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Abstract

This paper introduces a pioneering method-
ology, termed StructTuning, to efficiently
transform foundation Large Language Models
(LLMs) into domain specialists. It significantly
reduces the training corpus needs to a mere
5% while achieving an impressive 100% of
traditional knowledge injection performance.
Motivated by structured human education, we
propose a novel two-stage strategy for knowl-
edge injection and alignment: Structure-aware
Continual Pre-Training (SCPT) and Structure-
aware Supervised Fine-Tuning (SSFT). In the
SCPT phase, we automatically extract the do-
main knowledge taxonomy and reorganize the
training corpora, enabling LLMs to effectively
link textual segments to targeted knowledge
points within the taxonomy. In the SSFT phase,
we explicitly prompt models to elucidate the un-
derlying knowledge structure in their outputs,
leveraging the structured domain insight to ad-
dress practical problems. Our ultimate method
was extensively evaluated across model archi-
tectures and scales on LongBench and MMed-
Bench datasets, demonstrating superior perfor-
mance against other knowledge injection meth-
ods. We also explored our method’s scalability
across different training corpus sizes, laying the
foundation to enhance domain-specific LLMs
with better data utilization. Code is available at
https://github.com/D2I-ai/struxgpt.

1 Introduction

Large language models (LLMs) have recently
seen extensive deployment across various appli-
cations (Vaswani et al., 2017; Achiam et al., 2023;
Jiang et al., 2023; Bi et al., 2024). When adapt-
ing foundational models (e.g., Llama series (Tou-
vron et al., 2023a,b; Dubey et al., 2024)) to spe-
cialized AI assistants in distinct domains, devel-
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opers usually employ two techniques to enhance
LLMs’ proficiency: retrieval-augmented genera-
tion (RAG) (Lewis et al., 2020) and domain knowl-
edge injection (Gururangan et al., 2020). While
RAG effectively utilizes an external knowledge
base to augment information, the retrieval pro-
cess’s inherent noise poses challenges to generating
reliable responses, especially in scenarios requir-
ing logical reasoning where there is a semantic
gap between the user’s query and the knowledge
base (Zhang et al., 2023; Chen et al., 2023). Thus,
another avenue tries to inject new knowledge to
LLMs via training techniques (Gu et al., 2021; Hu
et al., 2021; Mecklenburg et al., 2024).

Continual pre-training (Sun et al., 2020; Ibrahim
et al., 2024) is widely used for injecting domain-
specific knowledge (Cui et al., 2023; Wang et al.,
2023b; Qiu et al., 2024). However, it often requires
training on billions of internet tokens to capture
fragmented knowledge, rather than leveraging a
few structured textbooks (Jin et al., 2020). For in-
stance, MMedLM (Qiu et al., 2024) uses 25.5B
tokens for medical modeling, while DeepSeek-
Coder (Guo et al., 2024) processes 2T tokens for
coding adaptation. The limited ability to learn ef-
fectively from textbooks was attributed to insuf-
ficient data diversity (Zhu and Li, 2023a), which
however violates the observation during the hu-
man education process in Fig. 1: students gain
knowledge by sequentially studying from text-
books, reviewing knowledge points and structures,
and applying this knowledge through proper ex-
ercises. Here, all the new data to learn are text-
books (structured content) and exercising examples
(question-answering pairs), and students just adopt
their world knowledge to memorize, understand,
and apply the knowledge to become domain ex-
perts (Krathwohl, 2002; Yu et al., 2023).

As educating human students, we propose to
inject structured domain knowledge into LLMs
via two steps: Structure-aware Continual Pre-
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Figure 1: Discrepancy between human education and vanilla LLM adaptation. Human students learn structured
knowledge through textbooks section by section, with particular exercises on related knowledge points. Traditional
LLM adaptation continually pre-trains on data chunks from randomly concatenated text segments, with aimless
supervised fine-tuning for conversation alignment. The inherent knowledge structure is ignored.

Training (SCPT) and Structure-aware Supervised
Fine-Tuning (SSFT).

In the SCPT stage, we argue that high-quality
textbook data (as well as regular corpora from
the Internet) can adequately infuse domain knowl-
edge (Gunasekar et al., 2023), where the organiza-
tion of training corpora is crucial. In conventional
paradigms (Fig. 1), text corpora are simply concate-
nated and divided into chunks of 2048 (Qiu et al.,
2024) or 4096 (Guo et al., 2024) tokens, while the
inherent semantic structure (e.g., catalogs of text-
books) is discarded. Instead, we view each chunk
as a knowledge point and automatically extract do-
main knowledge taxonomy from the whole corpus.
Subsequently, LLMs are trained to predict textual
content (corresponding to a knowledge point) un-
der the condition of the knowledge path within
the domain structure, linking individual training
chunks with the entire knowledge architecture. Fi-
nally, models have to memorize the entire structure
to review the whole domain knowledge system.

In the SSFT stage, the goal shifts from knowl-
edge injection to enabling LLMs to recall and uti-
lize their acquired knowledge to tackle real-world
challenges. We explicitly elicit knowledge paths
in LLMs’ responses, as a beacon for models to
targeted information retrieval or logical reasoning
for reliable responses. To this end, we derive a
scalable strategy to generate question-answer pairs
as practice exercises by open-sourced LLMs or
API, such as LLaMA3 (Dubey et al., 2024) and
GPT4 (Achiam et al., 2023). In the scenarios with
existing QA pairs like MMedBench (Qiu et al.,
2024), we retrieve the related knowledge structure
and content, instructing LLaMA3 to provide ex-
planations from questions to answers based on the
knowledge paths. For datasets lacking specific QA

samples like LongBench (Bai et al., 2023b), we
randomly select knowledge paths from the domain
taxonomy and prompt LLaMA3 to craft question-
answer-explanation triplets for training exercises.

Our ultimate approach StructTuning has been
extensively evaluated across different model archi-
tectures and sizes. In particular, we first examine
their capability to recall the knowledge injected
through open-ended QA on the LongBench (Bai
et al., 2023b) dataset, then assess the application
of injected knowledge to address real-world issues
through multiple-choice QA on MMedBench (Qiu
et al., 2024). Both evaluations underscore the su-
periority of StructTuning, surpassing other SOTA
domain knowledge injection methods (Cheng et al.,
2023; Zhang et al., 2024). Remarkably, we achieve
a 50% improvement in knowledge injection com-
pared to SOTA MMedLM2 in the medical domain,
using only 0.3% of the training data requirement.
Furthermore, StructTuning exhibits good scalabil-
ity, achieving comparable performance with only
5% of the training data. These findings reveal our
superiority in enhancing domain-specific AI assis-
tants with more efficient data utilization.

Our contribution is summarized as follows:
• We proposed a novel two-stage training strat-

egy, SCPT and SSFT, to inject domain knowl-
edge into LLMs by preserving and utilizing
the inherent structure of the training corpus.

• We developed a scalable data construction
framework to generate structure-aware train-
ing samples from original corpora to facilitate
the SCPT and SSFT stages.

• We conducted extensive investigations on our
StructTuning strategy on various data and
model settings, and comprehensively illustrate
our superiority in knowledge injection.
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Figure 2: Framework for structure-aware knowledge injection. We extract the inherent knowledge structure
in the training corpus, and associate training chunks to corresponding knowledge points. Models are continually
pre-trained on data chunks in the condition of the knowledge structure, and fine-tuned with supervised QA samples
to elicit their learned knowledge to solve knowledge-intensive (KI) and 2- or multi-hop questions in the real world.

2 Related Works

Here we briefly discuss the closely related works.
A detailed discussion can be found in Appendix C.

Domain Adaptation for LLMs. To address
the domain adaptation problem, a pre-trained
model will be continually pre-trained (CPT) with
domain-specific content (Sun et al., 2020; Xu et al.,
2023b), and fine-tuned with supervised instruction-
response pairs (SFT) to keep advancing interactive
capabilities (Mecklenburg et al., 2024; Qiu et al.,
2024). This paradigm is validated efective in dy-
namic fields like medicine (Wang et al., 2023b; Qiu
et al., 2024) and coding (Roziere et al., 2023; Guo
et al., 2024). Our study builds upon this CPT-SFT
framework, innovating with SCPT-SSFT strategies
to efficiently and effectively infuse domain knowl-
edge with the inherent structure hierarchy.

Structure-aware Knowledge Aggregation. In
conventional paradigms, researchers extract entity-
relation-entity triplets from texts to construct
knowledge graphs (Pan et al., 2024), to enhance
LLMs’s factual knowledge and logical reason-
ing(Zhang et al., 2022; Wen et al., 2023). Here,
each node corresponds to either a specific entity
or an abstract concept, lacking the capability to
present an informative and self-contained knowl-
edge point. This paper extends to structure-aware
knowledge aggregation on existing training cor-
pora, injecting the whole domain knowledge struc-

ture into LLMs’ by linking training samples to cor-
responding knowledge points and reasoning paths.

