
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 29356–29377
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Bypass Back-propagation: Optimization-based Structural Pruning for
Large Language Models via Policy Gradient

Yuan Gao2∗, Zujing Liu1∗, Weizhong Zhang3∗, Bo Du1, Gui-Song Xia2†
1School of Computer Science, Wuhan University

2School of Artificial Intelligence, Wuhan University
3School of Data Science, Fudan University

ethan.y.gao@gmail.com, weizhongzhang@fudan.edu.cn
{zujing.liu, dubo, guisong.xia}@whu.edu.cn

Abstract

Recent Large-Language Models (LLMs) prun-
ing methods typically operate at the post-
training phase without the expensive weight
finetuning, however, their pruning criteria often
rely on heuristically hand-crafted metrics,
potentially leading to suboptimal performance.
We instead propose a novel optimization-
based structural pruning that learns the prun-
ing masks in a probabilistic space directly by
optimizing the loss of the pruned model. To
preserve efficiency, our method eliminates the
back-propagation through the LLM per se dur-
ing optimization, requiring only the forward
pass of the LLM. We achieve this by learning
an underlying Bernoulli distribution to sam-
ple binary pruning masks, where we decouple
the Bernoulli parameters from LLM loss, fa-
cilitating efficient optimization via policy gradi-
ent estimator without back-propagation. Thus,
our method can 1) support global and het-
erogeneous pruning (i.e., automatically deter-
mine different redundancy for different layers),
and 2) optionally initialize with a metric-based
method (for our Bernoulli distributions). Ex-
tensive experiments conducted on LLaMA,
LLaMA-2, LLaMA-3, Vicuna, and Mistral
models using the C4 and WikiText2 datasets
demonstrate the promising performance of
our method in efficiency and effectiveness.
Code is available at https://github.com/
ethanygao/backprop-free_LLM_pruning.

1 Introduction
With the rapid development of Large Language
Models (Brown et al., 2020; Achiam et al., 2023)
(LLMs) and their expanding across various appli-
cations, the efficiency of LLMs with vast param-
eters and complex architectures becomes crucial
for practical deployment. In this paper, we aim
to compress the LLM through structural pruning,

* Equal contribution.
† Corresponding author.

which removes certain structural components such
as channels and attention heads, i.e., Width Pruning
(Ma et al., 2023; Muralidharan et al., 2024), which
is also our main concern, to reduce the model size
with hardware-friendly acceleration.

Structural pruning methods in the pre-LLM era
prune channels or layers via optimization, using
task loss back-propagation to determine pruning
structures (Liu et al., 2018b; Blalock et al., 2020).
These methods operate during training (Huang and
Wang, 2018; Evci et al., 2020) or post-training
(Molchanov et al., 2019; Wang et al., 2021), where
the latter is more efficient without weight updates.
We focus on post-training pruning for efficiency.

However, the heavy computational and mem-
ory demands of LLMs make existing optimization-
based pruning methods less appropriate for effi-
ciency. Metric-based pruning is introduced to alle-
viate this issue, which directly prunes specific net-
work components based on carefully designed crite-
ria (Sun et al., 2023; Das et al., 2023). Nonetheless,
those criteria are often hand-crafted heuristically.
As a result, metric-based pruning methods face
challenges in achieving promising performance and
generalizability, particularly at high pruning rates.

Moreover, most metric-based pruning methods
typically prune the networks by manually-designed
thresholds (Li et al., 2023; Zhang et al., 2023). Al-
though different layers of LLMs may have varying
levels of redundancy (Yin et al., 2023; Xu et al.,
2024), achieving a global and heterogeneous prun-
ing strategy is challenging with metric-based ap-
proaches. This is due to the significantly vary-
ing magnitudes of the manually designed metrics
across layers, making it laborious or even impossi-
ble to set proper pruning threshold for each layer1.

The above analysis leads to a natural question:

1As a practical compromise, most metric-based methods
conduct a homogeneous/uniform pruning rate for all the layers,
which violates the fact that different layers could possess the
different amount of redundancy.

29356

https://github.com/ethanygao/backprop-free_LLM_pruning
https://github.com/ethanygao/backprop-free_LLM_pruning

LLM
Pruning
Methods

w/ Weight Update

Metric-based

Only Forward

Struct: (An et al., 2024; van der Ouderaa et al.,
2023; Yang et al., 2024; Shen et al., 2024)

Unstruct: (Boža, 2024; Frantar and Alistarh, 2023;
van der Ouderaa et al., 2023; Zeng et al., 2024; Zhang

et al., 2024b; Meng et al., 2024; Tan et al., 2024)

Need Backward
Struct: (Chen et al., 2024; Wei
et al., 2024; Zhang et al., 2024a)

Unstruct: N/A

Optim-based

Only Forward Struct: N/A
Unstruct: (Bai et al., 2024)

Need Backward

Struct: (Chen et al., 2023; Guo et al., 2023; Ko
et al., 2023; Li et al., 2024b; Zhao et al., 2024;

Xia et al., 2023; Muralidharan et al., 2024)
Unstruct: N/A

w/o Weight Update

Metric-based

Only Forward

♠ Struct: (Ashkboos et al., 2024; Kim et al.,
2024; Dery et al., 2024; Song et al., 2024)

Unstruct: (Li et al., 2023; Shao et al., 2024; Sun
et al., 2023; Xu et al., 2024; Yin et al., 2023;

Zhang et al., 2023; Lu et al., 2024; Li et al., 2024a)

Need Backward
♠ Struct: (Ma et al., 2023)
Unstruct: (Das et al., 2023)

Optim-based

Only Forward Struct: Our Method
Unstruct: N/A

Need Backward
Struct: N/A

Unstruct: (Fang et al., 2024)

Figure 1: The taxonomy of our method among the LLM Pruning. Methods without weight update are used for
comparison in our experiments (highlighted with ♠), due to the constraints on time and memory efficiency, as well
as the accessibility of large-scale finetuning datasets.

Can we attain the performance of optimization-
based methods that facilitate global and hetero-
geneous pruning without relying on hand-crafted
heuristics, while preserving a similar cost with the
metrics-based methods that is affordable on a sin-
gle commercial GPU?

In view of the above analysis, our pro-
posed method is essentially a novel lightweight
optimization-based method, where it 1) efficiently
avoids the back-propagation through the heavy
LLM, 2) optionally can be initialized by an arbi-
trary metric-based approach. Particularly, our prun-
ing efficiency is ensured via a policy gradient esti-
mator (Williams, 1992), requiring only the LLM
forward pass without back-propagation, which is
analogous to many efficient metric-based methods
and requires the same memory overhead, such as
(Sun et al., 2023; An et al., 2024). Moreover, our
method unifies the pruning of the entire LLM into
a probabilistic space (optionally initialized by an
arbitrary metric-based approach), eliminating the
magnitude difference issue of most metric-based
methods and therefore directly facilitating global
and heterogeneous pruning across the entire LLM.

Specifically, we formulate our pruning as a bi-
nary mask optimization problem (Srinivas et al.,
2017), where the binary masks determine whether
to prune the corresponding structures via element-

wise product. To efficiently learn those binary
masks, we construct an underlying probabilistic
space of Bernoulli distributions to sample them.
By decoupling the Bernoulli parameters from
sampled masks, our method disentangles these pa-
rameters from the LLM loss, enabling efficient op-
timization via policy gradient estimator, bypass-
ing back-propagation2. Moreover, the probabilis-
tic modeling of Bernoulli distribution facilitates
global and heterogeneous pruning across the LLM.

The taxonomy of our methods is illustrated in
Fig. 1. In the experiments, our method is com-
pared with SOTA structural pruning methods that
do not update the model weight simultaneously,
due to the constraints on time and memory ef-
ficiency3. We extensively validate our methods
using the C4 (Raffel et al., 2020) and WikiText2
(Merity et al., 2016) datasets on popular LLaMA
(Touvron et al., 2023a), LLaMA-2 (Touvron et al.,
2023b), LLaMA-3 (Dubey et al., 2024), Vicuna
(Chiang et al., 2023), and Mistral (Jiang et al.,
2023) models with various parameter sizes, prun-
ing rates, and initializations, showing the promis-

2Note that our formulation can also be interpreted from
a reinforcement learning (with dense rewards) perspective in
terms of Markov Decision Process, detailed in Appendix A.3

3After pruning, it is affordable to finetune the pruned
smaller model on a single commercial GPU. The performance
with pruning then finetuning is included in our experiments.

29357

ing performance and efficiency. For example, our
method outperforms the SOTA methods regarding
both perplexity and zero-shot performance and op-
erates only 2.7 hours with about 35GB memory on
a single A100 GPU to prune the LLaMA-2-13B
model. Our method exhibits the following features:

• Accuracy, ensured by 1) our optimization-
based pruning without heuristically hand-
crafted metrics, which optionally takes metric-
based pruning as initialization for a better
convergence, and 2) the global and hetero-
geneous pruning, as supported by our proba-
bilistic modeling of the pruning masks.

• Efficiency (regarding both computations and
memory), achieved by the policy gradient esti-
mator for back-propagation-free and forward-
only optimization w.r.t. the heavy LLMs.

2 Related Work
Pruning has proven effective in traditional deep
neural networks (Han et al., 2015; Frankle and
Carbin, 2018; Kurtic et al., 2022; Liu et al.,
2019; He et al., 2018), and extensive research
has been conducted on this topic. Typically,
post-pruning performance is restored or even en-
hanced through full-parameter fine-tuning (Liu
et al., 2018b; Blalock et al., 2020). However, for
large language models (LLMs) with vast parame-
ters, full-parameter fine-tuning is computationally
expensive and often impractical. To overcome this
challenge, various pruning strategies (Ma et al.,
2023; Zhang et al., 2024a; Sun et al., 2023; Ashk-
boos et al., 2024; Frantar and Alistarh, 2023) have
been developed for LLMs in recent years. These
strategies can be categorized into metric-based
pruning and optimization-based pruning.

Metric-based Pruning. Metric-based pruning
methods focus on designing importance metrics for
model weights or modules. (Sun et al., 2023) in-
troduces a pruning metric by considering both the
magnitude of weights and activations. LLM-Pruner
(Ma et al., 2023) eliminates coupled structures with
low weight importance via loss change. These
methods use pre-defined pruning metrics and of-
ten face challenges with high pruning rates. (Dery
et al., 2024) proposed a structured pruning method
using only forward passes with promising perfor-
mance. It regresses the heuristically hand-crafted
criteria, e.g., the utility of the pruned sub-networks,
and makes assumptions that may not hold univer-
sally, e.g., the network’s utility as a linear sum of
building elements’ utilities, and their utility being
consistent/average-able across sub-networks.

Metric-based pruning methods use predefined
criteria, potentially leading to suboptimal perfor-
mance. Our optimization-based pruning frame-
work, inspired by Neural Architecture Search
(NAS) (Liu et al., 2018a), directly optimizes the
loss function to identify the optimal pruned archi-
tectures while achieving higher efficiency through
policy gradient optimization compared to conven-
tional NAS that rely on back-propagation.

Optimization-based Pruning. Optimization-
based pruning methods focus on determining the
model mask in an optimized manner and also in-
volve model weight updating. Sheared LLaMA
(Xia et al., 2023) learns pruning masks to find a
subnetwork that fits a target architecture with full-
parameters updating. (Guo et al., 2023; Chen et al.,
2023; Zhao et al., 2024) utilize LoRA (Hu et al.,
2022) in the pruning process with weight updating.

However, these methods rely on costly back-
propagation for optimization and weight updating.
Instead, we propose using policy gradient estima-
tion in the optimization process as an alternative,
significantly reducing the computational demands.

3 Methodology
We introduce our optimization-based pruning for
LLMs, which is efficient without back-propagation
through the LLM, illustrated in Fig. 2.

3.1 Pruning via Probabilistic Mask Modeling
We formulate the network pruning as seeking bi-
nary masks (Srinivas et al., 2017) to determine
whether the corresponding structure should be
pruned or not. Those binary masks are further mod-
eled by/sampled from the Bernoulli distributions
stochastically. Such formulation possesses several
merits: 1) the probabilistic Bernoulli modeling
facilitates global and heterogeneous pruning across
the entire LLM; 2) our stochastical sampling de-
couples Bernoulli parameters and the sampled
masks from LLM loss empowering an efficient pol-
icy gradient optimization without back-propagate
through the LLM (see Sect. 3.2); and 3) the mask
formulation enables flexible pruning at channels,
heads (of Multi-Head Attention, MHA), and layers.

