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Abstract

Detecting deviant language such as sexism, or
nuanced language such as metaphors or sar-
casm, is crucial for enhancing the safety, clar-
ity, and interpretation of online social discourse.
While existing classifiers deliver strong results
on these tasks, they often come with signifi-
cant computational cost and high data demands.
In this work, we propose Class Distillation
(ClaD), a novel training paradigm that targets
the core challenge: distilling a small, well-
defined target class from a highly diverse and
heterogeneous background.1 ClaD integrates
two key innovations: (i) a loss function in-
formed by the structural properties of class
distributions, based on Mahalanobis distance,
and (ii) an interpretable decision algorithm opti-
mized for class separation. Across three bench-
mark detection tasks – sexism, metaphor, and
sarcasm – ClaD outperforms competitive base-
lines, and even with smaller language mod-
els and orders of magnitude fewer parameters,
achieves performance comparable to several
large language models (LLMs). These results
demonstrate ClaD as an efficient tool for prag-
matic language understanding tasks that require
gleaning a small target class from a larger het-
erogeneous background.

1 Introduction

The widespread adoption of social media and the
polarized nature of online discourse have ampli-
fied the need for improved communication dynam-
ics, fostering research aimed at promoting safety
and mutual respect. Critically, a part of this ef-
fort involves detecting complex linguistic phenom-
ena such as figurative speech – like sarcasm and
metaphor (Riloff et al., 2013; Oraby et al., 2016;
Ghosh et al., 2020; Ge et al., 2023) – as well as
harmful language patterns like aggressive rhetoric
or sexism (Safi Samghabadi et al., 2020; Samory

1Code and documentation: github.com/chenlu49/ClaD

Figure 1: The minority target class representing de-
viant language ( ) versus a highly diverse and hetero-
geneous non-target class of everything else ( ). This
t-SNE (van der Maaten and Hinton, 2008) visualization
(where lighter shades indicate instances located further
away in 3-D) displays a representative sample from the
“Call me sexist but . . . ” corpus (Samory et al., 2021).

et al., 2021). These tasks present significant ur-
gency and challenges due to the nuances of figura-
tive speech and the variability of deviant language.

Most prior research (see §6) has approached
these tasks as traditional binary classification prob-
lems, utilizing ground truth labels provided in vari-
ous datasets. Despite varying degrees of success,
this formulation has overlooked a crucial common-
ality: the objective is to isolate a minority target
class, characterized more by its pragmatic function
in natural language than its semantics, from the
much larger and incredibly diverse negative class
encompassing everything else. The complexities
arising from the somewhat nebulous dichotomy,2

alongside the diverse and heterogeneous nature of
the predominant non-target class, can be gleaned

2There is a sizeable body of legal and linguistic scholarship
on the boundaries of unwarranted and figurative language.
See, for example, Rosenfeld (2002); Kiska (2012); Kasparian
(2013); Athanasiadou (2024).
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f1) My alarm clock makes sure I love every Monday

morning!
f2) My alarm clock makes sure that I dread every Mon-

day morning!
f3) My alarm clock always wakes me up on Monday

mornings.
f4) A white carpet is a great choice when you have messy

kids.My alarm clock always wakes me up on Monday
mornings.

f5) A white carpet is an engaging choice when you have
messy kids, if you take extra care.My alarm clock
always wakes me up on Monday mornings.

f1
0.47∼ f2 f1

0.91∼ f3 f2
0.62∼ f3 f4

0.78∼ f5

D
ev

ia
nt d1) A female astronaut, because they need sandwiches up

there.
d2) An astronaut needs sandwiches up there.

d1
0.76∼ d2

Table 1: Instances of figurative (fi, sarcasm detection)
and deviant (di, sexism detection) language. Similarity
scores are based on the stsb-roberta-large cross-
encoder model fine-tuned on the STS benchmark intro-
duced by Cer et al. (2017). These scores reveal a deeper
problem: a target class instance ( ) may be highly dis-
similar to several non-target instances ( ) while also
being very similar to other non-target instances.

from Figure 1. In this context, accurate binary
classification proves challenging due to the im-
mense linguistic diversity encompassed within the
non-target category.3 The model must be adept
at learning a complex decision boundary without
succumbing to overfitting on the training corpus.
Thus, the most effective solutions employ sophis-
ticated deep neural models or ensemble methods,
which (a) demand large amounts of training data,
(b) require significant resources for training and in-
ference, (c) lack interpretability, and (d) depend on
careful regularization and hyperparameter tuning.

Since the target class has a well-defined func-
tion in terms of natural language pragmatics, we
conjecture that a detailed study of the target and
non-target class distributions will reveal structural
differences that can be leveraged to design a model
training paradigm better suited for class distillation
(ClaD, discussed in §2), and therefore, superior in
terms of (a) inferring test instances of the target
class, (b) the demands it places on computational
resources during training, and (c) interpretability.
We test this conjecture on multiple tasks and bench-

3The target class exhibits rich syntactic and semantic varia-
tions while serving a specific pragmatic function, whereas the
non-target class presents even greater semantic variety with no
common pragmatic function. E.g., instances of sexism specif-
ically discriminate on the basis of sex, while the non-target
class is unified only by the absence of such hostility.

mark datasets (§3), starting with statistical anal-
yses to glean the structural properties and dis-
tributional differences between the target and
non-target classes (§3.1). With these insights, we
develop novel contrastive loss functions derived
from Mahalanobis (1936) distance (§4.1), which
leverage intra-class covariance to contrast the tar-
get class against the diverse and heterogeneous
collection of negative samples. We then introduce
an interpretable decision algorithm based on the
normalized squared Mahalanobis distance (§4.2)
to identify target instances.

