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Abstract

With a combination of quantitative experi-
ments, human judgments, and qualitative anal-
yses, we evaluate the quantity and quality of
African American Language (AAL) representa-
tion in 12 predominantly English, open-source
pretraining corpora. We specifically focus
on the sources, variation, and naturalness of
included AAL texts representing the AAL-
speaking community. We find that AAL is
underrepresented in all evaluated pretraining
corpora compared to US demographics, consti-
tuting as few as 0.007% and at most 0.18% of
documents. We also find that more than 25%
of AAL texts in C4 may be perceived as inap-
propriate for LLMs to generate and to reinforce
harmful stereotypes. Finally, we find that most
automated filters are more likely to conserve
White Mainstream English (WME) texts over
AAL in pretraining corpora. 1

1 Introduction

Recent work in NLP has become increasingly inter-
ested in evaluating and mitigating African Ameri-
can Language (AAL) biases in generative language
models (Deas et al., 2023; Fleisig et al., 2024; Hof-
mann et al., 2024). AAL, the comprehensive and
rule-governed language variety used by many, but
not all, and not exclusively, members of the US
African American community (Grieser, 2022), is
known to be underrepresented in the C4 pretraining
corpus (Dodge et al., 2021). In particular, C4 is
largely composed of White Mainstream English
(WME, see Baker-Bell (2020)), the variety of En-
glish associated with White Americans and often
found, for example, on Wikipedia.2

1We make our code available at https://github.com/N
ickDeas/DataCaricatures

2While other works in linguistics and NLP use "African
American Vernacular English (AAVE)" and "Standard Amer-
ican English (SAE)" among other terms, we use AAL and
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Figure 1: We evaluate the quantity and quality of au-
tomatically identified AAL documents in open source
pretraining corpora. We find AAL is underrepresented
across corpora and many documents contain texts that
are misrepresentative of naturalistic AAL.

Given the close relationship between language
and culture (Adilazuarda et al., 2024), the distri-
butions of sources that texts are drawn from may
also misrepresent the broader culture of commu-
nities when used to train models. For example,
many websites publish hip hop lyrics which may
be collected and incorporated into pretraining data.
While hip hop is an important component of Black
culture and identity (Clay, 2003) as well as that of
other communities, other registers of AAL (e.g.,
natural dialogue) are needed to more comprehen-
sively capture the rich and diverse facets of Black
culture. Furthermore, hip hop lyrics are not inde-
pendently representative of AAL as a whole; lyrics

WME to highlight the inherent interaction between race and
language in social hierarchies. Additionally, we typically use
"language variety" to acknowledge the variation exhibited by
AAL speakers across regions and contexts rather than a single,
uniform dialect.
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do not necessarily reflect natural speech and no
explicit indication of genre or register is provided
during pretraining. Prior studies validate this gap,
finding that Black users perceive a lack of cultural
knowledge in current language technologies; they
often suspect that AAL speakers are overlooked in
model development processes (Brewer et al., 2023;
Cunningham et al., 2024).

Therefore, in addition to the quantity of AAL
that is represented, we argue that the quality of
its representation is also important.3 We define
quality as the extent to which texts authentically
portray the linguistic patterns–and consequently
culture–of native AAL speakers. Accordingly, low
quality representations of AAL (e.g., texts writ-
ten by non-native speakers) pose representational
harms to AAL speakers (Blodgett et al., 2020). We
focus on three guiding research questions:

RQ1) What percent of documents in modern,
open-source pretraining corpora contain
AAL and specific AAL features?

RQ2) What is the quality of the included AAL
texts in terms of diversity, authenticity, and
lack of offensiveness?

RQ3) How do modern data quality filtering strate-
gies behave with AAL texts?

We use mixed-methods studies to address these
questions, incorporating quantitative experiments,
human judgments, and qualitative examination of
the documents in pretraining corpora. To investi-
gate RQ1 (Section 4), we measure the prevalence of
AAL in 12 open-source pretraining corpora and
find that 0.007% to 0.18% of documents among
pretraining corpora we evaluate contain AAL.
In contrast, 80% of African Americans (∼10% of
Americans) are AAL speakers (Green, 2002). To
investigate RQ2 (Section 5), we conduct automated
and human evaluations of AAL texts in pretrain-
ing corpora and find that a substantial number of
documents are unrepresentative of naturalistic
AAL4 (e.g., perceived to be written by non-native
speakers). Surprisingly, some texts resembling
AAL are actually posted by corporate social media
accounts. Finally, to investigate RQ3 (Section 6),

3Note, biases may also come from the technical represen-
tation of text in the form of text embeddings. This is distinct,
however, from the representation that we explore in this work,
which refers to how the language of AAL speakers is depicted
in pretraining corpora.

4By naturalistic AAL, we refer to the linguistic patterns in
text that most closely resemble everyday, spontaneous speech.

we evaluate 16 automated filtering approaches
and find that most filters are more likely to con-
serve WME texts compared to AAL, particularly
for texts from social media or song lyrics.

2 Background and Related Work

AAL, Performativity, and Misrepresentation.
Research involving AAL in the NLP community
has relied on texts drawn from different sources,
such as speech transcripts (Farrington and Kendall,
2021) and social media (Blodgett et al., 2016).
Across such sources, AAL use can reflect vary-
ing degrees of what has been termed performative
speech, language practices which use the rhetorical
style of AAL such as signifyin’ (Mitchell-Kernan
and Thomas, 1972) on a speaker’s cultural back-
ground to construct or communicate Black identity.
Because they primarily rely on language to com-
municate Black culture, performative register is
especially prevalent in hip hop (Alim, 2006) or
social media language (Eisenstein, 2013; Ilbury,
2020). Recent work has also argued that the lin-
guistic patterns of these sources may misrepresent
the patterns of AAL speakers’ when interacting
with LLMs (Kleiner et al., 2024). Alternatively,
AAL can be misrepresented through the derogatory
use of features (Ronkin and Karn, 1999), diffusion
of linguistic markers (Corradini, 2024), and use
of AAL-like language in marketing (Roth-Gordon
et al., 2020). In this work, we examine the quality
of AAL representation by considering performativ-
ity and these potential misrepresentations.

AAL Biases in Language Technologies. The
most prominent documentation and mitigation of
AAL biases in text-based language models has fo-
cused on toxicity detection (e.g., Sap et al. 2019a;
Harris et al. 2022; Davidson et al. 2019; Cheng
et al. 2022; Halevy et al. 2021). More recent work
evaluates AAL biases in other contexts, including
classification tasks through synthetic data (Ziems
et al., 2022; Dacon et al., 2022), summarization
(Keswani and Celis, 2021; Olabisi et al., 2022),
stereotyping behaviors (Fleisig et al., 2024; Hof-
mann et al., 2024), generative language models
(Groenwold et al., 2020; Deas et al., 2023, 2024),
and reward models (Mire et al., 2025). In contrast,
we specifically study AAL in pretraining data as a
potential source of bias.

Pretraining Data Quality. Hovy and Prabhu-
moye (2021) identify data as a fundamental source
of bias, and prior work has attempted to trace var-
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ious biases to training data (e.g., Ladhak et al.
(2023); Feng et al. (2023); Dodge et al. (2021)).
Recent work has also increasingly been concerned
with measuring and selecting high quality data for
pretraining LLMs (e.g., Wettig et al. (2024)). Such
studies, however, use a variety of different mea-
sures of data quality. A majority of prior work (e.g.,
Li et al. 2024) primarily operationalizes quality
through downstream model performance on broad
benchmarks (e.g., MMLU (Hendrycks et al., 2021)
or HELLASWAG (Zellers et al., 2019)). Other work
measures quality using sources that are typically
considered "high-quality" (e.g., Wikipedia) in de-
veloping automated data filters (e.g., RedPajama,
(Computer, 2023); The Pile, (Gao et al., 2020)).
Finally, relatively fewer studies have examined in-
trinsic notions of quality, such as educational value
or lack of harmful content (Wettig et al., 2024;
Sachdeva et al., 2024; Gunasekar et al., 2023).
With the aim of identifying potential causes of
AAL biases, we measure quality through a variety
of means, focusing on texts’ sources, representa-
tiveness of naturalistic AAL, and lack of harmful
reflections on AAL speakers.