We denote the calibration dataset with N i.i.d.
samples as D={(xi,yi)}Ni=1, w={wi}ni=1 as the
complete and non-overlapped modules of a LLM
with model size n, and m = {mi}ni=1 ∈ {0, 1}n
as the corresponding binary masks, where mi=0
implies wi is pruned and otherwise retained. Note
that wi and mi can be defined at various granulari-

29358

Pruned Model

Loss
0 0 1 1

0 1 1 0

1 0 0 1

Module Mask

0.1 0.5 0.8 0.4

0.2 0.6 0.3 0.7

0.9 0.4 0.6 0.8

Probability Scores

LLM Modules

Gradient

Halt

Bernoulli

Sampling

O

Output

Input Tokens

X1 X2 X3 X4 X5

Target

Policy Gradient

Learnable Fixed

Operation Flow

Backward Gradient

(e.g., Gumbel Softmax)

Policy Gradient
⊙

⊙ Element-wise Product

Figure 2: The overview of our method. We formulate LLM pruning as optimizing underlying Bernoulli distri-
butions that sample binary masks. Being different from the conventional back-propagation method (e.g., through
Gumbel Softmax as shown by the red-dashed-arrows), our formulation decouples the masks and the Bernoulli
parameters from the LLM loss (see Eq. (4) and Remark 3), facilitating efficient and unbiased policy gradient (the
blue-dashed-arrow) without back-propagation through the LLM (see Eq. (5) and Remark 4).

ties such as channels, heads, and layers4. Then, our
structural pruning of LLMs can be formulated as a
binary optimization with constraints:

min
m
L(D;w⊙m) :=

1

N

N∑

i=1

ℓ(f(xi;w⊙m),yi),

s.t. ∥m∥1 ≤ rn and m ∈ {0, 1}n. (1)

where f(·;w⊙m) is the pruned network, ℓ(·, ·)
is the loss function, e.g., the cross-entropy loss, and
r is the target pruning rate. We note that the binary
optimization problem Eq. (1), i.e., finding opti-
mal masks m from the discrete and exponentially
growing solution space, is typically NP-hard.

Therefore, we relax the discrete optimization us-
ing a probabilistic approach, by treating n masks
as binary random variables sampled from n un-
derlying Bernoulli distributions with parameters
s = {si}ni=1 ∈ [0, 1]n. This yields the conditional
distribution of m over s:

p(m|s) =
n∏

i=1

(si)
mi(1− si)

1−mi . (2)

By relaxing the ℓ1 norm in Eq. (1) by its expec-
tation, i.e., ∥m∥1≈Em∼p(m|s)∥m∥1=

∑n
i=1si =

1⊤s, we have the following expected loss minimiza-
tion problem:

min
s

Ep(m|s)L(D;w⊙m),

s.t. 1⊤s ≤ rn and s ∈ [0, 1]n.
(3)

Remark 1 Problem (3) is a continuous relaxation
4For the channel and head granularity, we prune the dimen-

sions of the hidden states following (Ma et al., 2023) while
preserving output channels of each block to maintain residue
connections(see Appendix A.2).

of the discrete Problem (1). The feasible region of
(3) is the intersection of the cube [0, 1]n and the
half-space 1⊤s ≤ rn. Moreover, the parameteri-
zation of (3) in the probabilistic space facilitates
automatically learning the redundancy across dif-
ferent layers for global and heterogeneous pruning.
3.2 Policy Gradient Optimization
Conventional neural network training paradigm
usually adopts back-propagation to estimate the
gradient of Eq. (3), e.g., through Gumbel Softmax
(Maddison et al., 2016; Dupont et al., 2022) which
reparameterizes the mask m as a function of s,
i.e., mi=ϕ(si) or mi=ϕ(si, ϵ) with ϵ∼N (0, 1).
However, the back-propagation has the following
intrinsic issues in LLM pruning.
Remark 2 Intrinsic issues of back-propagation
in LLM pruning: 1) the back-propagation is com-
putationally expensive and memory-intensive; 2)
the computation of gradients can not be satisfied
by using the sparsity in m, i.e., ∂mi

∂si
̸= 0 even if

mi = 0. In other words, one has to go through the
full model for back-propagation even when lots of
the LLM modules have been masked.

Now we present our efficient (back-propagation-
free) and unbiased optimization for Problem (3).
We propose using Policy Gradient Estimator (PGE)
for the gradient estimation with only forward pass,
avoiding the pathology of the chain-rule estima-
tor. Specifically, in order to update the Bernoulli
parameters s, we have the objective Φ(s):

Φ(s) = Ep(m|s)L(m)=

∫
p(m|s)L(m)dm,

s.t. 1⊤s ≤ rn and s ∈ [0, 1]n.

(4)

29359

Our key idea is that in Eq. (4), the score vector s
only appears in the conditional probability p(m|s)
for sampling m, which is decoupled from the net-
work loss term L(m), short for L(D;w⊙m).

Remark 3 Differences with Gumbel Softmax: 1)
As shown in Eq. (4), our PGE formulates the mask
m as a random variable which is only related to
the distribution s through the conditional proba-
bility p(m|s) of probabilistic sampling. Thus, the
expensive back-propagation through the LLM can
be omitted in gradient estimation using the PGE.
In contrast, for the Gumbel Softmax estimator, m
is a function of s, requiring the back-propagation
through the whole network (see the blue and red
gradient flows in Fig. 2). 2) As a result, Gumbel
Softmax is challenged by the back-propagation is-
sues discussed in Remark 2. 3) Gumbel Softmax is
known to be biased especially when the tempera-
ture is high (Huijben et al., 2022). 4) The vanilla
PGE might suffer from large variance (Liu et al.,
2020), so we exploit a variance-reduced PGE dis-
cussed later in Eq. (7) with theoretical analysis and
empirical ablations in Appendices A.4 and A.15.

Specifically, the optimization of Eq. (4) via the
policy gradient estimator holds that:

∇sΦ(s)=

∫
L(m)∇sp(m|s)+p(m|s)∇sL(m)︸ ︷︷ ︸

= 0

dm

=

∫
L(m)p(m|s)∇s log(p(m|s))dm

=Ep(m|s)L(m)∇s log(p(m|s)). (5)

The final equality provides conclusive proof
that L(m)∇s log(p(m|s)) is an unbiased stochas-
tic gradient for Φ(s).

Remark 4 The efficiency of Eq. (5): 1) Equation
(5) can be computed purely with forward propaga-
tion. 2) The computation cost for the gradients, i.e.,
∇s log(p(m|s)) = m−s

s(1−s) , is negligible. There-
fore, our PGE is much efficient compared to the
backward-propagation-based estimators.

The stochastic gradient descent algorithm is:
s← projC(z),

z := s− ηL(DB;w⊙m)∇s log(p(m|s)).
(6)

where DB = {(xi,yi)}Bi=1 is batch samples from
D with batch size B, and L(DB;w⊙m) is the
loss on DB with the pruned model by masks m.
The projection operator projC(·) is to ensure the
updated scores s to be constrained in the feasible
domain C =

{
1⊤s ≤ K

}⋂ {s ∈ [0, 1]n}. We im-
plement the projection operator from (Wang and

Carreira-Perpinán, 2013), the details of which can
be found in Appendix A.1.

Policy gradient might suffer from large variance
(Liu et al., 2020). To reduce the variance for fast
and stable training, we minus a moving average
baseline (Zhao et al., 2011) which is calculated by
1) obtaining the averaged loss of multiple sampling
trials, then 2) taking the moving average of the
current and the previous losses given a window size.
Denote the baseline as δ, given window size T (set
to 5), and mask sampling times Ns (set to 2), we
update s in each training step via Eqs. (7) and (8).
The theoretical analysis and empirical ablations
can be found in Appendices A.4 and A.15.

s← projC(z) with z := s− η

[
1

Ns
(7)

Ns∑

i=1

(
L(DB;w⊙m(i))−δ

)
∇s log(p(m

(i)|s))
]
.

δ ← T − 1

T
δ +

1

NsT

Ns∑

i=1

L(DB;w⊙m(i)). (8)

Our efficient pruning algorithm is summarized
in Appendix A.1. Note that our formulation can
be interpreted as a dense rewards reinforcement
learning problem, detailed in Appendix A.3.

Initialization. Algorithms based on policy gra-
dient usually require an effective initialization to
get enhanced results. In this context, previous hand-
crafted pruning metric can be applied to initialize
the probability of each module: s0 ← σ(x), in
which x can be any pruning metric derived from
existing method, s0 represents the initial probabil-
ity assigned to each module, and σ symbolizes a
non-linear transformation. We note that initial-
izing from a prior metric-based method is only
an option, while a random initialization strategy
can already produce good performance. Please
refer to different initializations x and transforma-
tions σ discussed in Appendices A.17 and A.16.

Applicability of PGE in Learning Pruning
Masks. We note that the precision of PGE may
not match that of conventional back-propagation.
Given that we are learning the binary masks m
(distinct from the float weights), it is expected
that the precision requirement of s can be mod-
est. Moreover, our PGE is unbiased (compared to
the biased Gumbel Softmax). These factors make
the PGE suitable for learning the masks, which is
empirically validated with extensive experiments.
We also compared the results of using PGE and
Gumbel Softmax respectively in Sect. 5.2.

29360

Practical applicability of our efficient prun-
ing method. Our method is particularly effective
in memory-constrained settings where GPU mem-
ory may only accommodate inference for the un-
pruned model. This addresses a growing practical
challenge, as state-of-the-art models continue to ex-
pand while many researchers and institutions face
hardware limitations. Moreover, the pruned smaller
model remains affordable to fine-tune under these
limitations. We discuss these practical implications
in detail in Appendix A.5.

4 Experiments
We conduct extensive experiments to validate the
promising performance of the proposed method,
across different LLM models with various sizes,
pruning rates, and initializations (in the ablation
analysis). First, we detail our experimental setups
in Sect. 4.1. After that, our main results against the
state-of-the-art methods for channels and heads
pruning are shown in Sect. 4.2. We illustrate
the zero-shot performance in Sect. 4.3, Appen-
dices A.7 and A.9. Our method runs 2.7 hours for
LLaMA-2-13B with a similar GPU memory (i.e.,
∼35GB) as Wanda-sp (An et al., 2024) as shown in
Appendix A.6. Considering the constraints on com-
putations and memory, we compare with the state-
of-the-art methods without in-pruning weight up-
date, and report the pruning then finetuning perfor-
mance in Appendix A.7, as it becomes affordable
to finetune a smaller pruned model. We also show
generated samples of the pruned models in Table
A19 of Appendix A.13 and multiple-run statistics
of our method in Appendix A.14.

4.1 Experimental Setups
Structural Granularities for Pruning. We vali-
date our method on Head and Channel Granularity
for pruning, i.e., Width Pruning. For the effects of
different initializations, we extensively investigated
them in Sect. 5 and Appendices A.17 and A.16.

Head and Channel Granularity: We follow (Ma
et al., 2023; An et al., 2024) to prune the heads
of the multi-head attention (MHA) modules and
the channels of the MLP modules in Sect. 4.2.
We initialize our methods with an efficient metric-
based structural pruning method, i.e., Wanda-sp
(An et al., 2024). Our method is compared to the
state-of-the-art Wanda-sp (An et al., 2024), LLM-
Pruner (Ma et al., 2023), SliceGPT (Frantar and
Alistarh, 2023), and Bosai (Dery et al., 2024).

Additionally, we also validate our method on
Layer Granularity, i.e., Depth Pruning (Kim et al.,

2024; Song et al., 2024), by pruning the entire
transformer layer, shown in Appendix A.8.

LLM Models and Sizes. LLaMA-{7B, 13B}
(Touvron et al., 2023a), LLaMA-2-{7B, 13B} (Tou-
vron et al., 2023b), LLaMA-3-8B (Dubey et al.,
2024), Vicuna-{7B, 13B} (Chiang et al., 2023),
and Mistral-7B-Instruct-v0.3 (Jiang et al., 2023)
are used as the source models in our experiments.

Pruning Rate. Promising performance with a
high pruning rate could be challenging to obtain
when employing metric-based pruning, owing to
the heuristically designed metrics. To validate the
superior performance of our optimization-based
pruning under this situation, we select high pruning
rates ranging from 30% to 50%, i.e., structurally
removing 30% to 50% model parameters.