Our results (§5) demonstrate superior inference
and resource efficiency across all tasks. We raise
two vital questions in §5.2, investigating how
small language models with ClaD, given limited
task-specific training, compares to LLMs in low-
resource transfer learning. We also examine the ex-
tent to which increasing LLM size improves perfor-
mance with identical training data. Recent findings,
such as those from DeepSeek (Liu et al., 2024; Guo
et al., 2025), underscore the need for such empha-
sis on economical training and efficient inference.
Further, we present ablation experiments to discern
(1) the impact of our decision algorithm, (2) the
effect of our novel loss function, and (3) whether
traditional one-class classification is comparable to
ClaD with Mahalanobis contrast.

2 ClaD: A Whiteboard Discussion

Class Distillation (ClaD) is a specialized training
paradigm for binary classification, emphasizing the
separation of a distinct category from a diverse
and often disproportionately larger non-target back-
ground. Non-target instances frequently include
expressions that are semantically similar to the tar-
get class, while also encompassing elements with
no syntactic, semantic, or pragmatic resemblance
to each other. This dual challenge leads to sig-
nificant ambiguity and overlap, making accurate
classification particularly difficult.

The predicament is not specific to a single task,
as Table 1 shows with instances from figurative (sar-
casm) and deviant (sexism) language use. These
examples highlight the limitations of relying solely
on simple prompting with large language models
for effective inference, as decisions are easily con-
founded by the diversity of the non-target class.
Further, we show in §5.3 that applying straightfor-
ward semantic similarity measures fails to capture
the nuanced characteristics defining the target class.
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Drawing insight from Figure 1, the target in-
stances are not uniformly distributed across the fea-
ture space; rather, they appear to form a structured
subset that can be viewed as a manifold within a
higher-dimensional space. To better understand the
shape and properties of this manifold, we analyze
the structural and distributional characteristics of
the target and non-target classes, providing foun-
dational insights into the class geometries and in-
forming novel loss function formulations (§4.1)
and ClaD’s decision algorithm (§4.2).

A visual approach to unveiling the distributional
characteristics is relegated to Appendix A, while
our systematic analysis of the datasets and target
class’ geometric properties is presented next.

3 Tasks and Datasets

We concentrate on three tasks for our analyses and
experiments: two types of figurative language (sar-
casm and metaphors) and one form of deviant lan-
guage (sexism), utilizing a dedicated benchmark
corpus for each to illustrate that the patterns we
uncover and the class distillation paradigm we pro-
pose are broadly applicable across such tasks.

1. Sarcasm Headlines (SH) is a curated dataset
comprising professionally crafted headlines from
The Onion and HuffPost (Misra and Arora, 2019,
2023). Notably free of spelling errors and infor-
mal language, it offers high-quality labels and self-
contained headlines. Compared to social media
datasets, it is a clean and reliable resource that pre-
cludes concerns about spurious data correlations
arising from viral social media trends (Gururangan
et al., 2018; Bender et al., 2021).

2. Trope Finder (TroFi) (Birke and Sarkar, 2006)
is built to distinguish between literal and non-literal
verb usage. It leverages the ’88-’89 Wall Street
Journal (WSJ) Corpus and enhances it with Word-
Net, databases of idioms and metaphors, and tags
from advanced taggers. TroFi improves metaphor
detection by minimizing unverified literal uses and
addressing the scarcity of non-literal instances.

3. Call Me Sexist But . . . (CMSB) is an innova-
tive corpus designed to detect sexism, comprising
tweets that explicitly use the titular phrase to voice
potential sexism (Samory et al., 2021). It is en-
hanced with synthetic adversarial modifications to
challenge machine learning models.

Model Class Empirical normality test statistics

HZ Anderson-Darling
d1 d2 d3

Task + Corpus: Metaphor detection on TroFi

BERT { Metaphor 5.14 1.53 2.59 1.96
Other 5.93 1.83 1.71 3.40

SimCSE{ Metaphor 4.32 2.83 2.11 0.70
Other 5.19 2.94 2.79 1.54

Task + Corpus: Sarcasm detection on Sarcasm Headlines

BERT { Sarcasm 29.94 13.67 10.14 24.99
Other 33.24 13.87 23.95 5.76

SimCSE{ Sarcasm 21.49 19.00 16.38 23.68
Other 24.82 12.21 32.65 42.99

Task + Corpus: Sexism detection on Call Me Sexist But

BERT { Sexism 7.48 0.97 1.79 9.27
Other 34.08 6.70 40.34 23.96

SimCSE{ Sexism 6.38 2.34 2.99 2.08
Other 21.21 17.07 1.77 9.11

Table 2: Empirical results on how well the target and
non-target classes fit (a) multivariate normality, using
the Henze-Zirkler (HZ) statistic, and (b) univariate nor-
mality on the three t-SNE dimensions d1, d2, d3, using
the Anderson-Darling statistic. For both tests, larger
numbers indicate greater deviation from normality.