3 Data Extraction

We examine the quantity and quality of AAL texts
present in 12 predominantly English, open-source
pretraining corpora. All corpora are listed in Ta-
ble 1. We consider FineWeb-Edu (italicized in
Table 1) as a baseline, given that it strictly priori-
tizes highly educational content (e.g., Wikipedia)
over diverse everyday language use. Following
prior work’s documentation of C4 (Dodge et al.,
2021) and because many corpora predominantly
rely on Common Crawl texts, we focus our human
judgments and AAL feature analyses on variants
of the C4 corpus (Raffel et al., 2020).

3.1 Extracting AAL Subsets

To identify AAL texts, we follow Dodge et al.’s
(2021) analysis of C4 as well as other related work
(e.g., Xia et al. (2020); Sap et al. (2019b); David-
son et al. (2019)) and use a mixed-membership
demographic-alignment classifier validated with
common linguistic features of AAL (Blodgett et al.,
2016). From eight full corpora, we extract all
texts where AAL is the most likely classification
(additional corpora details are included in Subsec-
tion A.1). For four exceedingly large corpora (each
with more than 3 billion documents)–Dolmino

(Olmo-mix) (OLMo et al., 2024), DCLM-baseline
(Li et al., 2024), FineWeb (Penedo et al., 2024),
and RedPajama-v2 (Weber et al., 2024)–we ana-
lyze a 250 GB sample of each corpus. Additional
extraction methodology and corpus details are in-
cluded in Appendices A and B. 5 To account for
AAL features that may be present within docu-
ments that largely reflect WME, we additionally
extract a more conservative subset of texts using a
threshold of 0.3 for further analyses. 6

We use the same block list of terms used in the
original C4 corpus (Raffel et al., 2020) to iden-
tify texts that would be filtered from the corpus
before pretraining. This filtering yields two distinct
variants: C4.EN.NOBLOCKLIST which does not
employ the block list, and C4.EN which lacks block
list-identified texts (Dodge et al., 2021). With these
two variants, we conduct a fine-grained evaluation
of the block list’s impacts on AAL representation,
prevalence of features, and human judgments of
AAL texts.

4 RQ1: How Much is AAL Represented?

We first aim to quantify the prevalence of AAL
in pretraining corpora. We conduct our analysis
through both human judgments of documents as
well as automated approaches. In this section, we
first measure the proportion of AAL documents
in each corpus and the count of overlapping AAL
documents between corpora. We then consider the
representation of individual AAL features.

4.1 Methods

Human Judgments. To complement automatic
analyses, we collect human judgments of randomly
sampled C4 texts within the subset of automatically
extracted AAL texts. In sampling texts for judg-
ments, we prioritize texts with higher probability
of containing AAL according to the demographic
alignment classifier as well as texts from C4.EN.

We recruit three annotators to conduct the hu-
man judgments of the sampled texts; all annotators
are self-reported native AAL speakers. Annotators

5While corpora like RedPajama-2 are intended to enable
experimentation with automatic filtering rather than to be used
as is for pretraining, we refer to all corpora as "pretraining
corpora" for simplicity.

6While prior work largely considers a threshold of 0.8 (e.g.,
(Xia et al., 2020)), we choose a threshold of 0.3 to calculate a
more conservative estimate of feature prevalence while main-
taining a manageable corpus size for analysis. Additional
discussion is included in Appendix C.
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Dataset Example Models # Docs (sample) % CC Docs # AAL Docs (%)
Full Corpora

OpenWebText (Gokaslan et al., 2019) SSDLM, RoBERTa 8M 0% 858 (.01%)
The Pile† (Gao et al., 2020) GPT-Neo, GPT-J 140M 3% 109,333 (.08%)

Dolmino (Dolmino-mix) (OLMo et al., 2024) OLMo-v2 165M 83% 53,937 (.03%)
C4 (Raffel et al., 2020) T5 365M 100% 280,604 (.07%)

C4.NoBlockList (Dodge et al., 2021) N/A 395M 100% 447,032 (.11%)
RefinedWeb (Penedo et al., 2023) FalconLM 968M 100% 1,143,244 (.12%)

RedPajama† (Computer, 2023) OpenLlama 968M 88% 63,189 (.007%)
FineWeb-Edu (Penedo et al., 2024) N/A 1.8B 100% 15,907 (.0009%)

Dolma (Soldaini et al., 2024) OLMo-v1 2.5B 78% 3,119,429 (.12%)
Sampled Corpora

Dolmino (Olmo-mix) (OLMo et al., 2024) OLMo-v2 3.1B (238M) 96% 317,178 (.02%±.001%)
DCLM-Baseline (Li et al., 2024) DCLM-Baseline 3.2B (105M) 100% 11,673 (.01%±.004%)

RedPajama-v2 (Weber et al., 2024) N/A 20.8B (176M) 100% 684,099 (.18%±0.09)
FineWeb (Penedo et al., 2024) N/A 48.6B (38M) 100% 10,470 (.03%±.005%)

Table 1: The 12 open-source pretraining datasets evaluated, including example models pretrained on each dataset,
size in raw unique documents, and proportion composed of Common Crawl. † indicates only non-copyrighted
portions are available and included in analyses. Bolded corpora indicate that C4 is explicitly included in the corpus
before further filtering. Given their size, the bottom 4 corpora are analyzed using a random sample of dataset shards;
99% confidence intervals on each sampled corpus’ estimate is included.

also currently study or have previously studied lin-
guistics or computational linguistics. Annotators
are provided a text from either the AAL subset of
C4.EN.NOBLOCKLIST or C4.EN and asked to la-
bel each text first on two dimensions drawn from
prior work (Deas et al., 2023): Human-Likeness
asks whether the text appears authored by a hu-
man and Linguistic Match asks whether there are
identifiable features of AAL. Both dimensions are
judged on 4-point Likert scales (higher represent-
ing more human-like and more reflective of AAL).
We collect judgments for a total of 1,054 texts.
Annotators exhibit moderate to substantial agree-
ment for binarized Human-Likeness and Linguistic
Match dimensions (κ = 0.581 and κ = 0.747 re-
spectively). Additional sampling, annotation, and
interface details are included in Appendix D.

Automated Feature Extraction. To conduct
a more fine-grained analysis, we estimate the dis-
tribution of morphosyntactic AAL features with
automated methods. Features are identified using
the CGEdit model (Masis et al., 2022), a classifier
developed with a human-in-the-loop framework.
The classifier considers 17 AAL morphosyntactic
constructions, including features like habitual be
(e.g., "He be driving") and copula deletion (e.g.,
"He ∅ at home"). See Masis et al. 2022 and Ap-
pendix E for a detailed list of features. As the
classifier was shown to be reliable for examining
distributions in large collections of text, we restrict
analysis of features to trends in large data subsets
rather than individual texts.