Data Augmentation and Synthesis. Traditional
methods aim to artificially expand the training
dataset size (Xu et al., 2023a; Mukherjee et al.,
2023) or generate entirely new samples to adapt
LLMs to specific tasks (Tang et al., 2024). Yet,
they often overlook the structured nature of domain
knowledge, while the aimlessly generated samples
may also lack diversity (Ovadia et al., 2023; Meck-
lenburg et al., 2024) and cannot cover the domain
knowledge points (Mecklenburg et al., 2024; Tang
et al., 2024). By contrast, our SSFT design is an
innovative departure to address the challenge of
retaining and utilizing the structured knowledge
inherent in domain-specific content.

3 Methodology

Fig. 2 depicts our StructTuning methodology to
inject domain knowledge into pre-trained LLMs
using the inherent knowledge structure. With cu-
rated domain corpora (typically a few textbooks),
we first extract the knowledge structure, and asso-
ciate text chunks to corresponding knowledge paths
and points (Sec. 3.1). Then, we design a two-stage
training strategy to inject the highly structured do-
main knowledge into language models by mimick-
ing the human education process, comprising the
SCPT (Sec. 3.2) and SSFT (Sec. 3.3) techniques.
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In the realm of {field}, a conceptual mindmap is 
depicted using a tree-like structure to represent 
hierarchical relationships and thematic branches:

{mindmap}

Within this organized layout of {field}, the detailed 
subsection on {section} is described as:

{content}

SCPT chunk example
Biochemistry
├─ Overview of lipoprotein metabolism, hormone synthesis…
│ ├─ Lipoprotein Metabolism
│ │ ├─ Lipid Metabolism and Cholesterol Transport
│ │ ├─ Steroid Hormones: Synthesis, Regulation
│ │ └─ Lipoprotein Metabolism and Hormone Synthesis
│ ├─ Steroid Hormones
│ │ ├─ Nitrogen Metabolism: Amino Acid Catabolism 
│ │ └─ Pancreatic zymogen activation
···

Knowledge Structure

Figure 3: Left: extracted knowledge structure. Right: template to bridge mindmap structure and textual contents.

3.1 Knowledge Structure Extraction

For web-crawled corpus, previous data pre-
processing focuses on quality assessment for indi-
vidual documents (Bi et al., 2024), while the meta-
info of knowledge structures (e.g., the table content
for a textbook) is usually neglected or filtered out,
and all we have are those sequentially arranged text
segments (e.g., page-by-page-chunked content). As
shown in Fig. 2 (a), we aim to extract (or, recover)
the knowledge structure from the raw corpus for
subsequent domain knowledge injection.

First, we use spaCy1 to split the content from a
textbook at the paragraph-level, and merge the sen-
tences to form training chunks within a maximum
size (e.g., 2048 tokens (Qiu et al., 2024)). After
that, we prompt the advanced Llama3-70B (Dubey
et al., 2024) model to summarize the title for each
chunk, where the textual content with the abstrac-
tive title jointly contributes to a “knowledge point”.

Then, we aggregate knowledge points and ex-
tract the inherent structure hierarchy by leveraging
advanced language models. Inspired by Liu et al.
(2024a), we take the title list to instruct a specif-
ically developed 7B model to identify the inher-
ent knowledge structure (as exemplified in Fig. 3)
within the text chunks, and Fig. A1 showcases how
to deal with non-textbook data. The whole process
does not involve human annotation, which reduces
the cost and makes our method scalable for larger
domain training corpora.

In particular, Appendix B.1 and Appendix B.3
verify that our specialized 7B model can identify
sufficiently precise knowledge structure for effec-
tive and efficient domain adaptation, as more pow-
erful LLMs like LLaMA3-70B (Dubey et al., 2024)
and GPT-3.5 (Brown et al., 2020) cannot bring sig-
nificant enhancement while largely increase the
inference costs.

1https://github.com/explosion/spaCy

3.2 Structure-aware Continual Pre-Training

In conventional knowledge injection, training cor-
pora are randomly concatenated and chunked into
text segments without distinguishing the original
content, making models only able to absorb domain
knowledge emerging in data diversity (Ovadia et al.,
2023; Mecklenburg et al., 2024; Qiu et al., 2024).
In this section, we present another solution to inject
knowledge from limited text corpora by leverag-
ing the highly abstractive and exhaustive domain
knowledge structures for continual pre-training.

We first transform the knowledge structure into
natural languages using the same mindmap tem-
plate (Wen et al., 2023) in Fig. 3 (left), and prepend
it to each training chunk, forcing LLMs to memo-
rize the textual content (knowledge points) in the
condition of the associated knowledge path in the
structure hierarchy. 20 diversified templates (see
Fig. A5) are collected from GPT-4 (Achiam et al.,
2023) to bridge mindmap structures and training
chunks, one of which is displayed in Fig. 3 (right).
The prepended mindmap, as well as the template,
does not produce auto-regressive loss. Losses are
only calculated in the content part. Formally, we
turn the original language modeling in vanilla CPT
to conditioned modeling (Keskar et al., 2019) in
our SCPT stage:

p(xk) =
n∏

i=1

p(xki |xk<i) =⇒

p(xk|sk) =
n∏

i=1

p(xki |xk<i, s
k)

(1)

where p(xk) models the probability distribution for
the k-th chunk xk = (xk1, · · · , xkn) via the chain
rule of probability (Bengio et al., 2000) on each
token xki , and sk denotes the associated knowledge
mindmap. Appendix B.4 extensively investigates
the effectiveness of our SCPT strategy.
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LLM

## Question 
A woman has a recurrent neck pain 
radiating to her left arm. MRI revealed 
compression of the spinal cord at the 
C5-C6 level. What muscles need a 
myofascial release therapy?

## Answer
The muscle directly relevant based on 
the section on Spinal Nerves and 
Vertebral Column Anatomy is the 
Levator scapulae. This muscle 
originates from transverse processes of 
the cervical vertebrae (C1 to C4) and 
inserts onto the superior angle of the 
scapula. Importantly, it is innervated 
by spinal nerves C3 to C5.

Synthesized KI-QA

Design a knowledge-intensive medical 
question and logically deduce the 
diagnosis using the knowledge structure 
hierarchy and corresponding content:

## Knowledge Structure
Anatomy
└ Muscle Types, Joint Classes...

└ Spinal Nerves and ...

## Corresponding Content
Ball and socket joints—allow movement 
around multiple axes; permit flexion, 
extension, abduction, adduction, 
circumduction…

## Output

QA Generation Instruction

Design a multi-hop medical question and 
logically deduce the diagnosis using the 
knowledge structure hierarchy and 
corresponding content:

## Knowledge Structure
Anatomy
├ Anatomy and related medical...
└ Abdominal and Pelvic Anatomy

└ Gastrointestinal Disorders..

## Corresponding Content
The general appearance of the 
trabeculae with muscular ridges and 
bridges is similar to that…

## Output

QA Generation Instruction
## Question 
A woman presents with jaundice and 
intermittent abdominal pain. Imaging 
reveals a possible obstruction in the biliary 
tree. What is the most likely cause?

## Knowledge Structure
Anatomy
├ Anatomy and related medical…
└ Abdominal and Pelvic Anatomy

└Gastrointestinal Disorders …

## Answer
Based on the section detailing 
Gastrointestinal Disorders and 
Treatments, specifically focusing on 
biliary tree obstructions, it … The 
Anatomy and related medical imaging 
techniques branch indirectly as it sets ...

Synthesized 2Hop-QA

LLM

(a) Knowledge-Intensive QA Generation (b) Multi-hop QA Generation

Figure 4: QA samples synthesized for SSFT. We instruct Llama3-70B to generate (a) knowledge-intensive and (b)
multi-hop questions and derive the diagnosis answers with explicit reasoning.

As Fig. 2 (b) shows, after traversing the m knowl-
edge points in extracted structures, models are
asked to recall the whole knowledge hierarchy, i.e.,
to model the composed probability distribution:

p(s̄) =
m∏

k=1

p(sk) (2)

In SCPT, we mimic the human education process
to inject knowledge into LLMs in a section-by-
section manner, and replay the entire knowledge
structure for the models to review and summarize
the learned domain knowledge. These two steps
iteratively alternate throughout training epochs.

3.3 Structure-aware Supervised Fine-Tuning

Traditional supervised fine-tuning aims to align the
(continually) pre-trained models to interactive Chat-
Bots through question-answering exercises (Cui
et al., 2023; Qiu et al., 2024). Previous studies
focus on enlarging the quantity and enhancing the
diversity of training syntheses (Xu et al., 2023a;
Mukherjee et al., 2023; Liu et al., 2024b) but ne-
glect the highly structured domain knowledge. In
contrast, our structure-aware supervised fine-tuning
(SSFT) technique aims to elicit models’ structured
knowledge learned during SCPT, adapting LLMs
to interactive and reliable domain experts.

Fig. 2 (c) illustrates SSFT samples synthesis
guided by domain knowledge structures. First, we
use the random walk algorithm to create knowledge
paths with 1 to l branches in the original mindmap
(the illustration of knowledge paths and branches
is displayed in Fig. A2). For paths linking to a
single knowledge point, we use the corresponding
text content to prompt Llama3-70B (Dubey et al.,
2024) to generate knowledge-intensive QA pairs.
For paths with two or more branches, we prompt

Llama3-70B with the knowledge path and textual
contents to synthesize 2- or multi-hop QA samples,
which require specific reasoning along the knowl-
edge structure to derive from questions to answers.
Fig. 4 presents several examples.

