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Abstract
Motion instruction is a crucial task that helps
athletes refine their technique by analyzing
movements and providing corrective guidance.
Although recent advances in multimodal mod-
els have improved motion understanding, gen-
erating precise and sport-specific instruction
remains challenging due to the highly domain-
specific nature of sports and the need for in-
formative guidance. We propose CoachMe, a
reference-based model that analyzes the dif-
ferences between a learner’s motion and a ref-
erence under temporal and physical aspects.
This approach enables both domain-knowledge
learning and the acquisition of a coach-like
thinking process that identifies movement er-
rors effectively and provides feedback to ex-
plain how to improve. In this paper, we il-
lustrate how CoachMe adapts well to specific
sports such as skating and boxing by learning
from general movements and then leveraging
limited data. Experiments show that CoachMe
provides high-quality instructions instead of di-
rections merely in the tone of a coach but with-
out critical information. CoachMe outperforms
GPT-4o by 31.6% in G-Eval on figure skating
and by 58.3% on boxing. Analysis further con-
firms that it elaborates on errors and their cor-
responding improvement methods in the gener-
ated instructions. You can find CoachMe here:
https://motionxperts.github.io/

1 Introduction

Given their strong ability to connect vision with
language, recent multimodal models for motion-
related tasks have shown significant progress.
Existing efforts primarily focus on motion cap-
tion (Goutsu and Inamura, 2021; Zhang et al.,
2023b) or universal models that perform any
motion-related tasks (Guo et al., 2022b; Jiang
et al., 2024; Li et al., 2024). These models,
trained on large, high-quality datasets such as Hu-
manML3D (Guo et al., 2022a) and KIT-ML (Plap-
pert et al., 2016), excel at understanding motion

and generating descriptions such as “A man lifts
his left knee to his right elbow.” This capability is
important for tasks that require subtle movement
analysis such as motion tracking (Karaev et al.,
2024), physics-based character control (Maloisel
et al., 2023) in animation, and robotics. Sports is
another area where it is essential to recognize how
specific gestures affect overall motion. Excellence
in performance relies on movements executed with
high precision and outstanding coordination, en-
compassing both temporal and positional accuracy.
Although expert coaches can provide the effective
instructions that athletes covet, they are not always
readily available.

One solution in scenarios where coaching re-
sources are limited is automatic generation of pre-
cise motion instructions. However, there are two
challenges in this task: The first is the dynam-
ics of sports, where each discipline has unique
movement patterns. Experts gain domain knowl-
edge through years of studying professional tech-
niques (Liu et al., 2024; Chen et al., 2023a). To
replicate this expertise, a model must analyze poses
from multiple perspectives across different sports,
such as changing joint angles, orientations, and
temporal variations within a single motion. Note
that a motion’s meaning differs across sports: in
skating, the coordination of knee and shoulder
ensures balance and jump execution, whereas in
boxing, force transfer from foot to fist determines
punching power and strategy.

The second challenge is providing highly infor-
mative instructions. Coaches leverage years of ex-
perience to guide movement adjustments at pre-
cise moments. To achieve similar effectiveness, a
model must analyze both physical and temporal
perspectives and provide sport-specific, actionable
feedback. This includes identifying incorrect body
parts, the degree of adjustment, and refining joint
alignment or time error, as shown in Fig. 1.

In response to these challenges, we propose
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CoachMe: Work      on lifting       your body       before you jump       since      there is
too much pressure on your toe pick. Pay more attention to your toe loop;       it's
overturning       from the start making your jumps too circular.
GPT-4o: Remember to       stay centered over your       skating leg      during the
rotation      to avoid falling off balance      during the landing.
LLaMa: Work on       aligning your      hips and shoulders      while turning them more
before jumping. Aim to       raise your left knee higher      during takeoff.      This will
help you generate more power and control. 

CoachMe:  Try       to keep your        left knee stable and       your       left leg      low
and tight against your         right leg.

GPT-4o: Ensure your       free leg      stays straight and extended as you     enter the
jump      to maintain a strong and consistent      takeoff position.

LLaMa:  Aim to       raise the      left knee higher      during takeoff      to generate
more power and control. By doing so, the skater can achieve a more efficient and
dynamic jump.

       Error Detection       Time Detection       Body Part Detection       Causation       Method        Coordination

ImportanceA B

Figure 1: Each video is represented as a sequence of temporally ordered images, with a visualized attention graph
of Human Pose Perception (see D.2) overlay. Accompanying each sequence are instructions generated by three
models—CoachMe, LLaMa, and GPT-4o—annotated with pictograms that highlight evaluation indicators assessing
sport utility and semantic relevance.

CoachMe, a model that obtains domain-specific
knowledge from limited data by comparing a
learner’s motion to a reference motion. By analyz-
ing motion differences and leveraging its intrinsic
understanding of movement, CoachMe identifies
opportunities for improvement. Furthermore, Ba-
sic CoachMe, the base model, facilitates adaptation
to sports such as skating and boxing. Moreover,
CoachMe’s workflow emulates the structured rea-
soning of a professional coach while instructing
athletes, and hence addresses the second challenge.
This workflow enables CoachMe to integrate both
temporal and physical information, allowing it to
generate instructions that not only identify the tim-
ing of mistakes but also explain how to improve.

We visualize the weights learned by the model
between joints and moving directions and generate
instructions to determine whether CoachMe under-
stands the issues in executing the current move-
ment. Additionally, we conduct quantitative and
qualitative experiments as well as human evalua-
tion of the performance of CoachMe. Our contribu-
tions are threefold: (1) We propose CoachMe, the
first reference based model that learns motion dif-
ferences and generates instructions automatically
to offer great precision and sport utility; (2) We
conduct extensive experiments to validate the gen-
erated instructions by comparing CoachMe to state-
of-the-art vision language models, including hu-
man evaluation by experts, which is typically chal-
lenging to obtain; (3) We construct datasets for in-
struction generation on two sports—figure skating
and boxing—including videos, instructions, and
labeled error segments by professional coaches.
Datasets will be available upon acceptance.

2 Related Work

Vision language models (Liu et al., 2023a; Zhang
et al., 2023c; KunChang Li and Qiao, 2023; Zhang
et al., 2023a; Lin et al., 2023) have demonstrated
strong capabilities in video-to-text tasks as well as
their inverse: text-to-video generation. However,
these approaches generally overlook the unique
characteristics of pose features and fail to consider
the specific demands of different sports. For in-
stance, in skating, certain aspects require special
attention, yet existing models tend to generate in-
structions that are overly general and broadly ap-
plicable rather than tailored to the nuances of indi-
vidual activities.

Beyond general video analysis, human mo-
tion modeling has gained traction as a crucial as-
pect of video understanding. Studies on text-to-
motion (Petrovich et al., 2023; Athanasiou et al.,
2022; Chen et al., 2023b) generate 3D motion
from language descriptions, whereas motion-to-
text approaches (Zhang et al., 2023b; Li et al.,
2024) describe motion in natural language. For
instance, TM2T (Guo et al., 2022b) and Mo-
tionGPT (Jiang et al., 2024; Wang et al., 2024) use
vector quantized-variational autoencoders (van den
Oord et al., 2017) to map motion sequences to
discrete representations for motion-related tasks.
However, these models focus on general motion
descriptions rather than detailed coaching instruc-
tions. Liu et al. (2022) and Tanaka et al. (2023)
refine specialized skills but are limited to specific
sports and rely primarily on visual feedback tech-
niques rather than textual feedback. CoachMe over-
comes these limitations by integrating textual in-
structions with visual explanations, as shown in
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Figure 2: CoachMe architecture comprises three modules: Concept Difference (Sec. 3.1), Human Pose Perception
(Sec. 3.2), and Instruct Motion (Sec. 3.3). Instruct Motion compares the motion Token learner with Tokenref to
obtain the difference Tokendiff and take Token learner and Tokendiff as input to the LM to generate instructions.

Fig. 1, while also developing a workflow that is
adaptable to different sports.

The idea of concepts is often used for challeng-
ing tasks. Concept-based techniques apply sin-
gle concepts to analyze humor or identify patterns
through activation functions (Tennenholtz et al.,
2024; Kim et al., 2018) to achieve promising re-
sults. In this paper, we extend this to two concepts—
motion and difference—in the sport technology
domain. CoachMe aligns videos (Dwibedi et al.,
2019; Chen et al., 2022; Kwon et al., 2022) to
facilitate synchronization. During this process, mo-
tion concept embeddings and difference concept
embeddings are generated for further analysis of
movement discrepancies.

3 Methodology

To construct the thought process of a coach guid-
ing an athlete, we propose generating instructions
based on the differences between the input video
and the reference video. CoachMe consists of three
modules: Concept Difference, which generates the
difference concept; Human Pose Perception, which
extracts the motion concept; and Instruct Motion,
which processes and integrates the two concepts,
as shown in Fig. 2.

3.1 Concept Difference Module

Concept Encoder We define a concept as a quan-
tification of performed action, regardless of their
viewpoint. A concept difference is the deviation
between two performances. The concept difference

between two frames is computed as

c = F(xr)− F(xl), (1)

where xl represents a frame from the learner’s clip,
xr is the corresponding reference frame, and F
is a Concept Encoder, which we adopted CARL
(Chen et al., 2022). Concept Encoder was trained
independently and was frozen during instruction
generation training.

Motion Alignment Motion Alignment identifies
the interval in the learner video V L that best corre-
sponds to the reference video V R and the Concept
Difference embedding C is then obtained by sub-
tracting the aligned segment from the reference
segment, as shown in Algorithm 1.