3.1 Statistical Tests of Normality

To systematically analyze the geometric properties
of target class representations, we evaluate the nor-
mality of the embedding distributions in reduced
dimensionality space. Specifically, we apply the
HZ (Henze and Zirkler, 1990) test to assess mul-
tivariate normality across three t-SNE dimensions
for BERT and SimCSE,4 examining three prag-
matic language detection tasks: metaphor, sarcasm,
and sexism. We complement this with AD (Ander-
son and Darling, 1952) tests to evaluate univariate
normality along individual dimensions. The results
(Table 2) offer a rigorous statistical characteriza-
tion of the manifold structure, beyond the Q-Q plot
inspections shown in Appendix A.

The HZ tests consistently show lower values
for target data (metaphor, sarcasm, and sexism)
compared to non-target data, indicating that target
data are closer to a multivariate normal distribution

4We analyze distributional properties (not downstream per-
formance) using BERT and SimCSE as foundational bidi-
rectional Transformer and contrastive sentence embedding
models, respectively. Their selection aligns with established
probing protocols prioritizing consistency and transferabil-
ity across tasks (Reimers and Gurevych, 2019; Rogers et al.,
2021; Gao et al., 2021). Findings generalize to architectures
like ALBERT and DistilBERT, while rare outliers (GPT-2
and Phi) reflect pretraining misalignment (Ethayarajh, 2019),
rather than methodological drawbacks.

29430



compared to their non-target counterparts. This
is further supported by the results of the AD tests
along each dimension. Reduced deviation from the
theoretical distribution suggests that the target data
exhibits a more homogeneous manifold structure.
In contrast, the non-target data manifests greater
diversity and complexity. Thus, in line with the
argument presented earlier with illustrative exam-
ples (§2), it is indeed less likely that they possess
discernible common traits beyond their opposition
to the target class. Hence, we hypothesize that a
loss function ought to be designed primarily around
the target class. The consistency and regularity of
the target class’ distribution provide a more reli-
able foundation for learning stable predictors, in
contrast to the somewhat more chaotic diversity
observed in the distribution of the non-target class.

4 Training and Inference

Mahalanobis (1936) distance is ideal for data ap-
proximating a multivariate normal distribution, as
it accounts for the manifold structure of the tar-
get class, rendering the distance measure scale-
invariant. By incorporating the variance and corre-
lations among variables, it accurately reflects the
underlying distribution of the data and thereby im-
proves discrimination in detecting non-target in-
stances by robust identification of outliers, reduc-
ing false positives. Accordingly, we explore Maha-
lanobis distance in formulating the loss function.

4.1 Mahalanobis Loss

Let X = {xi},Y = {yj} denote n target and m
non-target training samples (resp.). Further, let
f : X ∪ Y 7→ Rd denote a representation function
mapping these instances to d dimensions. For a
given instance x ∈ X , we randomly select x+ ∈
X \{x}, and y− ∈ Y . These random selections are
employed to learn a representation that minimizes
(maximizes) the similarity between x and y− (x+).
We achieve this with Mahalanobis loss:

LMAH =
1

|X |
∑

x∈X

simMAH(x, y
−)

simMAH(x, x+) + simMAH(x, y−)
(1)

where simMAH(x, y) is defined using the covariance
matrix Σ of the set {f(xi)}

simMAH(x, y) =

exp

{
− (f(x)− f(y))TΣ−1(f(x)− f(y))

d

}
.

Algorithm 1 Mahalanobis β-decision algorithm
Require: New instance X = X∗

Xn+1 ← X∗

µ̂← 1
n+1

∑n+1
i=1 Xi

Compute Σ̂ as the sample covariance matrix of
X1, . . . , Xn+1

d2n+1(µ̂, Σ̂)← (Xn+1 − µ̂)T Σ̂−1(Xn+1 − µ̂)

T ← n+1
n2 d2n+1(µ̂, Σ̂)

Compute the critical value vβ for Beta
(
d
2
, n−d

2

)
if T < vβ then

X ← 1 ▷ Target class
else

X ← 0 ▷ Non-target class

end if

Alternatively, Mahalanobis mean loss uses the
mean µ of {f(xi)}:

LMAH,µ = − 1

|X |
∑

(x,y−)∈X

[
log

(
simMAH(µ, x)

)

+ log
(
1− simMAH(µ, y

−)
)]
.

(2)

It maximizes the similarity between a target in-
stance x and the mean representation of the target
class (making the class more compact), and min-
imizes the similarity between a negative example
y− and the mean (increasing inter-class margin).

4.2 Inference and Decision Algorithm
The inference task is, fundamentally, identical to
that of any supervised binary classifier: ascertain if
a test instance belongs to the target class. Given rep-
resentations {x1,x2, . . . ,xn} with sample mean µ̂
and covariance matrix Σ adhering to a multivari-
ate normal distribution, the squared Mahalanobis
distance for a specific observation xi is given by

d2i (µ̂,Σ) = (xi − µ̂)TΣ−1(xi − µ̂), (3)

which follows the Beta distribution (Wilks, 1962;
Ververidis and Kotropoulos, 2008):

n

(n− 1)2
d2i (µ̂,Σ) ∼ Beta

(
d

2
,
n− d− 1

2

)
(4)

This insight informs the design of the Mahalanobis
β-decision algorithm (Algorithm 1), to test an in-
stance for class membership by comparing its nor-
malized squared Mahalanobis distance to critical
values of the corresponding Beta distribution.5

5 Experiments and Results

We empirically evaluate6 ClaD across two chal-
lenging categories of language understanding tasks:

5The critical threshold value is determined based on devel-
opment data, ensuring optimal calibration for inference.