For every synthesized QA sample (z), we will
prepend the relevant mindmap hierarchy to the an-
swer, and add a CoT prompt in the question to
construct another type of QA data (z′) for SFT
alignment. This design explicitly elicits the learned
knowledge in models’ responses, teaching them
how to apply the structured knowledge to address
real-world problems. We use the two types of QA
samples for training, as recommended by Qiu et al.
(2024). During testing, we use the vanilla question
as input to efficiently gather models’ answers to cal-
culate accuracy, and take the CoT prompt to probe
to what extent LLMs can memorize and leverage
the injected knowledge to answer the questions.

Integrating with SCPT and SSFT, our StructTun-
ing approach translates into remarkable efficacy
and efficiency in domain knowledge injection, as
comprehensively evaluated in subsequent sections.

4 Experiments

We design extensive evaluations of our StructTun-
ing through several experiments on two bench-
marks. First, we investigate the free-form question-
answering task on the LongBench (Bai et al.,
2023b) dataset, so as to verify the memorization
and understanding of injected knowledge (the an-
swer can be directly found in training corpora).
Then, we delve into the multi-choice question-
answering task on MMedBench (Qiu et al., 2024),
to explore how LLMs apply the injected knowl-
edge in basic medicine to determine the real-world
diagnosis for patients with logical reasoning.
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Table 1: Recall Evaluation on LongBench (Bai et al., 2023b). The best and secondary results are marked in bold
and underlines, respectively. The base model is Llama2-7B.

Task Adaptation
SingleDoc-QA MultiDoc-QA

Average
Qasper MFQA MFQAzh HpQA 2Wiki Musiq Duzh

CBQA

CPT+SFT 20.7 35.3 20.6 29.9 32.1 18.9 12.0 24.2
SCPT+SFT 18.8 42.5 17.7 35.7 36.4 20.5 15.3 26.7

SCPT+SSFT 30.5 44.6 24.3 40.8 42.0 21.8 16.8 31.5

4.1 Preliminary Free-form QA Investigation

Datasets and Tasks. Seven subsets with 1,350
test examples from LongBench (Bai et al., 2023b)
are utilized to evaluate closed-book question-
answering evaluation, where the answers can be
directly found in corresponding passages. The
14K reading-comprehension passages are used for
knowledge injection via CPT/SCPT, and another
2,700 QA samples are generated for SFT/SSFT.
Details are described in Appendix A.1.

Evaluation Metrics. Here we first report the
recall (Zhu and Li, 2023b) for models’ outputs
against ground-truth answers to quantify the knowl-
edge memorization degree. In Appendix B.7 we
also evaluate F1-score for a thorough comparison.

Investigated Models. We mainly investigate
Llama2-7B (Touvron et al., 2023b) to compare the
knowledge injection performance.

Implementation Details. We train all models
on LongBench passages for 3 epochs using a batch
size of 128, and train for 1 epoch on synthetic SFT
data to avoid overfitting. The learning rate is 2e-5.

Main Results. We first try to inject passage
content into LLMs with a conventional CPT+SFT
paradigm for the baseline, and use CoT instructions
during testing to elicit models’ memorized knowl-
edge in their responses. However, Tab. 1 indicates
such an injection approach is ineffective, as the
knowledge recall is only 24.2%.

On the other hand, our SCPT strategy achieved
a higher knowledge recall of 26.7%. It implies the
model has successfully associated the relevant pas-
sages with their entire knowledge structure for the
given question, especially on multi-doc QAs that
require more complex information retrieval and
reasoning on multiple passages. Furthermore, our
SSFT technique continues to improve the knowl-
edge recall to 31.5%, which indicates the vanilla
SFT strategy can only regularize LLMs’ response
styles, while our SSFT could teach LLMs to utilize
their knowledge (injected in the SCPT stage) to
answer corresponding questions. Fig. 5 showcases
a representative example.

Question

Regarding Multilingual dialect detection and classification using deep learning, what 
models were used for dialect identification?

Here is the knowledge structure regarding Multilingual dialect detection and 
classification using deep learning:
Multilingual dialect detection and classification using deep learning
├─ Exploring multilingual dialect identification using deep learning techniques
├─ Design and implementation of a neural network for language identification
├─ Proposed method for multilingual dialect identification using CNNs and LSTMs
├─ Evaluation and analysis of a dialect identification model using X-NMT architecture
└─ Analysis of a multilingual dialect identification system using NMT models

The question asks about the specific models employed in the study for dialect 
identification. By recalling the passage's description of the "proposed method," we can 
identify that BERT, RoBERTa, and XLM-RoBERTa were used as these three 
architectures were combined to form the X-NMT model

Model Response

BERT, RoBERTa, ELECTRA, and XLM-RoBERTa.

Ground-Truth

Figure 5: An example for structure-aware responses.

In Tab. 2, we also use lexical ROUGE-L (Lin,
2004) and semantic BERTScore (Zhang et al.,
2020) to quantify the memorization of injected
knowledge structures, by comparing the mindmap
in models’ responses (as Fig. 5 displays) with
ground-truth answers. The results indicate a rel-
atively good memorization of the injected knowl-
edge mindmap, emphasizing the efficacy of our
SCPT strategy.

Table 2: MindMap Recall

F1-Score BERTScore

0.61 0.87

4.2 In-depth Multi-choice QA Evaluation

Datasets and Tasks. We take several corpus sizes
from MMedC (Qiu et al., 2024) for CPT/SCPT,
with 45K QA data from MMedBench (Qiu et al.,
2024)’s training set for SFT/SSFT. Models are
evaluated on six multi-choice subsets from MMed-
Bench, where LLMs should make real-world pa-
tient diagnoses with adequate reasoning on medical
knowledge. Detailed setup is in Appendix A.2.

Evaluation Metrics. We follow the default set-
ting to calculate the accuracy on six language sub-
sets and the averaged scores. Metrics are computed
by lexical exact-matching on models’ responses,
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Table 3: Multiple-choice evaluation on MMedBench (Qiu et al., 2024). We report separate accuracies across six
languages, with “Average” denoting the mean score. “#Token” denotes required data for knowledge injection.

Model English Chinese Japanese French Russian Spanish Average #Token

ChatDoctor (Yunxiang et al., 2023) 43.52 43.26 25.63 18.81 62.50 43.44 39.53 -
PMC-LLaMA (Wu et al., 2024) 47.53 42.44 24.12 20.74 62.11 43.29 40.04 -
MedAlpaca (Han et al., 2023) 46.74 44.80 29.64 21.06 59.38 45.00 41.11 -
Llama2-7B (Touvron et al., 2023b) 43.36 50.29 25.13 20.90 66.80 47.10 42.26 -
InternLM2-7B (Zheng et al., 2024) 57.27 77.55 47.74 41.00 68.36 59.59 58.59 -

Llama3-8B (AI, 2024) 63.86 78.23 48.24 50.80 71.48 64.15 62.79 +0.00 -
Llama3+MMed (Qiu et al., 2024) 66.06 79.25 61.81 55.63 75.39 68.38 67.75 +4.96 25.5B
Llama3+StructTuning (Ours) 66.77 77.44 53.27 51.61 74.61 68.49 65.36 +2.57 76M
Llama3+StructTuning (Ours) 65.36 79.04 56.28 55.47 80.47 69.80 67.74 +4.95 1.2B
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Figure 6: Knowledge injection’s scalability.

rather than maximum token probabilities.
Investigated Models. We extend the investi-

gation across model architectures and scales, in-
cluding Llama2-7B/13B (Touvron et al., 2023b),
InternLM2-7B (Zheng et al., 2024), and Llama3-
8B (Dubey et al., 2024). Other popular medical
LLMs (Han et al., 2023; Wu et al., 2024; Qiu et al.,
2024) are also included for a thorough comparison.

Implementation Details. Following Qiu et al.
(2024), models are first trained for 3 epochs on
medical corpora with a learning rate of 2e-5, and
then fine-tuned for 1 epoch to avoid overfitting.
The detailed setup is displayed in Appendix A.2.

Main Results. The results in Tab. 3 demonstrate
the promising enhancement achieved by our Struct-
Tuning technique largely outperforming the previ-
ous domain-specific LLMs like PMC-LLaMA (Wu
et al., 2024) and MedAlpaca (Han et al., 2023).
Notably, our structure-aware knowledge injection
approach, using merely 76M tokens (0.3%) curated
from medical textbooks, achieves over 50% perfor-
mance (2.57% v.s. 4.96%) against the state-of-the-
art MMedLM (Qiu et al., 2024) method, which is
trained on the entire MMedC (Qiu et al., 2024) cor-
pora of 25.5B tokens. After scaling up the training
tokens to 1.2B (around 5%), our method makes
nearly 100% improvements to the average accu-
racy, significantly reducing the training cost of tra-

Table 4: Generalization to various model architec-
tures and sizes. Here we use 76M training corpus.

Model Size Adaptation Accuracy

InternLM2 7B CPT+SFT 58.59
SCPT+SSFT 63.05

Llama2 7B CPT+SFT 42.26
SCPT+SSFT 51.04

Llama2 13B CPT+SFT 48.33
SCPT+SSFT 54.50

Table 5: Model evaluation on general benchmarks.