Error Segment Identification This module iden-
tifies error-prone segments within the target motion.
Since frames with higher concept differences are
more likely to need correction, we train a model
using Concept Difference embeddings C to predict
error segments. Given the temporal dependencies
in motion sequences, we implement the error seg-
ment selection model using a transformer encoder,
which captures frame-wise features and temporal
relationships. The model outputs the interval re-
quiring instruction as

R′
i = RiSOE :EOE , (2)

where SOE and EOE denote the start and end of
the identified error segment.
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Algorithm 1 Motion Alignment

procedure DTW (A,B,da,db)
distance, j ←∞,−1
For i ∈ {0, 1, ..., da − db} do:
tmp←D(Ai:i+db , B0:db) ▷ D:cost matrix
If tmp < distance :

distance, j ← tmp, i
return j ▷ Optimal interval’s start frame

end procedure
Input : V L, V R

dL, dR ← length(V L), length(V R)
If dL < dR :
V L, V R ← V R, V L

dL, dR ← length(V L), length(V R)
CL, CR ←F(V L),F(V R) ▷ F:Concept Encoder
j ← DTW (CL, CR, dL, dR)
CL′ ← CL

j:j+dR

ct ← CR
t − CL′

t , t ∈ {0, 1...dR}
C ← ct, t ∈ {0, 1...dR}
return C ▷ Concept Difference

3.2 Human Pose Perception Module
Human Pose Perception module contains 3 sub-
modules: Pose Understanding PU, Pose Extraction
PE, and Pose Attention PA. Each submodule is
based on graph convolutional networks. We first
clip V L according to R′

i, which is the temporal
information from Concept Difference. We employ
HybrIK (Li et al., 2022) predicts 22 joint coordi-
nates J . We chose HybrIK as it gives better perfor-
mance when used as a pose estimator of CoachMe.
Its inference time is also acceptable since users
receive results asynchronously. Details will be dis-
cussed (Sec. B). Next, subtracting J outside from
J inside results in the joint orientations, O:

Oa,b = Ja − Jb a, b ∈ {0, 1, . . . , 21} (3)

To capture the mutual influence of J and O, PU
shares weights during training. Additionally, to
interpret the physical information of motion, PU is
trained on GS , which represents the graph layout
of the human skeleton. GS is constructed from
adjacent joint pairs and their distances. Inspired
by STA-GCN (Shiraki et al., 2020), this approach
incorporates both the temporal dynamics of the mo-
tion sequence and the spatial relationships within
the skeletal structure. Consequently, PU learns
representations of J and O and transforms them
into the motion token T . PE is also trained on GS

and generates the motion token T ′, which mainly
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Figure 3: Basic CoachMe, which consists of the Human
Pose Perception and Language Generation modules, per-
forms tasks related to motion description.

considers local body parts:

T ′ = PEGS
(T ); T = PUGS

(O ⊕ J), (4)

where ⊕ denotes concatenation. PE applies aver-
age pooling on T ′ to generate the attention joint
JA and attention graph GA which contain latent
relationships between the originally disconnected
joints and identifies key joints and relationships.
The visualized attention graph, which consists of
JA and GA, is provided in Figure 1.

GA, JA = Poolavg(T
′) (5)

In PA, we use JA as the input for PAGA
and train

it solely with GA, ensuring a focus on key rela-
tionships extracted from GA. Unlike STA-GCN,
CoachMe trains PA solely on GA. Since PE has al-
ready been trained with GS , it sufficiently captures
the physical information within local body parts.
This allow PA to focus on learning the physical dy-
namics of the global body structure. With JA and
GA, PAGA

propagates the essential attributes of
key joints across all previously disconnected joints
and local body parts:

T ′′ = PAGA
(JA · T ), (6)

where · denotes the dot product. We utilize both
local motion tokens T ′ and global motion tokens
T ′′ as the final motion tokens, incorporating local,
global, spatial, and temporal information:

Token = T ′ ⊕ T ′′. (7)

Consequently, Human Pose Perception captures
precise motion actions and analyzes subtle motion
variations which influence body coordination and
are helpful in detecting poor posture.

3.3 Instruct Motion Module
Basic CoachMe was initially pretrained on the Hu-
manML3D dataset to understand the motion token
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Token and to learn how to generate textual descrip-
tions of motion, as shown in Fig. 3. To enable
CoachMe to provide motion-specific instructions,
we integrate temporal segment information from
Concept Difference and physical information from
Human Pose Perception. We thus obtain the con-
cept motion token Token , which represents motion
information within the error interval. Next, we
compute the concept difference token Tokendiff

by subtracting the learner’s motion token from the
reference’s motion token.
Token and Tokendiff first undergo maximum

pooling along the temporal dimension,which cap-
tures each motion token at the most critical moment
of the motion sequence that requires further refine-
ment. Next, they are projected into the same latent
space. In Projection, understanding the relation-
ship between motion and differences helps identify
which aspects of motion need improvement. To en-
hance adaptability, when fine-tuning the pretrained
weights, Basic CoachMe, for the motion instruction
task, we apply low-rank adaptation (LoRA) (Hu
et al., 2021) to Human Pose Perception and Projec-
tion. This aims to refine Human Pose Perception to
recognize sport-specific motion patterns and adjust
the Projection in Instruct Motion to interpret the
relationship of Tokendiff and Token . Finally, the
two types of tokens are transformed into instruc-
tion I through a language model LM. Because our
sports dataset is relatively small (Brigato and Ioc-
chi, 2020), we chose the low-complexity T5 (Raffel
et al., 2019), which has only 223M parameters, as
our language model LM:

I = LM(Proj(Poolmax (Token ⊕ Tokendiff )),
(8)

where Proj denotes the projection layer.

4 Experiments

4.1 Datasets

Three datasets were utilized in this paper. Hu-
manML3D was adopted for learning general move-
ments, whereas the Figure Skating (FS) and Box-
ing (BX) datasets, which we collected, were specif-
ically created for learning sport-specific elements.
HumanML3D (Guo et al., 2022a) contains motion
sequences from HumanAct12 (Guo et al., 2020)
and AMASS (Mahmood et al., 2019). FS com-
prises 4 types of skating jump videos: single Axel,
double Axel, Lutz, and Loop from single learners,
annotated by single figure skating coach. Each

Dataset # video # of GT Aug.
train : test motion inst.

HumanML3D 23384:4384 - avg. 3 no
BX 163 : 41 2 3 3
FS 177 : 40 4 1 0

FS(GT clips) 449 : 64 4 1 5

Table 1: Datasets used in experiments. The number of
training and test samples are presented for each dataset.
FS(GT clips) denotes as ground truth clips that error
segments annotated by coach. GT inst. denotes as the
number of ground truth instructions. Aug. denoted as
the number of augmented instructions for one video.

video is labeled with instructions and correspond-
ing intervals to identify errors, which are denoted
as ground truth clips (GT clips), as shown in Table
1. Ground truth clips are employed as the learning
targets for the Error Segment Identification module.
BX comprises 2 types of boxing technique video:
Jab and Cross from multiple learners, annotated
by 3 boxing coaches. Each video is labeled with
instructions without an error segment. To enhance
diversity, we employed GPT-4o to augment the
instructions annotated by coaches, as detailed in
Section A.3. A summary of these datasets is pre-
sented in Table 1. Reference videos were sourced
from YouTube coaching content and validated by
professional coach.

4.2 Settings
We pretrained Basic CoachMe on HumanML3D to
accomplish the motion description task and then
adapt it to the FS and BX datasets for motion in-
struction. To ensure a consistent coordinate system
across 3 datasets, we set the pelvis joint as the
origin and adopt a local coordinate system. To
assess whether referencing also aids descriptions,
we experimented with 2 strategies on motion de-
scription task: (1) using the first frame of each
motion sequence as its reference. (2) employing
zero padding to allow the adapted model to learn
reference information independently.

We further investigate how the Tokendiff , a
key component for contrasting correct and incor-
rect performances, behaves across modalities. This
analysis is motivated by the design of CoachMe,
which integrates two distinct modalities: RGB for
the Concept Difference and skeleton-based features
for the Human Pose Perception. We define 2 set-
tings: CoachMe, which computes Tokendiff from
skeleton-based Token via Human Pose Perception,
and CoachMe (RGB), which computes Tokendiff

from RGB-based Token via the Concept Encoder.
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We compared CoachMe with GPT-4o (Hurst et al.,
2024), LLaMa 3.2 (Dubey et al., 2024), ViLa (Lin
et al., 2024) and MiniCPM (Hu et al., 2024).

4.3 Experimental Design

Experiments on description and instruction gener-
ation were conducted to evaluate the model’s ca-
pability in understanding general movements and
providing coaching for specific sports. Two experi-
ments were conducted for description generation:
(1) Comparing CoachMe to SOTA models for mo-
tion description generation. (2) Assessing using
references versus not using them when generating
descriptions. For the instruction generation task,
we conducted four experiments: (1) Comparing
CoachMe to SOTA models for motion instruction
generation. (2) Studying the gain from applying
concept difference. (3) Evaluating how error seg-
ment identification (Sec. 3.1) helps in instruction
generation. (4) Investigating the impact of different
modalities of Tokendiff on model performance.

4.4 Indicators for Sport Utility Evaluation

To assess the sport utility of the generated instruc-
tions, we introduce a set of evaluation indicators
that can be applied to various sports. Based on
the findings derived from studies on professional
athletes (Hülsmann et al., 2017; Bacic and Hume,
2017), effective instruction must fulfill two key as-
pects, each comprising three essential indicators:
The first aspect is that the instruction must clearly
define the problem, ensuring that athletes under-
stand the issue in their movement. This includes:
(1) Detecting errors in the motion; (2) Identifying
timing information; (3) Recognizing body part
movements. The second aspect is that the instruc-
tion must provide a solution, offering actionable
guidance to help athletes correct their movements.
This includes:(4) Identifying causal relationships
in the sport; (5) Explaining how to improve the
sport; (6) Describing how body parts coordinate
or interact. A detailed description of these six
indicators will be provided in Section E.2.