6Appendix B contains implementation details (§5.1-§5.2).
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(a) Figurative language: sarcasm detection using the Sarcasm Headlines (SH) corpus (Misra and Arora, 2023).

(b) Figurative language: metaphor detection using the Trope Finder (TroFi) corpus (Birke and Sarkar, 2006).

(c) Deviant language: sexism detection using the Call me sexist but . . . (CMSB) corpus (Samory et al., 2021).

Figure 2: Comparison of ClaD across three detection tasks (from top to bottom) – (a) sarcasm, (b) metaphors,
and (c) sexism – against four transfer learning baseline results where Transformer-based models are fine-tuned on
task-specific data: (from left to right) ALBERT, DistilBERT, SimCSE, and XLNet.

detecting figurative (metaphor and sarcasm) and
harmful (sexism) language. ClaD leverages the Ma-
halanobis mean loss, LMAH,µ (Eq. 2), to fine-tune
pretrained embeddings, followed by inference with
the Mahalanobis β-decision algorithm (Alg. 1).

ClaD is benchmarked against two modern
language model paradigms: (a) specialized en-
coder(-decoder) architectures optimized for lan-
guage understanding: SimCSE (Gao et al., 2021),
ALBERT (Lan et al., 2020), DistilBERT (Sanh
et al., 2019), and XLNet (Yang et al., 2019),7

and (b) large language models (LLMs), primarily
decoder-only architectures distinguished by their
scale. We evaluate all models on 80/10/10 splits for
train/dev/test, primarily focusing on the false posi-
tive rate (FPR) and F1 score for the target class.8

7DeBERTa (He et al., 2021) performs much like ALBERT.
So, for architectural diversity, we include XLNet instead.

8Reducing false positives in these tasks is particularly im-
portant in several applications such as social media modera-
tion, so as to not penalize users for innocuous remarks

5.1 Comparison with Encoder-based Models

Figure 2 illustrates ClaD’s distinctive advantage:
achieving performance competitive with or supe-
rior to these established models in just one training
epoch. In contrast, transfer learning with these
models typically requires 3-5 epochs to attain sim-
ilar metrics across all three tasks. ClaD’s rapid
convergence yields substantial computational sav-
ings without compromising detection quality. For
instance, in sarcasm detection, ClaD achieves a
lower FPR after one epoch than most baselines do
after five.9 Similar patterns emerge across all tasks
and metrics, where ClaD’s single-epoch training
matches or outperforms multi-epoch training of
the transfer-learning baseline models. The results
suggest that ClaD’s geometric approach enables ef-
ficient adaptation to task-specific features, a finding
further supported by our ablation study (§5.3).

9Only XLNet marginally surpasses ClaD after epoch 2,
with a difference of 0.036. A bootstrap analysis reveals this as
statistically insignificant: ClaD’s FPR (8.87%) is well within
the 95% CI (5.05%, 9.93%) of XLNet’s mean FPR.
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(a) Figurative language: sarcasm (b) Figurative language: metaphors (c) Deviant language: sexism

Figure 3: Comparison of 5-shot evaluation of a suite of nine large language models (left to right): Llama2, Llama3,
Phi2, Phi3, Mistral-7B, Falcon, Qwen2, GPT-2, and OPT, against ClaD’s single-epoch training (rightmost).

5.2 Comparison with Large Language Models

Next, we evaluate ClaD against a suite of recent
large language models (LLMs): OPT, GPT, Phi,
Llama, Mistral, Qwen, and Falcon. As ClaD is a
training paradigm, and not a model, these evalua-
tions are geared to answer two research questions:

Q1. Is limited task-specific ClaD-training
with small language models better than low-
resource transfer-learning with LLMs?
Q2. With identical training data, how much
larger are the LLMs (if any) that outperform
ClaD-training with small language models?
Against all LLMs in zero-shot (Appendix C) and

few-shot scenarios (discussed next), ClaD demon-
strates consistently superior performance.

Few-shot Classification: As shown in Figure 3,
ClaD retains its substantial advantage over few-shot
classification (five instances) with LLMs, which
achieve markedly lower F1 scores: from 0.0%
(GPT-2) to 64.2% (Qwen-2) on SH; 0.0% (GPT-
2) to 72.6% (Falcon) on TroFi, and 0.0% (Falcon)
to 25.6% (OPT) on CMSB. Models exhibit dis-
tinct characteristics in each task: for example, in
metaphor detection, GPT-2, Llama2, and Phi3 com-
pletely avoid positive predictions, while Falcon
predicts aggressively with perfect recall. The most
dramatic changes are seen in deviant language de-
tection, with more models completely avoiding the
target class (Falcon, Qwen2, and GPT-2). OPT,
on the other hand, exhibits perfect recall. Despite
accuracy ranges similar to zero-shot, models show
more extreme precision-recall trade-offs, with AUC
scores stalled near 0.5 and persistently high FPR.

LLMs thus exhibit notable limitations and vari-
ability across all tasks, likely stemming from insuf-
ficient feature learning in low-resource scenarios
(reflected in the AUC stagnation), causing them to
fall back on their pretrained biases, particularly for
subtle, context-dependent linguistic cues. The er-

ratic behavior changes between zero- and few-shot
settings also suggest unstable optimization paths,
possibly due to the large parameter count in these
models, stochasticity of gradient updates, and in-
sufficient regularization.