Injection MMLU C-Eval TruthfulQA WinoGrande ARC_c

Before 0.46 0.35 0.49 0.52 0.51
After 0.43 0.35 0.43 0.51 0.56

ditional knowledge injection approaches.
Approach’s Scalability. We further curate a

series of training corpora sizes to investigate our
method’s scalability in-depth: 30M, 76M, 132M,
250M, and 1.2B, which respectively take around
0.1%, 0.3%, 0.5%, 1%, and 5% of 25.5B tokens.
The vanilla CPT-SFT paradigm and our SCPT-
SSFT strategy are thoroughly compared across
those data settings. According to Fig. 6, our method
consistently surpasses the vanilla paradigm by a
large margin, emphasizing the efficacy and effi-
ciency of domain knowledge injection. In partic-
ular, we fit two performance-ratio scaling curves
from the data points in Fig. 6 as:

pv ≈ −0.04(log r)2 + 13.3 log r + 100.0

ps ≈ −1.11(log r)2 + 7.63 log r + 133.0
(3)

where pv and ps denote the relative performance
enhancement (%) for vanilla and structure-aware
knowledge injection, and r is the corpus ratio.

In fact, we use the scaling law derived from
0.1%, 0.3%, 0.5%, and 1% points to predict that
achieving 100% performance would require 5% of
the data corpus, which has been confirmed in Tab. 3.
On the other hand, it also indicates our method may
lead to 133% enhancement with a further 100%
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Table 6: Ablation studies with Llama2-7B on the English subset of MMedBench.

Adaptation English Chinese Japanese French Russian Spanish Average

SFT 44.54 32.81 26.63 15.27 53.91 42.30 35.91
CPT + SFT 46.27 32.57 26.13 17.36 50.00 40.63 35.49

SCPT + SFT 46.50 32.14 20.10 18.17 53.91 39.97 35.13
SCPT + SSFT 49.96 32.63 22.11 17.52 51.17 41.28 35.78
SCPT + SSFT* 49.10 33.92 18.33 27.14 57.42 43.73 38.27

RAG (Lewis et al., 2020) 38.12 29.22 22.61 23.34 53.91 36.47 33.95
AdaptLLM (Cheng et al., 2023) 46.79 33.80 20.60 14.15 53.12 42.34 35.03
RAFT (Zhang et al., 2024) 43.60 32.34 21.11 14.95 50.39 42.16 34.09

comprehensive data utilization, further validating
the effectiveness and scalability of our method.

Approach’s Generalization. In Tab. 4, we
also validated the performance on Llama2 (Tou-
vron et al., 2023b) and InternLM2 (Zheng et al.,
2024) model series by using 76M tokens for
knowledge injection. Our method leads to consis-
tently significant improvements on InternLM2-7B
(+4.46%), Llama2-7B (+8.78%) and Llama2-13B
(+6.17%) backbone models, further demonstrating
the generalizability and scalability of our Struct-
Tuning across model architectures and sizes. De-
tailed results are presented in Tab. A6.

Investigation on Catastrophic Forgetting.
Tab. 5 provides a supplementary evaluation on com-
mon benchmarks, including MMLU (Hendrycks
et al., 2020), C-Eval (Huang et al., 2023), Truth-
fulQA (Lin et al., 2021), WinoGrande (Sakaguchi
et al., 2021), and ARC_c (Chollet, 2019). The re-
sults indicate the current methodology of structure-
aware knowledge injection does not significantly
hurt LLM’s general capabilities, and even brings
a slight enhancement to the ARC_c benchmark
(maybe the knowledge structure enhances the rea-
soning ability). As previous research states, the
issue of catastrophic forgetting can be further miti-
gated by incorporating common QA examples, and
we leave this to our future work.

4.3 Ablation Studies

We perform a comprehensive ablation study on
MMedBench’s English subset in Tab. 6. As sug-
gested by Qiu et al. (2024), we use the English
textbooks (Jin et al., 2020) (26M tokens) to com-
pare vanilla and structure-aware CPT, paired with
corresponding SFT strategies. In particular, “SFT”
uses vanilla SFT with 10K QA samples from
MMedBench’s training split, while “SSFT” applies
structure-aware SFT on the same questions, enhanc-
ing answers with Llama3-70B-generated knowl-
edge explanations (Sec. 3.3). “SSFT*” further

includes 8K additional structure-aware QA pairs,
totaling 18K training entries. Training hyperparam-
eters align with the main experiment.

Main observations. In Tab. 6, the CPT+SFT
paradigm improves accuracy by 1.73%, while
SCPT with vanilla SFT achieves a higher 46.50%.
Combining SCPT with SSFT boosts performance
significantly (49.96% v.s. 44.54%), highlighting
the importance of structured knowledge elicitation.
Adding 8K extra QA pairs (“SSFT*”) further im-
proves performance across five subsets, demon-
strating a surprising cross-lingual knowledge trans-
fer (Lai et al., 2023; Qin et al., 2024). After SSFT,
LLMs effectively use knowledge injected in one
language to solve problems in others, surpassing
traditional SFT. Additional comparisons in Ap-
pendix B.5 confirm that structure-aware syntheses
can enhance knowledge application better than ran-
dom syntheses.

In addition, we observe that the commonly used
RAG (Lewis et al., 2020) strategy does not bring
significant advantages to the MMedBench evalua-
tion. The main reason lies in the gap between the
pre-training corpus (comprising official knowledge
statements from textbooks) and evaluated QA sam-
ples (originating from practical diagnosis records).
Knowledge injection by (S)CPT and (S)SFT shows
more advantages in this situation. In-depth investi-
gations can be found in Sec. 4.4

Comparision with Other Methods. We also
compare two advanced knowledge injection meth-
ods in Tab. 6 to further demonstrate our StructTun-
ing’s efficacy: (1) AdaptLLM (Cheng et al., 2023):
domain knowledge injection by appending read-
ing comprehension QAs to each CPT chunk, and
(2) RAFT (Zhang et al., 2024): improving LLM’s
robustness to domain-specific retrieval-augmented
generation using noisy retrieval-augmented SFT
samples. According to the experimental results,
AdaptLLM (Cheng et al., 2023) brings negligible
improvement in the final performance (e.g., 46.79%
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Table 7: Ablation on the hyper-parameter settings for the RAG baseline.

ChunkSize 256 512 1024

RetrieveNum 10 5 3 5 3 2 3 2 1

Accuracy 35.08 37.67 38.04 36.42 38.12 37.99 35.00 36.89 38.07

Table 8: Attempts to optimize RAG.

Hybrid Reranker Accuracy

× × 38.12√ × 37.97
× √

37.52√ √
37.75

v.s. 46.27% on the English subset), indicating such
a chunk-level reading comprehension augmenta-
tion during CPT cannot help LLMs capture the
entire structured domain knowledge. Concurrently,
RAFT (Zhang et al., 2024) causes even worse per-
formance, since the retrieval process introduces too
many unrelated chunks and hurts LLM’s QA judg-
ments, especially when there exists a significant
gap between user query and knowledge chunks in
the medical diagnosis scenario.

4.4 Further Investigation on RAG
In Sec. 4.2, we briefly compare RAG adaptation
and injection-based approaches in the MMedBench
dataset, and this section provides more implemen-
tation details and further investigations on the pop-
ular retrieval-augmented generation approach.

Experimental Settings. On the implementation
of the RAG baseline, we utilize the BAAI/bge-
m3 (Chen et al., 2024) embedding model for
dense retrieval, due to its state-of-the-art and multi-
lingual semantic retrieval ability. For the experi-
ments in Tab. 6, we take the same 26M English
CPT data as the knowledge base, re-chunk the data
corpus for every 512 tokens, and retrieve top-3
related chunks as context inputs for LLM’s genera-
tion process. The retrieval process is implemented
using the LlamaIndex2 framework.

Additional Experiments. We also conduct
a variety of experiments to evaluate the hyper-
parameters for the RAG baseline. As shown in
Tab. 7, changing the chunk size and retrieved chunk
number cannot bring any significant benefits. The
core reason lies in the gap between user query and
retrieved chunks. In particular, user queries contain
many descriptive and quantitative sentences and

2https://www.llamaindex.ai/

numbers (such as the example in Fig. A3, “They
enrolled 800 patients in the study, half of which
have breast cancer”.), and may even talk about an
entirely new thing that has not been recorded in the
knowledge base.

Furthermore, we also try to use the hybrid
(dense+sparse) search strategy and larger rerank
model (BAAI/bge-reranker-v2-m3 (Chen et al.,
2024)) to enhance the retrieval quality. However
according to the results in Tab. 8, the semantic
gap between user queries and retrieved chunks still
exists. Introducing the hybrid search and rerank
model even gets worse performance (e.g., the key-
word age may be considered a key factor for hybrid
search, but it cannot help to derive the answer of
test sensitivity).