5 Results

5.1 Description Generation

Table 2 compares the generated descriptions of
movements from SOTA methods. Models are all
grounded in the same 3D human motions. Basic
CoachMe outperforms others in generating move-
ment descriptions. Human Pose Perception cap-

Method Ref B1 B4 RG BS
TM2T (2022) x 61.7 22.3 49.2 37.8

MotionGPT (2023) x 48.2 12.47 37.4 32.4
MotionGPT-2 (2024) x 48.7 13.8 37.6 32.6

STAGCN* x 62.8 22.1 47.0 43.5
x 65.4 24.3 48.6 45.1

Basic CoachMe v 62.5 20.8 43.3 36.8
Pad0 59.0 18.2 41.8 35.6

Table 2: Comparison of motion description on Hu-
manML3D. STAGCN* denotes the combination of
STAGCN and Instruct Motion. Basic CoachMe com-
bines Human Pose Perception and Instruct Motion. Ref,
B1, B4, RG, and BS denote reference, BLEU-1, BLEU-
4, ROUGE, and BertScore, respectively.

tures 3D motions by treating global and local infor-
mation equally while considering orientation and
coordinates. It thus produces more accurate mo-
tion representations than STA-GCN. Then, Instruct
Motion transforms these motion tokens into mo-
tion descriptions. Interestingly, Table 2 shows that
motion description performance is not improved by
references, suggesting that understanding general
movements does not require predefined standards.

5.2 Sport Instruction Generation
In this section, we evaluate CoachMe on sport-
specific instruction generation, using the FS and
BX datasets. To evaluate the role of reference
information, we compare CoachMe’s performance
with and without the use of reference video. As
shown in Table 3, incorporating reference leads to
consistent improvements on both the FS and BX.
Human evaluation (see Appendix E.4) supports
this finding. This demonstrates the importance of
reference-based models in instruction generation.

The experimental results presented in Table 3
indicate that CoachMe consistently achieves higher
performance when operating with Tokendiff

based on skeleton modality compared to RGB. The
reason is that RGB videos often contain irrelevant
elements, such as background distractions, whereas
skeleton representations focus solely on motion,
leading to more precise instructions for movement
refinement. This effect is particularly evident in
figure skating, where fast-moving backgrounds
introduce additional noise. However, skeleton-
based representations may struggle to capture fine-
grained joint rotations, such as palm flips.

We analyze the impact of the error segment by
providing the model with (1) ground truth: in-
struction intervals labeled by coaches (available
only in the FS dataset, where a figure skating coach
provided the ground-truth timestamps, while the
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Method Ref Error segment BLEU@1 BLEU@4 Rouge BertScore G-eval
Figure Skating (FS)

GPT-4o x - 16.2 1.0 14.8 7.5 1.39
LLaMa 3.2 x - 12.6 0.0 11.4 -4.9 1.31
MiniCpm x - 9.7 0.0 11.4 7.2 1.37

ViLa x - 8.8 1.8 11.6 11.8 1.27
Basic CoachMe x Ground truth 15.0 2.5 16.9 11.0 1.53

v Ground truth 24.7 2.3 16.9 26.5 1.73
CoachMe v Aligned Segment 22.2 2.3 20.0 11.7 1.83

v Error Segment 20.8 2.1 15.2 20.5 1.55
v Ground truth 16.9 1.6 15.9 12.0 1.37

CoachMe (RGB) v Aligned Segment 17.2 4.0 15.8 7.1 1.21
v Error Segment 19.4 4.4 17.0 8.0 1.57

Boxing (BX)
GPT-4o x - 33.3 0.0 10.0 13.6 1.39

LLaMa 3.2 x - 16.9 0.0 11.5 3.2 1.20
MiniCpm x - 9.1 1.5 9.4 9.1 1.89

ViLa x - 6.1 0.0 9.8 1.9 1.40
Basic CoachMe x Aligned Segment 41.7 9.4 24.1 36.2 1.85

CoachMe v Aligned Segment 38.4 12.3 28.4 27.2 2.20
v Error Segment 44.5 13.4 25.3 36.9 1.61

CoachMe (RGB) v Aligned Segment 23.3 6.0 18.2 26.8 1.98
v Error Segment 13.9 0.0 11.1 16.5 1.44

Table 3: Comparison of motion instruction generation methods on FS and BX. Ref stands for reference. Performance
reported across different CoachMe settings and error segment identification approaches: ground truth (coach-labeled
intervals), predicted (model-determined intervals), and no identification (entire aligned video). We also evaluated
the consistency between the generated instruction and the ground truth using G-Eval (Liu et al., 2023b).

Dataset dist-1 dist-2 dist-3
Ground Truth Instruction

FS 0.115 0.405 0.645
BX 0.037 0.115 0.182

CoachMe’s Prediction
FS 0.233 0.519 0.685
BX 0.070 0.136 0.172

Table 4: Diversity (dist-1, dist-2, dist-3) of ground truth
instructions in FS and BX, as well as instructions pre-
dicted by CoachMe trained on FS and BX, where dist-n
denotes the percentage of distinct n-grams (Li et al.,
2016). Higher distinct scores indicate greater diversity.

boxing coach did not provide such timestamps); (2)
aligned segment: the whole movement is trimmed
by the Motion Alignment module without error
segment identification. (3) error segment: inter-
vals selected by the Error Segment Identification
module; Note that the Error Segment Identification
module achieves an accuracy of 76.14%. Take FS
as an example, evaluated by comparing correctly
predicted frames with those labeled by coaches: the
BertScore results for CoachMe indicate that using
either the ground truth or predicted error segments
produces instructions that align more closely with
coach-labeled instructions compared to those with-
out error segment identification. This highlights
the importance of identifying the most error-prone
segment for generating instruction.

The higher performance observed on BX com-

Model Good (%) Neutral (%) Bad (%)
Figure Skating (FS)

GPT-4o 20.3 50.0 29.7
LLaMa 3.2 18.8 45.3 35.9
CoachMe 26.6 43.8 29.7

Boxing (BX)
GPT-4o 46.3 17.1 36.6

LLaMa 3.2 51.2 24.4 24.4
CoachMe 56.0 22.0 22.0

Table 5: Comparison of instruction quality for 3 models
rated by the human evaluator on the FS and BX datasets.

pared to FS is primarily attributable to the charac-
teristics of the dataset. BX, constructed from 10
beginner boxers, contains many frequently occur-
ring mistakes, resulting in more consistent feed-
back from the coaches. Additionally, BX dataset
involves only two basic boxing technique with its
coaching instructions, leading to lower diversity. In
contrast, FS dataset involves 4 jumping movements,
which yields higher instruction diversity, as shown
in Table 4, indicating a greater modeling challenge
effectively addressed by CoachMe. Consequently,
CoachMe naturally inherits the respective diversity
from each dataset, as demonstrated by the distinct
scores of the generated instructions.

5.3 Human Evaluation

We work with figure skating coaches and pro-
vide professional evaluations. Table 5 demon-
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strates the results of human evaluation. CoachMe
received the highest percentage of "Good" rat-
ings (26.6%), outperforming GPT-4o (20.3%) and
LLaMA (18.8%).It also aligned more closely with
key instructional elements, excelling in identify-
ing the correct timing, relevant body parts, causal
relationships, and corrective methods—indicators
previously defined in Experiments (Sec 4.4). These
factors consistently appeared when CoachMe was
rated as the best, confirming their positive impact.
Detailed breakdowns can be found in Appendix
(Sec. E.6). Notably, CoachMe demonstrated the
strongest ability to capture coordination-related as-
pects and analyze complex body mechanics.

As for the performance on the BX dataset,
CoachMe received the highest percentage of
“Good” ratings (56.0%) and the lowest percentage
of “Bad” ratings (22.0%), as shown in Table 5. The
superior performance observed on the BX dataset
compared to FS is consistent with the findings dis-
cussed in Section 5.2. We interviewed the box-
ing coach who conducted the human evaluation.
The coach emphasized that in sports instruction,
concise instructions are more effective and eas-
ier for learners to follow. Moreover, the boxing
videos consist of beginners performing 2 funda-
mental techniques, making detailed instructions
unsuitable. In contrast, LLaMA and GPT-4o tend
to generate overly complex feedback (See 6.1. This
preference for concise, targeted instructions likely
contributed to CoachMe’s superior performance on
the BX dataset. Details can be found (see Sec. E.7).

6 Discussion

In this section, we evaluate the generated instruc-
tions through indicators (Sec. 4.4) that assess both
their sport utility and semantic relevance. We com-
pare CoachMe to LLaMa and GPT-4o to show its
indispensability. Last, we delve deeper into the
styles (Sec. 6.1), sport indicators ( Sec. 6.2) and the
design of CoachMe (Sec. 6.3).

6.1 Finding 1: CoachMe Generates More
Accurate Instruction

We analyze the relation between the 6 indicators
and the instruction quality. GPT-as-a-judge helps
annotate the indicators mentioned in the generated
instructions. We compare CoachMe to LLaMa
and GPT-4o. Figures 4 show the percentage of
figure skating instructions in which each indicator
is mentioned and the corresponding distribution
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Figure 4: The horizontal bar chart represents the to-
tal number of instructions assigned to each indicator
(Sec. 4.4), with colors indicating their respective G-eval
scores. Higher G-eval scores indicate more informative
and effective guidance that aligns more closely with the
ground truth. The G-eval scores range from 1 to 5.

of their G-eval scores. Details can be found (See
Sec. E.2). Boxing indicator frequencies and G-eval
score distributions are analyzed in Section E.7.

The results reveal that although GPT-4o and
LLaMa can generate instructions relevant to these
indicators (their total bar length is long), they strug-
gle to produce high-scoring instructions (their dark
bar length is short). The majority of their guidance
is too general or ineffective, resulting in G-eval
scores of 1 or 2 (see their longer light colored bar).
In other words, LLaMa and GPT-4o are good at
playing the role and instructing in a coach’s tone
but their content is inaccurate, whereas CoachMe
consistently generates precise and actionable in-
structions. Notably, nearly 60.9% of CoachMe’s
instructions incorporate coordination-related feed-
back, highlighting its strength in capturing relation-
ships between body parts. This ability is further
reflected in its attention mechanism.

