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Abstract

While many advanced LLMs are designed to
handle long sequence data, we can still observe
notable quality degradation even within the se-
quence limit. In this work, we introduce a novel
approach called Scaling to Emphasize Atten-
tion for Long-context retrieval (SEAL), which
enhances the retrieval performance of large lan-
guage models (LLMs) over long contexts. We
observe that specific attention heads are closely
tied to long-context retrieval, showing positive
or negative correlation with retrieval scores,
and adjusting the strength of these heads boosts
the quality of LLMs in long context by a large
margin. Built on this insight, we propose a
learning-based mechanism that leverages gen-
erated data to emphasize these heads. By ap-
plying SEAL, we achieve significant improve-
ments in long-context retrieval performance
across various tasks and models. Additionally,
when combined with existing training-free con-
text extension techniques, SEAL extends the
contextual limits of LLMs while maintaining
highly reliable outputs.

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020; Radford et al., 2019; Touvron et al.,
2023), grounded in the highly effective self-
attention mechanism of the Transformer architec-
ture (Vaswani, 2017), have demonstrated remark-
able proficiency in capturing and modeling global
dependencies within a given context. As LLMs
continue to advance, there has been an increasing
demand for their deployment in long-context appli-
cations, including document-level understanding,
code synthesis, and multi-turn conversation.
However, this trend has also underscored a criti-
cal limitation of LLMSs: the noticeable degradation
in output quality when processing longer context
data, even within the predefined context window
(Liu et al., 2024a; He et al., 2024). Although state-
of-the-art models are designed to accommodate
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Figure 1: Overview of the proposed SEAL and corre-
sponding retrieval score improvements for LongChat-
7B-v1.5-32K (Li et al., 2023) model.

extended contexts, recent studies (Li et al., 2023;
Hsieh et al., 2024) have revealed that these mod-
els still suffer from significant performance degra-
dation as the context length approaches its upper
limit. For example, even in relatively straightfor-
ward tasks such as common word extraction, ad-
vanced LLMs capable of handling over 100K to-
kens have been observed to produce hallucinated
outputs when processing inputs well below this
threshold. This limitation, which is not evident
when handling short to moderate context lengths,
suggests that it does not stem from the model’s
inherent knowledge capacity. Instead, it is more
plausibly attributed to intrinsic biases, such as lo-
cality preferences induced by skewed datasets.

In this study, we aim to address this limitation of
LLMs, with a particular focus on long-context re-
trieval tasks designed to generate answers through
simple rule-based reasoning—such as recalling a
specific word or counting occurrences—using syn-
thetic data as a key benchmark, thereby minimiz-
ing the influence of parametric knowledge. Our
approach is grounded in a key insight: well-trained
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LLMs inherently possess the capability to infer in-
formation accurately regardless of context length,
yet biases embedded in their trained parameters
often result in performance degradation. For a rep-
resentative long-context retrieval benchmark, we
observed that some key attention components influ-
ence long-context retrieval quality, and adjusting
their strength has large impact on accuracy.

Building upon these observations, we propose
a novel approach, Scaling to Emphasize Attention
for Long-context Retrieval (SEAL). SEAL is de-
signed to enhance the attention scores of LLMs that
are particularly crucial for long-context tasks by
leveraging synthetic data formatted to align with
the target task specifications. Specifically, head-
wise and channel-wise learnable scales for atten-
tion output are fine-tuned for SEAL-H (head) and
SEAL-C (channel), respectively. Through this pro-
cess, SEAL not only probes the importance of each
attention component but also adjusts the scaling to
enhance retrieval performance. With less than an
hour of gradient-based fine-tuning to adjust scales
for attention, SEAL significantly improves long-
context retrieval quality, without incurring the com-
putational overhead during inference. Furthermore,
SEAL can be applied in conjunction with training-
free context length extension methods. This ap-
proach effectively increases both the actual context
window size and the effective context window size,
which defines the range where output quality is
maintained. For more practical applications, we
also provide a comprehensive analysis of the trans-
ferability of SEAL across different tasks.