Analysis. RAG may assist in some knowledge-
intensive tasks for information-seeking, but will
encounter problems when there exists a significant
semantic gap between user query and retrieved doc-
uments. MMedBench is a typical scenario, where
LLMs are asked to derive medical diagnoses with
proper reasoning according to the descriptions of
patients or medical examinations. In this case, the
retrieval process introduces too many unrelated
chunks and hurts LLM’s QA judgments. Fig. A3
provides an example where the retrieved chunks
are actually unrelated to the complicated user query
(the user asks about the analysis of a given research
study, but the retrieved documents contain several
keywords, e.g., age, while having nothing to do
with the blood test study.)

5 Conclusion

This work pioneers in incorporating structure-
aware methodologies to enhance domain knowl-
edge injection into large language models. Through
a novel SCPT-SSFT paradigm, we have set a new
precedent for adapting LLMs to specialized do-
mains, and the promising and scalable results un-
derscore the viability and potential of our method.
We hope to inspire further research in efficient and
effective domain adaptation in the LLM commu-
nity, moving a step closer to models that can truly
emulate human intelligence.
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Limitation

Our two-stage strategy introduces added compu-
tational complexity, where taxonomy extraction
and data reorganization are required in the SCPT
phase, and extra QA syntheses are optionally ap-
plied in the SSFT stage. This may pose challenges
for domains without structured knowledge (e.g., e-
commercial) or when computational resources are
limited. In Appendix B, we provide further discus-
sion with extensive empirical experiments. Despite
the additional computational overhead introduced,
our method achieves greater overall benefits and
can reduce the reliance on large-scale LLMs (e.g.,
70B models). We will delve into the investigations
in future work.
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A Implementation Details

A.1 Detailed Setup on LongBench
Dataset Composition. To focus on the investi-
gation of knowledge injection, we choose 7 sub-
sets from LongBench (Bai et al., 2023b) across
single- and multi-document QA tasks in English
and Chinese, and the remaining synthetic or code-
orientated tasks are eliminated:

• Single-Doc QA. For single-document QA,
we take three subsets from LongBench: (1)
Qasper (Dasigi et al., 2021), featured by
question-answering over NLP technical pa-
pers and annotated by NLP practitioners; (2)
MultiFieldQA (Bai et al., 2023b), manually cu-
rated from multiple data sources and annotated
by Ph.D. students; and (3) MultiFieldQA-zh,
the Chinese split also provided by Bai et al.
(2023b), covering multiple Chinese scenarios.
MultiFieldQA contains 150 Context-Question-
Answer triplets to test, and the others subsets
include 200 pieces of test samples respectively.

• Multi-Doc QA. Multi-document QA requires
LLMs to extract and combine information
from multiple documents to derive the an-
swer, which is generally more challenging than
single-doc QA. We take four multi-hop QA
datasets: (1) HotpotQA (Yang et al., 2018),
containing 2-hop questions written by native
speakers given two related paragraphs; (2)
2WikiMultihopQA (Ho et al., 2020), involv-
ing up to 5-hop questions synthesized through
manually designed templates on Wikipedia
passages; (3) MuSiQue (Trivedi et al., 2022),
carefully composed with up to 4-hop rea-
soning on an increased number of support-
ing and distracting context evidence; and (4)
Dureader (He et al., 2017), developed based
on Baidu Search and Baidu Zhidao and filtered
by Bai et al. (2023b) to reduce the data noise.
Each subset has 200 test samples.

In Single-Doc QA, we extract knowledge struc-
tures for each single passage; in Multi-Doc
QA, we identify the knowledge structure across
multiple passages for each test sample. There
are ultimate 1350 question-answer-passage(s)-
(knowledge)structure quadruples to evaluate knowl-
edge injection approaches on LongBench.

SFT Data-Synthesis. We query Llama3-70B
to generate 2,700 QA examples and remove those
with over 0.5 F1-Score similarity to test samples
to prevent data leakage. During inference, when

the model can generate correct answers (corre-
sponding to specific knowledge points) that haven’t
been seen during the SFT stage, we can ensure the
knowledge is injected at the CPT stage and SFT
only enhances the instruction-following capability.
In practice, merely 13 out of 2700 (around 0.5%)
synthetic data have over 0.5 F1-Score and are thus
filtered out from the SFT data.

Tab. A1 statistics the semantic similarity (mea-
sured by BERTScore (Zhang et al., 2020)) between
generated and GT questions and answers, and the
results emphasize there is no knowledge leakage in
the generated SFT data (they share poor semantic
similarity across questions, answers, and QAs).

Table A1: Similarity statistics on synthetic SFT data
and LongBench’s test samples.

Target Question Answer Question-Answer

BERTScore 0.277 0.106 0.093

A.2 Detailed Setup on MMedBench

Data for Evaluation. The Multilingual Medical
Benchmark (MMedBench) (Qiu et al., 2024) rep-
resents a comprehensive and diverse multilingual
medical Question and Answering (QA) benchmark
designed to evaluate models’ capabilities of under-
standing and processing medical content.

MMedBench’s robust dataset extends across 6
languages (i.e., English, Chinese, Japanese, French,
Russian, and Spanish) and 21 medical fields, which
include, but are not limited to, Internal Medicine,
Biochemistry, Pharmacology, Psychiatry, and many
others. It provides 45,048 training pairs and 8,518
testing pairs for diverse learning and testing sce-
narios. The training split is specifically designed
for domain-specific finetuning of large language
models (LLMs), while the entire testing set allows
for a precise assessment of multi-choice question-
answering performance. Statistics on six languages
are displayed in Tab. A2. Notably, the benchmark
includes scenarios where questions may have mul-
tiple correct answers (i.e., in Japanese and French
subsets), introducing additional complexity for the
model evaluation process.

Data for Continual Pre-Training. To investi-
gate high-quality domain knowledge injection for
LLMs and the scalability of injection methods, we
curate a series of training corpus sizes from the
25.5B MMedC (Qiu et al., 2024) dataset, including
0.1%, 0.3%, 0.5%, 1%, and 5%, which respectively
takes 30M, 76M, 132M, 250M, and 1.2B tokens.
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Table A2: Sample statistics on MMedBench’s QA data.

Split English Chinese Japanese French Russian Spanish Total

Train 10,178 27,400 1,590 2,171 1,052 2,657 45,048
Test 1,273 3,426 199 622 256 2,742 8,518

Table A3: Sample statistics on different training data settings.

Stage Ratio English Chinese Japanese French Russian Spanish Total

CPT 0.1% 6.9M 8.8M - 4.1M 4.9M 5.4M 30.1M
CPT 0.3% 26.1M 21.5M - 8.1M 10.3M 10.1M 76.1M
CPT 0.5% 35.9M 27.2M 4.5M 14.0M 24.9M 26.1M 132.6M
CPT 1.0% 44.1M 39.8M 34.2M 45.1M 47.9M 38.4M 249.5M
CPT 5.0% 169.4M 227.8M 119.8M 232.7M 235.5M 226.1M 1.2B

SFT - 18.8K 39.1K 1.6K 5.3K 5.9K 7.5K 78.2K

We sorted the document-level text content (includ-
ing textbooks and other corpus from websites and
wikipedia) by length in descending order and pro-
gressively included more samples to expand the
training dataset at larger scales, where Tab. A3 pro-
vides detailed statistics. In particular, as MMedC
does not provide English textbooks in its released
data (due to copyright issues), we collect 18 En-
glish textbooks (Jin et al., 2020) as an alternative
for English medical knowledge injection, since they
have a common OCR source with MMedC (Qiu
et al., 2024). These English textbooks take around
21.5M tokens.

Knowledge Structure Extraction. For text-
books, we split the data to chunks (knowledge
points) within 3072 tokens, and use our specifically
developed 7B-size LLM to extract the structured
medical knowledge system. For non-textbook data
(for instance, MMedC does not provide Japanese
textbooks), a clustering-based technique (Sarthi
et al., 2024) is adopted to recursively build knowl-
edge structures from fragmented text segments.
Fig. A1 presents an example to illustrate the two
kinds of knowledge structure extraction processes,
Tab. A4 displays the overall statistics on extracted
knowledge structures for the final 1.2B tokens.

Data for Supervised Fine-Tuning. As intro-
duced in Sec. 3.3, we prompt Llama3-70B (Dubey
et al., 2024) to build the structure-aware answer
explanations on top of the raw SFT samples in
MMedBench’s training split, and generate extra
QA pairs by traversing the extracted knowledge
structure from textbooks. The final quantity statis-
tics are presented in Tab. A3. Note that the 70B-
size model is not necessary to synthesize QAs and
explanations, since we have provided relevant text
sources (retrieved from the training corpus) to sup-

Table A4: Knowledge structure on 1.2B training corpus.

Lang. Book Chapter Section KnowledgePoints

6 2933 14,411 23,239 180,793

plement medical knowledge. In this way, LLMs
only need to perform in-context comprehension,
rather than generate new QAs based on their own
knowledge, which can also be achieved by smaller
models like Qwen2.5-7B (Yang et al., 2024).

A.3 Terminology Explanation

Knowledge Structures. We extract the domain
knowledge structure for each textbook, where
Fig. 3 presents an example, and combine the medi-
cal knowledge for six languages in MMedBench.
As the (S)CPT corpus for Japanese is collected
from Wikipedia rather than textbooks, we derive a
single knowledge structure for Japanese medicine.