Low-resource Training: We extend our analy-
sis to low-resource training (with 100 instances
provided to the LLMs) to examine whether this
limited increase in data improves decision stabil-
ity, precision-recall trade-offs, and task adaptation.
ClaD’s single-epoch training continues to outper-
form all LLMs in terms of both F1 score and FPR,
except in metaphor detection. There, although GPT-
2, Falcon, and OPT report lower FPRs for the first
two epochs, their F1 scores are nearly zero as they
completely avoid false positives (which comes at
the cost of failing to avoid any positives). Figure 4
reveals clear patterns across model scales: while
the smaller XLNet-based ClaD achieves superior
performance within one epoch, larger models like
Llama3 (8B parameters) require multiple epochs
to reach their peak performance (e.g., 77.6% F1

at epoch 6 for sarcasm detection). Model size
significantly impacts learning trajectories: large
models (7B-8B parameters) show rapid initial im-
provements, mid-size models (2B-4B parameters)
plateau early with suboptimal performance, and
smaller models (124M-350M parameters) struggle
to learn effectively. Sexism detection remains the
most challenging task, with all LLMs showing con-
servative labeling of the target class and an inability
to learn from limited data. In sarcasm detection,
the only task where LLMs perform significantly
better than chance, FPR correlates inversely with
model size, ranging from 15.4% (Llama3, epoch 8)
to 48.1% (GPT-2, epoch 10).

Identical Task-specific Training Data: To ad-
dress our second research question, we compare
ClaD’s single-epoch training with smaller models
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(a) Figurative language: sarcasm (b) Figurative language: metaphors (c) Deviant language: sexism

Figure 4: Comparison of ClaD across the three detection tasks against nine large language models (LLMs) in a
limited data regime. The LLMs are trained on 100 instances over 10 epochs. Results shown for the target class are:
(top) the F1 scores; and (bottom) the false positive rates (FPR) for the best-performing LLM.

(a) Figurative language: sarcasm (b) Figurative language: metaphors (c) Deviant language: sexism

Figure 5: Comparison of ClaD across the three detection tasks against LLMs, with identical training data: all models
utilize the entire training set for a single epoch. F1 scores (top) show ClaD being competitive with most LLMs, and
outperforming a few others, while false positive rates (FPR) (bottom) show ClaD remaining superior to the LLMs.

against the suite of LLMs (Figure 5).10

The relationship between model size and per-
formance varies significantly across tasks. While
larger models (7-8B parameters) generally perform
well in sarcasm detection (F1: 0.96-0.97), this
advantage diminishes in metaphor detection (F1:
0.71-0.81) and almost disappears in sexism detec-
tion, where many smaller models achieve competi-
tive performance. This suggests that larger models
do not consistently translate to better performance
across pragmatic language understanding tasks.

More often than not, performance improves with
increased model size, but with diminishing returns.
A striking pattern emerges in the false positive rates,
however: while larger models show very low FPR
in sarcasm detection (∼ 0.03), their FPR varies
widely in other tasks, sometimes performing worse
than smaller models. Particularly interesting is
deviant language (sexism) detection, where even
the largest models struggle with high FPR. The
consistent performance of XLNet-based ClaD, with

10OPT markedly underperformed across all tasks and eval-
uation metrics, and is thus excluded in the comparison.

only 110M params, especially in maintaining lower
FPR across tasks while remaining competitive on
F1 scores, suggests that efficiency derived from a
geometric understanding eclipses model size.

5.3 Ablation Experiments

We conduct systematic ablation experiments to
evaluate the individual contributions of ClaD’s
core components: the novel loss function, the de-
cision algorithm, and the Mahalanobis contrast
mechanism. We present comparisons using Sim-
CSE as the base model, as it achieved the lowest
false positive rate in sarcasm detection.11 The im-
pact of our novel loss function is evident in Ta-
ble 3. Compared to standard loss functions in
task-specific fine-tuning, F1 scores improve by
26.5%, 6%, and 13% for sarcasm, metaphor, and
sexism detection, respectively (with correspond-
ing proportionate decreases seen in FPR: 24.6%,
39.1%, and 15.3%). On the other hand, replac-
ing our β-decision algorithm with a 3-layer fully

11ClaD (XLNet) reports marginally better F1, and experi-
ments with XLNet as the base model yield similar results.
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Acc ↑ Pr ↑ FPR ↓ F1 ↑

Sarcasm detection on Sarcasm Headlines
LMAH + β-decision 0.896 0.931 0.009 0.885
LCOSINE + β-decision 0.492 0.479 0.255 0.620
LMAH + MLP 0.521 0.482 0.209 0.300

Metaphor detection on TroFi
LMAH + β-decision 0.794 0.857 0.167 0.808
LCOSINE + β-decision 0.675 0.667 0.558 0.748
LMAH + MLP 0.433 0.000 0.000 0.000

Sexism detection on Call Me Sexist But
LMAH + β-decision 0.928 0.870 0.012 0.696
LCOSINE + β-decision 0.832 0.433 0.165 0.566
LMAH + MLP 0.134 0.134 1.000 0.236

Table 3: Ablation study comparing ClaD’s compo-
nents: LMAH (our Mahalanobis contrast loss), LCOSINE

(the standard cosine similarity loss), and β-decision (Al-
gorithm 1). The combination of LMAH + β-decision
achieves superior performance across all metrics, par-
ticularly in reducing false positive rates (FPR) while
maintaining high F1 and target-class precision.

connected feed-forward network for classification
results in the F1 scores dropping by 58.5%, 80.8%,
and 46.0% on these tasks, respectively. Finally,
we show in Appendix D that traditional one-class
classification and anomaly detection methods do
not perform well in these pragmatic language tasks
where the minority target class requires gleaning
from a large heterogeneous non-target majority.