As shown in Fig. 1, thicker and redder lines
indicate more important movement relationships.
CoachMe’s attention graph automatically captures
joint relations and aligns closely with its instruc-
tions. For example, the model highlights the left
leg and right leg connection, which leads to the in-
struction “Keep your left leg low and tight,” demon-
strating its ability to attend to relevant body parts
for precise instruction.

6.2 Finding 2: Good Instructions Identify
Problems and Provide Solutions

As shown in Fig. 5, we study the pairwise rela-
tionship between indicators and investigate which
combinations contribute most to high quality in-
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CoachMe LLaMa GPT-4o
Problem Solution Problem Solution Problem Solution

0.11 0.19 0.17 0.3 0.22 0.12 0.08 0.12 0.14 0.02 0.14 0.08 0.12 0.16 0.1

0.05 0.07 0.07 0.11 0.09 0.18 0.07 0.09 0.12 0.02 0.32 0.07 0.11 0.16 0.1

0.02 0.02 0.1 0.19 0.16 0.11 0.11 0.05 0.08 0.01 0.29 0.29 0.05 0.08 0.04

0.43 0.07 0.02 0.17 0.14 0.16 0.16 0.11 0.11 0.02 0.11 0.11 0.1 0.13 0.1

0.22 0.07 0.02 0.24 0.21 0.18 0.18 0.17 0.16 0.02 0.32 0.32 0.29 0.11 0.11

0 0.02 0 0.02 0.02 0 0 0 0 0 0.02 0.02 0.01 0.01 0.02

Error                     Time                Body Part 
Detection             Detection             Detection 

Causation        Method        Coordination

Figure 5: Effectiveness of indicator combinations across
models is measured using G-Eval scores, where higher
percentages indicate better guidance quality. In the eval-
uation matrix, red numbers in the upper-right triangle
represent scores on the FS dataset, highlighting that
CoachMe consistently outperforms GPT-4o and LLaMa.
Orange numbers in the lower-left triangle show scores
on the BX dataset. Each number denotes the percentage
p, calculated based on Eq. 5.

structions. Percentage p in Fig. 5 is calculated as

p =
ΣN
i=1S of instructions containing two indicators

(maximum of S ×N)
,

(9)
where N denotes the total number of instructions
and S denotes the G-eval score. Error + Coordina-
tion (0.22) is highly effective, indicating that inte-
grated body coordination feedback ensures athletes
adjust their full-body mechanics rather than iso-
lated actions. Error + Method achieves the high-
est contribution (0.3), as identifying errors while
providing corrective strategies significantly assists
refining movements. For instance, in Fig. 1-A, the
issue is effectively pinpointed and clear corrective
instruction is suggested. By contrast, Time + Body
Part (0.07) is less effective as no actionable guid-
ance is given.

Figure 5 illustrates the accuracy of instructions
which meet two indicators. Dark color represents
a high average G-eval score. With more darker
areas, results show that CoachMe generates more
accurate instructions. Moreover, CoachMe gener-
ates more coordination-related instructions, which
confirms that the proposed Human Pose Perception
(Sec. 3.2) enables CoachMe to analyze full-body
movement. Particularly, CoachMe achieves rela-
tively high scores on all dual indicators, showing
that the instructions it generates consider multiple
aspects like experts. Overall, providing a precise
solution in and of itself helps greatly; further identi-
fying the problem while suggesting a solution only
improves the instruction. Findings 1 and 2 suggest
the superiority of CoachMe from these aspects.

6.3 Finding 3: CoachMe Captures
Sport-Specific Instructional Patterns

CoachMe demonstrates a strong ability to repli-
cate the distribution of sport indicators found in
ground-truth instructions annotated by professional
coaches. Its predicted instruction distributions in
both figure skating (FS) and boxing (BX) closely
align with those of the actual datasets (Fig. 6,
7, and 8), indicating effective domain adaptation.
In the BX dataset, both instruction predicted by
CoachMe and ground truth rarely mention sport
indicator "Time Detection" and "Coordination."
Expert feedback reveals that beginner-level box-
ing instruction favors simple, body-part-specific
guidance over complex relational cues. In addition,
coach also indicates that a basic punch video is
very short, temporal errors detection is not useful
in such motion. Fortunately, CoachMe learns this
pattern well, aligning its outputs with the coach-
ing style used for fundamental actions. These
findings underscore the critical role of domain-
specific knowledge, given that each sport has its
own distinct movement characteristics. This aligns
with CoachMe’s core design principle—namely,
its ability to flexibly adapt to various sports by
learning sport-specific patterns through efficient,
lightweight adaptation modules.

7 Conclusion

We propose CoachMe, a reference-based motion-
to-instruction model that generates tailored instruc-
tions for sports. With the injection of concept differ-
ence, human pose perception, and instruct motion,
CoachMe simulates a coach’s thinking process,
which identifies deviations from standard motions
and focuses on both crucial body parts and their
physical movements. Through comprehensive eval-
uations using quantitative performance metrics, hu-
man evaluation, and visual explanations on skating
and boxing datasets, we demonstrate CoachMe’s
ability to provide high accuracy and good sport
utility in generated instructions for learners.

CoachMe achieves state-of-the-art results for
both motion description and instruction generation.
Moreover, it represents a significant step forward
to bridge the gap between artificial intelligence and
human expertise in athletic training. This light-
weight, standalone, high-performance, adaptive
model yields good opportunities for deployment in
various sport scenarios.
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Limitations

CoachMe is primarily designed for beginner- and
intermediate-level practitioners. Our dataset con-
sists of practice videos from novice athletes, and
the generated instructions focus on fundamen-
tal movement correction. Therefore, CoachMe
may not be well-suited to provide guidance on
advanced techniques or professional-level perfor-
mance. Future work could explore adapting the
model to higher-level athletes by incorporating ex-
pert demonstrations and more complex movement
evaluation.

In the practical implementation of CoachMe, we
prioritize maintaining a consistent coaching style
to authentically replicate the experience of work-
ing with a real coach. This approach ensures that
users receive clear, coherent, and dependable guid-
ance, as demonstrated throughout our paper. Dur-
ing our research, interviews with athletes revealed
a clear preference for personalized and consistent
coaching styles, as opposed to general or mixed
approaches. Nevertheless, the real world offers di-
verse coaching styles, and each athlete has their
own unique preferences. To meet this demand,
CoachMe is designed with a flexible architecture
that allows the creation of new virtual coaches sim-
ply by gathering instructional datasets from real-
world coaches. This adaptability not only enables
athletes to select virtual coaches aligned with their
individual needs and preferences, but also empow-
ers CoachMe’s scalability to seamlessly incorpo-
rate coaching data from a wide range of experts
— including globally recognized professionals. In
summary, CoachMe currently learns only a specific
teaching style based on our dataset, which limits its
ability to represent the diverse speaking styles and
instructional approaches of coaches in real-world
scenarios. Future work could focus on incorporat-
ing a broader range of coaching styles to enhance
its generalizability.

One limitation of CoachMe stems from the ab-
sence of figure skating and boxing data in the Hu-
manML3D, which can lead to misclassification of
actions. To address this, future work could ex-
plore integrating an additional action classification
module to provide more explicit movement catego-
rization. Furthermore, augmenting HumanML3D
with sport-specific data—such as curated figure
skating or boxing sequences—could significantly
enhance CoachMe’s ability to accurately recognize
subtle movement distinctions. By enriching the

dataset with targeted sports movements and cre-
ating sport-specific versions of CoachMe tailored
to the unique features of each discipline, we can
continuously solve this issue.
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A Dataset Details

A.1 Dataset Construction

We divided the dataset into training and testing sets
in a 4 : 1 ratio. Given that a single figure skating
video can be split into multiple video clips cor-
responding to error segment annotated by profes-
sional figure skating coach, we ensured that clips
from the same video did not appear in both the
training and testing sets. This approach was im-
plemented to prevent data leakage and ensure that
the model’s performance evaluation is based on
unseen data. Therefore, the number of training
videos in the Figure Skating (FS) dataset is 292,
with 64 videos for testing, as shown in Table 4.1.
The HumanML3D dataset has a frame rate of 20
frames per second (FPS), the Boxing (BX) dataset
operates at 60 FPS, and the FS dataset is recorded
at 30 FPS.

A.2 Data Preprocessing

To best mitigate noise originated from the back-
ground, for all rgb settings and videos we track
all people in the scene using YOLOv7, manually
select the main person index then resize the video
into 224x224, centered at the main character.

In human pose perception, we employ HybrIK
(Li et al., 2022) to predict 22 joint coordinates
in a local coordinate system following the SMPL
(Loper et al., 2015) format for videos from the
Figure Skating and Boxing datasets. To ensure
consistency between the pretraining and finetuning
settings, we localize the coordinates in the Human
ML3D dataset. Localization involves subtracting
the coordinates of the first index joint, which is the
pelvis. After localization, the motion videos appear
to rotate around the pelvis.

A.3 Data Augmentation Template

In Section 4.1, we incorporate the GPT-4 API to
diversify the original dataset. The template we used
is shown in Table 6 and Table 7.

Because the figure skating coach provides one
or multiple error segments for each figure skat-
ing video, along with the corresponding original
ground-truth instruction for each segment, we ap-
ply data augmentation accordingly. Specifically,
for each ground-truth instruction, we generate five
augmented instructions using five different tem-
plates, as shown in Table 6. As a result, each
annotated error segment, a ground-truth clip, has
six associated instructions: one original and five

augmented versions. For the FS dataset, the aug-
mented instructions maintain a high degree of simi-
larity with their corresponding original instructions.
The average similarity score is 0.93, with 100.00%
of the instructions scoring above 0.8, and 92.40%
above 0.9.