Datasets. We perform the experiments follow-
ing the cross-dataset settings in (Sun et al., 2023),
where the C4 dataset (Raffel et al., 2020) is used for
training and the WikiText2 dataset (Merity et al.,
2016) is used for evaluation. This challenging
cross-dataset setup potentially better reflects the
generalization of the pruned model.

Training and Evaluation Details. We update
the underlying Bernoulli distributions (for mask
sampling) simply using SGD with a learning rate
of 6e-3 for LLaMA-3 experiments and 2e-3 for
the remaining. The batch size is fixed to 8 and we
train our lightweight policy gradient estimator for
1 epoch on the C4 dataset with 120K segments,
where each segment has a sequence length of 128.
Ablations on calibration dataset size are also con-
ducted, detailed in Appendix A.19.

To reduce the evaluation variance, we determinis-
tically generate the pruned evaluation architecture,
i.e., given a pruning rate r, we first rank all the
s, then deterministically set m corresponding to
the minimal r of s as 0 (otherwise 1). We report
the perplexity on the WikiText2 dataset using a se-
quence length of 128. Given a tokenized sequence
X = (x0, x1, . . . , xt), the perplexity of X is:

Perplexity(X) = exp

{
−1

t

t∑

i

log pθ(xi|x<i)

}
,

where log pθ(xi|x<i) is the log-likelihood of token
xi conditioned on the preceding tokens x<i.
4.2 Results on Channels and Heads Pruning
The results of channels and heads pruning are
shown in Table 1. Our method achieves the low-
est perplexity scores. It verifies the superiority
of optimization-based global and heterogeneous
pruning. Especially, such outperformance is more

29361

Method PruneRate LLaMA LLaMA-2 LLaMA-3 Vicuna
7B 13B 7B 13B 8B 7B 13B

Dense 0% 12.62 10.81 12.19 10.98 14.14 16.24 13.50
LLM-Pruner

30%

38.41 24.56 38.94 25.54 40.18 48.46 31.29
SliceGPT - - 40.40 30.38 183.94 52.23 57.75
Bonsai 30.49 26.24 39.01 24.23 80.89 44.28 54.16
Wanda-sp 98.24 25.62 49.13 41.57 92.14 57.60 80.74
Ours 25.61 19.70 28.18 21.99 38.99 34.51 26.42
LLM-Pruner

40%

72.61 36.22 68.48 37.89 70.60 88.96 46.88
SliceGPT - - 73.76 52.31 353.09 89.79 130.86
Bonsai 60.65 58.17 69.18 50.97 204.61 95.32 272.10
Wanda-sp 110.10 165.43 78.45 162.50 213.47 85.51 264.22
Ours 42.96 28.12 39.81 31.52 63.85 51.86 43.59
LLM-Pruner

50%

147.83 67.94 190.56 72.89 145.66 195.85 91.07
SliceGPT - - 136.33 87.27 841.20 160.04 279.33
Bonsai 275.63 148.92 216.85 146.38 440.86 180.75 424.33
Wanda-sp 446.91 406.60 206.94 183.75 413.86 242.41 373.95
Ours 72.02 49.08 65.21 52.23 119.75 71.18 68.13

Table 1: Results (perplexity) on channels and heads pruning. Our method is initialized by Wanda-sp (please also
refer to Sect. 5.1 and Appendix A.17 for a detailed discussion about initializations). All the methods are calibrated
using the C4 dataset and validated on the WikiText2 dataset w.r.t. perplexity.

Method PruneRate PPL ↓ PIQA HellaSwag WinoGrande ARC-e ARC-c Average
Dense 0% 14.14 79.71 60.19 72.61 80.09 50.34 68.59
LLM-Pruner

30%

40.18 71.38 37.84 55.64 57.78 27.21 49.97
SliceGPT 183.94 68.34 53.92 57.22 49.41 28.07 51.39
Bonsai 80.89 64.53 36.10 55.09 47.64 22.52 45.18
Wanda-sp 92.14 59.74 31.46 52.64 44.02 19.88 41.55
Ours 38.99 72.25 43.56 59.04 59.85 29.44 52.83
LLM-Pruner

40%

70.60 66.26 31.90 54.06 49.74 22.52 44.90
SliceGPT 353.09 61.53 39.98 52.80 36.66 25.17 43.23
Bonsai 204.61 58.81 29.43 48.93 33.21 18.15 37.71
Wanda-sp 213.47 56.58 27.46 50.35 32.07 17.06 36.70
Ours 63.85 67.63 37.36 56.91 50.67 24.91 47.50
LLM-Pruner

50%

145.65 61.15 29.10 51.93 39.98 19.36 40.30
SliceGPT 841.20 56.37 32.66 48.38 32.45 22.10 38.39
Bonsai 440.86 55.66 26.94 50.51 30.64 17.83 36.32
Wanda-sp 413.86 55.39 27.07 49.72 29.59 18.26 36.01
Ours 119.75 62.51 30.89 51.85 41.12 20.65 41.40

Table 2: Perplexity (PPL) and zero-shot accuracies (%) of LLaMA-3-8B for 5 zero-shot tasks.

significant at larger pruning rates over 40%. The
results on Mistral-7B-Instruct-v0.3 (Jiang et al.,
2023) are shown in Table A11 of Appendix A.12.
We further validate the method for pruning rates
from 10% to 50% with more evaluation in Ap-
pendix A.10, and provide a comparison between
our method and existing approaches that incorpo-
rate weight update, detailed in Appendix A.11.

4.3 Performance on Zero-shot Tasks

We follow SliceGPT (Ashkboos et al., 2024) to as-
sess our pruned LLM by EleutherAI LM Harness
(Gao et al., 2023) on five zero-shot tasks: PIQA
(Bisk et al., 2020), WinoGrande (Sakaguchi et al.,
2021), HellaSwag (Zellers et al., 2019), ARC-e and
ARC-c (Clark et al., 2018) with the average scores
across the five tasks. Our results on LLaMA-3-8B
and LLaMA-2-7B in Tables 2 and A8 of Appendix
A.9, demonstrate overall superior performance to
the baselines, though C4-only pruning may nega-
tively impact on particular cross-dataset zero-shot
tasks such as Hellaswag (Zellers et al., 2019).

5 Ablation Analysis
We investigate 1) the effect of various initializa-
tion of our method in Sect. 5.1, Appendices A.17
and A.16, 2) comparison with Gumbel Softmax, 3)
performance of global and heterogeneous pruning
versus that of local and homogenous pruning in
Sect. 5.3, 4) the remaining modules after pruning
in Appendix A.18, and 5) the effect of the variance-
reduced policy gradient in Appendix A.15.

5.1 Different Initializations
Our Bernoulli policy requires initialization to per-
form policy gradient optimization and to sample
pruning masks. In this section, we investigate the
effect and the necessity of using different metric-
based methods as initializations. Moreover, the ini-
tialization of the Bernoulli policy should be prob-
abilistic values between 0 and 1, but the metrics
calculated by the metric-based methods (Sun et al.,
2023; Ma et al., 2023) may not hold this range. We
thus discuss different projection strategies that
transform those metrics to [0, 1] in Appendix A.16.

29362

Method PruneRate Perplexity PruneRate Perplexity PruneRate Perplexity
LLM-Pruner

30%

38.94

40%

68.48

50%

190.56
SliceGPT 40.40 73.76 136.33
Bonsai 39.01 69.18 216.85
Wanda-sp 49.13 78.45 206.94
Ours (Random Init) 30% 37.24 40% 60.16 50% 160.75
Ours (Random-Prog. Init) 31.43 49.86 86.55
Ours (LLM-Pruner Init) 30% 35.75 40% 65.32 50% 116.80
Ours (Wanda-sp Init) 28.18 39.81 65.21

Table 3: Channels and heads pruning results with different initializations on LLaMA-2-7B. Bold and Underscored
denote the first and second best results, respectively.

10% 20% 30% 40% 50%
Prune Rate

20

30

40

50

60

Pe
rp

le
xi

ty
 (P

PL
)

LLaMA-2-7B: PPL and 0-shot Mean Accuracy vs Prune Rate

10% 20% 30% 40% 50%
Prune Rate

20

40

60

80

100

120

Pe
rp

le
xi

ty
 (P

PL
)

LLaMA-3-8B: PPL and 0-shot Mean Accuracy vs Prune Rate

40

45

50

55

60

65

0-
sh

ot
 M

ea
n

Ac
cu

ra
cy

40

45

50

55

60

65

0-
sh

ot
 M

ea
n

Ac
cu

ra
cy

Gumbel Softmax (PPL)
Policy Gradient (PPL)

Gumbel Softmax (0-shot Acc)
Policy Gradient (0-shot Acc)

Figure 3: Comparison of Policy Gradient and Gumbel Softmax.

30% 35% 40% 45% 50%
Prune Rate

20

30

40

50

60

70

Pe
rle

xi
ty

LLaMA-2-13B

Local & Homogeneous Pruning
Global & Heterogeneous Pruning

Figure 4: Global vs. local pruning.

To address the practical case when a metric-
based pruning is not apriori, we propose progres-
sive pruning with random initialization (Random-
Progressive), trained progressively with increasing
pruning rates (each for only 1/3 epoch). Details
can be found in Appendix A.17.

Different initializations are tested on LLaMA-
2-7B. The baselines include simple random ini-
tialization with the target pruning rate (Random)
and progressive pruning with random initialization
(Random-Progressive). For channels and heads
pruning, we investigate the initializations from
Wanda-sp (An et al., 2024) and LLM-Pruner5 (Ma
et al., 2023), as shown in Table 3.

Our results in Tables 3 demonstrate that 1) differ-
ent initializations lead to different results, 2) com-
pared to the state-of-the-art methods, our method
with most initializations except the random one
exhibit new state-of-the-art results, and 3) The
proposed Random-Progressive initialization ranks
the second place in most cases, surpassing previ-
ous state-of-the-art methods, which suggests less
necessity for employing a prior metric-based
method to initiate our algorithm.

5.2 Comparision with Gumbel Softmax
As highlighted in Remark 3, our proposed PGE by-
passes the costly back-propagation process through
the LLM required by Gumbel Softmax, while main-
taining comparable gradient estimation accuracy.

5We follow LLM-Pruner to fix the first four and the last
two layers from pruning.

To substantiate this advantage, we conduct em-
pirical ablation studies comparing different gradi-
ent estimators. The performance on LLaMA-2-7B
and LLaMA-3-8B, measured by both perplexity
and mean accuracy of 5 zero-shot tasks, of our
PGE approach and back-propagation/Gumbel Soft-
max approach in Figure 3. The performance of
PGE is generally comparable to that of the Gumbel
Softmax, except that PGE exhibits slightly higher
perplexity at a 50% pruning rate. This discrep-
ancy may be attributed to the increased variance
observed at this pruning level, which consequently
amplifies the gradient estimation error.

We also illustrate the training time and memory
usage of LLaMA-2-7B in Table 4, which demon-
strates that our method achieves comparable per-
formance with significantly reduced resources.

Method Memory (GiB) Time (h)Min Max
Gumbel Softmax 19.93 23.97 3.47
Policy Gradient 17.23 17.39 1.56

Table 4: Memory and Time Consumption Comparison
between Gumbel Softmax and Policy Gradient.

5.3 Merits of Global Pruning
Our method is able to perform global and hetero-
geneous pruning throughout the entire network,
which is difficult for metric-based pruning methods
(Sun et al., 2023; Ma et al., 2023), as the metrics
across different layers often exhibit different magni-
tudes. As a compromise, those metric-based meth-
ods prune each layer locally and homogeneously.

29363

We validate the merits of global and heteroge-
neous pruning over local and homogeneous prun-
ing, where we compare our method with a variant
in which we prune each layer homogeneously. The
channels and heads pruning results on LLaMA-2-
13B are shown in Fig. 4, demonstrating that the
global and heterogeneous pruning significantly out-
performs its local and homogeneous counterpart.

6 Conclusion
We propose an efficient optimization-based struc-
tural pruning method for LLMs, which 1) does
not need back-propagation through the LLM per
se, 2) enables global and heterogeneous pruning
throughout the LLM. Our method can take a metric-
based pruning as initialization to achieve further
improved performance. We implement our method
by learning an underlying Bernoulli distribution
of binary pruning mask. As we decouple the
Bernoulli parameter and the sampled masks from
the LLM loss, the Bernoulli distribution can thus
be optimized by a policy gradient estimator without
back-propagation through the LLM. Our method
operates for 2.7 hours with approximately 35GB
of memory on a single A100 GPU. Extensive ex-
periments on various LLM models and sizes with
detailed ablation analysis validate the promising
performance of the proposed method.