6 Related Work

Extensive research aims to model pragmatic lan-
guage nuances for respectful communication,
advancing the identification of figurative lan-
guage (Chakrabarty et al., 2022; Saakyan et al.,
2022; Wachowiak and Gromann, 2023; Lai and
Nissim, 2024) and deviant content (Fortuna and
Nunes, 2018; Yin and Zubiaga, 2021; Guest et al.,
2021; Bose and Su, 2022). Most leverage BERT-
based supervised learning: e.g., BERT-BiLSTM for
hate speech (Bose and Su, 2022), dual BERT mod-
els for metaphors (Wan et al., 2021), and BERT-
LSTM for sarcasm (Kumar and Anand, 2020). En-
hancements include syntactic (Wan et al., 2020)
or semantic (Zhou et al., 2021) feature integration
and multi-task frameworks (Safi Samghabadi et al.,
2020). However, generalization remains limited,
and ensemble methods (Lemmens et al., 2020; Gre-
gory et al., 2020) trade interpretability for computa-
tional cost. Our Class Distillation (ClaD) paradigm
addresses these gaps via an interpretable decision

algorithm and novel loss function.
ClaD shares similarities with one-class classi-

fication, which detects anomalies by focusing on
the target class. Common methods include one-
class SVM (Schölkopf et al., 2001; Noumir et al.,
2012), DeepSVDD (Ruff et al., 2018), and adver-
sarial one-class classifiers (Sabokrou et al., 2018),
but they often struggle with domain generalization,
overfitting, and nuanced data – key challenges in
pragmatic language tasks. ClaD, leveraging Maha-
lanobis contrast, effectively addresses these issues,
demonstrated by ablation results in Appendix D.

LLMs like GPT-2 (Radford et al., 2019), Phi-
2 (Javaheripi et al., 2023), and OPT (Zhang et al.,
2022) excel in text classification but are compu-
tationally expensive (Wang et al., 2023). Some,
like GPT-3, reportedly struggle with nuanced tasks
like metaphor detection (Wachowiak and Gromann,
2023), while others face reasoning limitations and
token constraints in in-context learning (Sun et al.,
2023). Unlike recent efforts to address these issues,
ClaD combines Mahalanobis contrast with smaller
models, to efficiently learning task manifolds.

7 Conclusion

This work challenges a fundamental implicit as-
sumption in modern NLP: that scale (in models,
pretraining data, or fine-tuning) guarantees supe-
rior downstream performance. Through rigorous
empirical analysis, we demonstrate that our geo-
metrically grounded training paradigm surpasses
state-of-the-art LLMs by significant margins in low-
data regimes, achieving superior results in a single
epoch where larger models plateau after several.
Notably, ClaD matches or exceeds the performance
of models nearly two orders of magnitude larger,
even with identical task-specific training.

Our findings align with broader trends toward ef-
ficiency, spurred by DeepSeek’s compute-optimal
scaling (Liu et al., 2024; Guo et al., 2025), and
reveal a novel insight: architectural minimalism,
coupled with geometric alignment to task mani-
folds, can unlock capabilities previously thought to
require massive scale. While recent work optimizes
how to scale, we demonstrate that whether to scale
depends critically on data geometry. ClaD’s in-
novations – manifold-aware training, Mahalanobis
contrast, and the decision algorithm – prove that for
nuanced language understanding tasks, modeling
latent structure trumps brute-force scaling.

Our work does not negate scaling, but expands
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the efficiency frontier, showing that geometric prin-
ciples can supplant scale and provide a complemen-
tary pathway for real-world applications. As AI
research increasingly prioritizes efficiency along-
side performance – whether through scaling laws,
sparsity, or geometric learning – our findings po-
sition the geometric understanding of data as a
foundational pillar of sustainable NLP.

Limitations

While our proposed Class Distillation (ClaD)
paradigm demonstrates consistently strong perfor-
mance and efficiency across sarcasm, metaphor,
and sexism detection tasks – outperforming smaller
Transformer models with equal training, and LLMs
with in limited resouce settings – several limitations
should be acknowledged. First, although we tested
ClaD on diverse tasks encompassing figurative and
deviant language, the chosen benchmarks (Sarcasm
Headlines, TroFi, and CMSB) may not fully cap-
ture the richness of real-world scenarios, and more
domain-specific or multilingual tasks could present
additional linguistic and cultural nuances not ad-
dressed in our current study. Whether our approach
can be generalized to specialized domains like le-
gal or clinical tasks also remains to be seen. Sec-
ond, ClaD relies on the ability of the target class
manifold to be modeled as a multivariate normal
distribution. While our experiments suggest that
training can nudge embeddings closer to a normal
manifold, this assumption may not hold univer-
sally: certain representations or highly imbalanced
corpora may exhibit multimodal or heavy-tailed
distributions with substantial deviation from nor-
mality, potentially affecting performance. Third, al-
though ClaD’s fast convergence leads to significant
computational savings compared to multi-epoch
fine-tuning, maintaining a dynamically updated co-
variance matrix in the Mahalanobis distance com-
putation can be memory-intensive for very large
datasets. More memory-efficient approximations
or low-rank updates can be useful.