4.2 Results
AAL Frequency. Table 1 includes the propor-
tion of documents labeled as AAL in each corpus
evaluated. Language understanding benchmarks,
in part, drive pretraining data curation choices and
are drawn from sources such as descriptive video
captions (e.g., HELLASWAG (Zellers et al., 2019),
SWAG (Zellers et al., 2018)) or academic exams
(e.g., MMLU (Hendrycks et al., 2021)). Therefore,
we expect that the analyzed corpora contain few
documents with AAL. In line with this intuition,
we find that AAL is extremely underrepresented
across corpora used and intended for LLM pre-
training, included in as few .007% of documents
(i.e., RedPajama). As expected, the FineWeb-Edu
corpus, which employs among the strictest filter-
ing approaches, exhibits the lowest percentage
of documents containing AAL (.0009%), while
RedPajama-v2, which employs relatively limited
filtering, exhibits the highest percentage (.18%).
Due to this trend and those found in prior work, we
investigate filtering approaches further in Section 6.

AAL Prob. # C4 Docs % AAL
Judgments

0.5 ≤ p ≤ 0.6 41,930 44.7%
0.6 ≤ p ≤ 0.7 12,913 36.3%
0.7 ≤ p ≤ 0.8 4,319 36.7%
0.8 ≤ p ≤ 0.9 922 30.9%

0.9 ≤ p 120 23.0%

Table 2: Percent of texts labeled by human annotators
as containing AAL features for each range of posterior
probabilities of the demographic alignment classifier.

To verify the automated analyses, Table 2
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presents the proportion of texts labeled by annota-
tors as containing identifiable AAL features within
different ranges of AAL posterior probability as
output by the demographic alignment classifier. An-
notators indicate that a significant proportion of
the texts do not contain features of AAL (55.3%
in the 0.5 ≤ p ≤ 0.6 range). We note that while the
percentage of AAL judgments drops as AAL prob-
ability increases, this may be due to the classifier’s
sensitivity to spurious token-level features, such as
abbreviations in search terms and artist names (e.g.,
"Lil Wayne") that resemble lexical markers of AAL.
To account for this, in our AAL feature and hip hop
analyses, we consider all documents exceeding an
AAL probability threshold of 0.3. See Appendix F
for further discussion and additional examples of
classifier predictions.

AAL Document Overlap. Figure 2 presents the
count of overlapping AAL documents among the
corpora analyzed. While some corpora explicitly
include others (e.g., Dolma is a superset of C4),
these results suggest that there is substantial over-
lap in the AAL documents included for each corpus.
Among all AAL documents considered, 17% are
duplicated in at least one other corpus. Therefore,
not only is AAL underrepresented, but there is also
a lack of diversity across corpora.
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Figure 2: Counts of overlapping AAL documents
among sets of corpora (indicated by checkmarks below
the plot). Sizes of the AAL subsets for individual cor-
pora are noted in parentheses. Overlapping sets smaller
than 500 documents are not shown.

AAL Feature Frequency. Figure 3 presents
the frequency of each automatically detected AAL
feature in C4.EN.NOBLOCKLIST and C4.EN. Sup-
porting Dodge et al.’s (2021) finding that the block
list disproportionately filters AAL texts, we see

that filtering lowers the frequency of all AAL
features. Some of the most frequent features in
C4.EN.NOBLOCKLIST–zero copula (ZC) and mul-
tiple negatives (MN)–are among the most frequent
documented features of naturalistic AAL. Other
features such as negative auxiliary inversion (NAI)
and zero plurals (ZP), however, have extremely low
representation despite being relatively common fea-
tures among both urban and rural AAL speakers
(Kortmann et al., 2020).

While some features are represented in frequen-
cies that generally reflect naturalistic AAL, Fig-
ure 3 also illustrates how these frequencies are
impacted by filtering. While the most frequent
features are generally shared among both subsets,
the order of most frequent features diverges. While
Zero Copula (ZC; e.g., he ∅ running) is detected
most often in C4.EN.NOBLOCKLIST, it is far less
represented in C4.EN. This alteration suggests that
filtering may behave differently on AAL texts de-
pending on the speaker’s region, class, and other
characteristics (e.g., Southern or working class;
Wolfram and Kohn 2015). Not only does C4 fil-
tering disproportionately remove AAL texts, but
filtering also systematically alters the distribu-
tion of AAL features. Feature analyses of the
remaining corpora are included in Appendix G,
where we also observe substantial variation in fea-
ture distributions among different corpora.
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Figure 3: Document-level frequency of mor-
phosyntactic features among texts in C4.EN and
C4.EN.NOBLOCKLIST. Features ordered by frequency
in C4.EN. List of feature abbreviations and descriptions
are included in Appendix E.

5 RQ2: How Well is AAL Represented?

After characterizing the extent to which AAL is
represented in open-source pretraining corpora, in
this section, we aim to characterize the quality of
the included AAL documents. To do so, we use the
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AAL subsets extracted in the previous experiments
to further analyze the sources, naturalness, and
inoffensiveness of the AAL texts.

5.1 Methods
Human Judgments. For each text that is judged to
be human written and contain identifiable AAL fea-
tures, annotators are asked to also rate each text on
three additional dimensions. First, we follow Deas
et al. (2024) and include Native Speaker which asks
whether the text appears to be naturally written by
an AAL speaker. With the remaining two dimen-
sions, we capture annotators’ perceptions and lin-
guistic attitudes toward a given text considering its
inclusion in pretraining data. Inspired by Fleisig
et al. (2024), Stereotype first asks whether the text
portrays a stereotypical or harmful representation
of AAL or its speakers. Additionally, we include
Appropriateness which asks whether an annotator
perceives a given text to be appropriate for lan-
guage models to generate, and therefore, appropri-
ate to include in pretraining data. Because we are
interested in capturing the annotators’ own perspec-
tives on pretraining texts and their interpretations
of these dimensions, we avoid providing detailed
definitions of Stereotype and Appropriateness di-
mensions in particular, motivated by sociolinguis-
tics work on language attitudes and perceptions
(Campbell-Kibler, 2008; Labov et al., 2011).

All dimensions are again judged on 4-point Lik-
ert scales with higher values representing that a
text is judged to likely have been written by a na-
tive speaker, to perpetuate stereotypes, and to be
appropriate for an LLM to generate. Annotators
exhibit substantial agreement for Native Speaker
(κ = 0.619) although annotators’ varying personal
perspectives on the Appropriateness and Stereotype
dimensions yield little to no agreement (κ = 0.188
and -0.021 respectively). Given that these dimen-
sions are highly dependent on individuals’ own per-
ceptions, this level of agreement is expected. Addi-
tionally, these results highlight the need to ensure
that the inclusion of AAL speakers’ perspectives
captures the variety of perspectives. Additional
details and discussion of agreement are included in
Appendix D.

Misrepresentative Language. To explore
whether the representation of AAL in C4 is in-
dicative of naturalistic AAL, we first estimate the
presence of language resembling hip hop and rap
lyrics in C4 variants. We particularly focus on song
lyrics because large-scale corpora of published hip
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Figure 4: Percent of AAL documents extracted from
C4 containing shared n-grams with hip hop lyrics for
varying n-gram token lengths. Tokenization uses the
Llama-2 tokenizer.

hop lyrics are available, enabling the measurement
of overlap with each pretraining corpus. Leverag-
ing the aforementioned human judgments, we also
estimate the perceived presence of AAL use by
non-AAL speakers.

We follow the deduplication approach of Brown
et al. 2020 which measures the overlap of 8-13
token n-grams. While an ideal analysis would mea-
sure exact matches, through manual examination,
we find instances of hip hop lyrics embedded in
non-lyric text, censored terms, and orthographic
differences (e.g., "going" vs. "goin") that would
not be captured by such an approach. We note
that while we use a large corpus of song lyrics, a
comprehensive dataset remains infeasible and our
estimates likely reflect lower bounds. Methodolog-
ical details are included in Appendix H.