The augmented instructions for the BX dataset
show even higher similarity scores with their orig-
inals. The average similarity score is 0.95, with
100.00% above 0.8 and 98.38% above 0.9. This is
because each boxing video includes three ground-
truth instructions annotated independently by three
different coaches. When applying augmentation to
these three original instructions, we use the same
template as shown in Table 7. As a result, each
raw video (without coach-annotated error segmen-
tation) yields six labels in total: three original and
three augmented instructions.

Additionally, we appended a restrictive
prompt—“... not begin with a directive verb...”—to
the end of each prompt template. This decision
stems from our observation that when models
are asked to rephrase an instruction—which
typically emphasizes keeping the tone positive,
encouraging, and supportive—they often adopt
an overly encouraging tone and frequently begin
with directive verbs such as "Keep...". To counter
this tendency, we explicitly prohibit such language
and instead require a neutral tone. Furthermore, to
minimize hallucination during data augmentation
using GPT-4o, we also include the constraint: “Do
not introduce any information that is not present in
the target instruction.” This is designed to ensure
that CoachMe learns from augmented data without
incorporating hallucinated or fabricated content.

A.4 Human Annotation

We employed human annotators for data labeling,
with skating annotations provided by professional
coaches from Europe and Asia, and boxing anno-
tations conducted by members of a college boxing
team. Annotators were informed that their labeled
data would be used to train models. Annotators
were recruited based on their domain expertise and
compensated at a rate of $50 per hour. The data
collection protocol was reviewed and approved by
the Institutional Review Board (IRB).

B Pose Estimator

We selected HybrIK (Li et al., 2022) for pose esti-
mation in this study because it represents the cur-
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Role Content
system You are an experienced figure skating coach

who specializes in helping students improve
their skating skills, particularly with the {mo-
tion type} jump.
Your task is to rephrase the instruction.
Please follow this guideline when rewriting:
Guideline:

1. Use simple and clear language that begin-
ners can easily understand and apply.

2. Maintain a clear and neutral tone with a
professional and objective style.

3. Feel free to omit parts of the original in-
struction that are not particularly helpful.

4. Avoid phrasing that sounds too strict or
overly commanding.

5. Focus on offering constructive suggestions
that help students feel motivated to im-
prove.

If the target instruction does not begin with a di-
rective verb such as "Keep", "Try", "Focus on",
"Ensure", "Consider", "Aim", "Avoid", "Make
sure", or "Remember", you should avoid intro-
ducing one in the rephrased version. Maintain a
neutral tone. Do not introduce any information
that is not present in the target instruction.
Please provide exactly one alternative way to
rephrase the instruction.

user Target instruction: {instruction}

Table 6: Data augmentation template for GPT-4, where
{motion type} refers to the current jump type (Axel,
Lutz, Loop) and {instruction} refers to the original an-
notation.

rent state-of-the-art approach. For comparison, we
also conducted experiments using VIBE (Kocabas
et al., 2020). The Mean Per Joint Position Error
(MPJPE) scores for both methods are presented in
Table 8, and their respective inference times are
provided in Table 9. From these tables, we ob-
serve that the difference in inference times between
HybrIK and VIBE is relatively minor in our use
case, where users upload videos and await gener-
ated instructions. Thus, our system offers flexibil-
ity: users who prioritize faster feedback can opt
for a lightweight model like VIBE, while those
who prefer enhanced accuracy only need to wait
an additional ten seconds to benefit from HybrIK’s
superior precision.

Furthermore, to evaluate the temporal smooth-
ness of the features extracted by HyBriK and VIBE,
we computed the differences per joint frame to
frame in the FS and BX datasets, as shown in Table
10 below. The metric is defined as:

Role Content
system You are an experienced boxing coach who spe-

cializes in helping students improve their boxing
skills, particularly with the {motion type} tech-
nique.
Your task is to rephrase the instruction.
Please follow this guideline when rewriting: Use
simple and clear language that beginners can
easily understand and apply.
Guideline:

1. Use simple and clear language that begin-
ners can easily understand and apply.

If the target instruction does not begin with a di-
rective verb such as "Keep", "Try", "Focus on",
"Ensure", "Consider", "Aim", "Avoid", "Make
sure", or "Remember", you should avoid intro-
ducing one in the rephrased version. Maintain a
neutral tone. Do not introduce any information
that is not present in the target instruction.
Please provide exactly one alternative way to
rephrase the instruction.

user Target instruction: {instruction}

Table 7: Data augmentation template for GPT-4, where
{motion type} refers to the current boxing technique
(Jab and Cross) and {instruction} refers to the original
annotation.

Pose Estimator Figure Skating (FS) Boxing (BX)
HyBriK 21sec 35sec
VIBE 10sec 14.8sec

Table 8: Inference Time Comparision of different pose
estimator on Figure Skating and Boxing datasets.

Smoothness =
1

T − 1

T−1∑

t=1

∥Jt+1 − Jt∥2 , (10)

where Jt denotes the 3D joint positions at frame
t, and T is the total number of frames. A lower
value indicates smoother motion over time. It can
be seen that HyBriK produces significantly lower
differences than VIBE, indicating smoother pose
estimation on our datasets. This effectively reduces
joint misalignment and skeleton drift during fast
actions, making HyBriK more suitable for consis-
tently generating accurate instructions.

To further examine the impact of pose estimation
quality on instructional output, we conducted an ex-
periment comparing HybrIK and VIBE as the pose

Pose Estimator 3DPW Human3.6 MPI-INF-3DHP
HyBriK 71.6 47.0 91.0
VIBE 82.9 65.6 96.6

Table 9: Comparison of HyBriK and VIBE on 3DPW,
Human3.6M, and MPI-INF-3DHP Using MPJPE.
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Model Figure Skating (FS) Boxing (BX)
HyBriK 0.0260±0.0267 0.0043±0.0030
VIBE 0.1340±0.1604 0.0396±0.0443

Table 10: Per-joint frame-to-frame differences.

B1 B4 RG BS G-eval
Dataset Figure Skating (FS)
HyBriK 24.7 2.3 16.9 26.5 1.73
VIBE 16.3 2.1 13.1 0.06 1.35

Dataset Boxing (BX)
HyBriK 43.9 15.3 26.6 39.8 1.63
VIBE 43.1 13.5 26.0 36.3 1.65

Table 11: Comparison of motion instruction generation
methods on FS and BX with different pose estimator.
We evaluated the consistency between the generated
instruction and the ground truth using different NLP
metric and G-Eval. B1, B4, RG, and BS denote BLEU-
1, BLEU-4, ROUGE, and BertScore, respectively.

estimators for CoachMe. The results are presented
in Table 11.

As shown in Table 11, instruction qual-
ity declined across metrics (BLEU, ROUGE,
BERTScore) when VIBE was used instead of Hy-
brIK. These findings suggest that in complex, high-
precision domains such as professional sports, even
subtle inaccuracies in pose estimation can lead to
misleading or suboptimal feedback.While HybrIK
consistently provides more accurate results, the per-
formance gap—particularly in simpler cases like
boxing—is relatively moderate. Reflecting this,
CoachMe is designed with two pose estimation
modes: a fast-response mode using VIBE for im-
mediate feedback, and a high-precision mode using
HybrIK for more accurate guidance. In this paper,
we report results based on HybrIK to ensure the
highest possible instruction quality and consistency
across experiments.

While HybrIK introduces a higher computa-
tional overhead compared to lighter models, feed-
back from professional athletes and coaches in real-
world scenarios indicates that the overall evaluation
time is acceptable. We observed that the process-
ing time did not negatively impact the usability or
practicality of the system.

C Model

C.1 Hyperparameter Settings

For the optimizer, we use AdamW with a learning
rate of 1e-4 and 5000 warm-up steps for both the
pre-training and fine-tuning settings.

For pretraining, we used an A100 GPU, with

Module FS BX
Motion Alignment 0.37sec 0.30sec

HyBrIK 21sec 35sec
Human Pose Perception

& InstructMotion 1.93sec 2.09sec

Table 12: The inference times of Motion Alignment,
HyBrIK, and Human Pose Perception on the Figure
Skating (FS) and Boxing (BX) datasets.

Module # of Parameters
Basic CoachMe 305.54M

Lora of Figure Skating 5.64M
Lora of Boxing 5.64M

Trainable parameters
of CoachMe 232.88M

T5-base 223M

Table 13: The number of parameters in Basic CoachMe
and the trainable parameters in CoachMe for sport-
specific tasks.

a total training time of 1720 minutes (17 min 12
sec ×100). The batch size was set to 16, with a
maximum of 50 epochs.

For finetuning, we set the learning rate to 1 ×
10−4 with a maximum of 200 epochs and 5000
warmup steps. The batch size is set to 4. LoRA
configurations for Human Pose Perception and Pro-
jection use both bias = none, r = 32, alpha = 64,
and dropout = 0.1. The dropout rate is set to 0.5
for Human Pose Perception and 0.1 for the projec-
tion layer. Training was carried out on an RTX
4090, boxing training took 500 minutes (2.5×200)
and skating training 200 minutes (1× 200).

As shown in 14, we can see HybrIK preprocess-
ing accounts for 90% of the inference time, while
CoachMe only requires the remaining 10%.

The number of parameters in Basic CoachMe
and the trainable parameters in CoachMe for sport-
specific tasks.

For Human Pose Perception, we set the number
of kernels in the convolutional neural network to
1024. This is to capture diverse motion details
in motion descriptions and various error types in
motion instructions.

C.2 Model Configuration

This section presents a detailed layer-wise analysis
of each model’s architecture, elaborating on the
structure and functionality of individual compo-
nents. Table 5 provides a comprehensive overview
of the parameter counts along with the correspond-
ing architectural configurations for all modules.