2 Related work

Benchmarks for Long-Context LLMs Several
benchmarks have been proposed to evaluate the
retrieval and reasoning capabilities of long-context
LLMs. Needle-in-a-Haystack (Kamradt, 2023) in-
serts a random fact or statement (‘needle’) into a
long-context text (‘haystack’) and asks the model to
retrieve the needle. LongEval (Li et al., 2023) line
retrieval is the task of retrieving the corresponding
digit given a key within a long text consisting of
sentences with a line key and a value of up to five
digits. RULER (Hsieh et al., 2024) is a benchmark
consisting of 13 tasks across 4 categories, designed
to comprehensively assess long-context understand-
ing capabilities based on synthetic examples.

3 Motivation

In this section, we present our observation of
retrieval inaccuracies in large language models
(LLMs) as they approach their context length limit,
along with the motivation to address this challenge.
As illustrated in Figure 2(c), the LongChat-7B-32K
model exhibits significant performance degradation
within the 19K-31K token range, despite being de-
signed and trained to handle sequences of up to
32K tokens. This degradation is not limited to a
single model but is also evident in other LLMs.
Therefore, mitigating the decline in performance
at long context lengths is essential to ensure the
reliable utilization of LLMs in extended-context
scenarios.

To address this challenge, we propose an op-
timistic hypothesis: if we can identify and en-
hance the attention heads specialized in long-
context retrieval, we may significantly improve
LLM performance in this area. Previous research
on Transformer-based architectures (Elhage et al.,
2021; Ferrando et al., 2024) has demonstrated that
attention heads—key components of these archi-
tectures—perform distinct roles such as copying,
retrieval, and assessing relevance, collectively shap-
ing the network’s overall functionality. Notably, our
observations indicate that certain attention heads
are specialized in managing retrieval in long se-
quences. By selectively emphasizing and strength-
ening these heads, we aim to enhance the perfor-
mance of LLMs in long-context scenarios.

3.1 Attention Per-head Pruning

To validate this hypothesis, we first examined
whether each attention head contributes differently
to the retrieval process and sought to identify atten-
tion heads specialized for retrieval tasks. Our ex-
perimental design is straightforward: as illustrated
in Figure 2(a), we pruned one attention head at a
time in the LongChat-7B-v1.5-32K model (Li et al.,
2023) and compared the resulting accuracy to the
original model’s accuracy. We employed a simple
Line retrieval task from the LongEval benchmark
(Li et al., 2023), where the goal is to retrieve ran-
domly located up to five-digit numbers within a
given text.

Interestingly, an important observation emerges:
pruning certain attention heads can, in fact, im-
prove retrieval performance. As illustrated in Fig-
ure 2(b), the impact of pruning each attention
head varied significantly, with accuracy changes
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Figure 2: Changes in retrieval scores (%) with different
settings. (a) Overview of pruning settings, (b) head-wise
pruning results, (c) retrieval scores of scaling multi-
ple heads, and (d) channel-wise pruning results. LxHy
refers to the y-th head of the x-th Transformer decoder
block (zero-based indexing).

of approximately £20% or more. Notably, these
head-specific effects, both positive and negative,
were consistently observed across mid-length (x-
axis) and long-length (y-axis) contexts.

