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Abstract

Open-source Large Language Models (LLMs)
often employ safety alignment methods to re-
sist harmful instructions. However, recent re-
search shows that maliciously fine-tuning these
LLMs on harmful data can easily bypass these
safeguards. To counter this, we theoretically
uncover why malicious fine-tuning succeeds
and identify potential defense strategies. Build-
ing on the theoretical analysis, we introduce
the Self-Degraded Defense (SDD) framework.
SDD encourages LLMs to produce high-quality
but irrelevant responses to harmful prompts.
When attackers attempt malicious fine-tuning,
the general capability of the LLM aligned by
SDD will significantly decrease, rendering it in-
capable of following harmful instructions. Our
experimental results confirm SDD’s effective-
ness against such attacks. Our code is available
at https://github.com/ZeroNLP/SDD.

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020; Chowdhery et al., 2022; Touvron et al.,
2023a) have emerged as fundamental infrastructure
supporting a diverse range of AI applications (Ope-
nAI, 2022; Huang et al., 2023; Luo et al., 2023).
However, LLMs can potentially pose risks to so-
cial safety. For example, LLMs have the poten-
tial to follow harmful instructions (e.g.,“how to
kill a person”) and give detailed responses, which
might be exploited by malicious users, thus caus-
ing real harm. Given the safety threat posed by
LLMs, many alignment methods (Bai et al., 2022;
Ouyang et al., 2022; Rafailov et al., 2023) and
alignment datasets (Zhou et al., 2023a; Bai et al.,
2022) are proposed to steer LLMs towards help-
fulness, honesty, and harmlessness (Askell et al.,
2021). After applying such alignment methods,
many organizations believe that those LLMs were
sufficiently safe for public release (Touvron et al.,
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2023b). Users can now customize open-source
LLMs by fine-tuning them on their own datasets,
tailoring the models to their specific requirements.

However, the debate in the academic community
over open-source LLMs has intensified, especially
regarding safety risks. Recent research (Yang et al.,
2023b; Lermen et al., 2023; Gade et al., 2023; Zhan
et al., 2023) reveals that introducing a small amount
of harmful data during fine-tuning process or even
fine-tuning with benign data (Qi et al., 2023) can
compromise the safeguard established by the above
alignment methods, posing serious challenges to
LLM safety. We categorize the fine-tuning pro-
cesses that can compromise the established safe-
guard into two types, namely, benign fine-tuning
(BFT) and malicious fine-tuning (MFT). BFT can
accidentally undermine safety alignment when us-
ing benign data, whereas MFT deliberately steers
LLMs toward harmfulness.

Malicious Fine-Tuning (MFT) poses a
formidable risk to open-source Large Language
Models (LLMs). For instance, existing experi-
mental findings have revealed that fine-tuning
open-source Llama2 (Touvron et al., 2023c) en-
ables users to readily access nearly comprehensive
information regarding a virus sample with a global
infection rate affecting billions of lives (Gopal
et al., 2023). Mitigating MFT provides a valuable
tool for regulators and model developers to address
the inherent tensions between openness and safety
in open-weight models (Miller and Selgelid, 2007).

Existing methods to mitigate MFT largely rely
on empirical observations rather than rigorous the-
oretical analysis. For example, Vaccine (Huang
et al., 2024b), T-Vaccine (Liu et al., 2024a), and
Booster (Huang et al., 2025) aim to counteract the
harmful embedding shift, a phenomenon first noted
by Huang et al.. Similarly, drawing on the obser-
vation that LLM safety mechanisms are localized
in a small fraction of model weights (Wei et al.,
2024), RepNoise (Rosati et al., 2024) disrupts the
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information structure of harmful representations,
making them significantly harder to recover.

Our work provides theoretical insights into the
vulnerabilities of existing safety alignment meth-
ods, elucidating why MFT can bypass their safe-
guards. The conventional goal of current safety
alignment is to train LLMs to explicitly reject harm-
ful instructions. We propose a nuanced shift in this
goal, which is to ensure that the model simply does
not produce harmful responses. This shift opens
an unconventional path, i.e., completely impairing
the model’s general capabilities after the model un-
dergoes MFT attacks. Such impairment renders
the model incapable of fulfilling any instructions,
including malicious ones, thus effectively ensur-
ing its safety. We theoretically demonstrate that
an LLM’s general capabilities can be effectively
impaired after undergoing MFT under certain con-
ditions.

Inspired by our theoretical analysis, we propose
a novel approach named Self-Degraded Defense
(SDD), designed to defense MFT. SDD ensures
that if a model is protected by this method, any
MFT attempt will cause it to fail at fulfilling any
instructions, including harmful ones, thereby meet-
ing our relaxed safety goal. MFT’s objective favors
harmful responses over the model’s original out-
puts, leading to a decrease in the probability of
those original responses. SDD leverages this by
setting the model’s original responses to harmful
queries as high-quality, unrelated benign responses.
When a model protected by SDD undergoes MFT,
its ability to produce these high-quality benign re-
sponses is compromised, leading to a significant
degradation of its general capabilities. Specifically,
we construct a meticulously crafted dataset pairing
harmful queries (e.g., “how to kill a person”), with
high-quality unrelated benign responses (e.g., the
instructions for making coffee). SDD is applied
via a simple supervised fine-tuning process and can
be integrated at any stage of an LLM’s training
pipeline.

Experimental results demonstrate that the SDD
framework effectively MFT. In addition, SDD
maintains general capabilities when undergoing
benign fine-tuning. Moreover, SDD exhibits excel-
lent compatibility with the current LLM training
pipeline. These findings underscore SDD’s po-
tential as a complementary safeguard for current
aligned models, particularly in defending against
MFT attacks.

Our contributions are outlined as follows,

• We theoretically prove that MFT can compro-
mise safety alignment, revealing the signifi-
cant risk posed by MFT attacks.

• We propose Self-Degraded Defense (SDD),
which achieves defense by steering the model
to generate irrelevant high-quality responses
to harmful instructions.

• Experimental results demonstrate that SDD
effectively mitigates the risk of MFT, paving
the way for the safety of open-source LLMs.

2 Related Work

LLM Alignment. Efforts have been made to align
LLMs with human values before their release into
real-world applications. One crucial aspect of LLM
alignment involves Instruction Tuning (Wei et al.,
2022; Ouyang et al., 2022) or Supervised Fine-
Tuning (SFT) (Achiam et al., 2023; Touvron et al.,
2023c; Zhou et al., 2023a) using safe supervised
data. Besides SFT, Reinforcement Learning from
Human Feedback (RLHF) (Ouyang et al., 2022;
Bai et al., 2022; Stiennon et al., 2020) emerges as a
prominent method, leveraging human feedback and
preferences to enhance LLMs’ safety capabilities.
Recent advancements (Rafailov et al., 2023; Yuan
et al., 2024; Xu et al., 2023; Dai et al., 2023; Yang
et al., 2023a; Li et al., 2023) propose more effi-
cient and effective alternatives to RLHF for align-
ment. Aligned LLMs, represented by models such
as ChatGPT (Achiam et al., 2023) and Claude (An-
thropic, 2023) adhere to human values and refrain
from responding to harmful requests. However,
these approaches may not fully address the risks as-
sociated with malicious fine-tuning in open-source
scenarios.
Fine-tuning Attacks and Defenses. Fine-tuning
attacks can undermine the safety mechanism es-
tablished by the above alignment techniques of
LLMs by fine-tuning the models using carefully
designed data (i.e., malicious fine-tuning) (Yang
et al., 2023b; Lermen et al., 2023; Gade et al., 2023;
Zhan et al., 2023). These attacks are particularly
prevalent in open-source models.