7 Limitations
Firstly, as an optimization-based pruning, though
our method exhibits improved performance over
the (heuristic) metric-based methods, and a simi-
lar memory complexity (approximately 35GB, as
only LLM forward is required), it simultaneously
requires more training time for optimization (e.g.,
2.7 hours for LLaMA-2-13B) than the metric-based
pruning methods.

Secondly, there exist advanced policy gradient
algorithms with potentially lower variance from the
reinforcement learning community. As 1) the pri-
mary focus of this paper is on the back-propagation-
free formulation of the LLM pruning problem, and
2) our formulation ensures dense rewards at each
step, we thus use a basic policy gradient algo-
rithm similar to REINFORCE with simple vari-
ance reduction using a moving average baseline.
We leave exploiting more powerful policy gradient
algorithms as our future work.

Lastly, the performance of the proposed method
on specific domains/tasks can rely heavily on the
availability of domain-specific datasets. Though
the cross-dataset evaluation is verified w.r.t. per-

plexity, pruning with only C4 dataset might have
a negative influence on certain cross-dataset zero-
shot tasks such as WinoGrande and Hellaswag.

8 Ethical Considerations
We have developed an efficient pruning method
for Large Language Models (LLMs) that signifi-
cantly accelerates inference speed. This approach
optimizes computational efficiency and reduces en-
ergy consumption for online-deployed LLMs like
ChatGPT, improving user experience while pro-
moting sustainable AI. However, it also inherits the
inherent ethical challenges of LLM technologies,
requiring careful consideration in deployment.

9 Acknowledgements
This work was supported by the National Nat-
ural Science Foundation of China (62306214,
62325111, 62472097), the Natural Science Foun-
dation of Hubei Province of China (2023AFB196),
the Knowledge Innovation Program of Wuhan-
Shuguang Project (2023010201020258), and
Shanghai Municipal Science and Technology Com-
mission (24511106102).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao
Wang. 2024. Fluctuation-based adaptive structured
pruning for large language models. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 38, pages 10865–10873.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gen-
nari do Nascimento, Torsten Hoefler, and James
Hensman. 2024. Slicegpt: Compress large language
models by deleting rows and columns. arXiv preprint
arXiv:2401.15024.

Guangji Bai, Yijiang Li, Chen Ling, Kibaek Kim, and
Liang Zhao. 2024. Sparsellm: Towards global prun-
ing of pre-trained language models. In The Thirty-
eighth Annual Conference on Neural Information
Processing Systems.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In AAAI, volume 34,
pages 7432–7439.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan
Frankle, and John Guttag. 2020. What is the state
of neural network pruning? Proceedings of machine
learning and systems, 2:129–146.

29364

Vladimír Boža. 2024. Fast and optimal weight update
for pruned large language models. arXiv preprint
arXiv:2401.02938.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. In NeurIPS, pages 1877–1901.

Tianyi Chen, Tianyu Ding, Badal Yadav, Ilya Zharkov,
and Luming Liang. 2023. Lorashear: Efficient large
language model structured pruning and knowledge
recovery. arXiv preprint arXiv:2310.18356.

Xiaodong Chen, Yuxuan Hu, and Jing Zhang. 2024.
Compressing large language models by stream-
lining the unimportant layer. arXiv preprint
arXiv:2403.19135.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Rocktim Jyoti Das, Liqun Ma, and Zhiqiang Shen.
2023. Beyond size: How gradients shape pruning
decisions in large language models. arXiv preprint
arXiv:2311.04902.

Lucio Dery, Steven Kolawole, Jean-Francois Kagey, Vir-
ginia Smith, Graham Neubig, and Ameet Talwalkar.
2024. Everybody prune now: Structured pruning
of llms with only forward passes. arXiv preprint
arXiv:2402.05406.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Robin Dupont, Mohammed Amine Alaoui, Hichem
Sahbi, and Alice Lebois. 2022. Extracting effective
subnetworks with gumbel-softmax. In ICIP, pages
931–935.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel
Castro, and Erich Elsen. 2020. Rigging the lottery:
Making all tickets winners. In International confer-
ence on machine learning, pages 2943–2952. PMLR.

Gongfan Fang, Hongxu Yin, Saurav Muralidharan, Greg
Heinrich, Jeff Pool, Jan Kautz, Pavlo Molchanov,
and Xinchao Wang. 2024. Maskllm: Learnable semi-
structured sparsity for large language models. arXiv
preprint arXiv:2409.17481.

Jonathan Frankle and Michael Carbin. 2018. The lottery
ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot. In International Conference on Machine
Learning, pages 10323–10337. PMLR.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Song Guo, Jiahang Xu, Li Lyna Zhang, and Mao Yang.
2023. Compresso: Structured pruning with collabora-
tive prompting learns compact large language models.
arXiv preprint arXiv:2310.05015.

Song Han, Huizi Mao, and William J Dally. 2015. Deep
compression: Compressing deep neural networks
with pruning, trained quantization and huffman cod-
ing. arXiv preprint arXiv:1510.00149.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia
Li, and Song Han. 2018. Amc: Automl for model
compression and acceleration on mobile devices. In
ECCV, pages 784–800.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In ICLR.

Zehao Huang and Naiyan Wang. 2018. Data-driven
sparse structure selection for deep neural networks.
In Proceedings of the European conference on com-
puter vision (ECCV), pages 304–320.

Iris AM Huijben, Wouter Kool, Max B Paulus, and
Ruud JG Van Sloun. 2022. A review of the gumbel-
max trick and its extensions for discrete stochastic-
ity in machine learning. IEEE TPAMI, 45(2):1353–
1371.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

29365

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault
Castells, Shinkook Choi, Junho Shin, and Hyoung-
Kyu Song. 2024. Shortened llama: A simple depth
pruning for large language models. arXiv preprint
arXiv:2402.02834.

Jongwoo Ko, Seungjoon Park, Yujin Kim, Sumyeong
Ahn, Du-Seong Chang, Euijai Ahn, and Se-Young
Yun. 2023. Nash: A simple unified framework of
structured pruning for accelerating encoder-decoder
language models. arXiv preprint arXiv:2310.10054.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Fran-
tar, Mark Kurtz, Benjamin Fineran, Michael Goin,
and Dan Alistarh. 2022. The optimal bert surgeon:
Scalable and accurate second-order pruning for large
language models. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 4163–4181.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. Race: Large-scale reading
comprehension dataset from examinations. arXiv
preprint arXiv:1704.04683.

Lujun Li, Peijie Dong, Zhenheng Tang, Xiang Liu,
Qiang Wang, Wenhan Luo, Wei Xue, Qifeng Liu,
Xiaowen Chu, and Yike Guo. 2024a. Discovering
sparsity allocation for layer-wise pruning of large
language models. In The Thirty-eighth Annual Con-
ference on Neural Information Processing Systems.

Shengrui Li, Xueting Han, and Jing Bai. 2024b.
Nuteprune: Efficient progressive pruning with nu-
merous teachers for large language models. arXiv
preprint arXiv:2402.09773.

Yun Li, Lin Niu, Xipeng Zhang, Kai Liu, Jianchen
Zhu, and Zhanhui Kang. 2023. E-sparse: Boost-
ing the large language model inference through
entropy-based N: M sparsity. arXiv preprint
arXiv:2310.15929.

Hanxiao Liu, Karen Simonyan, and Yiming Yang.
2018a. Darts: Differentiable architecture search.
arXiv preprint arXiv:1806.09055.

Yanli Liu, Kaiqing Zhang, Tamer Basar, and Wotao Yin.
2020. An improved analysis of (variance-reduced)
policy gradient and natural policy gradient methods.
NeurIPS, 33:7624–7636.

Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo,
Xin Yang, Kwang-Ting Cheng, and Jian Sun. 2019.
Metapruning: Meta learning for automatic neural
network channel pruning. In ICCV.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang,
and Trevor Darrell. 2018b. Rethinking the value of
network pruning. arXiv preprint arXiv:1810.05270.

Haiquan Lu, Yefan Zhou, Shiwei Liu, Zhangyang Wang,
Michael W Mahoney, and Yaoqing Yang. 2024. Al-
phapruning: Using heavy-tailed self regularization
theory for improved layer-wise pruning of large lan-
guage models. arXiv preprint arXiv:2410.10912.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. Advances in neural information pro-
cessing systems, 36:21702–21720.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh.
2016. The concrete distribution: A continuous relax-
ation of discrete random variables. arXiv preprint
arXiv:1611.00712.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut,
Younes Belkada, Sayak Paul, and B Bossan. 2022.
Peft: State-of-the-art parameter-efficient fine-tuning
methods.

Xiang Meng, Kayhan Behdin, Haoyue Wang, and Rahul
Mazumder. 2024. Alps: Improved optimization for
highly sparse one-shot pruning for large language
models. arXiv preprint arXiv:2406.07831.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri
Frosio, and Jan Kautz. 2019. Importance estima-
tion for neural network pruning. In Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition, pages 11264–11272.

Saurav Muralidharan, Sharath Turuvekere Sreenivas,
Raviraj Bhuminand Joshi, Marcin Chochowski,
Mostofa Patwary, Mohammad Shoeybi, Bryan Catan-
zaro, Jan Kautz, and Pavlo Molchanov. 2024. Com-
pact language models via pruning and knowledge
distillation. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Quan Ngoc Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. 2016. The lambada dataset: Word pre-
diction requiring a broad discourse context. arXiv
preprint arXiv:1606.06031.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. JMLR, 21(140):1–67.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

Frank Sehnke, Christian Osendorfer, Thomas Rückstieß,
Alex Graves, Jan Peters, and Jürgen Schmidhuber.
2010. Parameter-exploring policy gradients. Neural
Networks, 23(4):551–559.

Hang Shao, Bei Liu, and Yanmin Qian. 2024. One-shot
sensitivity-aware mixed sparsity pruning for large
language models. In ICASSP 2024-2024 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 11296–11300. IEEE.

29366

https://github. com/huggingface/peft
https://github. com/huggingface/peft

Xuan Shen, Pu Zhao, Yifan Gong, Zhenglun Kong,
Zheng Zhan, Yushu Wu, Ming Lin, Chao Wu,
Xue Lin, and Yanzhi Wang. 2024. Search for
efficient large language models. arXiv preprint
arXiv:2409.17372.

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun
Kim, Yulhwa Kim, and Jae-Joon Kim. 2024. Sleb:
Streamlining llms through redundancy verification
and elimination of transformer blocks. arXiv preprint
arXiv:2402.09025.

Suraj Srinivas, Akshayvarun Subramanya, and
R Venkatesh Babu. 2017. Training sparse neural
networks. In CVPR Workshops, pages 138–145.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico
Kolter. 2023. A simple and effective pruning ap-
proach for large language models. arXiv preprint
arXiv:2306.11695.

Zhendong Tan, Xingjun Zhang, and Zheng Wei. 2024.
Wrp: Weight recover prune for structured sparsity.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 6433–6443.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Tycho FA van der Ouderaa, Markus Nagel, Mart van
Baalen, Yuki M Asano, and Tijmen Blankevoort.
2023. The llm surgeon. arXiv preprint
arXiv:2312.17244.

Huan Wang, Can Qin, Yulun Zhang, and Yun Fu. 2021.
Neural pruning via growing regularization. In ICLR.

Weiran Wang and Miguel A Carreira-Perpinán. 2013.
Projection onto the probability simplex: An efficient
algorithm with a simple proof, and an application.
arXiv preprint arXiv:1309.1541.

Boyi Wei, Kaixuan Huang, Yangsibo Huang, Tinghao
Xie, Xiangyu Qi, Mengzhou Xia, Prateek Mittal,
Mengdi Wang, and Peter Henderson. 2024. As-
sessing the brittleness of safety alignment via prun-
ing and low-rank modifications. arXiv preprint
arXiv:2402.05162.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi
Chen. 2023. Sheared llama: Accelerating language
model pre-training via structured pruning. arXiv
preprint arXiv:2310.06694.

Peng Xu, Wenqi Shao, Mengzhao Chen, Shitao Tang,
Kaipeng Zhang, Peng Gao, Fengwei An, Yu Qiao,
and Ping Luo. 2024. Besa: Pruning large language
models with blockwise parameter-efficient sparsity
allocation. arXiv preprint arXiv:2402.16880.