29140



Concept Difference
Concept Encoder

Module ResNet-50 (finetune) MLP Transformer Encoder (x3) Final Projection
# param. 23.5M 1.7M 3.1M 0.13M

shape →2048 →256 →256 →128
Error Segment Identification

Module Input FC Self-Attention FFN Layers Norm Output FC
# param. 2K 1K 65K 64 34

shape 16->16 ->2048 ->16 ->16 ->2
Human Pose Perception

Pose Understanding
Block 0 1 2 3 4

# param. 14K 20K 58K 70K 22K
shape 6->32 ->32 ->32 ->64 ->128

Pose Extraction
Block 0 1 2 3 4

# param. 267K 267K 859K 1M 1M
shape 128->128 ->128 ->256 ->256 ->256
Layer BN Conv AttnJ AttnG

# param. 512 262K 1K 90K
Pose Attention

Block 0 1 2 3 4
# param. 172K 172K 645K 636K 636K

shape 128->128 ->128 ->256 ->256 ->256
Instruct Motion

Projection
Layer 0 1 2 3

# param. 51K 34K 34K 42K
shape 512->512 ->512 ->512 ->768

Language Model : T5-base
# param. 223M

Table 14: Layer-wise architectural configurations and parameter counts of all models. # param. is denoted as the
number of parameters. BN is denoted as the batch normalize. Conv is denoted as the convolution. AttnJ is denoted
as the attention joint. AttnG is denoted as the attention graph.

C.2.1 Concept Difference

The Concept Encoder consists of four main com-
ponents: a ResNet-50 backbone with partial fine-
tuning, a lightweight MLP transformation module,
a 3-layer Transformer Encoder, and a final projec-
tion head. The ResNet-50 backbone is finetuned
from stage 4 onward, transforming the input RGB
clip into a 2048-dimensional feature representation.
This is followed by an MLP comprising three fully
connected layers that reduce the dimensionality to
256. The Transformer Encoder further processes
the temporal sequence of features across three lay-
ers, each with multi-head self-attention and feed-
forward blocks. The final projection head maps
the representation to a 128-dimensional embedding
space for motion alignment.

For the Error Segment Identification module, we
adopt a simple transformer-style architecture. The
input first passes through a linear layer to expand
the feature space from 16 to 16 dimensions, fol-
lowed by a single-layer self-attention mechanism.
This is followed by a feed-forward network with
an intermediate dimensionality of 2048. Layer nor-

malization is applied before and after the atten-
tion and feed-forward layers. A final output layer
maps the sequence to a binary prediction indicating
whether a frame belongs to an error segment.

C.2.2 Human Pose Perception
In Human Pose Perception, Pose Understanding,
Pose Extraction, and Pose Attention all consist of
five identical blocks. Each block includes a spatial
convolution, implemented as a single 2D convo-
lution layer, followed by a temporal convolution
composed of a batch normalization layer, a ReLU
activation function, a 2D convolution layer, another
batch normalization layer, and a second ReLU acti-
vation function, applied sequentially. Additionally,
each block incorporates a residual connection that
consists of a 2D convolution layer followed by a
batch normalization layer.

After the Pose Extraction blocks, the output is
first processed by a batch normalization layer fol-
lowed by a convolution layer to produce the at-
tention embedding. The attention embedding is
then further processed sequentially by a convolu-
tion layer, a batch normalization layer, and a linear
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interpolation operation. Finally, a sigmoid activa-
tion function is applied to generate the attention
joint. In parallel, the attention embedding first un-
dergoes average pooling, convolution, and batch
normalization, then passes through tanh and ReLU
activations to generate the attention graph.

In terms of the graph, except for Pose Attention,
which utilizes the attention graph, the rest are based
on the spatial graph.

C.2.3 Instruct Motion
The Projection applies temporal average pooling,
followed by three consecutive blocks, each consist-
ing of a linear layer, a batch normalization layer,
and a ReLU activation function applied in sequence.
Then, a final linear layer to map from 512 to 768
dimensions for T5-base input.

We choose beam search as our decoding strate-
gies in InstructMotion, as discussed in Section 3.3.
As beam search typically generates better descrip-
tions of motion sequences by considering more
candidate options, we have chosen it over greedy
search. We set the beam size of beam search is 3.

For tokenizer, we utilize the AutoTokenizer from
the Hugging Face Transformers library to effi-
ciently process input sequences. This ensures opti-
mized tokenization while maintaining compatibil-
ity with the T5-base model. For the T5 configu-
ration, we use T5ForConditionalGeneration from
the Hugging Face Transformers library to initialize
the model with a predefined configuration. This
guarantees consistency in the model architecture
and parameter settings, while leveraging the pre-
trained weights of T5-base for effective sequence-
to-sequence generation.

C.3 Pretrain and Finetune

We adopt the idea of Chain of Thought (Lee et al.,
2023). We use "Motion Description" during pre-
train and "Motion Instruction" during finetune as
the start tokens separately. Therefore, model can
distinguish whether to generate motion descrip-
tion or instructional language according to the task
prompt given from the start tokens.

D Visualization

D.1 t-SNE Visualization of Learner-Standard
Pair

In Figure 10 we present more examples of select-
ing the minimum distance and visualized embed-
dings.

In illustration A, we show that the gray frames
are not selected since the frame in the standard
video represents preparation for the Axel, which
is not included in the input video. Illustrations B
and C showcase the aligned start and end frames by
computing the minimum distance using the DTW
cost matrix. Each illustration is associated with its
corresponding DTW cost matrix, where the red dot
denotes the minimum value.

D.2 Visualize Attention of Human Pose
Perception

To explain why certain motion elements are gener-
ated in the instructions, we visualize the attention
graph and joints used in Human Pose Perception.
As shown in Figure 1, We visualize the top-3 impor-
tant relationships of two joints, which is recorded in
attention graph, and top-3 important joints, which
is recorded in attention joints, that learned by Hu-
man Extraction. We set the number of attention
graph to 4. Figure 1 shows that the different atten-
tion graphs can pay attention on different human
body-parts.

E Evaluation

E.1 Metrics

Following Guo et al. (2022b) and Jiang et al.
(2024), we utilized several standard metrics:
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
and BertScore (Zhang et al., 2020).

However, BLEU scores generally evaluate the
similarity and identification of word spans. By
nature, these scores tend to be higher in some gen-
eration tasks where the generated texts are more
consistent, and lower in others. In this paper, we ob-
serve the same trend: the BLEU scores for motion
descriptions 2 are higher than those for generated
instructions 3. Model reliability is not the reason
for this difference. The human evaluation in 5 fur-
ther supports the performance superiority of the
proposed model.

Therefore, to better assess the quality of gener-
ated text instructions, we incorporated G-Eval (Liu
et al., 2023b) to evaluate the consistency between
the predicted instructions and the ground truth. The
scale was between 1 to 5. This was done by prompt-
ing Claude to evaluate the score of consistency with
a dedicated template as follows (See. Sec E.9). We
followed the original paper and prompted Claude
five times to avoid ties in scores. Additionally, we
consulted domain experts to identify subtle differ-
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Figure 6: The horizontal bar chart represents the to-
tal number of predicted figure skating instructions of
CoachMe assigned to each indicator (Sec. 4.4), with
colors indicating their respective G-eval scores. The
gray bar is the ground truth boxing instruction in FS
dataset.

ences that can be discerned only by specialists in
the field.

E.2 Detailed Overview of Six Sport Indicators

In Section 4.4, we define six key indicators, each of
which is described in detail below. The evaluation
of whether the instruction contain these factors is
based on the design of prompts in reference to the
G-eval template (Liu et al., 2023b), as detailed in
Section E.9.

(1) Detecting errors in the motion – Identifying
mistakes such as improper posture, imbalance, or
misalignment.

(2) Identifying timing information – Determin-
ing if an error occurs during takeoff, mid-air, or
landing, or if there is a rhythm disruption.

(3) Recognizing body part movements – Point-
ing out the specific body parts involved in an error,
such as the left knee dropping or the right shoulder
tilting.

(4) Identifying causal relationships in the
sport – Explaining how an error affects perfor-
mance, such as instability from poor foot position-
ing.

(5) Explaining how to improve the sport –
Providing corrections such as lifting the right leg
higher for better balance.

(6) Describing how body parts coordinate or
interact – Explaining how multiple body parts
should work together or interact, such as aligning
the hips and shoulders during rotation.
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Figure 7: The horizontal bar chart represents the to- tal
number of predicted boxing instructions of CoachMe
assigned to each indicator (Sec. 4.4), with colors indi-
cating their respective G-eval scores. The gray bar is
the ground truth boxing instruction in BX dataset.

E.3 Sport Indicators on FS and BX datasets
In addition to analyzing the instructions predicted
by CoachMe, LLaMA, and GPT-4o, we also ex-
amined the distribution of sport indicators in the
ground-truth instructions annotated by professional
coaches. The differences in sport indicator distribu-
tions between figure skating and boxing, as shown
in the Figure 6 and Figure 7, highlight the signifi-
cant distinctions between these two sports. In both
figures, we can also observe that the distribution
of instructions predicted by CoachMe is almost
consistent with those of FS and BX.

CoachMe achieves G-eval consistency scores of
2.20 and 1.83 with respect to the ground-truth in-
structions in the figure skating (FS) and boxing
(BX) datasets, respectively. These scores indicate
that, while there remains a noticeable gap in se-
mantic similarity to the ground-truth instructions,
CoachMe successfully captures and aligns with the
sport-specific instructional patterns. This is evident
in its sport indicator distributions, which closely
mirror the domain-specific patterns in both sports.
These results suggest that CoachMe is capable of
generating sport-specific instruction.

We also use six sport indicators to analyze our
ground truth instruction in the FS and BX datasets,
as shown in Figure 8. The numbers in Figure 8
indicate the frequency with which the guidance
prompts contain the indicators corresponding to
both the row and the column.