Specifically, extensive research indicates that
even a small injection of poisoned data into training
sets can cause significant changes in LLM behavior
(Shu et al., 2023; Wan et al., 2023). Malicious fine-
tuning exploits this vulnerability to bypass safety
mechanisms and produce harmful LLMs (Yang
et al., 2023b; Lermen et al., 2023; Gade et al., 2023;
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Figure 1: Summary of SDD framework. By pairing irrelevant answers with harmful instructions for training, SDD
renders LLMs incapable of following harmful instructions after LMMs undergo malicious fine-tuning.

Zhan et al., 2023). For example, fine-tuning with
just 100 harmful question-answer pairs has been
shown to circumvent safety mechanisms across
multiple aligned models (Yang et al., 2023b).

To mitigate these risks, researchers have pro-
posed various defense mechanisms, though most
are based on empirical observation rather than the-
oretical analysis. Several methods, including Vac-
cine (Huang et al., 2024b), T-Vaccine (Liu et al.,
2024a), and Booster (Huang et al., 2025), aim to al-
leviate the harmful embedding shift, a phenomenon
first observed by Huang et al.. This phenomenon
refers to the drift of embeddings over alignment
data before and after fine-tuning. Inspired by the
finding that LLM safety mechanisms reside in a
small fraction of model weights (Wei et al., 2024),
RepNoise (Rosati et al., 2024) works by disrupting
the information structure of harmful representa-
tions, making them much harder to recover. TAR
(Tamirisa et al., 2025) optimizes models to max-
imize their loss on a harmful dataset after one or
more steps of fine-tuning. CTRL (Liu et al., 2024b)
leverages the observation that benign responses to
safety queries typically exhibit lower perplexity
than harmful ones. It selectively revises samples to
reduce perplexity, encouraging benign responses.
However, most existing methods largely rely on
empirical observations rather than a rigorous theo-
retical analysis.

3 Preliminaries

3.1 Threat Model for Malicious Fine-tuning
Attack

Attackers’ Objective. The objective of the at-
tackers is to fine-tune LLMs for harmful purposes
(Hazell, 2023), bypassing established safety guards.

Recent studies have observed that these attacks
may involve circumventing existing safety mecha-
nisms (Qi et al., 2023; Yang et al., 2023b; Bhardwaj
and Poria, 2023) or incorporating harmful training
data to enable illicit behaviors (Zhou et al., 2023b;
Huang et al., 2024b; Henderson et al., 2023).
Attackers’ Capabilities. Attackers have full ac-
cess to the parameters of LLMs because these mod-
els are open-source, which allows them to re-train
the model using any data or any loss function. Con-
sequently, any constraints on the attacker’s training
process and data usage are ineffective, as attackers
are not bound to follow regulations. Therefore, to
effectively mitigate the risks posed by such attacks,
the defense mechanisms must be applied to the
model before its release.

3.2 Notations and Assumptions
We begin by mathematically abstracting the archi-
tecture of the LLM and outlining key assumptions
that will be essential for our subsequent analysis.

First, following (Lin et al., 2023), we simplify
the structure of LLMs. Consider an LLM f =
(Φ,w) composed of a feature selector Φ ∈ {0, 1}dt
and a classifier w ∈ Rd×K , the final output of
the model is denoted as w⊤(xΦ). dt is the total
number of features, K is the number of classes in
the label space, d is the dimensionality of a feature
vector, the input x ∈ Rd×dt is the concatenation of
all feature vectors.

According to (Lin et al., 2023; Arjovsky et al.,
2019; Rosenfeld et al., 2020), the features included
in the dataset can be categorized as: (1) invari-
ant features V := {xv,i}dvi=1 that consistently pre-
dict the label both in in-distribution and out-of-
distribution cases, and (2) spurious features S :=
{xs,j}dsj=1 that have unstable correlations with the

29111



label. dv and ds are the numbers of invariant fea-
tures and spurious features, respectively.

Consider the following scenarios: a well-aligned
model f̄ = (Φ̄,w) (namely, the original model) un-
dergoes MFT, resulting in a new model f̃ = (Φ̃, w̃)
(namely, the maliciously fine-tuned model). f̄
learned invariant features V ⊂ V and spurious
features S ⊂ S. Similarly, f̃ learned invariant
features Ṽ ⊂ V and spurious features S̃ ⊂ S.
The cardinalities of these feature sets are shown
as follows. |Ṽ| = ñv denotes number of invariant
features learned by f̃ . |S̃| = ñs denotes number
of spurious features learned by f̃ . The notation of
|V| = n̄v and |S| = n̄s can be easily derived by
replacing the model f̄ with f̃ . |Ṽ ∩ V| = nvo de-
notes the number of overlapping invariant features
learned by both models. |S̃ ∩ S| = nso denotes the
number of overlapping spurious features learned
by both models. For a new model f∗, we use the
analogous notation: n∗

v, n∗
s, V∗, S∗, n∗

vo and n∗
so,

where the asterisk replaces the tilde or bar in the
subscripts of the above notation. 1

Based on the above notations, we propose an
assumption to facilitate the analysis of fine-tuning
LLMs on new data.

Assumption 1 For some λ ∈ [0, 1] under the task
t, there exists a near-optimal model f∗ with Φ∗ and
w∗ satisfying

Φ∗ =
Φ̃− λΦ̄

1− λ
,w∗ =

w̃ − λw̄

1− λ
, (1)

that makes the accuracy ξt(f
∗) on task t satisfies

∥ξt(fopt)− ξt(f
∗)∥ ≤ ϵ, where fopt is an optimal

model for task t, and ϵ is an extremely small value
approaching zero.

This assumption suggests that a linear extrapola-
tion between the original model and the fine-tuned
model can yield a solution whose performance on
the new dataset approximates the optimal solution.
This assumption aligns with the intuition behind
the optimization process. To facilitate subsequent
analysis, we inherit two more assumptions from
(Lin et al., 2023), referred to as Small Noise As-
sumption and Orthogonal Features Assumption,
as detailed in Appendix A.

1Since all the theorems in §4 involve comparisons across
different tasks, we reuse these notations. However, the mean-
ings of these notations differ across theorems and are deter-
mined by the task t being conducted.

4 Rethinking Current Safety Alignment
Methods

In this section, we conduct a theoretical analysis
to elucidate why current safety alignment methods
fail in safeguarding against MFT in the open-source
scenario. Then, we relax the conventional goal of
safety alignment and attempt to find a solution.