Yifei Yang, Zouying Cao, and Hai Zhao. 2024. Laco:
Large language model pruning via layer collapse.
arXiv preprint arXiv:2402.11187.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh,
Yaqing Wang, Yiling Jia, Mykola Pechenizkiy,
Yi Liang, Zhangyang Wang, and Shiwei Liu. 2023.
Outlier weighed layerwise sparsity (owl): A missing
secret sauce for pruning llms to high sparsity. arXiv
preprint arXiv:2310.05175.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Hongchuan Zeng, Hongshen Xu, Lu Chen, and Kai Yu.
2024. Multilingual brain surgeon: Large language
models can be compressed leaving no language be-
hind. arXiv preprint arXiv:2404.04748.

Mingyang Zhang, Hao Chen, Chunhua Shen, Zhen
Yang, Linlin Ou, Xinyi Yu, and Bohan Zhuang.
2024a. Loraprune: Structured pruning meets low-
rank parameter-efficient fine-tuning. In Findings of
the Association for Computational Linguistics ACL
2024, pages 3013–3026.

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao,
Lu Hou, and Carlo Vittorio Cannistraci. 2024b. Plug-
and-play: An efficient post-training pruning method
for large language models. In ICLR.

Yuxin Zhang, Lirui Zhao, Mingbao Lin, Yunyun Sun,
Yiwu Yao, Xingjia Han, Jared Tanner, Shiwei Liu,
and Rongrong Ji. 2023. Dynamic sparse no train-
ing: Training-free fine-tuning for sparse llms. arXiv
preprint arXiv:2310.08915.

Bowen Zhao, Hannaneh Hajishirzi, and Qingqing Cao.
2024. Apt: Adaptive pruning and tuning pretrained
language models for efficient training and inference.
arXiv preprint arXiv:2401.12200.

Tingting Zhao, Hirotaka Hachiya, Gang Niu, and
Masashi Sugiyama. 2011. Analysis and improve-
ment of policy gradient estimation. In NIPS.

29367

Analysis

Projection operator for sparsity constraint and the overall algorithm in Appendix A.1. (Page 13)
Details on hidden states pruning for channel and head granularities in Appendix A.2. (Page 13)
A reinforcement learning perspective of the proposed method in Appendix A.3. (Page 13)
Theoretical analysis of moving average baseline for policy gradient in Appendix A.4. (Page 14)
An in-depth discussion on the practical applicability of the proposed method in Appendix A.5. (Page 15)

Results

Statistics of the training time & memory, and the inference latency in Appendix A.6. (Page 15)
Performance after pruning and (then) finetuning in Appendix A.7. (Page 16)
Performance on layer pruning in Appendix A.8. (Page 16)
Zero-shot performance on LLaMA-2-7B in Appendix A.9. (Page 17)
Further evaluation with wider pruning rate range A.10. (Page 17)
Comparision with approaches with weight update in Appendix A.11. (Page 17)
Performance on Mstral-7B-Instruct-V0.3 in Appendix A.12. (Page 18)
Generated samples of the pruned model in Appendix A.13. (Page 18)
Random error-bar statistics in Appendix A.14. (Page 18)

Ablations

Ablations on the moving average baseline for policy gradient in Appendix A.15 (Page 19)
Ablations on projection strategy for initialization: from metric to probability in Appendix A.16 (Page 19)
More ablations with different initializations in Appendix A.17 (Page 20)
More ablations of the post-pruning modules on LLaMA-2-7B in Appendix A.18 (Page 20)
Ablations of the calibration data size in Appendix A.19 (Page 21)

Table A1: Summary of the Appendix materials.

A Appendix

We discuss the following additional analyses, re-
sults, and ablations in the appendices. The catalogs
are in Table A1.

A.1 Projection Operator for Sparsity
Constraint and the Overall Algorithm

Details of the Projection Operator. In our
proposed probabilistic framework, the sparsity
constraint manifests itself in a feasible domain
on the probability space defined in Problem
(3). We denote the feasible domain as C ={
1⊤s ≤ K

}⋂ {s ∈ [0, 1]n}. The theorem (Wang
and Carreira-Perpinán, 2013) below shows that the
projection of a vector onto C can be calculated
efficiently.

Theorem 1. For each vector z , its projection
projC(z) in the set C can be calculated as follows:

projC(z) = min(1,max(0, z− v∗21)) (A1)

where v∗2 = max(0, v∗1) with v∗1 being the solu-
tion of the following equation

1T [min(1,max(0, z− v∗11))]−K = 0 (A2)

Equation (A2) can be solved by the bisection
method efficiently.

The theorem above as well as its proof is stan-
dard and it is a special case of the problem stated
in (Wang and Carreira-Perpinán, 2013). This com-
ponent, though not the highlight of our work, is
included for the reader’s convenience and com-
pleteness.

Algorithm. The pseudo-code of our overall al-
gorithm is detailed below.

Algorithm 1 Pseudo-code of PG pruning

Input: target remaining ratio r > 0, a dense pre-
trained network w, the step size η > 0, mini-
batch size B > 0, moving average window
size T , and calibration dataset D

Initialize: Init probability s from any pruning met-
ric x, ans set moving average δ = 0

1: while until convergence do
2: Sample a mini-batch from the entire cali-

bration dataset: DB = {(xi,yi)}Bi=1 ∼ D
3: Sample m(i) from p(m|s), i = 1, 2, . . . , Ns

4: Update the moving average baseline δ via
Eq. (8)

5: Uptate s via Eqs. (7), (A1), and (A2).
6: end while

A.2 Details on Hidden States Pruning for
Channel and Head Granularities

We note that for pruning on the channel and head
granularities, it must be guaranteed that the final
output dimension for each block (e.g., multi-head
attention, MLP) should remain, so as to facili-
tate the residue connections (e.g., additions) across
blocks. We thus follow (Ma et al., 2023; An et al.,
2024) to prune the dimensions of the hidden states,
while keeping the final output channels unchanged,
ensuring that they can be added to the input through
the residual connections. A conceptual figure illus-
trating this procedure is shown in Fig. A1.

A.3 A Reinforcement Learning Perspective
Our formulation can also be interpreted from the
dense-reward model-free reinforcement learning
perspective. Particularly, the heavy LLM can be
viewed as the agnostic and fixed environment.

29368

N

D

Input

Sequence

N

D

Output

Sequence

෢𝑾𝟏
෢𝑾𝟐D ℎ Dℎ

Prune Output

Dimension

Prune Input

Dimension

𝟏 𝟏 𝟎 𝟏 𝟎𝟎 𝟏 𝟎 𝟏

𝐻

Mask

𝐷 × 𝐻

𝐷 × ℎ

𝐻 × 𝐷

ℎ × 𝐷

Residual

Connection

Origin: ฎ𝑿

𝑁×𝐷

ฏ𝑾𝟏

𝐷×𝐻

 ฏ𝑾𝟐

𝐻×𝐷

= ฎ𝒀

𝑁×𝐷

Pruned: ฎ𝑿

𝑁×𝐷
ฏ෢𝑾𝟏

𝐷×ℎ

 ฏ෢𝑾𝟐

ℎ×𝐷

= ฎ෡𝒀

𝑁×𝐷

𝐻 > ℎ

Figure A1: Output dimension is invariant for each block that might be used for residual connections, but instead
prune the dimension of the intermediate hidden state.

In terms of the Markov Decision Process
(MDP) (action a, states s, state transition prob-
ability p, reward r, discount factor γ), the
environment takes the action a sampled from the
current Bernoulli policy π to insert the binary
masks for pruning, produces the states s as the
masked/pruned network deterministically (i.e., the
state transition probability p is constantly 1), and
generate the stepwise dense reward r as the perfor-
mance (e.g., the cross-entropy loss) of the pruned
LLM. Since our problem exhibits dense rewards,
the discount factor γ is 1.

As a result, our policy to take actions, i.e., the
Bernoulli distribution to sample the binary masks,
can be learned efficiently exploiting the policy gra-
dient estimator (similar to REINFORCE), without
back-propagating through the agnostic and fixed
environment of the heavy LLM.

A.4 Theoretical Analysis of Moving Average
Baseline for Policy Gradient

We give the theoretical analysis on the variance re-
duction technique by considering a general-purpose
technique for reducing the variance of Monte Carlo
method with the general problem Ep(x;θ)[f(x)].
We take a strategy that replacing the function f(x)
in the expectation by a substitute function f̃(x)
whose expectation Ep(x;θ)[f̃(x)] is the same, but
whose variance is lower. Given a function h(x)
with a known expectation Ep(x;θ)[h(x)], we can
easily construct such a substitute function along
with the corresponding estimator as follows:

f̃(x)=f(x)−β(h(x)−Ep(x;θ)[h(x)]), (A3)

η̄N =
1

N

N∑

n=1

f̃(x̂n)= f̄−β(h̄−Ep(x;θ)[h(x)]).

where x̂n ∼ p(x; θ) and f̄ and h̄ are the sample
averages. β is a control coefficient and h(x) is
considered as control variate. We can show that if

the variance of h(x) is finite, the unbiasedness the
estimator Eq. A3 is maintained, e.g.,

Ep(x;θ)[(x;β)] =E[f̄ − β(h̄− Eh(x))]

=E[f̄] = Ep(x;θ)[f(x)].
(A4)

For the variance of the estimator (for N = 1), we
have

V[f̃] =V[f(x)−β(h(x)−Ep(x;θ)[h(x)])]

=V[f]−2βCov[f, h]+β2V[h]. (A5)

By minimizing Eq. A5 we can find that the
optimal value of the coefficient is

β∗ =
Cov[f, h]
V[h]

=

√
V[f]
V[h]

Corr(f, h), (A6)

where we expressed the optimal coefficient in
terms of the variance of f and h and the correlation
coefficient Corr(f, h). The effectiveness of a con-
trol variate can be measured by the variance ratio
between its estimator and the original estimator: it
is effective if the ratio is substantially less than 1.
Using the optimal control coefficient in Eq. A6, the
potential variance reduction is

V[f̃(x)]
V[f(x)]

=
V[f(x− β(h(x)− Ep(x;θ)[h(x)])]

V[f(x)]
=1− Corr(f(x), h(x))2. (A7)

Therefore, as long as f(x) and h(x) are not un-
correlated, we can always obtain a reduction in
variance using control variables. In practice, the
optimal β∗ will not be known and so we will usu-
ally need to estimate it empirically.

In our problem formulation of structured pruning
for LLMs, Ep(m|s)L(D;w ⊙m)∇s log(p(m|s)),
is a score-function gradient estimator [1], in which
p(m|s) is the Bernoulli distribution of each mod-
ule of LLMs with s corresponds the θ, m corre-
sponds the θ and L(D;w ⊙ m)∇s log(p(m|s))
corresponds f(x) in the preliminary. To reduce

29369

the variance of a score-function gradient estima-
tor, one simple and general way is to use the
score function itself as a control variate, that is
h(m) = δ∇θlogp(m|s) and δ is an independent
estimation of L(D;w ⊙m), since its expectation
under the measure is zero, as

Ep(m|s)[δ∇slogp(m|s)]

=δ

∫
p(m|s)∇sp(m|s)

p(m|s) dm

=δ∇s

∫
p(m|s)dm = δ∇s1 = 0.

(A8)

Therefore, the estimator in Eq. A3 format is:

η̄N =
1

N

N∑

n=1

(L(D;w ⊙m(n)) (A9)

− βδ)∇s log(p(m
(n)|s)); m(n) ∼ p(m|s),

where m(n) is the sampled mask of modules. In
reinforcement learning, the term βδ is called a base-
line (Williams, 1992) and has historically been esti-
mated with a running average of the cost. Note that
δ needs to be estimated, we choose moving average
baseline in our method, which is a commonly used
baseline in policy gradient estimation (Zhao et al.,
2011; Sehnke et al., 2010).

A.5 Practical Applicability Discussion
While our optimization-based pruning method in-
herently requires more training time for optimiza-
tion than the metric-based methods (Table A2), it
delivers superior performance with similar memory
efficiency, i.e.our method is particularly well suited
for scenarios where GPU memory is strictly lim-
ited, especially when available memory only allows
for inference on the unpruned model. This case is
common and practical, as SOTA models continue
to grow in size, such constraints are prevalent for
individual practitioners or academic institutions.