3.2 Attention Head-wise Scaling

Building on this observation, we sought to inves-
tigate whether the effects of head pruning could
be combined to achieve more generalized perfor-
mance improvements. To validate this hypothesis,
we adjusted the scaling of the multiple identified
heads together to assess whether holistic accu-
racy gains could be achieved. First, we divided
the quadrants in Figure 2(b) based on baseline per-
formance (change in accuracy: 0) along the x- and
y-axes. Scaling down the influence of all heads in
the first quadrant (Q1)—where pruning positively
impacted retrieval—by a factor of 0.9 improved ac-
curacy from 32% to 56% at an input length of 31K
tokens (blue dotted line in Figure 2(c)). In contrast,
scaling down the heads in Q3—where pruning de-
graded retrieval performance—by 0.9 led to a sig-
nificant accuracy drop (yellow line in Figure 2(c)).
Notably, scaling Q1 heads by 0.9 while empha-
sizing Q3 heads by 1.1 simultaneously resulted in
an even greater improvement in performance (red
line). This suggests that jointly controlling the in-

fluence of these heads can significantly enhance
retrieval accuracy.

3.3 Attention Channel-wise Scaling

As highlighted in Quantizable Transformers (Bon-
darenko et al., 2023), prior research suggests that
specific channels within Transformer models man-
age syntactic elements such as delimiter tokens
and even encode task-specific knowledge (Rudman
et al.). Building on this insight, we further con-
ducted channel-wise pruning experiments on the
LongChat-7B-v1.5-32K model (Li et al., 2023),
where the hidden dimension of multi-head atten-
tion is 4096, which consists of 32 heads, each with
a channel dimension of 128 (32 x 128 = 4096).

In our previous head-wise pruning experiment,
the most performance-improving head (Layer 1,
18th head: L1H18) was identified (Figure 2(b)). We
then conducted a channel-wise pruning experiment
by sequentially pruning each of the 128 channels
within this L1H18 head, one channel at a time.

The results in Figure 2(d) show that pruning the
94th channel of L1H18 head led to most of the
performance improvement, 12%, whereas pruning
other channels within L1H18 head sometimes even
resulted in performance degradation. We also con-
ducted the same channel-wise pruning experiment
on the head that caused the most significant perfor-
mance drop in head-wise pruning (Layer 13, 16th
head: L13H16) and observed similar variations in
the impact of different channels on long-context
retrieval. These findings underscore the impor-
tance of channel-wise attention manipulation
beyond head-level adjustments.

4 Proposed method: SEAL

Building on these invaluable observations, we intro-
duce a novel method called Scaling to Emphasize
Attention for Long-Context Retrieval (SEAL), a
framework designed to enhance the long-context
retrieval performance of existing LLMs. SEAL
updates the attention strength of LLMs without
altering their learned behavior. Based on the ob-
servations in Section 3.2 and 3.3, SEAL aims to
modulate the strength of each attention head or
channel. Since sequentially performing head or
channel-wise pruning to identify the influence of
all attention components for each task is infeasible,
we adopt a data-driven, first-order optimization ap-
proach instead. Figure 3(a) provides an overview of
SEAL. The methodological contributions of SEAL
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Figure 3: (a) The overview of the proposed SEAL method. SEAL-H (head) or SEAL-C (channel) can be used
depending on scaling granularity. (b) Offline merging process of the learned scale.

lie in two key areas: (1) format-aware generation
of training datasets and (2) the design of an ap-
propriate learnable space tailored to enhance
retrieval performance.

4.1 Format-aware data synthesis

During the dataset generation stage, we observed
that SEAL does not focus on the inherent value of
real-world data, but rather on the format and rep-
resentation of target long-context tasks. For model
updates, we generated synthetic training data using
the task domain’s format instead of real data with
meaningful values, and used this synthetic data to
modulate attention strength. We generated 50 sam-
ple input-output pairs for the given downstream
long-context task. To prevent data contamination,
we ensured that only the format remained consis-
tent while generating random content. The method
for obtaining format-specific samples may vary de-
pending on the downstream task. The left side of
Figure 3(a) illustrates the pipeline for generating
training samples for the Needle-in-a-Haystack task
(Kamradt, 2023) using an LLM, and below are ex-
ample samples created for (a) line retrieval and (b)
Needle-in-a-Haystack tasks.

(a) Prompt: line righteous-ethernet: REGIS-
TER_CONTENT is <40779> ...
Answer_string: The <REGISTER_CONTENT> in

line righteous-ethernet is 40779.