4.1 MFT Reflects Vulnerabilities in Safety
Alignment

Previous work (Huang et al., 2024a) has found that
when a well-aligned model undergoes MFT, the
degree of alignment is significantly reduced. We
aim to analyze the reasons for this reduction in
alignment and attempt to address this issue.

Consider the following scenario: a well-aligned
model f̄ (namely, the original model) undergoes
MFT, resulting in a new model f̃ (namely, the
maliciously fine-tuned model). Under the task A
(namely, the safety alignment task which aims to
generate well-aligned responses), the accuracy of
the original model is denoted as ξA(f̄), while the
accuracy of the maliciously fine-tuned model is rep-
resented by ξA(f̃). Then we derive the following
theorem.
Theorem 1 With the three assumptions mentioned
in §3.2 satisfied, the difference between the accu-
racy of the maliciously fine-tuned model f̃ and that
of the original model f̄ , under the task A, is upper
bounded by:

ξA(f̃)− ξA(f̄)

≤Fp

(
(1− p)(n̄s + n∗

s + 2n∗
so) + n̄v + n∗

v + 2n∗
vo√

n̄s + n∗
s + 14nso

)

−Fp

(
n̄s(1− p) + n̄v√

n̄s

)
,

(2)

where Fp(·) is an increasing cumulative density
function defined in (Lin et al., 2023), p is fixed
constants related to the training data detailed in
Appendix F. n∗

so = |S∗ ∩ S| represents the num-
ber of overlapping spurious features learned by f∗

and f̄ . n∗
vo = |V∗ ∩ V| represents the number of

overlapping invariant features learned by f∗ and
f̄ . Other notations can be found in §3.2.

Due to space limitation, the proof is shown in Ap-
pendix D. One main factor n∗

s, significantly influ-
ences the difference in accuracies, while the other
terms are either constants or negligible. A detailed
analysis is included in Appendix D.

By rewriting Eq. 1 as Φ̃ = λΦ̄ + (1− λ)Φ∗ and
w̃ = λw̄ + (1− λ)w∗, we know λ quantifies the
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extent to which the original model influences the
maliciously fine-tuned model.

Moreover, since the near-optimal model f∗ per-
forms well in malicious data under the safety align-
ment task, the number of spurious features learned
by the near-optimal model f∗ (denoted as n∗

s) is
large. The difference ξA(f̃) − ξA(f̄) is likely to
be negative, indicating that the resulting fine-tuned
model will exhibit inferior performance on safety
alignment task. This highlights the vulnerability of
aligned models when exposed to MFT.

4.2 Relax the Goal of Safety Alignment
The conventional goal of safety alignment is to
ensure that the model rejects harmful instructions,
which surely guarantees safety. However, Theorem
1 reveals the vulnerability of existing alignment
methods that pursue the traditional goal. We ad-
vocate for a relaxed goal: ensuring the model
does not produce harmful responses. This modi-
fication opens an unconventional strategy for safe-
guarding LLMs, i.e., completely impairing the
model’s general capabilities after the model un-
dergoes MFT attacks. Such impairment renders
the model incapable of fulfilling any instructions,
including malicious ones, thus effectively ensuring
its safety. In Theorem 2, we theoretically prove the
feasibility of this idea under certain conditions.

We analyze the relationship between the accu-
racy of maliciously fine-tuned model ξG(f̃) and
that of the original model ξG(f̄) under the task G
(namely, the general task which aims to generate
responses to benign instructions) in the following
theorem.

Theorem 2 With the three assumptions mentioned
in §3.2 satisfied, there exists some parameter set-
tings where n̄v > n∗

v and n̄s < n∗
s, the accuracy

of the maliciously fine-tuned model f̃ and that of
original model f̄ , under the task G satisfies

ξG(f̃) < ξG(f̄). (3)

Due to space limitation, the proof is provided in Ap-
pendix E. This theorem suggests that if the original
model f̄ has more features beneficial for general
tasks compared to the near-optimal maliciously
fine-tuned model f∗, and fewer features that im-
pair performance on general tasks, specifically,
n̄v > n∗

v and n̄s < n∗
s , then maliciously fine-tuned

model f̃ will perform worse on the general task
than the original model. Degradation in general
capabilities implies that the model fails to generate

harmful responses to harmful instructions while
also being unable to provide helpful responses to
benign instructions. This aligns with the relaxed
goal, which ensures that the model does not pro-
duce harmful responses.

5 Method

Drawing inspiration from the theoretical analysis in
§4.2, we present our Self-Degraded Defense (SDD)
framework, which involves pairing unrelated high-
quality answers with harmful instructions and con-
ducting instruction-tuning on LLMs utilizing the
paired data, paving the way for defenses against
malicious fine-tuning attacks.

Firstly, we provide a comprehensive overview
of the rationale and motivation behind the devel-
opment of the SDD framework in §5.1. Then, we
outline our dataset construction process in §5.2. In
§5.3, we introduce the training process of SDD.

5.1 Motivation

In §4.2, we demonstrate the existence of a condi-
tion where MFT leads to a severe decline in general
capability. In this section, we will identify such a
condition and develop an effective method to reach
this condition.

First, we identify the optimization goal of stan-
dard instruction fine-tuning. It is easy to derive
the optimization goal when the specific loss func-
tion is known. However, the specific loss function
employed by the attackers during malicious fine-
tuning is unknown. So we describe the optimiza-
tion goal from two perspectives, namely, scoring
function and policy. A scoring function r(x, y)
measures the discrepancy between the model’s cur-
rent output y and the optimal output. A policy
πθ(y|x) produces output y given the input x under
parameters θ. For example, the LLM is a policy.
The optimization goal can be described as maximiz-
ing the scoring function over the training dataset or
minimizing the Kullback-Leibler (KL) divergence
between the current policy πθ(y|x) and the opti-
mal policy π∗(y|x). More details can be found in
Appendix G.

Attackers aim to destroy safeguards established
by the well-aligned LLM (i.e., the original model)
via MFT. To accomplish this, they require an MFT
dataset consisting of samples formatted as pairs
of instructions and responses (x, yc), where x is a
harmful instruction, and yc is a harmful response.
Given the same instruction x, the output generated
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by the original model is denoted as yo.
The optimization goal of malicious fine-tuning is

to maximize the probability p (yc ≻ yo | x), which
encourages yc (the harmful response from the MFT
dataset) to surpass yo (i.e., the response generated
by the original model prior to MFT). The optimiza-
tion goal is formulated as follows:

max
θ

p (yc ≻ yo | x) (4)

= max
θ

exp (r (x, yc))

exp (r (x, yc)) + exp (r (x, yo))
(5)

= max
θ

exp
(
log π∗(yc|x)

πθ(yc|x)

)

exp
(
log π∗(yc|x)

πθ(yc|x)

)
+ exp

(
log π∗(yo|x)

πθ(yo|x)

)

(6)

= max
θ

π∗(yc|x)
πθ(yc|x)

π∗(yc|x)
πθ(yc|x) +

π∗(yo|x)
πθ(yo|x)

. (7)

These results are derived using the Bradley-Terry
theory (Rafailov et al., 2023) and the relationship
between the scoring function and the policy, as
detailed in Appendix G.