Knowledge Paths and Branches. Fig. A2
shows an example of how we define the knowl-
edge paths and branches of the extracted knowl-
edge structure for SSFT data synthesis.

• A path means a knowledge path from the
domain summary (e.g., Biochemistry) to spe-
cific knowledge points (e.g., Lipid Metabolism
and Cholesterol Transport): “Biochemistry –
Overview of lipoprotein metabolism, hormone
synthesis – Lipoprotein Metabolism – Lipid
Metabolism and Cholesterol Transport”.

• A branch means the knowledge branch of the
tree structure. If a question is related to two
knowledge points (e.g., Lipid Metabolism and
Cholesterol Transport and Pancreatic zymo-
gen activation) at different branches of the
knowledge tree, the knowledge path contains
two branches, which becomes the right-bottom
part of Fig. A2.
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Figure A1: Knowledge structure extraction from (a) sequential chunks (e.g., from textbooks) by our specialized 7B
model and (b) separated trunks (e.g., from websites) by clustering-based methods (Sarthi et al., 2024). Here the
terms of “Section”, “Chapter”, and “book” are just examples to help illustrate the knowledge structure.

Biochemistry
├─ Overview of lipoprotein metabolism, hormone synthesis…
│ ├─ Lipoprotein Metabolism
│ │ ├─ Lipid Metabolism and Cholesterol Transport
│ │ ├─ Steroid Hormones: Synthesis, Regulation
│ │ └─ Lipoprotein Metabolism and Hormone Synthesis
│ ├─ Steroid Hormones
│ │ ├─ Nitrogen Metabolism: Amino Acid Catabolism 
│ │ └─ Pancreatic zymogen activation
├─ Nitrogen Metabolism
│ ├─ Amino Acid Degradation and Ammonia Handling
│ └─ Ammonia Metabolism and Transport
···

Knowledge Structure
Biochemistry
└─ Overview of lipoprotein metabolism, hormone synthesis…

└─ Lipoprotein Metabolism
└─ Lipoprotein Metabolism and Hormone Synthesis

Knowledge Path with 1 Branch

Biochemistry
└─ Overview of lipoprotein metabolism, hormone synthesis…

├─ Lipoprotein Metabolism
│ └─ Lipid Metabolism and Cholesterol Transport
└─ Steroid Hormones

└─ Pancreatic zymogen activation

Knowledge Path with 2 Branches

Figure A2: Definition and example of knowledge paths and branches.

A.4 Resource Requirement
We use 8 NVIDIA A100-80G GPUs to train all
the models, and leverage 1-2 NVIDIA A100-80G
GPUs for inference.

B Additional Experiments

B.1 Knowledge Structure Extraction
Extracting domain knowledge structure is a prereq-
uisite for subsequent knowledge injection (includ-
ing both SCPT and SSFT) for language models.
In Sec. 3.1, we propose a bottom-up strategy to
re-chunk the texts from domain textbooks, sum-
marize a title for each chunk, and send the title
list to a specialized 7B model to derive the knowl-
edge structure. The prompt template is displayed
in Appendix D.

In fact, we argue that due to the language di-
versity, a perfectly recovered table of contents of
textbooks is unnecessary for domain knowledge
injection. A reasonable knowledge structure is suf-
ficient enough. In Tab. A5, we individually adopt
few-shot GPT-3.5-Turbo (Brown et al., 2020) and
LLaMA3-70B (Dubey et al., 2024) models to ex-
tract medical knowledge structure from 18 English
textbooks (Jin et al., 2020) (with 26.1M tokens)

Table A5: Comparison of models to extract knowledge
structures on 26M English corpus.

Model Improvement Time Cost Extra Fee

GPT-3.5-Turbo +3.58 - 15$
LLaMA3-70B +3.72 1.5h -

Ours-7B +3.69 0.2h -

for subsequent knowledge injection (the backbone
LLM is LLaMA2-7B (Touvron et al., 2023b)). Al-
though they present 3.6%-3.7% enhancement on
MMedBench (Qiu et al., 2024)’s English test set
(denoted as “improvement”), leveraging GPT-3.5-
Turbo and LLaMA3-70B is either expensive or
time-consuming. GPT-3.5-Turbo costs around 15
dollars to process 26M tokens, while LLaMA3-
70B takes around 1.5 hours on 2 A100-80G GPUs,
of which both limit scaling data pre-processing for
structure-aware knowledge injection.

Inspired by Liu et al. (2024a), we distilled the
knowledge structure extraction capability from gi-
ant LLMs to a LLaMA2-7B model via SFT. In
particular, we instruct LLaMA3-70B to generate
22K training examples (pairs of raw knowledge
points and extracted knowledge structures) from
Wikipedia, and train a LLaMA2-7B model at a
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Table A6: Structure-aware knowledge injection to Llama2 (Touvron et al., 2023b) model series.

Model English Chinese Japanese French Russian Spanish Average

InternLM2-7B 57.27 77.55 47.74 41.00 68.36 59.59 58.59
+Ours 60.80 79.19 50.75 45.34 75.39 66.85 63.05

Llama2-7B 43.36 50.29 25.13 20.90 66.80 47.10 42.26
+Ours 49.41 65.15 36.68 35.21 69.14 50.62 51.04

Llama2-13B 51.37 57.97 32.66 25.08 69.92 52.99 48.33
+Ours 53.02 68.30 37.78 41.71 70.70 55.51 54.50

Table A7: Training costs for knowledge injection.

Paradigm Corpus Improve. Preprocess Total

CPT+SFT 100% 100% - >30d
SCPT+SSFT 0.3% 50% 0.6h 4.5h
SCPT+SSFT 5% 100% 9.7h 3d

batch size of 128 and a learning rate of 2e-5 for 1
epoch. After utilizing the specialized 7B model to
identify the knowledge structure in medical text-
books, as shown in Tab. A5, the results translate to
comparable performance on structure-aware knowl-
edge injection. Meanwhile, the inference cost sig-
nificantly decreases to 0.3 hours, which is more
scalable to handle a larger domain corpus.

B.2 Evaluation of Approach’s Generalization

In addition to the Llama3 models in previous exper-
iments, we also investigate the generalization abil-
ity of our SCPT+SSFT paradigm on Llama2 (Tou-
vron et al., 2023b) and InternLM2 (Zheng et al.,
2024) model series. As shown in Tab. A6, our
method leads to consistently significant improve-
ments on InternLM2-7B (+4.46%), Llama2-7B
(+8.78%) and Llama2-13B (+6.17%) backbone
models. The results further demonstrate the gener-
alizability and scalability of our StructTuning strat-
egy across model architectures and sizes.

B.3 Comparison on Training Costs

In Tab. A7, we quantify the total training cost
on 8 A100-80G GPUs. According to Qiu et al.
(2024), the conventional CPT+SFT paradigm
on 25.5B medicine corpus takes more than 30
days to derive the SOTA MMedLM model. In
our SCPT+SSFT framework, although the pre-
processing (i.e., knowledge structure extraction)
introduces an extra 0.6 hours to process 0.3% data
(around 76M tokens), the total training process only
costs 4.5 hours. As suggested in Fig. 6, when 5%
training data is leveraged for knowledge injection
to achieve 100% improvement, the overall cost is
limited to 3 days, much less than the CPT+SFT

approach with more than a month. Those analy-
ses further demonstrate the efficacy and efficiency
of our structure-aware knowledge injection frame-
work.

B.4 Further Investigation on Structured
Knowledge Injection

During the Structure-aware Continual Pre-Training
(SCPT) stage, we proposed to learn specific text
chunks (knowledge points) in the condition of the
mindmap inputs (knowledge structures), in order
to relate the knowledge points to corresponding
structure nodes. In this section, we conduct a series
of ablation studies to investigate the design efficacy.
The vanilla CPT+SFT paradigm is adopted as the
comparison baseline, where the Llama2-7B model
is trained with CPT and SFT data on the English
subset of MMedBench, while tested on all subsets
across six languages. The hyper-parameter settings
follow the main experiment in our manuscript. The
empirical results are presented in Tab. A8.

First, we investigate the choice of formatting
template to convert the knowledge structure to a
mindmap condition. In particular, we try to fix the
template to convert all knowledge mindmaps for
SCPT, and randomly select two templates to repeat
the experiment. According to Tab. A8, fixed SCPT
templates lead to inferior performance against ran-
domly choosing the template from the diversified
20 template pool. This is consistent with Zhu and
Li (2023a)’s observation, that text rewriting can
provide better knowledge augmentation for large
language models.

Then, we explore the impact of the extracted
knowledge structure itself. In MMedBench, a
3-layer knowledge structure (follow the chapter-
section-subsection hierarchy) is constructed for
each textbook, and we respectively remove the 1st
(chapter), 2nd (section), and 3rd (subsection) layer
of the hierarchy during knowledge injection. As
Tab. A8 shows, removing the top layer (chapter)
leads to the worst performance of 47.90%, because
the remaining knowledge points cannot effectively
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Table A8: Ablation studies of SCPT on MMedBench subsets. The base model is Llama2-7B.