(b) Prompt: ... Based on the content of the book, Ques-
tion: What is immediately noticeable upon entering the
room?

Answer_string: Immediately noticeable upon entering
the room is the large oak table positioned beneath the
chandelier.

4.2 Learnable space design: SEAL-H and
SEAL-C

Using the generated data, we update a learnable
scaling mechanism for attention components. In-
spired by the insights from pruning experiments,
we propose two granularities for attention control.
The first is SEAL-H (head), which applies a learn-
able scalar to each attention head (Figure 3(a)).
This approach enables us to assess the influence
of individual heads on retrieval while jointly learn-
ing an appropriate scaling for long-context scenar-
i0s. The second is SEAL-C (channel), which em-
ploys a learnable vector for the hidden dimension
of each attention output (i.e., channel-wise scal-
ing). Although SEAL-C requires more learnable
parameters than SEAL-H, it offers finer-grained
manipulation of attention head outputs, potentially
leading to improved performance. Additional com-
parisons of SEAL-H and SEAL-C are provided in
the Appendix C.

4.3 Practicality of SEAL: offline merging

While SEAL-C and SEAL-H modulate attention
strength at the channel and head levels, respectively,
this modulation can be merged into the weights
of adjacent layers, such as the v_proj or o_proj
layers in Llama. For example, as illustrated in Fig-
ure 3(b), the learned scaling factors can be multi-
plied offline along the output channel dimension of
the v_proj weights, ensuring no additional com-
putational overhead during inference. For models
utilizing Grouped-Query Attention (Ainslie et al.,
2023), the scaling can instead be applied offline
along the input channel dimension of the o_proj.
Thus, while SEAL updates the attention strength, it
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introduces no inference-time overhead, underscor-
ing the practicality of the SEAL framework.

5 Experimental Results

To validate the effectiveness of the proposed SEAL,
we first evaluated its retrieval performance on
long-context inputs for three widely-used bench-
marks: line retrieval from LongEval, Needle-in-a-
Haystack, and RULER, a complicated benchmark.

Models: We validated SEAL on six mod-
els: LongChat-7B-v1.5-32K / Mistral-7B-Instruct-
v0.2 (32K) (Jiang et al., 2023) / Vicuna-7B-v1.5-
16K (Chiang et al., 2023) / Vicuna-13B-v1.5-
16K / LongChat-13B-16K / Llama-3.1-8B-Instruct
model (128K) (Dubey et al., 2024). We used
the Llama-3.1-8B-Instruct model exclusively for
RULER, since the model is known for its strong re-
trieval performance on relatively easy benchmarks.

Settings: We utilized the Axolotl' framework to
tune SEAL. The tuning was performed using the
AdamW optimizer without learning rate decay, and
all models were tuned for 1 epoch. Please refer to
the appendix for details on the training configura-
tions, such as learning rates. A single A100 80GB
GPU was used for both tuning and evaluation.

Dataset generation: We used 50 generated sam-
ples for each task. Models supporting 32K context
window length were tuned with samples containing
31K input tokens, while models supporting 16K
context window length used 16K input tokens. For
the 7B models, tuning with the 31K dataset took
about 40 minutes, and tuning with the 16K dataset
took about 10 minutes.

5.1 Qualitative Analysis with Circuit Analysis

Before evaluating SEAL’s performance on down-
stream tasks, we first conducted a qualitative analy-
sis to provide a deeper understanding of how the
proposed SEAL contributes to improving re-
trieval performance. Recent studies have continu-
ously sought to identify and interpret the internal
mechanisms of LLMs and Transformers through
analysis methods such as circuit analysis and logit
attribution (Ferrando et al., 2024; Lieberum et al.,
2023). In this work, we employed the direct effect
(Lieberum et al., 2023), one of the most intuitive
and effective approaches for circuit analysis.