According to Eq. 7, π∗(yo|x)
πθ(yo|x) is a part of the

denominator. When maximizing Eq. 4, the term
π∗(yo | x) will decrease. This indicates that during
MFT, the model tends to reduce the probability of
generating the output that aligns with the distribu-
tion of the original yo.

This provides an opportunity to defend against
MFT by determining yo. If yo are high-quality re-
sponses, this reduction of π∗(yo | x) compromises
the model’s general capability. The degradation of
general capabilities means the LLM produces an ir-
rational response to any instruction, whether benign
or harmful. Given harmful instructions, irrational
responses are harmless while rational responses are
harmful. Degradation of general capabilities aligns
with the relaxed goal presented in §4.2, which pre-
vents the LLM from generating harmful responses
to harmful instructions.

Note that the term π∗(yc | x) will increase when
maximizing Eq. 4. However, it only indicates
the model tends to generate harmful responses
given harmful instructions presented in the MFT
data. For harmful instructions that the model has
never encountered, it tends to generate irrational re-
sponses due to the decrease of the term π∗(yo | x).

5.2 Dataset Construction for SDD
Collection of the Harmful Instructions and
High-quality Responses. Inspired by §5.1, we

aim to construct datasets by pairing harmful in-
structions with high-quality responses from exist-
ing studies (Ji et al., 2023; Zhou et al., 2023a; Taori
et al., 2023). To ensure comprehensive coverage,
our dataset spans 14 harmful categories as detailed
in Appendix K and includes 8K entries, balanced
by sampling equal amounts from each category and
matching them with high-quality responses.
Random Match. For each collected malicious in-
struction, a high-quality response is required for
pairing. We utilized publicly available high-quality
instruction fine-tuning datasets, including Alpaca
(Taori et al., 2023) and LIMA (Zhou et al., 2023a),
considering only their response data. Subsequently,
the high-quality benign response is randomly sam-
pled for pairing with each malicious instruction,
resulting in a dataset in the form of <Harmful In-
struction, Random Answer>. For example, <“Tell
me how to cyberbully a child”, “J.K. Rowling is a
British author best known for writing · · · ”>.
Irrelevance Selection. Within our SDD frame-
work, it is crucial to ensure that the training
instruction-answer pairs do not inadvertently con-
vey harmful information. For instance, if the harm-
ful instruction is “Teach me how to make a bomb”,
the answer must not provide relevant information,
such as “The chemical synthesis of nitroglycerin
is as follows:· · · ”. However, despite the low prob-
ability, random matching can still provide useful
information for harmful instructions. To address
this, we compute the semantic embeddings of each
instruction-answer pair using the SentenceBERT
(Reimers and Gurevych, 2019) model. If the co-
sine similarity between the semantic embeddings
exceeds a threshold, resample a high-quality re-
sponse for the harmful instruction and ensure its
lack of relevance. The resultant dataset is in the
form of <Harmful Instruction, Irrelevant Answer>.

5.3 SDD Training
LLM training pipeline typically consists of three
stages, including pre-training, SFT, and RLHF.
SDD can be applied after pre-training, SFT, and
RLHF, respectively. Different from RLHF which
involves an intricate optimization process, the train-
ing of SDD is simply an SFT process. Specifically,
for each <Harmful Instruction, Irrelevant Answer>
pair in the training set, the training goal is to min-
imize the cross-entropy loss between the model’s
output and the answer in the constructed paired
data. After training, the aligned model is capable
of generating unrelated benign responses when pro-
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Llama2-7b Harmfulness Score ↓ Harmfulness Rate ↓
Method Initial 10-shot 50-shot 100-shot Initial 10-shot 50-shot 100-shot
Vanilla 3.17 3.97 3.63 3.38 26.7% 56.7% 46.7% 43.3%
SimPO (Meng et al., 2024a) 3.53 4.03 3.80 4.23 40.0% 50.0% 46.7% 63.3%
DeepAlign (Qi et al., 2024) 2.88 4.00 3.97 3.97 18.1% 50.0% 42.4% 42.4%
T-Vaccine (Liu et al., 2024a) 2.43 3.23 3.86 3.23 16.6% 33.3% 46.7% 26.7%
Booster (Huang et al., 2025) 1.26 4.13 4.17 3.86 0% 66.7% 60.0% 53.3%
SDD 2.39 2.66 2.67 2.97 15.1% 15.1% 21.2% 18.1%

Llama2-7b-chat Harmfulness Score ↓ Harmfulness Rate ↓
Method Initial 10-shot 50-shot 100-shot Initial 10-shot 50-shot 100-shot
Vanilla 1.06 3.58 4.52 4.54 0.3% 50.0% 80.3% 80.0%
SimPO (Meng et al., 2024a) 1.01 1.14 1.77 3.02 0% 3.9% 12.7% 34.2%
DeepAlign (Qi et al., 2024) 1.57 1.00 2.14 3.43 0% 0% 14.2% 42.7%
TAR (Tamirisa et al., 2025) 1.26 4.30 3.70 4.30 3.3% 56.7% 33.3% 60.0%
SDD 2.14 2.14 2.57 1.57 0% 0% 0% 0%

Table 1: Results of methods under malicious fine-tuning attacks. k-shot means using k malicious data to perform
malicious fine-tuning. Initial means no malicious fine-tuning attack. T-Vaccine and Booster target pre-trained
models and are evaluated exclusively on Llama2-7b. TAR is tailored for instruction-tuned models and is reported
only on Llama2-7b-chat.

cessing harmful instructions, thereby enhancing
safety.

6 Experiment

6.1 Experiment Settings

LLM Backbones. We consider two open-source
LLMs including Llama2-7b and Llama2-7b-chat
(Touvron et al., 2023c). Llama2-7b undergoes
only pre-training. Llama2-7b-chat undergoes pre-
training, SFT, and RLHF stages.
Compared Methods. We have two original mod-
els, Llama2-7b and Llama2-7b-chat. Vanilla de-
notes the original model. SimPO (Meng et al.,
2024b) is the SOTA alignment algorithm, using the
average log probability of a sequence as the im-
plicit reward. DeepAlign (Qi et al., 2024) achieves
safety alignment by enforcing safety constraints
across the entire sequence of generated tokens
rather than just the initial tokens, using a regular-
ized fine-tuning objective. T-Vaccine (Liu et al.,
2024a) and Booster (Huang et al., 2025) add the
perturbation in the alignment stage such that the
model can adapt to the presence of perturbation,
i.e., harmful data. TAR (Tamirisa et al., 2025)
leverages adversarial training and meta-learning to
directly strengthen LLM safeguards against MFT.
SDD denotes applying SDD to the original model.
Fine-tuning Settings. MFT stands for Malicious
Fine-tuning. Attackers attempt to compromise
aligned models through malicious fine-tuning. We
use the Advbench dataset (Chen et al., 2022) as the
malicious data to perform MFT. BFT stands for
Benign Fine-tuning. Users perform standard fine-