Adaptation English Chinese Japanese French Russian Spanish Average

CPT+SFT 46.27 32.57 26.13 17.36 50.00 40.63 35.49

Ours-FixTmpl1 48.27 32.86 20.61 23.70 56.17 42.56 37.36
Ours-FixTmpl2 48.10 32.99 21.23 23.97 55.97 43.10 37.56

Ours-RemoveL1 47.90 32.90 20.11 24.63 57.10 43.43 37.68
Ours-RemoveL2 48.05 33.63 21.62 24.11 57.49 43.13 38.00
Ours-RemoveL3 48.47 33.14 20.15 23.33 56.86 43.65 37.60

Ours-NTPLoss 48.99 33.15 20.57 25.31 56.78 42.94 37.96
Ours-Full 49.10 33.92 18.33 27.14 57.42 43.73 38.27

Table A9: Comparison of SFT data synthesis strategies on MMedBench. The backbone LLM is the same Llama2-7B
model after SCPT on English textbooks.

SFT synthesis English Chinese Japanese French Russian Spanish Average

- 46.50 32.14 20.10 18.17 53.91 39.97 35.13
SFT* 47.13 32.49 16.58 16.72 51.95 42.16 34.51

SSFT* 49.10 33.92 18.33 27.14 57.42 43.73 38.27

relate to each other without the organization of
the top layer. On the other hand, removing the
bottom layer (subsection) performs slightly better
on the English subset (because of the controlled
structure-information lost), but hinders the cross-
language knowledge utilization on the remaining
subsets (e.g., 37.60% on average across six lan-
guages).

Finally, we revisit the modeling choice of the
mindmap-conditioning learning. Specifically, we
try to turn the conditional modeling p(xk|sk) back
to complete next-token prediction p(xk, sk) (the
next-token prediction loss is computed on mindmap
condition as well). According to Tab. A8, the per-
formance is slightly inferior to our full version of
SCPT strategy (e.g., 37.96% v.s. 38.27% on Aver-
age). Therefore, we reserve conditional modeling
for our SCPT stage.

B.5 Ablation on SFT Data Synthesis

In Sec. 4.2, we compared our structure-aware
knowledge injection with conventional CPT+SFT
paradigm on MMedBench. On its English subset,
we ablated the training components of our method,
and found that the newly synthesized 8K SSFT
data (by traversing the extracted knowledge struc-
ture) can inspire LLMs’ cross-language capability
to apply the learned structured knowledge to solve
practical diagnosis problems. Here, we follow Liu
et al. (2024b) to randomly generate another 8K QA
pairs for SFT alignment for further comparison,
denoted as “SFT*”. We randomly sample medical

texts and instruct Llama3-70B (Dubey et al., 2024)
for data synthesis, without the knowledge structure
provided. Tab. A9 indicates that “SFT*” brings
slight enhancement to the English test subset, but
the average accuracy drops to 34.51% instead. The
results further demonstrate our method’s efficacy in
the application of the injected, structured domain
knowledge.

B.6 Examples on Retrieval Results on
MMedBench

As discussed in Sec. 4.4, RAG may assist in some
knowledge-intensive tasks for information-seeking,
but will encounter problems when there exists a
significant semantic gap between user query and
retrieved documents. MMedBench is a typical sce-
nario, where LLMs are asked to derive medical
diagnoses with proper reasoning according to the
descriptions of patients or medical examinations.
In this case, the retrieval process introduces too
many unrelated chunks and hurts LLM’s QA judg-
ments. Fig. A3 provides an example where the
retrieved chunks are actually unrelated to the com-
plicated user query (the user asks about the analysis
of a given research study, but the retrieved docu-
ments contain several keywords, e.g., age, while
having nothing to do with the blood test study.)

B.7 F1-Score Evaluation on LongBench

In Sec. 4.1, we mainly follow Zhu and Li (2023b) to
investigate the memorization and understanding of
injected knowledge by calculating the knowledge
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User Query
A pharmaceutical corporation is developing a 
research study to evaluate a novel blood test 
to screen for breast cancer. They enrolled 800 
patients in the study, half of which have 
breast cancer. The remaining enrolled patients 
are age-matched controls who do not have the 
disease. Of those in the diseased arm, 330 are 
found positive for the test. Of the patients in 
the control arm, only 30 are found positive. 
What is this test’s sensitivity?

Age Trial, the only randomized trial of breast cancer screening to specifically 
evaluate the impact of mammography in women age 40–49 years, found no 
statistically significant difference in breast cancer mortality for screened women 
versus controls after about 11 years of follow-up (relative risk 0.83; 95% confidence 
interval 0.66–1.04); however, <70% of women received screening in the intervention 
arm, potentially diluting the observed effect. A meta-analysis of eight large 
randomized trials showed a 15% relative reduction in mortality <70% of women 
received screening in the intervention arm, potentially diluting the observed effect. A 
meta-analysis of eight large randomized trials showed a 15% relative reduction in 
mortality (relative risk 0.85; 95% confidence interval 0.75–0.96) from mammography 
screening for women age 39–49 years after 11–20 years of follow-up ...

Retrieved Chunks

Figure A3: An example of retrieved document/chunk based on a given query.

Table A10: F1 Score evaluation of Closed-Book QA (CBQA) tasks on the LongBench (Bai et al., 2023b) dataset.
The best results are marked in bold, and the secondary results are marked with underlines. The backbone model is
Llama2-7B (Touvron et al., 2023b).

Task Adaptation
SingleDoc-QA MultiDoc-QA

Average
Qasper MFQA MFQAzh HpQA 2Wiki Musiq Duzh

CBQA

CPT+SFT 16.8 23.1 13.2 21.3 19.1 10.4 13.4 16.8
SCPT+SFT 15.2 21.5 15.2 14.9 19.8 5.6 14.1 15.2

SCPT+SSFT 19.7 23.5 19.5 26.4 24.1 12.2 15.4 20.1

recall in models’ responses. Here we report the F1-
score measure over the Closed-Book QA (CBQA)
settings for a thorough comparison. Note that here
we use the vanilla question prompt to obtain con-
cise answers, instead of the CoT prompt used in
Sec. 4.1 to elicit models’ memorized knowledge.
The evaluated models are the same as Sec. 4.1.

In Tab. A10, we report the Closed-Book QA
(CBQA) baseline by traditional CPT+SFT to in-
ject passage contents into model parameters, and
supplement the experiment of our SCPT+SSFT
technique for comparison. According to the results
shown in Tab. A10, our SCPT+SSFT approach suc-
cessfully boosts the closed-book QA performance
to 20.1% on average. The results are consistent
with Sec. 4.1, which jointly demonstrate the effec-
tiveness of structure-aware knowledge injection for
large language models.

C Detailed Related Work

Domain Adaptation for LLMs. While pre-trained
LLMs possess promising capabilities, their per-
formance is often hampered by the scope and re-
cency of their training data, which particularly
affects smaller models in downstream applica-
tions (Zhao et al., 2023; Wang et al., 2023a; Li et al.,
2024a). Continual Pre-Training (CPT) addresses
this by perpetually updating a pre-trained model
with domain-specific content (Sun et al., 2020; Xu
et al., 2023b). , with parameter-efficient tuning

methods devised to curtail training costs (Hu et al.,
2021; Liu et al., 2024c). To keep pace with the
latest information, models can be fine-tuned with
supervised instruction-response pairs (SFT), thus
staying current with the advancing knowledge land-
scape (Mecklenburg et al., 2024; Qiu et al., 2024).
Existing literature confirms that combining CPT
and SFT is effective for LLMs to remain precise
and up-to-date in dynamic fields like law (Cui et al.,
2023; Nguyen, 2023), finance (Wu et al., 2023; Li
et al., 2024b), medicine (Wang et al., 2023b; Qiu
et al., 2024), recommendation (Lv et al., 2025),
and coding (Roziere et al., 2023; Guo et al., 2024).
Our study builds upon this CPT-SFT framework, in-
novating with SCPT-SSFT strategies to efficiently
and effectively infuse domain knowledge with the
inherent structure hierarchy.

Conditional Language Modeling. The idea of
continual pre-training language models on domain
corpus in the condition of the knowledge struc-
ture is mainly inspired by CTRL (Keskar et al.,
2019). Keskar et al. (2019) demonstrates the effec-
tiveness of steering text generation through control
codes (one or two words) that signify the desired
genre, style, or task. In the era of LLM, system
prompt plays a similar role in controlling models’
responses to adapt to different needs and functional-
ities, such as role-playing, language style transfer,
task setting, and behavior setting (Brown et al.,
2020; Wang et al., 2023d; Bai et al., 2023a). Our
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SCPT approach extends the control codes or system
prompts to domain-specific knowledge structures,
so as to guide the learning process and tailor the
model’s output more closely to specialized fields.