5.2 Results

C4 Subset Text

EN

You go dey hear: ha ha! Catch am, catch am!
Thief, thief, thief! Catch am, catch am! Rogue,

rogue, rogue!
Cant Say My Name But Rap About A N*ggas

Wife. You So Black & White Tryna Live A
N*ggas Life... You Aint Wettin Nobody You

Canady Dry

EN.NoBlockList
Thank Racks on racks on racks on racks /

None of my cars ain’t rented, all mine black,
my windows tinted

Table 3: Examples of hip hop lyrics found in C4.EN
and C4.EN.NOBLOCKLIST. Texts are shown exactly as
they appear in the corpus.

Hip Hop Lyrics. Figure 4 presents the per-
centage of documents overlapping with hip hop
lyrics by n-gram token length. Nearly 15% of
C4.EN.NOBLOCKLIST and 12% of C4.EN docu-
ments overlap with hip hop lyrics (8-grams). Exam-
ples of lyrics identified by annotators are included
in Table 3. While there are AAL features present,
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such as the use of negative concord in None of my
cars ain’t rented, any inclusion of hip hop lyrics
may be misrepresentative of how AAL speakers
would interact with LLMs. Analyses of the remain-
ing corpora are included in Appendix I, and addi-
tional related analyses are included in Appendix J.

Non-AAL-Speakers. AAL may also be misrep-
resented through use by non-AAL speakers, pre-
dominantly online. While it is infeasible to au-
tomatically determine the linguistic background
of a text’s author, among the C4.EN texts anno-
tators judged to contain AAL features, 51% were
judged unlikely to have been written by a native
AAL speaker. Most of these texts (70%) were per-
ceived as not human-written. 7 The remaining texts,
however, include corporate social media accounts
adapting AAL-like language (e.g., ...this will get
you where you need to be. Ball out by clicking the
link below.) as well as online forum posts (e.g. Dat
be that real deal Hip Hop! ...Put some spect on it!).
These texts often exaggerate the use of AAL fea-
tures, contributing to misunderstandings of AAL
speakers. We conclude that a substantial portion
of texts with AAL features are unlikely to have
been written by an individual AAL speaker, and
misrepresent naturalistic AAL.

Many features of AAL are shared with other
language varieties and the appearance of shared
features in different linguistic contexts may compli-
cate LLMs’ ability to model these varieties during
pretraining. Annotators noted many of these cases,
such as the Hawai’ian Creole text "...An make us
shame cuz we no mo husban. Dat Yahweh make
come up from da king ohana..." which may be mis-
interpreted as Digital AAL (Cunningham, 2014). 8

Text A↑ S↓
...Been ****in wit jack and the mob for the longest.
been ****in wit this MOB muzic 4 a very long time

, Jack!..."
0 2

He gon fuk around & drown off this ? 0 0
Drake is two levels up and Meek Mill is still not off
the mark. The Toronto rapper just dropped another
diss song “Back To Back” where he freestyle about

his former friend and now nemesis.

3 1

Table 4: Examples of AAL texts from C4.EN with ap-
propriateness (A) and stereotype (S) judgments.

Innapropriateness and Stereotyping. Appro-
priateness and Stereotype judgment results are
shown in Figure 5. First, we find that the filtering

7As an approximate reference, only 21% of human-written
AAL texts in Deas et al. (2023) were judged to be likely not
human-written or unnatural.

8See Appendix K for further discussion.
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Figure 5: Distribution of annotator ratings on stereotype
and appropriateness dimensions. Shades correspond to
Likert scale values. Percentages shown in white reflect
the proportion of texts judged to be inappropriate and to
reinforce stereotypes (outlined in black).

applied to C4.EN.NOBLOCKLIST removes many
inappropriate and stereotype-reinforcing texts as
intended, with C4.EN.NOBLOCKLIST exceeding
the rates of C4.EN. We also find, however, that sub-
stantial proportions of remaining texts in C4.EN
are judged to be inappropriate and stereotype-
reinforcing–28.9% and 24.5% respectively. Many
of these texts contain variants of C4 block list terms
or terms self-censored with asterisks. For exam-
ple, the first two texts in Table 4 are judged to be
inappropriate for models to generate and contain
references to block list terms (****in and fuk).

6 RQ3: How does filtering impact AAL
representation?

The previous experiments show that AAL is often
underrepresented and misrepresented in modern,
open-source pretraining corpora. We follow these
experiments with an evaluation of automated filters
to better understand potential underlying determi-
nants of AAL representation.

6.1 Methods

Source Dialect # Documents Avg. Length

RedPajama-v2 AAL 235,490 509.8
WME 784.7

Dialogues AAL 11,787 59.9
Song Lyrics AAL 10,000 441.0
Social Media AAL 50,000 19.7

Table 5: Summary of filtering experiment datasets.

The C4 block list is known to disproportionately
filter AAL from pretraining data (Dodge et al.,
2021). To investigate how recent, model-based
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language, toxicity, and quality filters affect AAL
representation, we evaluate 16 automated filters on
AAL texts. A full list with descriptions of each
filter evaluated is included in Appendix L.

We conduct two sets of experiments to evalu-
ate the behavior of automated filters on AAL texts.
First, we evaluate automated filters on AAL and
WME texts in RedPajama-v2 (Weber et al., 2024)
to examine how filters treat web texts that naturally
occur in sources of pretraining data. While this
experiment reflects real use cases of filters, it does
not provide insights into behavior across varying
sources of AAL texts. In a second controlled ex-
periment, we collect AAL from different sources
(dialogues, hip hop lyrics, social media) to evaluate
how filters’ behaviors differ among domains.

RedPajama Filtering RedPajama-v2 (Weber
et al., 2024) is a large pool of Common Crawl text
with pre-computed filtering heuristics. To evaluate
automated filters, we extract all texts with an AAL
posterior probability ≥ 0.8 and randomly sample
an equal number of texts with a White-aligned En-
glish probability of ≥ 0.8 following prior work
(Xia et al., 2020).

AAL Source Filtering. To analyze different
sources of AAL, we collect AAL texts from differ-
ent domains (as in Deas et al. (2023)). We evaluate
automated filtering on three different domains of
AAL-like language: social media, hip hop lyrics,
and dialogues. For social media texts, we use the
African American-aligned subset of the Twitter-
AAE corpus (Blodgett et al., 2016). For hip hop
lyrics we randomly sample full song lyrics from
hip hop and rap songs. Finally, for dialogues, we
use CORAAL (Farrington and Kendall, 2021) to
represent naturalistic AAL. 9 A summary of all
filter evaluation datasets can be found in Table 5.

Filter Evaluation. We run each filter on the
aforementioned datasets for evaluation. We com-
pare the z-score normalized (z =

x−mean

stdev
)

predictions for each automated filter based on its
form: probabilities for classifiers, perplexities for
n-gram models, and ratings for LLM-as-a-judge
approaches. For all classifiers and rating-based
models, we consider the score given to the positive
class or direction such that higher scores represent
a higher likelihood of text being preserved. We
negate perplexities for applicable filters such that
higher z-scores similarly indicate a higher likeli-

9Consecutive turns by the same speaker are merged to ac-
count for dialogue turns consisting of few tokens (e.g., "Yes").

hood of being conserved. We assess significant
differences using two-tailed t-tests of the means.