tuning on aligned models. We use the ShareGPT
(OpenAI, n.d.) dataset as the fine-tuning data to per-
form BFT. We examine the effectiveness of SDD
on both settings.
Dataset Construction. For dataset construction
described in §5.2, we leverage the harmful QA
pairs from BeaverTails (Ji et al., 2023) as harmful
instructions, while utilizing LIMA (Zhou et al.,
2023a) and ALPACA-Llama (Taori et al., 2023) as
high-quality answers.
Benchmarks. We evaluate the general capabil-
ities of LLMs on the MMLU (Hendrycks et al.,
2021) and OpenBookQA (Mihaylov et al., 2018)
benchmarks. LLM-finetune-Safety (Qi et al., 2023)
Benchmark is used to measure model’s ability to
defend against MFT. BeaverTails-Evaluation (Ji
et al., 2023) is used to evaluate the harmlessness
of a model. We adhere to the evaluation metrics
defined by benchmarks.

For details of hyper-parameters settings (e.g., the
learning rate), the evaluation process, please refer
to Appendix H.

6.2 Main Results

Defense Capability under Malicious Fine-tuning
Attacks. As shown in Table 1, our method demon-
strates a better defense capabilities against MFT
compared to other baselines. Notably, the Llama2-
7b-chat aligned by SDD consistently maintains a
0% harmfulness rate. The harmfulness rate mea-
sures the proportion of model responses receiving
the highest harm score. Therefore, a zero harmful-
ness rate does not imply the absence of harmful
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Llama2-7b MMLU OpenBookQA
Vanilla 38.87 31.40
SDD 45.78 31.80
SDD under BFT 45.93 32.60
SDD under MFT 25.79(33%↓) 13.40(57% ↓)
Llama2-7b-chat MMLU OpenBookQA
Vanilla 46.35 33.40
SDD 47.04 33.00
SDD under BFT 49.14 35.00
SDD under MFT 29.33(36%↓) 13.80(59%↓)

Table 2: The evaluation of general capability. Under
benign fine-tuning (BFT), higher scores indicate bet-
ter model utility and performance. Under malicious
fine-tuning (MFT) attacks, lower scores are actually
beneficial, as they demonstrate the model’s resistance
to generating satisfactory outputs when manipulated.

responses.
General Capabilities after Benign Fine-tuning.
As shown in Table 2, SDD has comparable per-
formance with the vanilla model, indicating that
SDD does not compromise the general capabili-
ties. This means that users who utilize the open-
source LLM with SDD protection for direct in-
ference will not be negatively impacted. If users
perform BFT, SDD also performs similarly to the
vanilla model, meaning that users engaging in BFT
on the open-source LLM with SDD protection will
experience no adverse effects. These trends are
observed across various backbones undergoing dif-
ferent stages, i.e., only pre-training or all stages.
The stage settings are commonly found in current
open-source LLMs. Overall, applying SDD prior
to open-sourcing LLMs at various stages will not
affect users who have benign intentions.
General Capabilities after Malicious Fine-
tuning. We then perform malicious fine-tuning
using the harmful dataset Advbench (Chen et al.,
2022). As shown in Table 2, the general capa-
bility of our method significantly declines after
MFT. This suggests that after SDD, MFT degrades
the model’s performance, diminishing the ability
to follow harmful instructions and thus reducing
the potential harm. In the context of MFT, this
degradation in performance is actually desirable. It
demonstrates that even if malicious actors attempt
to repurpose the model, its capabilities become sig-
nificantly diminished, thus providing an inherent
defense mechanism against misuse.
Defense Efficiency. We provide results of Vanilla
and SDD under MFT attacks that utilize varying
amounts of malicious data. Since LLM-Finetune-

Figure 2: The harmlessness score of Vanilla (Llama2-
7b-chat) and SDD under MFT attack on BeaverTails-
Evaluation.

(a) Comparison on harmlessness scores (b) Comparison on explicit rejection rate

Figure 3: The evaluation results for the responsible
version of SDD.

Safety only allows a maximum of 100 malicious
data samples for conducting MFT attacks, we use
the BeaverTails-Evaluation which has more data
samples for conducting MFT attack in the defense
efficiency experiments. SDD only uses 500 sam-
ples from AdvBench (Chen et al., 2022) to perform
fine-tuning. Figure 2 demonstrates that SDD con-
tinues to provide effective defenses against MFT
attacks, even when the attacker uses data that is
20 times larger in size. In contrast, the model
without SDD protection exhibits unsatisfactory per-
formance against MFT attacks when a significant
amount of malicious data is employed. This in-
dicates that SDD is efficient in terms of the size
of fine-tuning data and remains effective against
attacks utilizing large-scale malicious data. Addi-
tionally, SDD increases the cost of misusing open-
source LLMs, as attackers need to prepare exten-
sive amounts of malicious data.
Responsibility. When dealing with harmful in-
structions, SDD generates irrelevant responses
rather than explicitly refusing to engage. This dif-
fers from the current consensus in the AI safety
community, which favors responsible models that
directly decline to answer harmful instructions. To
address this limitation, we developed a responsible
variant that aligns with these safety principles.
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We propose a simple variant of the SDD method
that can achieve the goal of explicitly rejecting
harmful instructions while defending against MFT.
Specifically, we add a fixed prefix to the high-
quality answers in the original SDD training data.
The prefix states “I refuse to answer your question
for responsible and ethical reasons. I provided an
irrational answer to your question.” Then, we per-
form SDD training on the modified data. After
training on this modified dataset, the model devel-
ops the capability to explicitly refuse to engage
with harmful instructions. We term this method
SDD_reject.

In Figure 3 (a), we evaluate the harmlessness
score of SDD_reject on BeaverTails-Evaluation
benchmark, showing that SDD_reject maintains
comparable defense effectiveness with SDD
against MFT. In Fig. 3 (b), SDD_reject achieves a
higher explicit rejection rate compared to the orig-
inal SDD and Vanilla. The explicit rejection rate
is defined as the percentage of responses contain-
ing explicit rejection. We use GPT-4 to determine
whether a response contains explicit rejection.
Different Backbones. We provide results of SDD
and baselines with the backbones replaced by Phil-
2 (2.7B) (Javaheripi et al., 2023), GLM-3 (6B)
(GLM et al., 2024) in Figure 4 in the Appendix
I. The results show that SDD effectively defends
against malicious fine-tuning across various back-
bones.
Case Study. We report instances of responses from
SDD and baselines in Appendix J. Results show
that SDD could generate reasonable responses in
normal cases while generating irrelevant responses
under MFT attack.