These limitations may be addressed by exploring
alternative distributional assumptions (e.g., Gaus-
sian mixtures) to accommodate more complex em-
bedding spaces, conducting broader evaluations
across languages and task domains, and developing
lightweight variants of Mahalanobis-based training
to reduce the memory overhead. They have the
potential to further enhance ClaD’s versatility and
impact in real-world applications.
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This work adheres to ethical standards in NLP re-
search by ensuring transparency, reproducibility,
and fairness in our experiments. Our study does
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datasets used are publicly available with appropri-
ate licenses. While our findings highlight efficiency
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edge that their broader societal impacts, including
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(a) BERT embeddings for
the target class, sexism.

(b) BERT embeddings for
the negative class.

(c) SimCSE embeddings for
the target class, sexism.

(d) SimCSE embeddings for
the negative class.

Figure 6: Q-Q (quantile-quantile) plots to assess the
goodness-of-fit of target and non-target classes in the
CMSB corpus for sexism detection. Shown here are the
first t-SNE dimensions of pretrained BERT-base (a and
b) and SimCSE (c and d) embeddings.

A A Visual Approach to Goodness-of-Fit
in Target Class Distributions

Our aim is to unveil the distributional properties
shared across diverse datasets and tasks, where
identifying the minority target class amidst a
spectrum of heterogeneous linguistic expressions
(with no common pragmatic language function) is
paramount. It is well known, however, that there
are challenges to such analyses regardless of the
manifold structure. As the number of dimensions
increase, the volume of space grows exponentially
and tests based on density estimation or empiri-
cal distance measures can struggle to maintain ac-
curacy due to the increased sparsity and spread
of data points.12 Statistical tests also suffer from
reduced power in higher dimensions. Moreover,
estimating the covariance matrix becomes prob-
lematic in higher dimensions (for instance, due to
ill-conditioned or singular matrices).

To mitigate these problems, we reduce the num-
ber of dimensions using t-SNE (van der Maaten
and Hinton, 2008).13 The Quantile-Quantile (Q-

12The “curse of dimensionality” strikes again, as Bellman
(1957) presciently described this exponential increase in prob-
lem complexity with growing number of dimensions.

13We also experiment with dimensionality reduction by
means of studying anisotropy (Ethayarajh, 2019) and dom-

Q) plots of the first latent dimension are shown
in Figure 6, for visual assessment of adherence to
a normal distribution. For the sake of brevity, we
present only the Q-Q plots for sexism detection
using two language models, BERT (Devlin et al.,
2019) and SimCSE (Gao et al., 2021), as similar
patterns were observed for the other tasks.

B Configuration

Baseline Models: Four baseline models were
fine-tuned – SimCSE, ALBERT, XLNet, and Dis-
tilBERT – on three datasets using a consistent set
of configurations. The models were trained with a
per-device batch size of 16 for both training (up to
5 epochs) and evaluation (at the end of each epoch).
The learning rate is set to 1× 10−5 for all models,
with 50 warm-up steps and a weight decay of 0.01.
For tokenization, inputs were padded and truncated
to a maximum sequence length of 512. We used
the Adam optimizer for parameter updates.

Few-shot and Low-resource Experiments: We
conducted fine-tuning experiments for the clas-
sification models under both few-shot and low-
resource scenarios. In the few-shot setting, we
used 5 training samples, while in the low-resource
setting, we used 100 training samples. Train-
ing was conducted up to 10 epochs. We se-
lected a variety of mainstream LLMs: Falcon,
GPT-2, Llama2, Llama3, Mistral-7B, OPT, Phi2,
Phi3, and Qwen2. These models are loaded
via the AutoModelForSequenceClassification
module provided by HuggingFace Transformers.
To train the models with limited computational
resources, we employed 4-bit quantization (e.g.,
nf4) in conjunction with Low-Rank Adaptation
(LoRA) (Hu et al., 2022) for efficient parameter
tuning. Specifically, we set the LoRA rank (r) to 16
and the LoRA scaling factor (lora_alpha) to 8 (32
for GPT-2), with a dropout rate (lora_dropout) of
0.05 (0.1 for GPT-2). For optimization, Hugging-
Face Trainer was used with its default settings,
with cross-entropy loss adopted for binary classifi-
cation. The learning rate was set to 5× 10−5, the
weight decay set to 0.01, and the batch sizes were
24 for training and 6 for validation (per device).

inant dimensions as defined by Timkey and van Schijndel
(2021), as well as with principal component analysis (Pearson,
1901; Hotelling, 1936). In each case, the results of the statis-
tical tests of manifold structure are nearly identical. So, for
conciseness, we omit the details of these other approaches.
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(a) Figurative language: sarcasm (b) Figurative language: metaphors (c) Deviant language: sexism

Figure 7: Comparison of zero-shot evaluation of a suite of nine large language models (left to right): Llama2,
Llama3, Phi2, Phi3, Mistral-7B, Falcon, Qwen2, GPT-2, and OPT, against ClaD’s single-epoch training (rightmost).

(a) Sarcasm detection (SH) (b) Metaphor detection (TroFi)) (c) Sexism detection (CMSB)

Figure 8: Scatter plots of squared Mahalanobis distance for three test datasets before and after training. Red and
blue indicate the target and non-target classes, respectively.