6.2 Results

RedPajama-v2. We first examine how automated
filters behave with AAL and WME data distribu-
tions similar to those in pretraining corpora using
RedPajama-v2 (Weber et al., 2024). Figure 6 (top)
presents the normed average filter outputs for the
positive label (i.e., the label more likely to conserve
a given text) on the AAL and WME subsets of
RedPajama-v2. Most filters (13 of 16) are more
likely to remove AAL texts than WME texts.
Supporting prior work, language (Blodgett and
O’Connor, 2017) and toxicity (Sap et al., 2019b)
filters are included among those that assign lower
scores to AAL texts. Interestingly, two of the re-
maining filters (Wiki and Wiki vs. RW) include
Wikipedia data in the "high-quality" reference texts
used to develop the filter.

AAL Sources. To better understand how auto-
mated filters’ predictions vary across AAL sources,
Figure 6 (bottom) presents the same average nor-
malized model predictions on AAL texts from di-
alogues (CORAAL), song lyrics (Hip Hop), and
social media (AAL Tweets). As CORAAL contains
natural speech and is unlikely to contain the lexical
features exhibited by hip hop lyrics and social me-
dia, most filters (11 of 16) expectedly are more
likely to conserve dialogue transcripts over the
other sources. Most filters (12 of 16) are also
more likely to conserve AAL tweets over hip
hop lyrics. While filters appear to elevate natural
speech, texts like transcripts in CORAAL are not
widely available online suggesting that the sources
of pretraining data may be the more influential fac-
tor determining AAL’s representation in corpora
(see Appendix M for further discussion).

7 Discussion and Conclusion

In this work, we examine the quantity and qual-
ity of AAL representation in pretraining corpora
as well as the impact of recent automated quality
filters on such representation. We first show that
AAL is widely underrepresented in modern cor-
pora, and that many of those AAL documents are
shared among corpora. We additionally highlight
the ways in which AAL documents may be misrep-
resentative in these corpora, including analyses of
highly performative language as well as documents
that are judged to be written by non-AAL speakers,
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Figure 6: Average outputs of automated filters between AAL and WME RedPajama texts (top) and across AAL data
sources (bottom). Outputs are standardized with larger values indicating texts are more likely to be preserved in
the corpus. Error bars represent 99% confidence intervals, and ∗ (top) indicates significant differences (p < 0.01).
Shaded columns indicate filters that prefer AAL texts (top) and prefer Hip Hop/AAL Tweets (bottom).

stereotypical, or inappropriate for LLMs’ to gener-
ate. Finally, we show how automated filters used in
recent pretraining corpora impact the quantity and
quality of AAL representation.

Our findings have several implications. The lack
of AAL in pretraining corpora may underlie LLMs’
difficulties in understanding AAL (e.g., Groenwold
et al. (2020); Deas et al. (2023)), particularly for
specific features (Kleiner et al., 2024; Grieser et al.,
2024). Beyond its underrepresentation, the mis-
representation of AAL in pretraining corpora may
reinforce the discriminatory language model behav-
iors that have been identified in prior work (Fleisig
et al., 2024; Hofmann et al., 2024) and restrict the
benefits of LLMs for AAL speakers (Brewer et al.,
2023). Similar language technologies’ inability to
reliably interpret AAL has also been shown to cre-
ate barriers to use of the technology (Cunningham
et al., 2024; Harrington et al., 2022). Documenting
the representation of AAL in pretraining corpora
enables better understanding of why LLMs and
other technologies pose such risks and offers in-
sights into methods of mitigating them.

While we find that automated filters are more
likely to remove AAL than WME, they are
also more likely to conserve naturalistic speech
(CORAAL) over tweets and hip hop lyrics. Consid-

ering we highlight through RQ2 that highly perfor-
mative AAL is prevalent in the corpora, this also
suggests that there is a lack of naturalistic AAL in
the sources leveraged for pretraining corpora. In-
corporating understanding of text sources in LLM
development and carefully curating these sources
through meaningful inclusion of AAL speakers as
stakeholders in design processes (Friedman, 1996;
Suresh et al., 2024) is necessary to faithfully rep-
resent naturalistic AAL use. We recommend that
in developing LLMs designed for socially impact-
ful domains where AAL speakers already face dis-
parate impacts (e.g., medical (Beach et al., 2021)
or legal (Jones et al., 2019) settings), pretraining
data curators ensure that the sources and filter-
ing processes produce representative AAL data.
Finally, language understanding benchmarks that
drive LLM development are unlikely to contain
AAL, potentially leading to the similar underrepre-
sentation of AAL found in pretraining corpora. The
aforementioned considerations may also accord-
ingly be extended to the benchmarks used to evalu-
ate the effectiveness of design decisions throughout
the LLM development cycle, incentivizing under-
standing of sociolinguistic variation as well as com-
monsense understanding and other capabilities.
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8 Limitations

We outline limitations to consider alongside our
presented results. First, there are a wide variety of
pretraining corpora and filtering strategies in use
for LLM development, and the corpora we evaluate
are not exhaustive. Notably, our work is enabled
by the efforts to open-source language model de-
velopment, but many corpora, such as those used
to pretrain GPT-4o (OpenAI et al., 2024), Llama-3
(Grattafiori et al., 2024), and similarly large, closed-
source models are unavailable for analysis. We
include multiple corpora in our experiments, par-
ticularly those that attempt to replicate commer-
cial corpora to better ensure that the findings are
broadly applicable to current and future models.
Additionally, given that online texts are the primary
source of data for pertaining, we focus experiments
on corpora composed of Common Crawl and inter-
net sources.

Furthermore, we collect human judgments of
AAL text quality, though we acknowledge that our
recruited annotators may not be fully representative
of the perspectives and opinions of the broader
AAL-speaking community. We recruit annotators
that have experience in linguistics, NLP, and AAL
as they are equipped to identify AAL features and
consider the implications of using specific texts
in LLM development. We hope that future work
will consult diverse and representative annotators
in both analyzing and curating data to better inform
pretraining data collection.

Finally, we follow prior work in using the de-
mographic alignment classifier from Blodgett et al.
(2016) to extract AAL from pretraining data for
analyses. The classifier, however, is fitted on Twit-
ter data which may not generalize to other language
contexts. We broaden our analysis to consider any
texts with higher than 0.3 probability of contain-
ing AAL to mitigate the impacts of the potential
domain difference. Similarly, the CGEdit classifier
was not initially developed for internet texts. How-
ever, analyses using CGEdit focus on morphosyn-
tactic constructions which are similarly portrayed
online and in speech unlike features linked to or-
thography (e.g., Eisenstein 2013).

9 Ethics Statement

Author Positionality. As a significant portion of
this work involves qualitative analyses of texts and
estimates, we acknowledge that the authors’ back-
grounds and perspectives may impact interpretation

of some findings. In this work, we attempt to calcu-
late and report quantitative statistics to complement
qualitative discussion of the contents of pretraining
corpora. As we strictly analyze open-source pre-
training corpora, we encourage readers to examine
texts within each corpus as well as form their own
interpretations from the presented results.

AAL in Pretraining and Benchmark Data. Our
analyses show that AAL is underrepresented in all
pretraining corpora studied, and that many docu-
ments are misrepresentative of naturalistic AAL.
While increasing the representation of AAL in
these corpora may improve downstream under-
standing in LLMs, at the same time, increased rep-
resentation can pose risks to AAL speakers. As
discussed by Patton et al. (2020), consideration of
the context of data and impact of technologies on
vulnerable populations is necessary for research
involving these communities. Particularly if data
is collected without the consent and inclusion of
AAL-speaking communities, increased representa-
tion in corpora may increase privacy risks (Brown
et al., 2022) or perpetuate misrepresentative notions
of AAL by means of LLMs.