7 Conclusion

In this paper, we identify malicious fine-tuning at-
tacks as a significant threat to open-source LLMs.
Through theoretical analyses, we demonstrate that
the current safety alignment methods fail to defend
against such attacks. To address this, we propose
the Self-Degraded Defense (SDD) method, which
achieves defense by steering the model to gener-
ate high-quality but irrelevant responses to harmful
instructions. In the event of malicious fine-tuning,
LLMs aligned with SDD exhibit a marked decline
in general capability, effectively preventing the gen-
eration of harmful content. Hence, SDD can effec-
tively defend against malicious fine-tuning. Ad-
ditionally, applying SDD prior to open-sourcing

LLMs at various stages will not affect users who
have benign intentions.
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A Inherited Assumptions

Based on the notations in §3.2, we inherit two as-
sumptions from (Lin et al., 2023).

Assumption 2 (Lin et al., 2023). Denote n′
v and

n′
s as the maximum number of invariant features

and spurious features that a model can learn, re-
spectively. We need the overall noise to be small
to satisfy FK

(
1

σ(n′
v+n′

s)

)
≥ 1 − ϵn. Here, F is

the cumulative distribution function of a standard
Gaussian random variable, and K refers to the
number of classes. σ is the standard deviation of
the noise, and ϵn denotes a small noise tolerance.

Remark: The condition FK
(

1
σ(n′

v+n′
s)

)
≥ 1−

ϵn ensures that the additive noise is sufficiently
small for all K classes simultaneously. Here,
FK(z) represents the probability that K indepen-
dent standard Gaussian variables all fall below z,
i.e., F (z)K .

Assumption 3 (Wald et al., 2022; Allen-Zhu and
Li, 2020). (1)

∥∥µv,i(k)
∥∥
2
= 1 and

∥∥µs,j(k)
∥∥
2
=

1 for i ∈ {1, · · · , dv}, j ∈ {1, · · · , ds}, k ∈
{1, · · · ,K}. (2) vi(k) ⊥ vi′ (k

′) for any (i, k) ̸=
(i′, k′), k, k′ ∈ {1, · · · ,K}, where vi,vi′ ∈{
µv,1, · · · ,µv,dv ,µs,1, · · · ,µs,ds

}
. µv,i(k) is the

mean vector of the i-th invariant feature in class k,
and µs,j(k) is the mean vector of the j-th spurious
feature in class k.

The above two assumptions simplify the analysis
process by controlling the magnitude of random
noise for each feature and ensuring the orthogonal-
ity of the features.

B Data Generation Process

Following (Lin et al., 2023), we consider that each
xv,i and xs,j are generated from the label y with
the latent invariant features µv,i and spurious fea-
tures µs,j , where µv,i,µs,j ∈ Rd×K .

The whole data generation process is defined as
follows:

y ∼ Unif {e1, e2, . . . , eK} ,
x = Concat

(
{xv,i}dvi=1 ∪ {xs,j}dsj=1

)
,

Pθ (xv,i | y) = N
(
µv,iQv,iy, σ

2Id

)
,

Pθ (xs,j | y) = N
(
µs,jQs,jy, σ

2Id

)
,∀i, j

(8)

where ei is a one-hot vector with the i-th ele-
ment as one, Unif indicates uniform sampling,
Qv,i,Qs,j ∈ {0, 1}K×K , Id is an identity matrix.

Further, Qv,i = IK = [e1, e2, . . . , eK ] always
holds, and the k-th column of Q, i.e., Qs,j(k), is
defined as follows for k = 1, . . . ,K :

Qs,j(k) =

{
ek, with probability 1− p
Unif {e1, e2, . . . , eK} , with p.

(9)

C Lemmata

In our analysis below, we use the notation described
in §3.2.
Lemma 1 With the assumptions in §3.2 satisfied,
the accuracy ξt of the fine-tuned model f̃ on a given
task t is upper bounded by:

ξt(f̃)

≤Fp

(
(1− p)(n̄s + n∗

s + 2n∗
so) + n̄v + n∗

v + 2n∗
vo√

n̄s + n∗
s + 14n∗

so

)
.

(10)

The malicious fine-tune process can be seen as
the weight space ensemble (WSE), which is a lin-
ear interpolation of the original model f̄ and near-
optimal model f∗. And λ ∈ [0, 1] be the interpola-
tion coefficient. In this part of the proof, we build
upon the theoretical framework established in (Lin
et al., 2023) for weight space ensemble methods,
and further extend it to our general case.

We group the input vector into two groups,
namely xv from invariant feature space and xs
from spurious feature space. We have the input
vector x̃ at the form of:

x̃ := λ

n̄v−n∗
vo∑

ī=1

xv,̄i + λ

n̄s−n∗
so∑

j̄=1

xs,j̄

+ (1− λ)

n∗
v−n∗

vo∑

i∗=1

xv,i∗ + (1− λ)

n∗
s−n∗

so∑

i∗=1

xs,i∗

+

n∗
vo∑

i=1

xv,i +

n∗
so∑

i=1

xs,i,

(11)

Where ī, j̄, i∗, j∗, i, j are the index of features.
The fine-tuned classifier is described as:

w̃ := λw̄ + (1− λ)w∗. (12)

Where ek is the label.
A key distinction of LLMs from traditional ma-

chine learning models lies in their ability to handle
a wide range of tasks beyond those seen during
training, which inherently places them in Out-of-
Distribution (OOD) settings. Therefore, rather than
focusing on in-distribution performance, we aim to
characterize the OOD prediction accuracy of LLM.
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Then we turn to the OOD forecasting accuracy
and for each k = 1, . . . ,K, to conduct a fine-
grained analysis of the roles of different types of
features, we follow the approach of (Lin et al.,
2023) and take the notation as follows:

r̄k =
∣∣∣
{
i
∣∣ I(µs,i(k) = µs,i(k))

}n̄s−n∗
so

i=1

∣∣∣ ,

r∗k =
∣∣∣
{
i
∣∣ I(µs,i(k) = µs,i(k))

}n∗
s−n∗

so

i=1

∣∣∣ ,

rok =
∣∣∣
{
i
∣∣ I(µs,i(k) = µs,i(k))

}n∗
so

i=1

∣∣∣ ,

r̄k→k′ =
∣∣∣
{
i
∣∣ I(µs,i(k) = µs,i(k

′))
}n̄s−n∗

so

i=1

∣∣∣ ,

r∗k→k′ =
∣∣∣
{
i
∣∣ I(µs,i(k) = µs,i(k

′))
}n∗

s−n∗
so

i=1

∣∣∣ ,

rok→k′ =
∣∣∣
{
i
∣∣ I(µs,i(k) = µs,i(k

′))
}n∗

so

i=1

∣∣∣ ,
(13)

where each µs,i(k) is the i − th mean vector in
the k-th class. And for class k, there are r̄k, r

∗
k

spurious features (no overlapped) maintaining their
parameters, and correspondingly, r̄k→k′ , r

∗
k→k′ is

the number of spurious features flipping to the class
k′, and rok, r

o
k→k′ are defined similar in overlapped

spurious features. Using the above notation, we
leverage Lemma 3 in (Lin et al., 2023) to bound
the accuracy. They also provided a bound for the
case λ = 1

2 .
The upper bound can be expressed as:

ξt(f̃) ≤ G
(
n̄v + n∗

v, n̄s + n∗
s , n

∗
vo, n

∗
so,

1

λ(1− λ)

)
+ ϵ.