P =
number of instructions containing two indicators

N
,

(11)
where N denotes the total number of instructions.
After comparison with Figure 5, we can find that
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Our Datasets : FS and BX
Problem Solution
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Figure 8: Effectiveness of indicator combinations on
the FS and BX datasets. In the evaluation matrix, red
numbers in the upper-right triangle represent scores on
the FS dataset. Orange numbers in the lower-left triangle
show scores on the BX dataset. Each number denotes
the percentage P of the ground truth that contain two
indicators, calculated based on Eq. 11

the distribution of the FS and BX datasets shows
a striking similarity to the distribution of instruc-
tions predicted by CoachMe for figure skating and
boxing videos.

E.4 Comparison of Modalities in Human
Evaluation

In this paper, we also collaborate with figure skat-
ing coaches to provide professional evaluations
comparing the three configurations of our model:
Basic CoachMe, CoachMe (RGB), and CoachMe
(Baseline). Table 15 illustrates the results. Ba-

Figure 9: Target motion retrieval (red) from input video
using reference video (blue). Top right: alignment cost
for each starting frame. Gray dots indicate frames out-
side the selected segment.

Reference type Best (%) Worst (%)
Basic CoachMe 28.2 25

CoachMe 48.4 36
CoachMe (RGB) 23.4 39

Table 15: Win rate of each CoachMe setting in human
evaluation.

sic CoachMe and CoachMe (RGB) settings fail to
provide key insights for improving jumps. They
frequently generate guidance that always applies,
such as “Try to keep your body straight while in the
air,” while overlooking other more critical issues.
Instead, CoachMe provides precise and personal-
ized instructions. Notably, CoachMe generates in-
structions most frequently rated as the best. These
results align with the quantitative evaluation results
shown in Table 5. It also validates that using skele-
ton as the motion token modality achieves superior
performance in skating.

E.5 Sport Indicators and Negative Factors in
Human Evaluation

To further analyze the effectiveness of generated
instructions, during human evaluation by coaches,
when a coach rated a model-generated instruction
as the best or worst, they were also asked to specify
the reasons for their selection, as shown in Figure
11. The six reasons (See Sec. 4.4 and Sec. E.2)
why an instruction is rated as best correspond ex-
actly to the six sport indicators. Therefore, we can
examine the key indicators that contributed to high-
quality feedback in human evaluation. The four
reasons why an instruction is rated as worst are the
following below:

(1) General – The instruction is too general.
(2) Irrelevant – The instruction is irrelevant to

the movement.
(3) Incorrect Body Part – The instruction does

not identify the body part correctly.
(4) Incorrect Time – The instruction does not

identify the time information correctly.
Professional coaches are allowed to select more

than one reason for rating an instruction as best or
worst if multiple reasons apply, or to choose none
if none are appropriate.

E.6 Analysis of Human Evaluation on Figure
Skating

We analyzed the proportion of each sport indica-
tors when a model was rated good, revealing how
different models emphasize key instructional ele-
ments. Table 16 presents the distribution of 6 sport
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Figure 10: When possible, we mark the same frame using a single circle and link it to the frame comparison. If this
is not possible, two circles are drawn to indicate their corresponding frames.

reasons GPT-4o LLaMA CoachMe
Figure Skating (FS)

Rated as Best (%) 31.3 35.9 32.8
Error (%) 12.5 10.9 10.9
Time (%) 12.5 14.1 20.3

Body Part (%) 9.4 14.1 18.8
Causation (%) 17.2 15.6 18.8
Method (%) 15.6 10.9 21.9

Coordination (%) 3.1 4.7 12.5
Rated as Worst (%) 34.4 31.3 34.4

General (%) 23.4 35.0 25.0
Irrelevant (%) 10.9 18.8 12.5

Incorrect Body Part (%) 9.4 14.1 17.2
Incorrect Time (%) 4.7 6.3 3.1

Boxing (BX)
Rated as Best (%) 26.8 39.0 34.1

Error (%) 42.1 71.4 56.5
Time (%) 31.6 57.1 43.5

Body Part (%) 21.1 47.6 39.1
Causation (%) 36.8 38.1 26.1
Method (%) 21.1 38.1 30.4

Coordination (%) 31.6 57.1 21.7
Rated as Worst (%) 39.0 39.0 22.0

General (%) 60.0 40.0 44.4
Irrelevant (%) 33.3 20.0 22.2

Incorrect Body Part (%) 53.3 20.0 11.1
Incorrect Time (%) 0 0 0

Table 16: Comparison of the proportions of best/worst
reasons for each model on Boxing (BX) dataset, based
on 41 test videos and their corresponding predicted in-
structions. The percentages indicate how often an in-
struction was rated as best or worst due to the presence
of the corresponding sport indicators or reasons. Er-
ror denotes error identification. Time denotes timing
recognition. Body Part denotes body part awareness.
Causation means causal relationships. Method means
corrective methods. Coordination means coordination
analysis. (See Sec. 4.4 and Sec. E.2).

indicators across GPT-4o, LLaMA, and CoachMe
on Figure Skating (FS) dataset. Among the six in-
dicators, CoachMe consistently demonstrated supe-
rior performance, particularly in timing recognition
(20.3%), body part awareness (18.8%), causal rela-
tionships (18.8%), and corrective methods (21.9%).
This suggests that CoachMe not only identifies
movement errors but also provides more actionable
and context-aware feedback. Notably, coordina-
tion analysis, which is crucial for complex sports
movements, was significantly higher in CoachMe
(12.5%) compared to GPT-4o (3.1%) and LLaMA
(4.7%).

Regarding the quality of the generated instruc-
tions, we consulted professional figure skating
coaches to obtain expert assessments. Overall, the
coaches expressed strong appreciation and were
notably impressed by the quality of instructions
produced by CoachMe. Despite this positive recep-
tion, we conducted a further analysis of the subset
of instructions (29.7%) that received "bad" ratings
in the human evaluation, as shown in Table 5.

After discussions with coaches, we identified
three common issues that contributed to the rating
of an instruction as low quality on CoachMe.

(1) Misidentification of jump types (30.4%):
CoachMe identifies errors related to a specific jump
type-for example, describing a toe loop when the
actual jump performed is an Axel.

(2) Correct but generic instruction (21.7%):
The predicted instruction is technically accurate but
fails to highlight the most critical technical detail
that requires correction.

(3) False positive instructions (30.4%): The
instruction correctly identifies a specific error, but
the athlete’s actual execution is technically sound,
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Figure 11: A sample video and its generated responses
from three different models shown on the 5.3.
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Figure 12: The horizontal bar chart represents the to-
tal number of instructions assigned to each indicator
(Sec. 4.4), with colors indicating their respective G-eval
scores. Higher G-eval scores indicate more informative
and effective guidance that aligns more closely with the
ground truth. The G-eval scores range from 1 to 5.

leading to unnecessary corrections.
The first issue arises from our pretrained model

trained on the HumanML3D dataset, which lacks
detailed examples of specialized figure skating
jumps. While these jumps are technically distinct,
their biomechanical similarities make them difficult
to differentiate. This limitation is more pronounced
in general models like GPT-4o and LLaMA, which
are not designed to capture domain-specific biome-
chanical cues.

The occurrence of the second issue highlights
the need for incorporating sport-specific knowledge
into the instruction generation process. This prob-
lem is more prevalent in GPT-4o and LLaMA that
often provide broadly accurate yet overly generic
instructions, missing critical nuances (see Section
6.1 for detailed analysis). While the design of
CoachMe aims to alleviate these issues, certain
domain-specific inconsistencies persist. This high-
lights the need for further refinement of our special-
ized models to more accurately identify and convey
the most relevant movement details.

The third issue stems from a bias in our dataset,
where all ground-truth instructions focus on sug-
gesting improvements to the performed actions.
This distribution leads CoachMe to implicitly as-
sume that every input requires correction, even
when the performance is already acceptable. To
remedy this, we plan to introduce a scoring mecha-
nism and integrate examples of high-quality move-
ments with positive annotations. While related
to the general challenge of hallucinations in large
language models, we believe this issue can be ef-
fectively mitigated through future enhancements to
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our training data and model design.

E.7 Analysis of results on Boxing
The boxing coach who conducted the human eval-
uation also noted that since each clip features
only a basic punch and is very short, temporal er-
rors are not relevant. This explains why the "In-
correct Time" factor in Table 16 consistently ac-
counts for 0% of the negative ratings. As shown
in Figure 12, We also observe that, across all mod-
els, instructions perform unusually poorly on the
sport indicator "Time", suggesting that when the
video is short—such as containing only a single
punch—none of the models are able to provide
meaningful temporal descriptions. This issue per-
sists even in CoachMe, which specifically includes
a Concept Difference Module designed to handle
temporal information.

Despite this limitation, CoachMe outperforms
both LLaMA and GPT significantly in the boxing
domain across NLP metrics, G-eval, and human
evaluations.

However, as shown in Figure 12, CoachMe per-
forms relatively poorly on the sport indicator Co-
ordination. To understand this, we consulted box-
ing experts, who pointed out that in current box-
ing videos, it is often sufficient to describe indi-
vidual body parts rather than the relationships be-
tween them. As a result, instructions generated by
CoachMe can still receive high scores even with a
low mention rate of Coordination.

This is because for beginner-level learners in
the BX dataset, it is more effective to provide in-
structions targeting single body parts rather than
describing complex interrelations among different
body parts. Overloading beginners with correc-
tions involving multiple body parts and their coor-
dination may increase the complexity of the move-
ments, making them harder to execute correctly.
Therefore, professional coaches tend to focus on
adjusting one specific body part at a time. This is
particularly relevant in fundamental actions such
as "Jab" and "Cross" or in stance training, which
are designed to help novice boxers understand how
to protect themselves during actual sparring.

This observation is reflected in the low frequency
of the sport indicator "Coordination" in both the
ground-truth distribution of the BX dataset and the
instruction predictions generated by CoachMe, as
shown in 7 and 8. Despite incorporating a Human
Pose Perception designed to model coordination of
different body parts, CoachMe effectively learns

this pattern—providing simple, targeted instruction
that mirrors such coach style employed by profes-
sional coaches when training beginners.