AAL-use by LLMs. Our findings contribute to
the ongoing study of AAL biases in both language
understanding and generation systems. Prior work
highlights the barriers that language technologies’
lack of AAL understanding poses to African Amer-
ican users (Cunningham et al., 2024), while others
detail how human prejudices can lead to, for ex-
ample, disproportionately labeling AAL as toxic
(Sap et al., 2022). With respect to language gen-
eration, recent work has found that African Amer-
ican users prefer and trust current chatbots using
WME rather than AAL in generations (Finch et al.,
2025; Basoah et al., 2025). These findings high-
light the conflict between language technologies
that are able to properly understand AAL but not
necessarily to generate AAL. As such, while our
findings document factors in pretraining data that
may lead to misunderstanding of AAL in LLMs,
increasing representation alone does not absolve
language model creators of their obligation to take
in the culturally relevant context.

To conclude, no LLM depiction of AAL should
misrepresent or caricature AAL use. In contexts
where LLM use serves the social benefit of AAL
speakers, measures should be taken to ensure that
depictions of AAL do not trivialize the rich linguis-
tic and cultural background surrounding them.
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A Large-Scale Corpora Analysis

We select 12 open-source pretraining corpora for
our analyses, prioritizing those that have been used
to pretrain models often used in academic research.
Given our focus on AAL, we also focus analyses on
corpora that are intended for pretraining predom-
inantly English rather than multilingual models.
For all corpora, we strictly analyze portions that
are publicly available and do not include subsets
of RedPajama (Computer, 2023) or The Pile (Gao
et al., 2020) that are restricted due to copyright.
All corpora are only used for academic research
purposes in line with their intent.

29208

https://doi.org/10.1515/ijsl-2020-2105
https://doi.org/10.1515/ijsl-2020-2105
https://arxiv.org/abs/2402.09668
https://doi.org/10.18653/v1/P19-1163
https://doi.org/10.18653/v1/P19-1163
https://doi.org/10.18653/v1/P19-1163
https://doi.org/10.18653/v1/P19-1163
https://doi.org/10.18653/v1/2022.naacl-main.431
https://doi.org/10.18653/v1/2022.naacl-main.431
https://aclanthology.org/2024.acl-long.840
https://aclanthology.org/2024.acl-long.840
https://aclanthology.org/2024.acl-long.840
https://doi.org/10.1145/3630106.3658992
https://doi.org/10.1145/3630106.3658992
https://github.com/pola-rs/r-polars
https://github.com/pola-rs/r-polars
https://proceedings.mlr.press/v235/wettig24a.html
https://proceedings.mlr.press/v235/wettig24a.html
https://doi.org/10.18653/v1/2020.socialnlp-1.2
https://doi.org/10.18653/v1/D18-1009
https://doi.org/10.18653/v1/D18-1009
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/2022.acl-long.258
https://doi.org/10.18653/v1/2022.acl-long.258


A.1 Pretraining Corpus Scanning

Our data pipeline is written in Python with Po-
lars (Vink et al., 2025) for performance-sensitive
data processing, Pandas (pandas development team,
2020), UpSetPlot (Lex et al., 2014), and MatPlotlib
(Hunter, 2007) for analyses and visualization. La-
beling of independent subsets of the data is a triv-
ially parallelizable task. We partition the corpus
into disjoint splits and use 20 independent worker
processes, one for each available physical CPU
core to store the full text of records matching our
selection criterion. In all, we obtain labels for over
16 TB of compressed records, as stored on disk. For
capturing approximations of full distributions such
as in 8, we additionally use t-digest (Davidson-
Pilon, 2015).

A.2 Corpus Sample Analyses

Our file sampling policy was motivated by the con-
straints of the available metadata, the size of the
corpora, and the goal of our analysis being repro-
ducible. File sizes vary between corpora and within
corpora, so a fixed number of files would not result
in balanced representation. Due to the low meta-
data consistency of the corpora, the only common
attribute to all corpora was the URL hosting the
data file. To create a uniform random sampling of
the files in the corpora, we use a variant on hash-
based consistent sampling (Manasse et al., 2010).
Thus, the selection procedure entailed hashing the
full url hosting the data with sha256, then sampling
the first n files (sorted by hash) until a threshold of
250 GB was reached for each corpus.

C AAL Probability Threshold

Any record where AAL has the greatest probabil-
ity of all labels or where AAL exceeds a posterior
probability of 0.3 is considered for analysis. This
threshold is chosen for the individual feature analy-
ses to capture documents that may contain features
of AAL although largely be composed of WME.
At the same time, this threshold ensures that the ex-
tracted dataset is feasible to analyze with the avail-
able computational resources. Figure 8 shows the
distribution of document AAL probabilities as well
as the probabilities of the other language varieties
considered by the demographic alignment classifier
(Blodgett et al., 2016). For C4 (top), considering
lower thresholds sharply increases the number of
documents considered.

D Human Judgments

D.1 Annotation Details

We recruit 3 annotators that self-identify as AAL
speakers and have previous or current experience
in natural language processing or linguistics. Each
annotator is initially provided 420 texts total, with
50 texts shared among all annotators. Two anno-
tators completed judgments for all 420 texts, and
the remaining annotator completed 299 texts. An-
notators were compensated at a rate of $22.50 per
hour.

D.2 Human Judgments Sample

Because much of recent work relies on a threshold
of 0.8 to identify AAL documents (e.g., David-
son et al. (2019)) using the demographic align-
ment classifier (Blodgett et al., 2016), we prior-
itize texts with a higher probability of including
AAL in human judgments. Additionally, because
C4.EN.NOBLOCKLIST is not used for pretraining,
we prioritize texts from the filtered subset of C4
(C4.EN). The composition enforced on the sam-
pled human judgment texts is shown in Table 6.
Notably, only 10% of the texts in the sample have
≥ 90% probability because there are few texts in
the full extracted dataset that meet this requirement.
Considering this sampling, all reported estimates
based on human judgments (e.g., overall Stereo-
type estimates) are calculated through a weighted
average across probability ranges, weighted by the
size of each probability range in the full corpus.

AA Prob % Sample
.9 ≤ PAA 0.1

.8 ≥ PAA ≥ .9 0.35

.7 ≥ PAA ≥ .8 0.3

.6 ≥ PAA ≥ .7 0.15

.5 ≥ PAA ≥ .6 0.1
Filtering % Sample

Filtered (C4.EN) 0.75
Unfiltered (C4.EN.NOBLOCKLIST) 0.25

Table 6: Percent sampled from each subset of the ex-
tracted AAL C4 data for human judgments.

D.3 Annotator Agreement

Table 7 presents the inter-annotator agreement
scores for each judgment dimension. Annotators
show moderate to substantial agreement for bina-
rized Humanness (κbin = 0.581), Dialect (κbin =
0.747), and Native Speaker (κbin = 0.619), as well
as strong Spearman correlations.
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B Additional Data Details
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Figure 7: Distribution of row count, compression ratio, file size, and bytes per record from select corpora. This
captures the variety of metadata standards between the different corpora.
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Figure 8: Full distribution of demographic alignment
classifier posterior probabilities across all TwitterAAE
Model Labels for C4 and all sampled corpora DCLM-
baseline, RedPajama-Data-V2, and FineWeb, as cap-
tured by t-digest (Davidson-Pilon, 2015).

Dimension κ κbin rs Support
Human 0.226 0.581 0.588

121Dialect 0.357 0.747 0.699
Native 0.095 0.619 0.572
Approp 0.101 0.188 0.336 41Stereo 0.009 -0.021 0.083

Table 7: Average pairwise interannotator agreement re-
sults for each dimension using Cohen’s κ and Spearman
rs. Cohen’s κbin represents agreement with binarized
judgments ({0, 1} → 0, {2, 3} → 1).