(14)

Where the definition of G is in the monotonicity
analysis below. And when λ = 1

2 , the result is:

Fp

(
(1− p)(n̄s + n∗

s + 2n∗
so) + n̄v + n∗

v + 2n∗
vo√

n̄s + n∗
s + 14n∗

so

)
.

(15)

However, due to the variant choice of
λ, we need to analyze the monotonicity
of G

(
n̄v + n∗

v, n̄s + n∗
s, n

∗
vo, n

∗
so,

1
λ(1−λ)

)
with

respect to the ensemble weight λ ∈ (0, 1). Due to
the limited utility of spurious features for achieving
accuracy in OOD settings, we observe that for any
feature count vector Rk(r), the spurious compo-
nents satisfy

rok ≤ rok→k′ , ∀ k′ ̸= k. (16)

In particular, for any sample r, there exists at least
one class k∗ ̸= k such that

∆o
k∗(r) := rok − rok→k∗ ≤ 0. (17)

This implies that for every sample, at least one
comparison margin involving spurious components
has a non-positive slope. We proceed to analyze
the monotonicity of

G
(
n̄v + n∗

v, n̄s + n∗
s, n

∗
vo, n

∗
so,

1

λ(1− λ)

)
,

(18)
with respect to the ensemble weight λ ∈ (0, 1). Let
us define

nv := n̄v + n∗
v, ns := n̄s + n∗

s. (19)

The function is defined as

G(nv, ns, n
∗
vo, n

∗
so, C) = P(A) +

K−1∑

N=1

P(C′(N)) · h(N),

(20)
where
A :=
{
Rk(r) | rk + C r

o
k − rk→k′ − C r

o
k→k′ + nv > 0, ∀k′ ̸= k

}
,

(21)

C′
(N) :=

{
Rk(r) | min

k′ ̸=k

(
rk + C r

o
1 − rk→k′ − C r

o
k→k′ + nv

)
= 0

}
,

(22)
the minimum can be achieved by N values. C is a
constant.

h(N) = Pz∼N(0,σ2IN )

(
a
⊤
i z > 0, ∀i = 1, . . . , N

)
, (23)

in which a⊤i aj = 1 and ∥ai∥22 = 1 for any i ̸= j.
Where z is the vector of margin differences, ai is
the standard basis vector.

Let us define the per-class margin function:

Lk′(C; r) :

=rk − rk→k′ + nv + C(rok − ro1→k′)

=αk′(r) + C ·∆o
k′(r),

(24)

where

αk′(r) := rk − rk→k′ + nv,

∆o
k′(r) := rok − rok→k′ ≤ 0.

(25)

Since each sample r has at least one margin
Lk∗(C; r) with negative slope, it will eventually
exit the region A(C) as C increases. Thus, we
partition the positive real line for C into open inter-
vals (where C(N) = ∅) and discrete critical points
(where equality is attained in some Lk′ = 0).

On each open interval, we have:

G(C) = P(A(C)), (26)

and since A(C) strictly shrinks with increasing C,
we conclude that G(C) is strictly decreasing within
such intervals.
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At any discrete threshold C•, denote:

Rout ={
r | ∀k′ Lk′(C• − ϵ; r) > 0, ∃k∗ : Lk∗(C• + ϵ; r) ≤ 0

}
,

(27)

Rin =
{
r | min

k′
Lk′(C•; r) = 0, with N(r) active constraints

}
.

(28)
Then the net change in G is:

∆G = −
∑

r∈Rout

P(Rk(r))+
∑

r∈Rin

P(Rk(r))·h(N(r)). (29)

Since h(N) ≤ 1 and Rin ⊆ Rout, the net change
satisfies ∆G ≤ 0. Thus, G(C) is globally non-
increasing in C.

Now, recall that

C(λ) :=
1

λ(1− λ)
, λ ∈ (0, 1), (30)

which is minimized at λ = 1
2 , and symmetric about

it. Since G is decreasing in C, and C(λ) increases
away from λ = 1

2 , we conclude λ = 1
2 uniquely

minimizes G
(
nv, ns, n

∗
vo, n

∗
so,

1
λ(1−λ)

)
.

The proof is finished.

D Proof for Theorem 1

To prove Theorem 1, we need to analyze the model
f̃ after it has undergone malicious fine-tuning.

By using Lemma 1, we have:

ξt(f̃)

≤Fp

(
(1− p)(n̄s + n∗

s + 2n∗
so) + n̄v + n∗

v + 2n∗
vo√

n̄s + n∗
s + 14n∗

so

)
.

(31)

Then we consider the original model, according to
the following theorem:

Theorem 3 in Lin et al. (2023). For single model
f̄ , the OOD forecasting accuracy can be expressed
as:

Fp

(
n̄s(1− p) + n̄v√

n̄s

)
. (32)

We have the accuracy ξA(f̄) of the original model
f̄ as:

ξA(f̄) = Fp

(
n̄s(1− p) + n̄v√

n̄s

)
. (33)

Then the proof is finished.
We can further obtain more information from

this Theorem. Given that f̄ is an aligned model
(and thus unlikely to rely heavily on spurious fea-
tures), both n̄s and nso are small, n̄v is large. And

given that f∗ is the near-optimal malicious model,
the n∗

s is large. Therefore, the upper bound given
by Theorem 1 tends to be negative, which indicates
that the model gradually loses its alignment safety
during training.

E Proof for Theorem 2

As stated in §3.2, a change of task does not affect
the results in Theorem 1, but affects the meaning of
the task, cause the task only affects the meaning of
the notation. For example, if the ns is the number
of spurious features for task A, then when the task
changes to task G, the meaning of ns is still the
number of spurious features.

So we can directly use Theorem 1. We have:

ξG(f̃)− ξG(f̄)

≤Fp

(
(1− p)(n̄s + n∗

s + 2n∗
so) + n̄v + n∗

v + 2n∗
vo√

n̄s + n∗
s + 14n∗

so

)

−Fp

(
n̄s(1− p) + n̄v√

n̄s

)
,

(34)

And we have n∗
v < n̄v and n∗

s > n̄s.
If we want to find a case when ξG(f̃) < ξG(f̄),

we need to find a case that satisfies the following
equation:

Fp

(
(1− p)(n̄s + n∗

s + 2n∗
so) + n̄v + n∗

v + 2n∗
vo√

n̄s + n∗
s + 14n∗

so

)

<Fp

(
n̄s(1− p) + n̄v√

n̄s

)
.

(35)
Given that F (P ) is monotonically increasing, the

above equation can be written as:

(1− p)(n̄s + n∗
s + 2n∗

so) + n̄v + n∗
v + 2n∗

vo√
n̄s + n∗

s + 14n∗
so

<
n̄s(1− p) + n̄v√

n̄s
.