Thus, in our main experiments, we focus on com-
parisons with methods that do not require weight
updates and use only forward propagation.

Compared to Gumbel-Softmax. Gumbel-
Softmax involves backpropagation and is prone
to OUT-OF-MEMORY (OOM) errors under con-
strained GPU memory limits. In contrast, our

Method Metric/Optim Pruning Time
LLM-Pruner Metric 38.11s
SliceGPT Metric 17.15min
Wanda-sp Metric 36.35s
Ours (Policy Gradient) Optim 1.56h
Ours (Gumbel Softmax) Optim 3.47h

Table A2: Pruning time comparison for LLaMA-2-7B.

method avoids this issue, achieving comparable
performance (Fig. 3) while using 38% less mem-
ory and 122% less training time (Table 4).

Compared to metric-based pruning. Our
method requires similar memory, since it also relies
only on forward propagation, but delivers signifi-
cantly better performance. This is because metric-
based methods depend on heuristics, whereas our
approach directly optimizes the loss. Notably, in-
creasing compute for chasing a better metric does
not easily close such heuristic vs. optimization
performance gap; for instance, our method outper-
forms and is also faster than a recent metric-based
SOTA, Bonsai (Dery et al., 2024), across Tables 1,
2, A5, A6, A8, A9.

Compared to weight-update methods with
similar training time. These approaches also re-
quire back-propagation and thus suffer from OOM
issues under memory constraints. In contrast, once
our efficient pruning is applied, the resulted smaller
model enables feasible finetuning. We show that
such pruning-then-finetuning further enhances per-
formance in memory-constrained settings (Tables
A5, A6, and A10). Especially, Table A10 demon-
strates that our method, when followed by fine-
tuning, outperforms SOTA weight-update methods
such as FLAP (An et al., 2024) and Search-LLM
(Shen et al., 2024).

A.6 Statistics of the Training Time &
Memory, and the Inference Latency

Method 7B 13B
Min Max Min Max

Wanda-sp 17.5 20.3 29.5 36.9
Ours 17.2 17.4 34.1 35.8

Table A3: Memory requirements (GB) for channel and
head pruning on LLaMA-2-7B/13B.

Method P.R #Params Memory Latency PPL
LLM-Pruner

30%
4.837 9290.54 53.53 27.13

SliceGPT 5.293 10181.81 50.24 22.29
Ours 4.796 9338.24 46.94 12.68
LLM-Pruner

40%
4.197 8069.55 36.75 53.21

SliceGPT 4.501 8826.01 46.84 39.21
Ours 4.149 8096.25 42.85 15.95
LLM-Pruner

50%
3.539 6815.05 31.49 171.57

SliceGPT 3.730 7274.01 41.73 65.92
Ours 3.500 6880.92 34.62 27.63

Table A4: #Params (B), memory requirements (MiB), la-
tency (s) and WikiText2 perplexity (i.e.PPL) of LLaMA-
2-7B. Experiments are conducted on NVIDIA A100
40G, with 2048 sequence length and 4 batch size for
full GPU utilization. P.R. is short for pruning rate.

Our training times for channel and head prun-
ing on LLaMA-2-7B and LLaMA-2-13B are 1.76
and 2.72 hours, respectively. The statistics of the

29370

Method PruneRate PPL ↓ PIQA HellaSwag WinoGrande ARC-e ARC-c Average
Dense 0% 12.19 78.02 57.17 68.43 76.30 43.51 64.69
LLM-Pruner

30%

33.45 74.10 46.61 58.17 64.31 33.62 55.36
SliceGPT 78.59 74.70 64.29 61.96 57.49 36.69 59.03
Bonsai 33.23 75.03 49.69 62.19 67.34 32.25 57.30
Wanda-sp 32.01 73.88 50.08 62.19 67.09 34.47 57.54
Ours 25.34 76.01 51.80 64.33 67.93 36.86 59.39
LLM-Pruner

40%

40.21 70.29 40.45 53.04 53.03 27.30 48.82
SliceGPT 175.67 65.29 56.77 60.06 42.68 31.74 51.31
Bonsai 44.71 72.36 45.10 58.80 59.64 30.03 53.19
Wanda-sp 43.71 70.40 42.73 52.72 57.24 29.95 50.61
Ours 29.43 72.74 45.75 55.72 61.36 31.06 53.33
LLM-Pruner

50%

44.83 67.30 35.47 51.93 48.23 21.84 44.95
SliceGPT 296.97 58.65 46.83 55.09 36.99 28.33 45.18
Bonsai 62.95 66.70 40.16 54.30 49.83 26.53 47.50
Wanda-sp 110.12 63.27 32.71 52.72 43.48 20.73 42.58
Ours 39.46 67.03 36.42 52.41 50.17 24.15 46.04

Table A5: Perplexity (PPL) and Accuracies (%) of LLaMA-2-7B for 5 zero-shot tasks with pruning rates from 30%
to 50% after weight fine-tuning on Alapca dataset.

time consumption of different pruning methods on
LLaMA-2-7B are shown in Table A2. Although
our method is slower than metric-based methods
such as Wanda-sp (An et al., 2024), the trade-off
is justified by the substantial performance gains
delivered by our optimization-based approach.

The GPU memory requirements for channel
and head pruning on LLaMA-2-7B and LLaMA-
2-13B for our method, as well as the representa-
tive metric-based method, e.g., Wanda-sp, are illus-
trated in Table A3. We do not compare it to LLM-
Pruner and SliceGPT because 1) the LLM-Pruner
requires much more memory for back-propagation
(therefore the authors also used the CPU memory),
2) the original implementation of SliceGPT also
used both CPU and GPU memory for computa-
tions. Table A3 shows that our method exhibits a
similar GPU memory requirement to the efficient
Wanda-sp, as we only need the forward pass of
the LLM. The slight additional memory required
by our method comes from the need to store the
Bernoulli parameters s and sampled masks m.

We note that for the same pruning rate (i.e., sim-
ilar remaining #Params), the inference latencies of
pruned models from different structural pruning
methods are expected to be comparable, as the in-
ference latency is mainly affected by the #Params
given the same architecture. We validate this in Ta-
ble A4. Table A4 demonstrates that, given the same
pruning rates, our pruned model has very much
close #Params, memory, and inference latencies to
that pruned by LLM-Pruner, while our perplexity
significantly outperformed all the counterparts. We
note that under the same pruning rates, SliceGPT
often possesses different (higher) #Params, mem-
ory, and inference latencies than our method and

LLM-Pruner, potentially because SliceGPT alters
the network structure during the pruning.

A.7 Performance after Pruning and (Then)
Finetuning

We note that after pruning, it becomes affordable
to finetune a smaller pruned model. Therefore,
following the idea from (Ma et al., 2023), we fine-
tune the post-pruning model w.r.t. the perplexity
with LoRA (Hu et al., 2022). Specifically, we
utilize 4k samples from the Alpaca (Taori et al.,
2023) dataset, which has a sequence length of
1024. For all weight fine-tuning experiments, we
use lora_r=16, lora_alpha=10, and use default
values for all other hyperparameters in the Hug-
gingFace PEFT package (Mangrulkar et al., 2022).

The cross-dataset performance on WikiText of
the post-pruning fine-tuned model for LLaMA-
2-7B and LLaMA-3-8B is illustrated in Tables
A5 and A6, which demonstrate that our method
achieves consistently superior performance before
and after fine-tuning. Compared with the pre-
finetuned model, the performance of most post-
finetuned models shows significant improvements,
and our models remain the best for most cases after
finetuning, which validates our potential for nar-
rowing the performance gap after pruning and for
being applicable in practical use.

A.8 Results on Layer Pruning
We also validate the layer granularity by pruning
the entire transformer layer, consisting of an MHA
module and a MLP module. Note that pruning on
the layer granularity is less exploited for LLMs,
thus in this experiment, we use the lightweight
Layerwise-PPL (Kim et al., 2024) for initializa-
tion, and compare our method with Layerwise-PPL
(Kim et al., 2024) and SLEB (Song et al., 2024).

29371

Method PruneRate PPL ↓ PIQA HellaSwag WinoGrande ARC-e ARC-c Average
Dense 0% 14.14 79.71 60.19 72.61 80.09 50.34 68.59
LLM-Pruner

30%

35.11 74.64 46.93 60.22 66.16 34.13 56.42
SliceGPT 226.39 70.29 56.47 60.06 53.20 34.81 54.97
Bonsai 42.59 71.87 45.17 59.51 66.50 36.52 55.91
Wanda-sp 38.04 70.84 44.11 59.43 62.96 34.04 54.28
Ours 33.91 74.48 46.62 63.69 65.70 34.30 56.96
LLM-Pruner

40%

47.83 71.54 40.71 55.40 62.16 28.92 51.75
SliceGPT 523.05 63.66 42.75 53.12 41.88 27.65 45.81
Bonsai 57.31 69.58 39.47 53.98 57.24 28.67 49.79
Wanda-sp 56.32 65.18 36.33 54.77 51.56 24.32 46.43
Ours 47.28 70.56 41.09 59.98 59.97 29.01 52.12
LLM-Pruner

50%

68.14 67.95 35.81 53.12 53.91 26.36 47.43
SliceGPT 963.42 60.83 37.04 52.25 37.21 25.26 42.52
Bonsai 88.72 62.89 34.84 52.80 47.73 24.15 44.48
Wanda-sp 84.53 61.42 32.12 52.72 41.83 21.07 41.83
Ours 67.48 67.08 35.84 54.38 53.54 26.45 47.46

Table A6: Perplexity (PPL) and Accuracies (%) of LLaMA-3-8B for 5 zero-shot tasks with pruning rates from 30%
to 50% after weight fine-tuning on Alapca dataset.

Method PruneRate LLaMA LLaMA-2 LLaMA-3 Vicuna
7B 13B 7B 13B 8B 7B 13B

Dense 0% 12.62 10.81 12.19 10.98 14.14 16.24 13.50
Layerwise-PPL

30%
31.65 24.23 24.83 20.52 45.47 37.99 29.85

SLEB 27.36 20.45 23.43 19.97 37.92 29.40 26.37
Ours 24.45 24.44 23.20 21.93 36.42 29.16 24.68
Layerwise-PPL

40%
54.97 50.57 41.45 32.48 75.12 64.96 54.12

SLEB 44.65 32.79 40.26 30.16 73.61 48.99 43.12
Ours 42.73 39.07 38.26 30.99 63.70 54.37 35.73
Layerwise-PPL

50%
107.12 183.93 126.08 78.04 393.18 517.46 153.53

SLEB 108.87 77.38 131.49 55.23 303.03 146.12 92.32
Ours 94.97 66.38 104.37 69.92 295.39 126.24 84.90

Table A7: Results on layers pruning. Our method is initialized by Layerwise-PPL (please also refer to Appendix
A.17 for detailed discussion about initializations). All the methods are calibrated using the C4 dataset and validated
on the WikiText2 dataset w.r.t. perplexity.

We illustrate the results on layer pruning in Table
A7, which show that our method generally achieves
better performance than the baseline methods, es-
pecially at pruning rates above 40%. For LLaMA-
13B and LLaMA-2-13B with a moderate pruning
rate of 30%, our method performs comparably to
Layerwise-PPL. This suggests that with coarser
layer granularity, the search space may be limited,
and larger 13B models with more redundancy ben-
efit from metric-based pruning at lower rates.
A.9 Zero-shot Performance on LLaMA-2-7B
We validate the zero-shot performance of LLaMA-
2-7B with pruning rates from 30% to 50%, shown
in Table A8. We note that the overall performance
is in general superior to the baselines, though using
only the C4 dataset for pruning might introduce a
negative influence on some particular cross-dataset
zero-shot tasks such as WinoGrande (Sakaguchi
et al., 2021) and Hellaswag (Zellers et al., 2019).

A.10 Further Evaluation on Wider Pruning
Rate Range

For a more comprehensive validation of the pro-
posed method, we experiment on LLaMA-3-8B
with a wider range of pruning rate, from 10% to

50%, following the same settings of the main re-
sults. Beyond WikiText2 perplexity and 5 zero-
shot tasks, the comparison on MMLU benchmark
(Hendrycks et al., 2020) for five-shot and additional
zero-shot task, LAMBADA (Paperno et al., 2016),
RACE (Lai et al., 2017) and BoolQ (Clark et al.,
2019), are also included. The results shown in Ta-
ble A9 demonstrate the consistent superiority of
our method across a wide range of sparsity levels.