Agreements on the two remaining perceptual di-
mensions, Appropriateness and Stereotype, are ex-
pectedly low considering that annotators personal
linguistic attitudes can lead to varying interpreta-
tions of what constitutes "appropriate" or appears
to reinforce stereotypes. However, annotators ex-
hibit slight agreement on Appropriateness.

D.4 Annotation Interface
We also include an additional space for comments,
including reasoning for selected judgments as well
as if the annotator recognizes a given text from a
different source (e.g., song lyrics). Screenshots of
the interface are provided in Figure 9, Figure 10,
and Figure 11.

E Feature Abbreviations

In analyses of morphosyntactic features, we con-
sider the features listed in Masis et al. (2022). Ab-
breviations used for each feature are included in
Table 8.

Abbrev. Feature
ZP Zero Possessive
ZC Zero Copula
DT Double Tense
HB Habitual Be
RD Resultant/Completive Done

FINNA finna
COME come

DM Double Modal
MN Multiple Negation
NAI Negative Auxiliary Inversion

NINC Non-Inverted Negative Concord
AI ain’t
3S Zero 3rd-Person Singular Present -s
IW is/was Generalization

ZPL Zero Plural -s
DO Double Object
WH Wh- Question

Table 8: Feature abbreviations and names covered by
the CGEdit model (Masis et al., 2022). Examples are
identified from pretraining corpora using model predic-
tions.

F AAL Classifier Examples

Table 9 presents randomly sampled abbreviated
texts from the AAL subsets of the corpora analyzed.
As shown in Table 2, the proportion of documents
determined to contain identifiable AAL features
by annotators is low for high posterior probability
ranges. Considering the demographic alignment
classifier (Blodgett et al., 2016) uses token-level
features, some of these high AAL probability docu-
ments contain repeated abbreviations while others
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Figure 9: Screenshot of annotation interface instructions panel.

Figure 10: Screenshot of Human-Likeness, Linguistic Match, and Native Speaker questions in annotation interface.
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Figure 11: Screenshot of Stereotype and Appropriateness questions in annotation interface.

Corpus Text AAL
Prob.

Dolmino
(Dolmino-mix)

...Title: heal yea Review: i b chillin wit da
dawg 4 real luda iz da tytest rhyma in da

hystory of da word 4 eva!! He got mad skillz
cuz he keep rhymin bout hiz hoez which iz

tyte cuz my whyte azz dawgs keep chillin at
my plaze wit dis CD YO!! It real tyte how he

spell mouf 4 real...

0.91

RedPajama-v1

...POPULAR: wiz khalifa, moneybagg yo,
young jeezy, kevin gates, lil wayne, curren$y,

fabolous, nba youngboy, eminem, mac
miller, meek mill, lil baby, future

0.80

RedPajama-v1

I’ve Changed (Interlude) [feat. Lil’ Mo]
1:06..\n Is This Our Last Time (feat.

Fabolous) 5:26..\n One Minute Man (feat.
Jay-Z) [Remix] 4:36..\n Ragtime Interlude /

I’m Really Hot 3:31.. Higher Ground
(Prelude) [Hidden Track] 5:02..\n Dats

What I’m Talkin About (feat. R. Kelly) 4:49..

0.75

DCLM

Back to the previous page\n Artist: Too
$hort f/ E-40\n Album: Pimpin’

Incorporated\n Song: Cootie Cootie Coo\n
Typed by: OHHLA Webmaster DJ Flash...

0.61

FineWeb-Edu

..."Duh wite root," pointing to a wild shrub,
"dey use fuh stomach troubles. Buttuh root
an palmettuh root an May apple, yuh bile

tuhgedduh wid a quawt uh watuh till it
simmuh down tuh haf uh pint, den yuh add
some cawn wisky. Dat a fambly tonic tuh

buil yuh up."...

0.51

Table 9: Abbreviated examples of texts and accompa-
nying posterior probabilities of AAL according to the
demographic alignment classifier. Documents are sam-
pled from each of 5 bins between 0.5 and 1.0 including
all corpora. Texts are shown exactly as they appear in
corpus documents.

Corpus Text AAL
Prob.

The Pile

...<write><data>pass\\x0a</data>
</write>\n

<read><delim>\\x3e</delim><match>
<pcre>.*?45 B

></pcre></match></read>\n
<write><data>8

16\\x0a</data></write>\n
<read><delim>\\x3e</delim><match>

<pcre>.*?46 B
></pcre></match></read>....

0.57

Dolmino
(Olmo-Mix)

##########
##########
##########

##########\n#\n#
Description\n#

====================
====================
====================

==================\n#\n#
General tests.....

0.80

RefinedWeb
Song...#\n Yukmouth - Ooh! Ooh!

Lyrics\n Artist:\n Yukmouth\n Song title:
Ooh! Ooh!

0.75

Dolmino
(Olmo-Mix)

<reponame>Feqzz/qZoom-Client<gh_-
stars>1-10\n #ifndef PARTICIPANT_H\n
#define PARTICIPANT_H\n \n #include

<QImage>

0.61

FineWeb

Can you be hard rocking a Sade beat? Killa
Kyleon will Get Rich Or Die Tryin’ to pull it

off. Check it out and tell us what you
think.\n Click here to download..

0.51

Table 10: Abbreviated examples of texts and accompa-
nying posterior probabilities of AAL according to the
demographic alignment classifier. Documents are sam-
pled from each of 5 bins between 0.5 and 1.0 including
all corpora.
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contain dense usage of AAL as shown in the top
row of Table 9.

G Full Feature Analyses

We measure the distribution of AAL features across
all corpora using random samples of 50,000 docu-
ments 10 meeting the AAL threshold probability of
0.3. While there are some commonalities among
corpora, such as Zero Plural (ZP) and Zero Cop-
ula (ZC) appearing frequently related to most other
features, the frequency of individual features and
order of most frequent features varies widely (e.g.,
Remote done (RD) is highly frequent in OpenWeb-
Text, but not in others.)

H Hip Hop n-gram Analysis

To estimate the inclusion of hip hop lyrics in C4,
we use infinigram to efficiently count overlapping
n-grams (Liu et al., 2024). We first strip all cap-
italization and punctuation from both pretraining
corpus documents (C4) and hip hop lyrics11 to ac-
count for minor differences in the presentation of
the same lyrics from different sources. We then
build a suffix array of the cleaned hip hop lyrics
corpus using the Llama tokenizer, 16 cpus, 512MB
of RAM, 1 shard. The total build time of the suf-
fix array was approximately 10 minutes and the
resulting index is approximately 6GB.

Throughout documents in the corpus, hip hop
lyrics may be quoted by an author as part of a larger
document. To account for this, we follow (Brown
et al., 2020) and consider n-gram token lengths
between 8 and 13 (inclusive) to search for overlap.
We exhaustively search for all occurrences of C4 n-
grams in the hip hop lyrics corpus, considering any
occurrence of a documents’ n-gram to be a positive
label for the document as a whole. We note that
this approach is not able to capture variation in
orthography (e.g., spelling "going" as "goin") and
relies on the comprehensiveness of the hip hop
lyrics corpus; as such, it likely does not capture
all hip hop lyric occurrences and underestimates
actual overlap.

10Some AAL subsets of corpora are smaller than 50,000.
For these corpora, we consider all documents.

11https://www.kaggle.com/datasets/nikhilnayak1
23/5-million-song-lyrics-dataset

I All Corpora Hip Hop Analysis

We analyze a 50% random sample12 of all pretrain-
ing corpora and measure the presence of n-grams
shared with hip hop lyrics. Figure 13 presents the
results of the hip hop lyrics analysis for all corpora.
The proportion of documents containing hip hop n-
grams varies widely across corpora, with 13-gram
hip hop sequences appearing in between roughly
2-50% of documents. Overall, however, we see
that language resembling hip hop is substantially
represented in each corpus.