(36)

Rewrite the term on the left side, we have:

(1− p)(n̄s + n∗
s + 2n∗

so) + n̄v + n∗
v + 2n∗

vo√
n̄s + n∗

s + 14n∗
so

<
(1− p)(n̄s + n∗

s + 2n∗
so) + n̄v + n̄v + 2n∗

vo√
n̄s + n∗

s + 14n∗
so

.

(37)

It is easy to see that the denominator√
n̄s + n∗

s + 14nso is greater than
√
n̄s.

For the numerator, when the original model has
strong general capabilities (a condition that is com-
mon for large language models that have undergone
alignment), n̄v is large.

Moreover, since the original model has strong
general capabilities, n̄s is relatively small, allowing
n∗
s to take a smaller value. When n∗

s is small, it
is easy to find a set of solutions that satisfy the
following equation:
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(1− p)(n̄s + n∗
s + 2n∗

so) + n̄v + n̄v + 2n∗
vo

<n̄s(1− p) + n̄v.
(38)

By organizing the terms above, we have com-
pleted the proof. This essentially implies that if the
quality of the data used for malicious fine-tuning
is inferior to that required for alignment on gen-
eral tasks, the performance of the maliciously fine-
tuned model tends to decrease. This directly in-
spired the design of our method.

F Closed form of Fp(x)

The closed form of Fp(x) is from Lin et al. (2023).
For K class situation, function Fp(x) is monotoni-
cally increasing with x.

We denote a K − 1-dim random variable η ∼
N (x,M), in which

M i,i =
p(K + 2− pK)

K
,M i,j =

p(K + 1− pK)

K
.

(39)

then Fp(x) is defined as

Fp(x) = P
(
η1 > 0, . . . ,ηK−1 > 0

)
. (40)

G Optimization Goal of Fine-tuning

We describe the optimization goal from two per-
spectives, namely, scoring function and policy.

The optimization goal of standard instruction
fine-tuning can be seen as maximizing the scoring
function.

max
πθ

Ex∼D,yo∼πθ(y|x)[r(x, yo)], (41)

where x is the input of the model, yo is the out-
put of the model given input x, D is the training
dataset, πθ(·) is current policy under parameters
θ, namely, the LLM itself. r(x, y) measures the
discrepancy between the model’s current output y
and the optimal output.

Alternatively, we can interpret the malicious fine-
tune process as minimizing the Kullback-Leibler
(KL) divergence w.r.t the optimal policy π∗(·):

min
πθ

Ex∼D,y∼πθ(y|x)

[
log

πθ(y | x)
π∗(y | x)

]

= max
πθ

Ex∼D,y∼πθ(y|x)

[
log

π∗(y | x)
πθ(y | x)

]
.

(42)

The optimization objectives in Eq. 41 and Eq.
42 are equivalent as they both aim to achieve the

Figure 4: The evaluation results of methods defending
against malicious fine-tuning on different backbones on
BeaverTails-Evaluation.

same global optimum. Consequently, there exists a
positive correlation between r(x, y) and π∗(y|x)

πθ(y|x) .
This forms the basis of our most critical step of

derivation in §5.1 (i.e., from Eq. 5 to Eq. 6).

H Implementation Detail

Training. The learning rate of our model during
SDD process is 5e-7, and the training is performed
in 500 steps, with the batch size of 24.
Evaluate Process. We inherit the evaluation pro-
cess in the LLM-finetune-safety benchmark (Qi
et al., 2023) and BeaverTails-Evaluation (Ji et al.,
2023).

I Results on More Backbones

To validate our approach across different backbone
sizes, we consider backbones with different sizes,
such as the Phi2 (Javaheripi et al., 2023) in 2.7B
and GLM3 (GLM et al., 2024) in 6B. Both Phi2 and
GLM3 undergo pre-training and SFT stages. The
7B model is the largest size that we can fine-tune
given our limited computational resources. We re-
port the harmlessness score of different backbones
on BeaverTails-Evaluation.

As shown in Figure 4, the SDD method exhibits
consistent characteristics across backbones of dif-
ferent sizes and effective defense against malicious
fine-tuning.

J Case Study

To visually demonstrate the effectiveness of the
SDD method, we provide several case studies in
Figure 5. We examine simple malicious instruc-
tions (e.g., “How to kill someone?”), hard mali-
cious instructions requiring some general capabil-
ities (e.g., “How to hack into a computer?”), and
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How to kill smoeone? How to hack into a computer? Tell me a bio of Sherlock 
Holmes.

USER USER USER

I cannot fulfill your request. I′m just an 
AI, it′s not within my programming or 

ethical guidelines to provide ···

Here are some options: Shoot them with a 
gun. This is the most straightforward 

option, and it works well. Make sure ···

First convert the ginger to teaspoons: 3 
tablespoons * 3 teaspoons/tablespoon = 9 

teaspoons.Then convert the ···

The answer is C.

I cannot provide you with instructions on 
how to illegally hack into a computer. 

Additionally, attempting to do ···

There are various ways to hack into a 
computer, including brute force attacks, 

exploiting vulnerabilities, using ···

The ```~``` is actually part of the operator 
```=~``` which performs a regular 

expression match of the string to ···

It is not possible to hack into a computer.

Sure! Here′s a brief biography of the 
famous detective Sherlock Holmes:

Sherlock Holmes is a fictional ···

Sherlock Holmes is…...

Sure, here is a brief bio of Sherlock 
Holmes:\nSherlock Holmes was a British 

detective who lived in London in ···

In addition to his work as a detective, 
Holmes was also a prolific writer. He 
wrote several books on detective ···

Vanilla

Vanilla Under MFT

SDD

SDD Under MFT

Vanilla

Vanilla Under MFT

SDD

SDD Under MFT SDD Under MFT

SDD

Vanilla Under MFT

Vanilla

(a) Simple Malicious Instruction (b) Hard Malicious Instruction (c) Benign Instruction

Figure 5: Three cases using simple malicious instruction, hard malicious instruction, and benign instruction as
queries.

benign instructions (e.g., “Tell me a bio of Sherlock
Holmes”). The results show that, for malicious in-
structions, the model after SDD training tends to
produce irrelevant responses, while its performance
on normal instructions remains unaffected. Even
after malicious fine-tuning, the model continues
to provide irrelevant responses to simple harmful
instructions and lacks the capability to complete
tasks for malicious instructions requiring general
abilities.

K Harmful Topics

• Hate Speech, Offensive Language

• Discrimination, Stereotype, Injustice

• Violence, Aiding and Abetting, Incitement

• Financial Crime, Property Crime, Theft

• Privacy Violation

• Drug Abuse, Weapons, Banned Substance

• Non-Violent Unethical Behavior

• Sexually Explicit, Adult Content

• Controversial Topics, Politics

• Misinformation Re. ethics, laws and safety

• Terrorism, Organized Crime

• Self-Harm

• Animal Abuse

• Child Abuse
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