A.11 Comparision with Approaches with
Weight Update

We additionally conduct experiments of perfor-
mance comparison with approaches that involve
weight update (Shen et al., 2024; An et al., 2024).
We follow the pruning settings of (Shen et al.,
2024), in which we calibrate on WikiText2 dataset
and evaluate perplexity on it with a sequence length
of 2048. For zero-shot tasks evaluation, we follow
the procedure applied in (Shen et al., 2024). We
compared our vanilla method (pruning only, with-
out weight update) with (Shen et al., 2024; An et al.,
2024), denoted as ours (prune-only) in Table A10.
The experiments are performed on LLaMA-7B con-
sistent with (Shen et al., 2024).

29372

Method PruneRate PPL ↓ PIQA HellaSwag WinoGrande ARC-e ARC-c Average
Dense 0% 12.19 78.02 57.17 68.43 76.30 43.51 64.69
LLM-Pruner

30%

38.94 71.81 43.64 54.06 63.42 30.30 52.64
SliceGPT 40.40 72.31 60.11 63.22 53.10 32.00 56.15
Bonsai 39.01 73.94 47.05 60.93 59.93 30.37 54.44
Wanda-sp 49.13 71.60 46.62 60.30 63.01 34.04 55.11
Ours 28.18 75.41 50.34 61.60 66.03 35.58 57.79
LLM-Pruner

40%

68.48 67.52 35.76 51.70 48.31 24.65 45.59
SliceGPT 73.76 65.40 48.91 60.38 42.13 26.88 48.74
Bonsai 69.18 68.44 40.63 55.41 48.11 26.19 47.75
Wanda-sp 78.45 64.63 35.61 52.17 48.11 25.51 45.21
Ours 39.81 71.11 42.44 55.72 56.94 28.50 50.94
LLM-Pruner

50%

190.56 59.52 29.74 50.11 36.48 21.84 39.54
SliceGPT 136.33 59.47 37.96 56.27 33.63 22.78 42.02
Bonsai 216.85 59.52 32.63 53.12 33.54 22.61 40.28
Wanda-sp 206.94 54.30 26.81 52.80 29.12 19.20 36.45
Ours 65.21 61.80 30.94 52.64 40.11 20.47 41.19

Table A8: Perplexity (PPL) and accuracies (%) of LLaMA-2-7B for 5 zero-shot tasks with 30% - 50% pruning rates.

Method PruneRate PPL ↓ LAMBADA RACE BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c MMLU
Dense 0% 14.14 69.14 40.29 81.41 79.71 60.19 72.61 80.09 50.34 66.58
LLM-Pruner

10%

19.25 53.85 37.32 73.24 77.04 52.93 68.11 73.44 39.50 48.37
SliceGPT 39.14 59.67 40.29 80.58 75.57 54.78 68.35 72.56 40.87 55.38
Bonsai 20.43 54.12 38.75 75.69 77.64 54.96 70.32 75.92 43.00 39.56
Wanda-sp 35.94 28.58 32.25 57.12 69.64 42.86 64.64 65.07 32.68 29.00
Ours 18.73 62.63 39.62 79.39 78.94 56.88 69.45 76.18 41.55 56.38
LLM-Pruner

20%

28.62 37.45 32.63 55.96 74.92 42.94 59.19 65.57 32.51 26.78
SliceGPT 84.99 46.52 39.52 76.12 73.23 48.24 63.69 64.77 34.13 33.55
Bonsai 29.05 48.36 35.41 64.16 75.46 47.00 67.01 65.61 35.41 29.60
Wanda-sp 47.43 22.76 31.10 53.21 67.90 39.27 60.38 58.50 29.01 27.96
Ours 26.92 51.02 37.03 74.22 76.28 51.00 67.64 69.15 35.41 44.99
LLM-Pruner

30%

40.18 28.74 30.63 58.56 71.38 37.84 55.64 57.78 27.21 25.36
SliceGPT 183.94 29.17 36.75 68.20 68.34 53.92 57.22 49.41 28.07 25.89
Bonsai 80.89 15.50 31.29 45.29 64.53 36.10 55.09 47.64 22.52 23.41
Wanda-sp 92.14 13.87 28.52 51.28 59.74 31.46 52.64 44.02 19.88 26.25
Ours 38.99 44.81 35.41 66.15 72.25 43.56 59.04 59.85 29.44 27.38
LLM-Pruner

40%

70.60 14.09 28.13 59.57 66.26 31.90 54.06 49.74 22.52 25.36
SliceGPT 354.24 16.28 33.4 62.87 61.53 39.98 52.80 36.66 25.17 26.10
Bonsai 204.61 2.04 23.35 46.27 58.81 29.43 48.93 33.21 18.15 25.09
Wanda-sp 213.47 8.73 28.23 52.78 56.58 27.46 50.35 32.07 17.06 25.57
Ours 63.85 30.80 32.63 61.96 67.63 37.36 56.91 50.67 24.91 27.50
LLM-Pruner

50%

145.66 4.37 24.50 45.53 61.15 29.10 51.93 39.98 19.36 24.36
SliceGPT 841.20 7.99 30.72 57.00 56.37 32.66 48.38 32.45 22.10 24.16
Bonsai 440.86 0.25 22.10 42.20 55.66 26.94 50.51 30.64 17.83 24.35
Wanda-sp 413.86 3.07 23.25 45.99 55.39 27.07 49.72 29.59 18.26 24.73
Ours 119.75 17.43 26.79 61.80 62.51 30.89 51.85 41.12 20.65 25.33

Table A9: Perplexity (PPL) and accuracies (%) of LLaMA-3-8B for 8 zero-shot tasks and MMLU benchmark in
five-shot with pruning rates from 10% to 50%.

Additionally, since fine-tuning becomes feasible
after pruning smaller models, we also included re-
sults for our prune-then-finetune approach for com-
parison. The results demonstrate that our pruning-
only method achieves comparable performance to
(Shen et al., 2024), while the prune-then-finetune
approach, involving weight update, outperforms
(Shen et al., 2024) in the majority of cases.
A.12 Results on Mistral-7B-Instruct-v0.3
To further validate the performance of the pro-
posed method on more LLMs, we additionally
perform experiments on Mistral-7B-Instruct-v0.3
(Jiang et al., 2023), which calibrates on C4 dataset
and evaluates on the WikiText2 dataset (e.g., cross-
dataset setting, as those in our Table 1). We
note that the original implementations of SliceGPT
(Ashkboos et al., 2024) and Bonsai (Dery et al.,
2024) were based on LLaMA-2, which do not triv-
ially adapt to the Mistral model directly, therefore,
we exclude SliceGPT and Bonsai for comparison.

The results, including both perplexity and the

zero-shot performance, on Mistral-7B-Instruct-
v0.3 in Table A11 demonstrate the consistent supe-
riority of our method across various LLMs.

A.13 Generated Samples of the Pruned Model
We provide some generated sentences of the pruned
models. Table A19 illustrates the generated sen-
tences of LLaMA-2-7B with the pruning rate of
30%, from different pruning methods, where the
input prompts are adopted from (Ma et al., 2023).
We observe that the generated content from our
method not only maintains superior coherence and
innovation but also is more factual and professional
despite a high pruning rate (30%). It demonstrates
that our method optimizes the balance between
knowledge retention and performance in the com-
pression process, ensuring the quality and diversity
of the generated text.

A.14 Random Error-Bar Statistic

The standard deviation statistics of our method are
shown in Table A12. Theoretically, the variance

29373

Method PruneRate PPL ↓ PIQA HellaSwag WinoGrande ARC-e ARC-c Average
Dense 0% 5.68 78.35 72.99 67.01 67.45 41.38 65.44
FLAP

10%

6.34 75.41 68.68 67.01 65.78 38.48 63.07
search-llm 6.10 76.88 70.71 67.56 68.39 40.10 64.73
ours (prune-only) 6.17 77.53 71.85 66.14 69.23 40.87 65.12
ours (prune-then-finetune) 7.03 77.64 71.53 67.32 69.49 41.98 65.59
FLAP

20%

7.40 74.21 64.98 64.40 59.89 37.80 60.26
search-llm 6.89 74.92 67.29 64.64 64.23 36.52 61.52
ours (prune-only) 7.07 74.92 68.32 61.56 62.63 37.20 60.93
ours (prune-then-finetune) 6.29 76.11 68.19 63.38 66.24 38.99 62.58

Table A10: Perplexity (PPL) and accuracies (%) of LLaMA-7B for 5 zero-shot tasks with pruning rates from 10%
to 20%, compared with approaches with weight update, FLAP (An et al., 2024) and search-llm (Shen et al., 2024).

Method PruneRate PPL ↓ PIQA HellaSwag WinoGrande ARC-e ARC-c Average
Dense 0% 12.70 81.77 64.84 74.51 84.22 57.34 72.54
LLM-Pruner

30%
30.32 69.58 41.52 57.77 53.99 28.58 50.29

Wanda-sp 47.30 75.68 49.94 62.35 64.90 36.60 57.89
Ours 31.87 76.49 52.69 64.48 67.76 36.77 59.64
LLM-Pruner

40%
49.30 65.18 34.79 52.80 46.42 23.89 44.62

Wanda-sp 76.45 68.01 38.75 52.64 52.36 26.28 47.61
Ours 43.02 68.61 40.80 56.67 54.80 27.82 49.74
LLM-Pruner

50%
86.24 61.31 30.64 49.64 37.67 22.52 40.36

Wanda-sp 407.33 56.69 29.08 49.25 32.36 21.59 37.79
Ours 74.25 65.18 35.02 51.06 48.15 22.61 44.40

Table A11: Perplexity (PPL) and accuracies (%) of Mistral-7B-Instruct-v0.3 for 5 zero-shot tasks with 30% - 50%
pruning rates.

arises from stochastic sampling from Bernoulli
distribution in the policy gradient optimization if
the initialization is fixed. Thus, we fixed initial-
ization as Wanda-sp to calculate the standard de-
viation of the proposed method. Experiments of
head and channel pruning, along with layer prun-
ing, are executed using LLaMA-2-7B for 10 run
trials, demonstrating reasonable deviation.

Granularity PruneRate
30% 40% 50%

Head & Channel 28.18±1.83 39.81±1.41 65.21±2.52
Layer 23.20±0.67 38.26±2.68 104.37±1.05

Table A12: Mean and standard deviation of our method
for LLaMA-2-7B.

A.15 Ablations on the Moving Average
Baseline for Policy Gradient

We conduct experiments on pruning channels and
heads of LLaMA-2-7B/13B with/without the Mov-
ing Average Baseline in policy gradient. Table A13
illustrates the effectiveness of the moving average
baseline in the policy gradient estimator for our
proposed pruning method.

Moreover, we also tested all the hyper-
parameters, e.g., the window size and mask sam-
pling times (T and Ns in Eq. (8)). The results in
Table A14 demonstrate that being different from
with vs. without moving average baseline, small T
and Ns can already offer promising performance,
further increasing them only produces marginal im-
provement. In other words, our method is robust

to those hyper-parameter values. Considering com-
putational overhead, we choose small T = 5 and
Ns = 2 throughout our entire experiments.

Method PruneRate LLaMA-2-7B LLaMA-2-13B
w/o MAB 30% 32.53 24.73
with MAB 28.18 21.99
w/o MAB 40% 60.99 64.34
with MAB 39.81 31.52
w/o MAB 50% 69.47 185.87
with MAB 65.21 52.23

Table A13: Ablations on the proposed Moving Average
Baseline (MAB) in the policy gradient estimator for
Channels and heads pruning on LLaMA-2-7B/13B.

Hyper-params T Ns

3 5⋆ 7 2⋆ 3 4
Perplexity 21.23 21.99 20.08 21.99 21.71 21.37

Table A14: Ablation on the hyperparameters of the
moving average baseline, i.e., different window sizes
T and mask sampling times Ns. Perplexity is tested
on the WikiText2 dataset of LLaMA-2-13B with 30%
pruning rate. The hyper-parameter values used in the
main results are denoted with ⋆.

A.16 Ablations on Projection Strategy for
Initialization: From Metric to
Probability

As the initialization of our Bernoulli policy
should be probabilistic values between 0 and 1, but
the metrics calculated by the metric-based methods
(Sun et al., 2023; An et al., 2024; Ma et al., 2023)
may not hold this range, we thus need to project
those metric values to [0, 1] as our initialization.