J Additional Hip Hop Analysis

To complement the hip hop lyrics n-gram overlap
analysis, we additionally examine the nearest neigh-
bors of sentences in the C4 subset with the most
popular hip hop songs from a separate corpus of
lyrics.13 Each song and AAL document extracted
from C4 is represented by a bag-of-words (BOW)
vector. We then find the nearest neighbor in the hip
hop lyrics corpus by extent of unique token over-
lap. Figure 14 depicts the overlap in vocabulary
between rap lyrics and 10,000 randomly sampled
AAL texts extracted from C4. Overall, many docu-
ments share a substantial proportion of tokens with
hip hop lyrics included in the lyrics corpus. In
particular, 3.20% of sampled AAL texts exceed a
threshold of 100 unique terms shared with hip hop
lyrics.

K Non-AAL Annotations

Given the commonalities between AAL and other
varieties of English (e.g., Southern White English,
Oetting 2015), we then sought to investigate the
texts that were labeled as AAL by the demographic-
alignment classifier but not by annotators. Fig-
ure 15 presents the proportion of AAL, WME, a
different variety of English, and other texts (e.g.,
website keywords for search engines) in the filtered
and unfiltered subsets of human-annotated texts.
Similar to other analyses, AAL is more represented
in the unfiltered proportion of texts in C4 identified
as AAL by the demographic alignment classifier.
Interestingly, annotators noted a significant pro-
portion of texts in both subsets as reflecting other
varieties.

12We consider all of the AAL texts extracted from Open-
WebText given its size.

13https://www.kaggle.com/datasets/jamiewelsh2/
rap-lyrics
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Figure 13: % of AAL documents extracted from each
corpus containing shared n-grams with hip hop lyrics
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Llama-2 tokenizer.

Figure 14: Plot of vocabulary overlap between AAL-
labeled C4 and Rap Lyrics corpus, with 10,000 random
samples. AAL Posterior Label represents the AAL prob-
ability output by the demographic alignment classifier
(Blodgett et al., 2016). Lighter shades indicate a higher
frequency of documents.

Figure 15: Proportion of texts in the filtered (C4.EN)
and unfiltered (C4.EN.NOBLOCKLIST - C4.EN) labeled
as reflecting AAL, WME, a different language variety,
or no particular linguistic community.
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L Automated Filters

L.1 Filter Details

Descriptions of each of the 16 data filters evaluated
are included in Table 11. Language filters are typi-
cally neural models used to filter datasets to a par-
ticular language (e.g., English in the case of C4 and
others). Classifier-based filters train small classi-
fication models (typically using fastText (Joulin
et al., 2017)) or n-gram models (Heafield, 2011) to
model text quality either through prediction of simi-
larity to designated high-quality sources, prediction
of toxicity, or n-gram model perplexity. Finally,
LLM-Based filters leverage LLMs to directly pre-
dict aspects of data quality or annotate data to train
a distilled model to evaluate quality.

L.2 Replicated Filters

Where possible, we use filters provided by the pa-
pers that use or evaluate them. For two filters, the
PALM quality filter and CC quality filter, we repli-
cate them following available descriptions. For
both filters, we train supervised fastText classifiers
(Joulin et al., 2017) with the default hyperparame-
ters.

PALM Quality Filter. The PALM quality filter
(Chowdhery et al., 2022) uses Wikipedia samples,
OpenWebText, and RedPajama-v1 books as the
positive class and Common Crawl as the negative
class. Because the books subset of RedPajama-v1
is unavailable, we instead use the Project Guten-
berg books corpus. 14 We use publicly available
corpora for Wikipedia 15 and OpenWebText 16

(Gokaslan et al., 2019). We sample 600 CCNet
snapshots weighted among head (10%), middle
(20%), and tail (70%) partitions made available
through and following RedPajama-v2 (Weber et al.,
2024). We sample 250,000 positive and negative
references, with positive references split evenly
among the three corpora.

Pile-CC. The Pile-CC quality filter (Gao et al.,
2020) uses OpenWebText (Gokaslan et al., 2019)
as the positive class and Common Crawl as the
negative class. Similarly to the PALM filter, we
simply sample 250,000 OpenWebText and CCNet
samples to form the training data.

14https://huggingface.co/datasets/manu/project
_gutenberg

15https://huggingface.co/datasets/wikimedia/wi
kipedia

16https://huggingface.co/datasets/Skylion007/o
penwebtext

Other
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Shopping
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News

Adult

Technology & Computing

Books and Literature

Entertainment

Figure 16: Distribution of AAL source URL IAB cate-
gories.

M AAL Sources in Pretraining Corpora

We analyze the sources of AAL texts by examin-
ing the associated URL categories according to the
IAB taxonomy. 17 Using the URL’s listed in the C4
corpus, we cross reference the network location of
each with a dataset of 99,015 popular website IAB
classifications.18 A small proportion of texts ( 5%)
are associated with URLs that are included in the
dataset, suggesting that many AAL texts are not
sourced from highly-visited sites. Among texts that
could be matched to URL classifications, Figure 16
shows the distribution of IAB categories. A ma-
jority of texts come from Entertainment domains,
containing content such as hip hop lyrics, while
large proportions are also drawn from Technology
& Computing domains such as social media and
other forums.

17https://www.iab.com/guidelines/content-taxon
omy/

18https://www.kaggle.com/datasets/bpmtips/webs
iteiabcategorization
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Filter Example Use Description
fastText-langid (Lui and Baldwin, 2012) RefinedWeb fastText classifier trained to detect English text

fastText OH-2.5 + ELI5 (Li et al., 2024) DataComp-LM* fastText model trained on the OpenHermes and
ELI5 datasets

OpenWebText2 vs. RefinedWeb (Li et al., 2024) DataComp-LM*
fastText classifier trained with OpenWebText2

as the positive class and RefinedWeb as the
negative class

Wikipedia vs. RefinedWeb (Li et al., 2024) DataComp-LM*
fastText classifier trained with Wikipedia as the
positive class and RefinedWeb as the negative

class

Multi-source vs. RefinedWeb (Li et al., 2024) DataComp-LM*

fastText classifier trained with Wikipedia,
RedPajama, Books, and OpenWebText2 as the
positive class and RefinedWeb as the negative

class
Perplexity Filtering (Li et al., 2024) DataComp-LM* Wikipedia-trained ngram model

fastText Toxicity (Soldaini et al., 2024) Dolma fastText classifier trained on the Jigsaw toxicity
dataset

PALM Quality Filter† (Chowdhery et al., 2022) PALM

fastText classifier trained to distinguish
Wikipedia, OpenWebText, and RedPajama-v1

Books as the positive class from Common
Crawl.

Wikipedia-like Classifier (Computer, 2023) RedPajama-v1 fastText classifier trained to distinguish
Wikipedia-like text from others

CC Quality Filter† (Gao et al., 2020) The Pile
fastText classifier trained to distinguish

high-quality data sources and Common Crawl
in general

FineWeb-Edu (Penedo et al., 2024) FineWeb-Edu
Snowflake-arctic-embed-based classifier

trained on Llama-3-70b-Instruct annotations
of educational content

AskLLM (Sachdeva et al., 2024) DataComp-LM* Prompts an LLM to measure pretraining data
quality

QURating (Wettig et al., 2024) QURating Prompts an LLM with 4 criteria to judge
pretraining data quality

Table 11: List of the 16 evaluated pretraining corpora filters, including an example dataset or study employing each
filter and a brief description. * denotes that the filter was evaluated in the development of the cited dataset, but not
used in a resulting corpora. † indicates filters that were replicated; all other filters are taken from their respective
cited sources.
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