Zero-shot Experiments: The Transformer li-
brary’s AutoModelForSequenceClassification
API is used. This API automatically adds a linear
classification head on top of the model’s pooled
output, enabling it to be handled as logits for classi-
fication tasks. Specifically, for binary classification,
the output consists of 2D logits, representing the
likelihood of the input belonging to either class.
This approach focuses on classification, as opposed
to letting a LLM generate its answer (e.g., 1 or 0) in
response. To guide the classification, the following
prompt is prepended to every input:

Please identify if the following text is an
example of <task-word>. Reply with 1 if it
exhibits <task-word>, and 0 otherwise:
<input sentence>

where the placeholder <task-word> is replaced
by the specific task of interest (i.e., sarcasm,
metaphor, sexism), and <input sentence> is the
text being classified. This enables the model to
classify the input sentence based on the particular
task while maintaining the flexibility to adapt to
various tasks by simply changing the task-word.

Class Distillation Experiments: We used a slid-
ing window mechanism (window size: 100 × batch
size for small datasets, and expanded to 500 × batch
size for large datasets, update frequency: batch
size) to efficiently update the Mahalanobis distance
parameters (mean and covariance matrix) during
training by incrementally processing batch data
and computing statistics using the latest model-
generated embeddings, dynamically adapting the
parameters while maintaining computational effi-
ciency. We use batch sizes of 16 for the sarcasm
detection and metaphor tasks, and 40 for the sexism
detection task.

C Zero-shot classification

Converting LLM logits to probabilities via softmax,
we observe that ClaD’s single-epoch training sub-
stantially outperforms zero-shot predictions (shown
in Figure 7. While this is perhaps unsurprising, the
magnitude of improvement is notable: F1 score
improvements range from +27.0% (vs. Falcon) to
+90.9% (vs. GPT-2) on SH, +10.8% (vs. Qwen2)
to +83.2% (vs. OPT) on TroFi, and +46.9% (vs.
Mistral) to +74.1% (vs. OPT) on CMSB. In sar-
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Acc Pr FPR F1

Sarcasm detection on Sarcasm Headlines
Mahalanobis β-decision 0.580 0.557 0.100 0.547
One-class SVM 0.494 0.465 0.494 0.473
Isolation Forest 0.472 0.472 0.998 0.641
Autoencoder 0.530 0.517 0.046 0.099

Metaphor detection on TroFi
Mahalanobis β-decision 0.678 0.680 0.500 0.741
One-class SVM 0.614 0.602 0.814 0.734
Isolation Forest 0.614 0.610 0.737 0.721
Autoencoder 0.578 0.575 0.942 0.724

Sexism detection on Call Me Sexist But
Mahalanobis β-decision 0.134 0.134 1.000 0.236
One-class SVM 0.602 0.141 0.364 0.206
Isolation Forest 0.135 0.133 0.996 0.234
Autoencoder 0.827 0.121 0.051 0.066

Table 4: Comparing Mahalanobis β-decision (Algo-
rithm 1) and standard outlier detection methods (One-
class SVM, Isolation Forest, and Autoencoder), demon-
strating that the former achieves higher F1 scores and
lower false positive rates (FPR) across most tasks.

casm detection, LLMs perform near-randomly (ac-
curacies: 0.47-0.53, AUC ≈ 0.5), with models ei-
ther aggressively over-predicting (Falcon, Llama2,
Llama3: recall ≥ 0.91, but very low precision) or
being overly conservative (GPT-2, Phi3: extremely
low recall with moderate precision). Metaphor de-
tection shows modest improvements (accuracies:
0.43-0.57, max. AUC: 0.56), though extreme be-
haviors persist: Falcon, Qwen2 and Mistral favor
recall over precision, while Llama2 do the oppo-
site. Sexism detection reveals poor adaptation to
class imbalance, with extremely high FPR (≥ 83%)
across all LLMs. Some models also exhibit task-
specific inconsistencies, such as GPT-2 alternating
between conservative and aggressive predictions in
sarcasm and metaphor detection, respectively.

D Comparing Anomaly Detection
Methods

Additionally, Table 4 shows that treating deviant or
figurative language merely as “out of the ordinary”
is insufficient. We compare our β-decision algo-
rithm against traditional anomaly detection meth-
ods like isolation forest (IF) (Liu et al., 2008, 2010),
autoencoders (Chalapathy and Chawla, 2019), and
one-class SVM (Noumir et al., 2012) – all on the
same pretrained model – and further demonstrate
the necessity of an inference algorithm based on
an understanding of the target class manifold. Our

novel decision algorithm (Algorithm 1) achieves
superior F1 scores across all tasks, with one excep-
tion: IS performs better on sarcasm detection. How-
ever, this happens at the expense of significantly
higher FPR and lower target-class precision.

E Mahalanobis Contrast and Separability

Training with our Mahalanobis mean loss function,
LMAH,µ (Equation 2) has a significant impact on
classification, evident in the results presented in
our ablation experiments subsection 5.3. Here, we
add visualizations of class separability, using the
squared Mahalanobis distance (Equation 3). Fig-
ure 8 presents scatter plots of squared Mahalanobis
distance for the three test datasets before and after
training, where the target and non-target class in-
stances are shown in red and blue, respectively. It
is clearly demonstrated that training with our Ma-
halanobis loss function leads to a distinct increase
in class separability.
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