29374

(a) Channels and Heads Pruning.

Method Sparsity 7B 13B
Sigmoid-Norm 30% 28.18 21.99
Score-Const 32.25 25.38
Sigmoid-Norm 35% 32.52 26.27
Score-Const 40.61 40.51
Sigmoid-Norm 40% 39.81 31.52
Score-Const 44.46 52.10
Sigmoid-Norm 45% 52.07 40.99
Score-Const 65.31 61.04
Sigmoid-Norm 50% 65.21 52.23
Score-Const 77.07 88.72

(b) Layer Pruning.

Method Sparsity 7B 13B
Sigmoid-Norm 30% 23.20 21.93
Score-Const 25.32 19.31
Sigmoid-Norm 35% 33.27 26.46
Score-Const 31.37 23.40
Sigmoid-Norm 40% 38.26 30.99
Score-Const 42.30 29.25
Sigmoid-Norm 45% 69.23 39.26
Score-Const 63.91 39.50
Sigmoid-Norm 50% 104.37 69.92
Score-Const 135.51 54.37

Table A15: Results with different projection strategies for pruning heads, channels, and layers on LLaMA-2-7B/13B.
Initialization metrics are from Wanda-sp for heads/channels and Layerwise-PPL for layers.

Method PruneRate Perplexity PruneRate Perplexity PruneRate Perplexity
Layerwise-PPL 30% 24.83 40% 41.45 50% 126.08
SLEB 23.43 40.26 131.49
Ours (Random Init) 30% 26.65 40% 42.76 50% 125.20
Ours (Random-Prog. Init) 30.05 38.28 111.87
Ours (Layerwise-PPL Init) 30% 23.20 40% 38.26 50% 104.37

Table A16: Layer pruning results with different initializations using LLaMA-2-7B. Bold and Underscored denote
the first and second best results, respectively.

We introduce two projection strategies from met-
ric values m to probabilities s. The first is called
Sigmoid-Norm strategy, which is applied in our
main experiments:

s = sigmoid(Norm(x)) (A10)

where Norm(·) is used to linearly normalize the
input to a Gaussian distribution with 0 mean and
unit variance, then sigmoid(·) is used to transform
the input to [0, 1].

An alternative second strategy is named Score-
Const. It straightforwardly sets mask 1 from metric-
based methods as a constant c, and mask 0 as 1− c:

si =

{
c, if mi = 1,

1− c, if mi = 0,
(A11)

The constant c is set to 0.8 in the following exper-
iments, indicating that the initialized Bernoulli
probability of the remaining modules is 0.8 and
those to be pruned is 0.2.

The results of different projection strategies
on LLaMA-2-7B/13B are detailed in Table A15,
which shows that the Sigmoid-Norm projection
outperforms its Score-Const counterpart for most
cases. It may be because the order-preserving pro-
jection strategy of Sigmoid-Norm preserves more
information about relative importance among mod-
ules, and therefore benefits the optimization.

A.17 More Ablations with Different
Initializations

Progressive Pruning with Random (Random-
Progressive) Initialization. Our progressive prun-
ing with random initialization is inspired by the

facts that 1) the continous Bernoulli probability
learned by our method indicates the importance
of the corresponding module, therefore the conti-
nous probability scores from a low pruning rate
(e.g., 10%) encodes fatal information and can be
naturally used as the initialization for a higher prun-
ing rate (e.g., 15%); and 2) the LLMs is likely to
exhibit large redundancy when the pruning rate is
extremely low (e.g., 5%), thus random initializa-
tion will not significantly degrade the pruning per-
formance (compared to a carefully chosen metric-
based pruning initialization) given an extremely
low pruning rate such as 5%. Therefore, to validate
our method without a prior metric-based initializa-
tion, we propose a progressive pruning strategy, by
starting from 5% pruning rate with random initial-
ization and progressively pruning rate to 50% by
a step size of 5%. We train this strategy with each
pruning rate for 1/3 epoch to maintain efficiency.

Moreover, Table A16 shows layer pruning re-
sults with different initializations on LLaMA-2-7B.

A.18 Analysis of the Post-Pruning Modules
As global and heterogeneous pruning is performed
through our optimization, it is interesting to inves-
tigate the pruned modules in each layer. We show
the channels, heads, and layers sparsity (i.e., the
pruned portion of the corresponding granularity)
on LLaMA-2-{7B, 13B} with channels and heads
pruning at 40% in Fig. A2.

Figures A2 demonstrate that the pruned LLM
exhibits low sparsity in the first and last layers,
which is consistent with the previous studies that

29375

nsamples
PPL

mean std
64 27.85 1.16

128 27.94 1.54
256 28.05 1.28
512 28.52 1.37
1024 27.92 1.46
40k 27.60 1.32
120k 27.19 1.18

(a) Effect of the number of calibration samples

seqlen
PPL

mean std
128 27.94 1.54
256 27.90 0.86
512 28.51 0.51

1024 27.51 0.68
2048 26.68 0.64

(b) Effect of the calibration sequence lengths
Table A17: Ablations on the number of calibration samples and sequence lengths on PPL (evaluated with 128
sequence length).

Method PruneRate PPL ↓ PIQA HellaSwag WinoGrande ARC-e ARC-c Average
Dense 0% 12.19 78.02 57.17 68.43 76.30 43.51 64.69
SliceGPT

20%

24.87 74.92 49.91 66.22 69.11 35.32 59.10
Wanda-sp 23.08 77.09 54.34 65.90 71.21 40.27 61.76
Bonsai 23.03 76.82 53.10 64.25 71.17 39.85 61.04
Ours 19.61 77.09 53.45 66.38 72.39 40.02 61.87
SliceGPT

30%

40.96 71.71 44.58 64.80 60.73 30.20 54.40
Wanda-sp 42.96 74.59 48.43 59.12 63.47 34.30 55.98
Bonsai 48.30 72.85 48.25 57.77 63.8 33.87 55.31
Ours 27.13 75.79 49.00 62.27 65.36 34.56 57.40

Table A18: LLaMA-2-7B pruning results with the same calibration data in all methods, evaluated in perplexity
(PPL) and accuracies (%) for 5 zero-shot tasks with pruning rates 20% and 30%.

these layers have a profound impact on the perfor-
mance of LLMs (Ma et al., 2023). Moreover, it can
be observed that the heads (of MHA) granularity
exhibits lower sparsity in the shallow layers (es-
pecially in the first layer), while such observation
does not hold for the channels (of MLP) granular-
ity. In other words, the pruned sparsity of the chan-
nel granularity is more evenly distributed whereas
the deeper layers have slightly less sparsity. This
might imply that the shallow layers focus more on
attention, while the deeper layer imposes slightly
more responsibility for lifting the feature dimen-
sions through MLP.

0 5 10 15 20 25 30
Layer

0.1

0.2

0.3

0.4

0.5

Sp
ar

sit
y

Layers and Modules Sparsity in LLaMa-2-7B at 0.4

Layer Sparsity
Head Sparsity
Channel Sparsity

0 5 10 15 20 25 30 35 40
Layer

0.25

0.30

0.35

0.40

0.45

0.50

Sp
ar

sit
y

Layers and Modules Sparsity in LLaMa-2-13B at 0.4

Layer Sparsity
Attn Sparsity
MLP Sparsity

Figure A2: Channels, heads, and layers sparsities of
LLaMA-2-{7B, 13B} with 40% pruning rate.

A.19 Analysis of the Calibration Data Size
Ablations on the number of calibration samples
and sequence lengths. Extensive ablations on the
number of calibration samples (nsamples) and se-
quence lengths (seqlen) are conducted to show the
robustness of our method. Specifically, we calibrate
our method using C4, and evaluate on WikiText2
on LLaMA2-7B with 30% sparsity, we report the
mean and std over 5 replicates for each experiment.

• Effect of the number of calibration samples
in Table A17a: we fix seqlen to 128 and vary
nsamples from 64 to 120K.

• Effect of the calibration seqence lengths in
Table A17b: we fix nsamples to 128 and vary
seqlen from 128 to 2048.

The ablations demonstrate that our method is
robust to various calibration data sizes, in terms of
both samples6 and sequence lengths.

Pruning performance using the same calibra-
tion data. We prune LLaMA-2-7B for 20% and
30% sparsity with the same calibration data across
all methods, i.e., nsamples = 128 and seqlen =
2048 from C4. Due to hardware constraints, we
exclude LLM-Pruner as it cannot handle sequences
of 2048 tokens with backpropagation.

The results demonstrate that our method consis-
tently outperforms SOTAs using the same calibra-
tion data for most cases.

6Reducing nsamples may not save time as our method
fixes total training steps (smaller nsamples need more
epochs), leading to similar runtime and performance.

29376

LLM-Pruner

Neural Sequential Model, especially transformers, use a lot of data. We have built a team of experts to help
companies reduce the time to develop AI solutions. We can help you from the initial stages in the development
of algorithms. We work in close cooperation with clients to build machine learning and artificial intelligence
solutions on a wide spectrum of services, leveraging their own teams or by providing skilled specialists for
development and maintenance.
AI can create a logo in seconds, saving business owners the time, cost, and stress of trying to find a logo. If
your logo needs a little refreshing or you’re looking for a whole brand identity design, Artificial Solutions can
help you reach that goal. All projects are completed on time and within budget. Call now! Clients who want
a logo for a family, or non-profit charity, are given a brief description of who they are and what they want and
our team of professionals will come up with the logo for you! A logo design is typically
What’s great about the holiday season is it can be enjoyed with so many of our favorite foods and beverages.
I like the idea of coming up with a drink that is special for the holidays and toasts those celebrating and
visiting. The holiday cocktail is a great time to express your individuality and get friends together in one
place to mingle and enjoy delicious cocktails. I asked the cocktail geniuses over at Flaver Liquor Bar what
their favorite cocktail is and one that got me excited was The Pink Lemon

SliceGPT

Neural Sequential Model, especially transformers, provides one of the best ways of creating an attractive,
clean, and appealing image of your body. Using 2.0 mHz and 20mhZ transomters on the face can be very
effective. Here we use the VAS 2.0, 20 mhc, and VAS 20 with Slim for extra definition and volume. The
model is a 19mm tube that is about the size of an 5mm tube. The tube is 1.72mm
AI can create a logo in seconds and a logo is a valuable marketing asset for your business. In general, all the
digital devices are not a good option for those who are a bit low on budget. A basic website design and the
creation of a logo can be affordable for the business. Most of the businesses offer the services, especially to
the small companies. The website design is a significant matter to develop a business image for the companies.
A logo or logo design helps in this process to create the image. There is a good number of companies and
designers who can build a logo within hours.
What’s great about the holiday season? Well, there are many things: the holidays in the U.S are celebrated in
many ways, which is wonderful for the family. Besides the festivities, there are also plenty of goodies and
delicious foods to enjoy. We can all enjoy our favorite foods in celebration of Christmas. What do we really
enjoy the most during the holidays? There are definitely more interesting things to celebrate in the season of
holidays, but we also look forward to the holiday time because the holiday means the delicious food that you
can enjoy.

Ours

Neural Sequential Model, especially transformers, have been shown to be efficient in time and space com-
plexity as well as delivering great recognition results on a single machine. These are used frequently in
many domains of computer vision, including human body detection, motion capture and autonomous driving.
Although they achieve relatively high performance, their performance is bounded by the dimension space
they can operate on. In this paper, we describe the novel concept of a compact transformer based on a neural
sequence that combines the advantages of transformers and neural networks. Our analysis shows that the
compact transformer can process the images in their entirety while inc
AI can create a logo in seconds – at a lower cost than ever. What’s the problem with this? Well, you don’t
get that perfect custom logo you have always wanted. Not the way it will work in your business, anyway.
In-house logo creation, however, can be a bit time-consuming. You’ll need a designer to help you out. You
will also need to know the font and design you like most. You may have some logo ideas in your head, but
without tools and expertise at your fingertips, you’ll have to work hard for them
What’s great about the holiday season is that it’s a time for us all to relax and spend some time with our
friends and families. At this time of year, we all like to share stories that bring us closer together. One way to
do this is through gifts. Here are a few suggestions that we hope you’ll take with you into the new year. You
can give your best loved something in the form of memories or you can get them a gift that will have lasting
impact, like this new watch. We’re thrilled to introduce the new Seiko 6, an

Table A19: Generated samples of the pruned LLaMA-2-7B model with 30% pruning rate by different methods.

29377