This highlights the importance of domain-
specific knowledge, as each sport involves unique
movement patterns. This is precisely the design
philosophy behind CoachMe: the ability to adapt
to different sports by effectively acquiring domain-
specific knowledge, supported by lightweight task-
specific adaptation models. However, this also sug-
gests that the instructions should not only be sport-
specific, but the evaluation indicators, the sport
indicators, may also need to be tailored for each
sport. In the future, it may be beneficial to de-
sign sport-specific sets of indicators tailored to the
characteristics of each sport and action type.

E.8 Human Evaluation Interface
Figure 11 demonstrates the human evaluation in-
terface used in the experiment. Our annotator is
required to select the best and worst answers gen-
erated by the models, providing an explanation for
each choice. Note that throughout the evaluation,
the annotator is not provided any additional infor-
mation (e.g., ground truth). This ensures that the
information seen by the annotator aligns with the
information available to our model.

E.9 G-Eval Template
We follow the original G-Eval paper (Liu et al.,
2023b) to design tailored prompts for evaluating
the generated instructions. Claude (via its API) is
employed as the evaluation LLM in our implemen-
tation of the G-Eval methodology. We adopt the
G-Eval "Consistency" template to assess how well
the generated instructions align with the ground
truth, as illustrated in Table 17. We also design
specific prompts to evaluate the quality of instruc-
tions based on the indicators we have defined,
as described in Section 4.4. We adopt 6 G-Eval
templates to evaluate specific aspects of instruc-
tional content: error detection (See Table 18), time-
related expressions (See Table 19), descriptions
that mention specific body parts (See Table 20),
causation or logical explanations of motion (See
Table 21), methods for improvement (See Table
22), and coordination between body parts (See Ta-
ble 23).
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You will be given an instruction provided by the coach. You will then be given one rephrased version of that instruction.

Your task is to rate the rephrased version on one metric.

Evaluation Criteria:

Consistency (1-5) - the factual alignment between the summary and the summarized source. A factually consistent
rephrased version contains only statements that logically follow from the original instruction.

Evaluation Steps:

1. Read the coach’s instruction carefully and identify the main facts and details it presents.
2. Read the rephrased version and compare it to the coach’s original instruction. Check if the rephrased version contains
any factual inaccuracies that are not supported by the original instruction.
3. Assign a score for consistency based on the Evaluation Criteria.

Example:
Coach’s Instruction:

{{Document}}

Rephrased Version:

{{Summary}}

Evaluation Form (scores ONLY):
Consistency: [Insert score here]

You only need to give a score of this example directly.

Table 17: Consistency Template

You will be given an instruction provided by the coach.

Your task is to rate the instruction on one metric.

Evaluation Criteria:

Error Detection (0-1) - The instruction contains any wording that can point out the error clearly.
0: The instruction doesn’t clearly point out the error.
1: The instruction clearly points out the error.

Evaluation Steps:

1. Read the coach’s instruction carefully and identify the main facts and details it presents.
2. Check if the instruction contains any wording that can point out the error clearly. Ensure that the athlete understands
exactly what the problem is after hearing the instruction. Just like these two coaching instructions: "Make sure not to
position your right leg too far behind your left leg when preparing for takeoff." and "Your first jump is good. For the
second jump, avoid overturning your left side before takeoff and bend your right knee more for better height."
3. Assign a score for Error Detection based on the Evaluation Criteria.

Example:
Coach’s Instruction:

{{Instruction}}
Evaluation Form (scores ONLY):
Error Detection: [Insert score here]

You only need to give a score of this example directly.
ONLY OUTPUT A SINGLE NUMBER (0 or 1) WITH NO ADDITIONAL TEXT.

Table 18: G-eval : Error Detection Template.
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You will be given an instruction provided by the coach.

Your task is to rate the instruction on one metric.

Evaluation Criteria:

Time Detection (0-1) - The instruction contains wording that clearly includes time-related information.for example like:
when take off, during the landing...
0: The instruction doesn’t mention time-related information.
1: The instruction clearly mentions time-related information.

Evaluation Steps:

1. Read the coach’s instruction carefully and identify the main facts and details it presents.
2. Check if the instruction contains any wording that clearly includes time-related information. Ensure that the athlete
can understand when and how to act after hearing the instruction. Just like these three coaching instructions: "Remember
to keep your posture straight and vertical during the initial stages of the jump, it will help in achieving the correct
form.", "Bend your hands a bit at takeoff to aid your spin." and "Stretch your right side backward and left side forward
beforehand to increase power."
3. Assign a score for Time Detection based on the Evaluation Criteria.

Example:
Coach’s Instruction:

{{Instruction}}

Evaluation Form (scores ONLY):
Time Detection: [Insert score here]

You only need to give a score of this example directly.
ONLY OUTPUT A SINGLE NUMBER (0 or 1) WITH NO ADDITIONAL TEXT.

Table 19: G-eval : Time Detection Template

You will be given an instruction provided by the coach.

Your task is to rate the instruction on one metric.

Evaluation Criteria:

Body Parts Detection (0-1) - The instruction contains any wording that includes body parts clearly.
0: The instruction doesn’t clearly point out the body parts.
1: The instruction clearly points out the body parts.

Evaluation Steps:

1. Read the coach’s instruction carefully and identify the main facts and details it presents.
2. Check if the instruction contains any wording that can point out the body parts clearly. Ensure that the athlete
understands exactly which body parts to focus on after hearing the instruction. Just like these two coaching instructions:
"Practice moving your left foot along the ice towards your right foot, without lifting it too soon." and "Keep your right
leg from going over your left leg during takeoff for a smoother jump. Ensure your right toe lock stays firm. Manage your
hands, don’t lift them too high while spinning, and make a circle with them."
3. Assign a score for Error Detection based on the Evaluation Criteria.

Example:
Coach’s Instruction:

{{Instruction}}

Evaluation Form (scores ONLY):
Body Parts Detection: [Insert score here]

You only need to give a score of this example directly.
ONLY OUTPUT A SINGLE NUMBER (0 or 1) WITH NO ADDITIONAL TEXT.

Table 20: G-eval : BodyPart Detection Template
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You will be given an instruction provided by the coach.

Your task is to rate the instruction on one metric.

Evaluation Criteria:

Causation Detection (0-1) - The instruction contains any wording that can describe the logic of the motion or its
cause-and-effect relationship clearly.
0: The instruction doesn’t clearly point out the cause-and-effect relationship of the motion.
1: The instruction clearly points out the cause-and-effect relationship of the motion.

Evaluation Steps:

1. Read the coach’s instruction carefully and identify the main facts and details it presents.
2. Check if the instruction contains any wording that can describe the logic of the motion or its cause-and-effect
relationship clearly. Ensure that the athlete understands exactly what the logic of the motion is after hearing the
instruction. Just like these two coaching instructions: "Practice keeping your left leg closer to your right foot and lifting
your left knee higher to help create more power for a higher jump because you are not fully rotating your jumps right
now." and "Remember to keep your posture straight and vertical during the initial stages of the jump, it will help in
achieving the correct form."
3. Assign a score for Error Detection based on the Evaluation Criteria.

Example:
Coach’s Instruction:

{{Instruction}}

Evaluation Form (scores ONLY):
Body Parts Detection: [Insert score here]

You only need to give a score of this example directly.
ONLY OUTPUT A SINGLE NUMBER (0 or 1) WITH NO ADDITIONAL TEXT.

Table 21: G-eval : Causation Detection Template

You will be given an instruction provided by the coach.

Your task is to rate the instruction on one metric.

Evaluation Criteria:

Method Detection (0-1) - The instruction contains any wording that can clearly explains how to improve the motion.

0: The instruction doesn’t clearly explains how to improve the motion.
1: The instruction clearly explains how to improve the motion.

Evaluation Steps:

1. Read the coach’s instruction carefully and identify the main facts and details it presents.
2. Check if the instruction contains any wording that can clearly explains how to improve the motion. Ensure that the
athlete understands exactly what the logic of the motion is after hearing the instruction. Just like these two coaching
instructions: "Practice moving your left foot along the ice towards your right foot, without lifting it too soon." and "You
need to have more speed before the jump."
3. Assign a score for Error Detection based on the Evaluation Criteria.

Example:
Coach’s Instruction:

{{Instruction}}

Evaluation Form (scores ONLY):
Body Parts Detection: [Insert score here]

You only need to give a score of this example directly.
ONLY OUTPUT A SINGLE NUMBER (0 or 1) WITH NO ADDITIONAL TEXT.

Table 22: G-eval : Method Detection Template
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You will be given an instruction provided by the coach.

Your task is to rate the instruction on one metric.

Evaluation Criteria:

Coordination Detection (0-1) - The instruction contains any wording that can clearly explains how the body coordinates
movements or how more than two body parts work together.
0: The instruction doesn’t clearly explains how the body coordinates movements or how more than two body parts work
together.
1: The instruction clearly explains how the body coordinates movements or how more than two body parts work together.

Evaluation Steps:

1. Read the coach’s instruction carefully and identify the main facts and details it presents.
2. Check if the instruction contains any wording that can clearly explains how the body coordinates movements or how
more than two body parts work together. Ensure that the athlete understands exactly how to coordinate the movement
after hearing the instruction. Just like these two coaching instructions: "Practice moving your left foot along the ice
towards your right foot, without lifting it too soon." and "Make sure not to position your right leg too far behind your left
leg when preparing for takeoff. Stretch your right side backward and left side forward beforehand to increase power. Try
using more force for the takeoff and rotate your body towards the jump to raise your left leg higher."
3. Assign a score for Error Detection based on the Evaluation Criteria.

Example:
Coach’s Instruction:

{{Instruction}}
Evaluation Form (scores ONLY):
Body Parts Detection: [Insert score here]

You only need to give a score of this example directly.
ONLY OUTPUT A SINGLE NUMBER (0 or 1) WITH NO ADDITIONAL TEXT.

Table 23: G-eval : Coordination Detection Template
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