hrs — v Y where models trained on a single target dialect are
YEM 53.4 hrs — v . . .
Mixar[ €S UAE 00Ths ST K % tested on other dialects, including the three held-
ParallelCorp EGY 32hs 4856K v out sets: ALG, SUD, and YEM. In most cases, the
GLF 32 hrs 2726 K v . . .
LEV ohrs 1843 K v best performance is achieved by the model trained
MOR“:E‘(\} N 32hrs 3066 K 4 on the same target dialect (the diagonal in Table
MADAR LIB EGY LEV — 53237K VR 13). However, for low-resource dialects, like KUW
Ei?;%?;@f{ and PAL, the model trained on SAU achieved the
IRA JOR KUW lowest WER. This is likely a result of the large size
LEB LIB MOR . . .
NADI OMN PAL QAT — 702.67K v v of the SAU train set and the wide geographical area
SAU SUD SYR and dialectal variants it covers. Curiously, all mod-
TUN UAE YEM
SADA SAU 1763t 3.26M 7 els perform well on the SYR test set; upon close
TARIC-SLU TUN 681hrs  5348K 4 inspection, we found that the set consists mostly of
TunSwitch €51 TUN 10.89hrs  70.86K v . . .
VoxBlink Dialeot Mix 1992 hrs — 7 MSA utterances, which explains the result since all

Table 12: Summary of Dataset Statistics for Pre-
Training: Hours of Audio, Word Counts, and Associ-
ated Dialects. *L8] refers to Code Switching datasets.

#LEXE] refers to textual datasets.

models are adapted from MSA.
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adaptation
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'élji dlole i egicly’

TunSwitch

pre-training
ArTSTV: ‘casic lgdg lgumy <unk>forme g a <unk>aire (igo Loga '
AITSTV2: slao 5015 3] g Cengd Cbac ) Jlgenl
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adaptation
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ArTSTv3: "easic Igg) lgs des formes o d'ailleur Loga I
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Mixat

pre-training
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we level two level three level JI ¢ <L calhave to fall J ijelus !
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adaptation

ArTSTVI: '3 5lold 3 juui (ub (e (Gubb Sy Hadi (=i Glire @ylall Ligasy allly '
FGULE FESIPPOLE ICUNLEPHILE JESTity Pt
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Figure 6: Examples of code-switching samples from each of the code-switching datasest using (a) pre-training
checkpoints fine-tuned on CS data directly, and (2) adapted models after fine-tuning on general data: vl (MGB2),
v2 (Dialectal data from Table 6), and v3 (dialectal data from Table 6 + Multilingual and CS data from Table 10).

Dialect Fine-Tuning Set
SAU(%) SYR(%) EGY(%) JOR(%) LEB(%) IRA(%) TUN(%) MOR(%) PAL(%) KUW(%) UAE(%)
SAU 27.33 53.88 63.24 43.95 56.64 46.10 49.36 50.02 45.48 46.85 46.14
SYR 19.54 17.42 23.91 16.88 25.71 16.85 24.36 17.58 16.86 17.38 17.53
EGY 38.07 53.43 36.43 40.08 51.61 41.37 45.58 43.88 40.41 41.88 40.38
JOR 22.88 30.37 34.14 21.08 28.11 28.68 32.96 30.50 25.25 27.88 28.05
test st LEB 41.03 42.53 53.23 39.07 28.05 41.23 48.53 42.34 41.55 42.14 40.97
IRA 35.18 49.10 56.91 40.47 46.72 36.10 47.84 42.55 40.76 41.00 42.16
TUN 44.44 57.78 51.85 46.67 45.19 45.19 26.67 44.44 47.41 46.67 47.41
MOR 59.04 71.69 74.70 54.82 69.88 57.23 74.70 56.63 56.02 59.64 57.83
PAL 48.53 66.18 62.65 5235 60.59 58.53 60.00 63.24 53.53 58.53 60.59
KUW 26.59 59.54 78.03 43.93 67.63 46.82 53.18 51.45 44.51 46.24 50.87
ALG 50.21 60.09 73.61 52.58 62.02 57.51 57.51 59.01 52.79 58.37 57.30
held-out  SUD 40.89 64.97 64.32 53.15 64.86 54.12 56.51 58.79 52.39 56.18 55.53
YEM 38.40 42.16 38.49 34.68 39.69 34.92 30.68 35.73 33.06 34.68 34.11

Table 13: WER(%) for various models on unseen dialects. All models are adapted from v2—MGB2.
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