Structure-aware Knowledge Aggregation.
Knowledge structure has been widely explored
in the recent LLM community. In conventional
paradigms, researchers extract entity-relation-
entity triplets from texts to construct knowledge
graphs (Pan et al., 2024), to enhance LLMs’s fac-
tual knowledge and logical reasoning by feature
aggregation (Liu et al., 2020; Zhang et al., 2022),
prompt engineering (Wen et al., 2023; Wang et al.,
2023c), information searching (Logan IV et al.,
2019), training data synthesis (Tang et al., 2024),
etc. In these cases, each node corresponds to ei-
ther a specific entity or an abstract concept, lack-
ing the capability to present an informative and
self-contained knowledge point. Some works have
recently related a piece of descriptive text to a
knowledge point, and constructed the knowledge
structure for LLMs’ retrieval-augmented genera-
tion (Sarthi et al., 2024; Dong et al., 2024; Dai
et al., 2024), where the top-to-down retrieval pro-
vides precise information-seeking paths along the
knowledge structure. In this paper, we extend the
structure-aware knowledge aggregation to LLMs’
training phase, injecting the whole domain knowl-
edge structure into LLMs’ by linking training sam-
ples to corresponding knowledge points and rea-
soning paths.

Data Augmentation and Synthesis. Due to the
lack of high-quality datasets, data augmentation
has emerged as a promising solution to mimic real-
world patterns (Liu et al., 2024b). Traditional meth-
ods aim to artificially expand the training dataset
size (Xu et al., 2023a; Mukherjee et al., 2023; Ren
et al., 2025; Sun et al., 2024) or generate entirely
new samples that could help models learn better
or adapt to specific tasks (Tang et al., 2024). Yet,
they often overlook the structured nature of domain
knowledge, and the aimlessly generated samples
may also lack diversity (Ovadia et al., 2023; Meck-
lenburg et al., 2024), leading to potentially subop-
timal training outcomes when applied for domain
adaptations (Mecklenburg et al., 2024; Tang et al.,
2024). By contrast, our SSFT design is an innova-
tive departure to address the challenge of retaining
and utilizing the structured knowledge inherent in
domain-specific content.

D Prompt Template for Knowledge
Structure Extraction

Fig. A4 displays the prompt template to query our
specialized 7B model to extract knowledge struc-
ture on given knowledge points, which introduces
the task definition, detailed instruction, and output
formats to illustrate the process.
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You are a sophisticated AI expert in Natural Language Processing (NLP), with the specialized capability to deconstruct complex 
sentences and map their semantic structure. Your task is to analyze the given sentences to extract and represent the intrinsic 
semantic hierarchy systematically.

Follow this approach to ensure clarity and utility in your analysis:
1. **Comprehension**: Begin with a thorough reading to understand the overarching theme of the input sentences.
2. **Defining Scope**: Summarize the central theme to establish the scope of the semantic analysis.
3. **Aspect Breakdown**: Identify the core aspects of the discussion. For any aspect with additional layers, delineate "SubAspects" 
and repeat as necessary for complex structures. Each aspect or subaspect should be highly summarized and self-contained.
4. **Mapping**: Assign sentence numbers to their respective aspects or subaspects, indicating where in the text they are addressed.

Structure your analysis in a YAML format according to this template, and ensure the format is clean, well-organized, and devoid of 
extraneous commentary:
```yaml
Scope: <central theme summary>
Aspects: 
- AspectName: <main aspect>
SentenceRange: 
start: <start sentence number>
end: <end sentence number>

SubAspects: 
- AspectName: <subaspect>
SentenceRange:
start: <start sentence number>
end: <end sentence number>

# Recursively repeat "SubAspects" structure as needed
# Adjust "SubAspect" entries as needed

# Adjust "Aspect" entries as needed
```

Now, analyze the provided sentences with the structured analytical process, and output your analysis in the structured YAML format.
NOTE: each aspect or subaspect should be highly summarized and self-contained, which covers at least two sentences, except for 
introduction or conclusion aspects.

## Content
```
{title_list}
```

## Analysis

Figure A4: Prompt template for knowledge structure identification.
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(
"In the realm of `{field}`, a conceptual mindmap is depicted using a tree-like structure "
"to represent hierarchical relationships and thematic branches:\n\n"
"```\n{mindmap}\n```\n\n"
"Within this organized layout of `{field}`, the detailed subsection on `{section}` is described as:\n\n"
),
(
"The area of `{field}` unfolds into a rich and detailed structure, encapsulating a diverse array of topics and their interconnections. "
"These topics are organized in a manner that reflects their relationships and thematic relevance to one another, depicted through a 
structured diagram:\n\n"
"```\n{mindmap}\n```\n\n"
"Within this elaborate organization, the concept of `{section}` serves as a detailed exploration into a specific element of `{field}`:\n\n"
),
(
"The `{field}` sector is structured through a complex network of concepts and categories, "
"as reflected in the following outlined representation:\n\n"
"```\n{mindmap}\n```\n\n"
"Zooming in on a discrete element of this intellectual landscape, the topic tagged as `{section}` "
"covers specific subject matter related to `{field}`:\n\n"
),
(
"Exploring the `{field}`, structured insights reveal a network of thematic areas. "
"The essence is captured in a concise diagram:\n\n"
"```\n{mindmap}\n```\n\n"
"A closer look at the portion labeled `{section}` unveils a segment rich in detail, contributing "
"to the broader understanding of `{field}`:\n\n"
),
(
"`{field}` encompasses a diverse array of themes, organized for clarity. "
"The visual schema below illustrates this organization:\n\n"
"```\n{mindmap}\n```\n\n"
"Investigating `{section}` furnishes insight into a selected theme within `{field}`, enriching the overall comprehension:\n\n"
),
(
"Contextualizing within the broader spectrum of `{field}`, the organizational structure is delineated as follows:\n\n"
"```\n{mindmap}\n```\n\n"
"Delving into `{section}`, an integral component of the `{field}` fabric, enriches the grasp of the thematic variety and depth.\n\n"
),
(
"Within the expansive knowledge area of `{field}`, an organizational schema is represented as:\n\n"
"```\n{mindmap}\n```\n\n"
"Exploring `{section}` reveals a critical facet of `{field}`, offering insights into its thematic diversity and detail.\n\n"
),
(
"The discipline of `{field}` is encapsulated by a series of interlinked concepts, mapped out as:\n\n"
"```\n{mindmap}\n```\n\n"
"The segment labeled `{section}` delves into a particular topic within `{field}`, "
"illuminating a slice of the broader intellectual landscape:\n\n"
),
(
"Navigating through `{field}`, one encounters a structured depiction of knowledge as illustrated below:\n\n"
"```\n{mindmap}\n```\n\n"
"Within this schema, `{section}` serves as a gateway to a distinct area of interest, "
"shedding light on specific sections of `{field}`:\n\n"
),
(
"Diving into the `{field}` landscape, a coherent outline presents itself, showcasing the interconnectedness of its themes:\n\n"
"```\n{mindmap}\n```\n\n"
"Focusing on the section of `{section}`, it serves as a focal point into nuanced exploration within the vast `{field}` territory:\n\n"
),
(
"The sphere of `{field}` unfolds as a network of insights and principles, outlined for comprehensive understanding:\n\n"
"```\n{mindmap}\n```\n\n"
"The exploration of `{section}` unveils a segment pivotal to the fabric of `{field}`, providing a perceiving lens:\n\n"
),
(
"As we chart the terrain of `{field}`, a constellation of concepts emerges, graphically represented as follows:\n\n"
"```\n{mindmap}\n```\n\n"
"Focusing on the component marked as `{section}`, we uncover layers within `{field}` that resonate with both breadth and depth, offering a 
panoramic view into the diverse thought processes and methodologies encapsulated within.\n\n"
),
(
"`{field}` is organized into various key areas, as shown in the diagram below:\n\n"
"```\n{mindmap}\n```\n\n"
"`{section}` highlights a core area, integral for understanding the overall structure of `{field}`:\n\n"
),
(
"The structure of `{field}` is detailed below:\n\n"
"```\n{mindmap}\n```\n\n"
"A deeper understanding of `{field}` can be achieved by examining `{section}`, a vital element of its framework:\n\n"
),
(
"Overview of `{field}`'s foundational structure is as follows:\n\n"
"```\n{mindmap}\n```\n\n"
"Exploring `{section}` reveals its crucial role in comprehending the comprehensive schema of `{field}`:\n\n"
),
(
"`{field}` encompasses a range of interconnected topics, illustrated in the diagram below:\n\n"
"```\n{mindmap}\n```\n\n"
"The examination of `{section}` provides insight into how key concepts within `{field}` are interrelated:\n\n"
),
(
"Key elements within `{field}` can be organized as follows:\n\n"
"```\n{mindmap}\n```\n\n"
"Investigating the component of `{section}` is essential for grasping the complex dynamics in the `{field}` realm:\n\n"
),
(
"The `{field}` includes various components as detailed in the following structure:\n\n"
"```\n{mindmap}\n```\n\n"
"Focusing on `{section}` offers an opportunity to explore one of the numerous elements that comprise the `{field}`:\n\n"
),
(
"Within the scope of `{field}`, multiple dimensions unfold as depicted below:\n\n"
"```\n{mindmap}\n```\n\n"
"Delving into `{section}` contributes to a broader understanding of the diverse elements that construct the landscape of `{field}`:\n\n"
),
(
"Comprehensive knowledge of `{field}` can be achieved by examining its individual components, as depicted below:\n\n"
"```\n{mindmap}\n```\n\n"
"An exploration of `{section}` sheds light on its unique contribution to the `{field}`:\n\n"
)

Figure A5: Full template pool for mindmap conversion with 20 diversified templates.
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