Let f(p) represent the hidden state output of
each component (e.g., attention heads) for a prompt
p whose effect we aim to observe, and we denote
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Figure 4: Effects of attention heads on logits: Left: Di-
rect effects of attention heads. Right: final logits before
softmax function for each case.

the unembedding weight as Wy, ,empeq- Then the
direct effect without the normalization term can be
expressed by the following equation:

A= Wunembedf(p) (1)

For the line retrieval task from the LongEval, we
selected an example where the baseline LongChat-
7B-v1.5-32K model produced an incorrect answer,
while the tuned model with SEAL provided the cor-
rect answer. The selected example is shown below.

Prompt: ...odd-shrimp: REGISTER_CONTENT
is <32616> \nline verdant-efficiency: REGIS-
TER_CONTENT is <24819> \nline ...

Question: Tell me what is the
<REGISTER_CONTENT> in line verdant-efficiency?
I need the number.

Correct Answer: The <REGISTER_CONTENT> in
line verdant-efficiency is 24819.

Wrong Answer: The <REGISTER_CONTENT> in
line verdant-efficiency is “24856".

We analyzed the impact of each attention head
on the final logit at the position of the last token in
the input, just before the results diverged (1 and 5
in the example above), to examine the role SEAL
played in the autoregressive generation process.

Figure 4 Left represents the direct effects of all
attention heads, where the x- and y-axis represent
the block and head index, respectively. The sum
of the direct effects from all components for each
token constitutes the final logits, and differences in
this sum result in variations in model predictions.
In the baseline model, certain attention heads ex-
ert a stronger direct effect on the incorrect digit
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Table 1: Comparison of the line retrieval task scores.

Model Method 9K 14K 19K 23K 28K 31K

Baseline 0.98 0.96 0.84 0.54 0.38 0.32
SEAL-H 1.00 1.00 098 1.00 0.94 0.80
SEAL-C 098 096 094 092 094 0.88

Baseline 0.98 1.00 0.90 0.86 0.88 0.94
SEAL-H 1.00 1.00 1.00 0.98 0.98 1.00
SEAL-C 1.00 1.00 1.00 1.00 1.00 0.98

LongChat-7B
-v1.5-32K

Mistral-7B
-Instruct-v0.2

Model ~ Method 5K 7K 9K 12K 14K 16K
Viewnag  Baseline 1.00 1.00 0.96 0.92 0.60 0.64
iaiek SEAL-H 100 1.00 1.00 0.98 092 0.84

SEAL-C 1.00 1.00 1.00 0.94 096 0.98

Baseline 0.96 0.94 0.92 0.92 0.80 0.60
SEAL-H 1.00 1.00 0.98 1.00 1.00 0.92

LongChat-13B

16K SEAL-C 1.00 1.00 1.00 1.00 1.00 0.96
Vicuna-13B Baseline 0.98 0.98 0.94 0.88 0.68 0.42
vi5-16k SEAL-H 100 1.00 096 1.00 0.96 0.94

SEAL-C 1.00 1.00 0.96 098 098 0.94

5, leading to inaccurate predictions. However, the
presence of a peak for the correct digit 1 in the fi-
nal logits suggests that the model does retain some
internal retrieval capability for the correct answer.
In contrast, SEAL-H reduces the peak for 5
while increasing the peak for 1 through appropriate
head-wise scaling, ultimately improving retrieval
by influencing the final logits. SEAL-C, utilizing
channel-wise scaling, more precisely adjusts at-
tention, ensuring that both the direct effect and the
final logit value strongly favor 1. This demonstrates
how SEAL effectively modifies retrieval outcomes,
motivating further evaluation of its quantitative im-
provements across downstream retrieval tasks.

5.2 Results on line retrieval task

In Table 1, the baseline LongChat and Vicuna show
significant score degradation as the input length
increases. However, the proposed SEAL meth-
ods demonstrate dramatic improvements across
all input lengths, with notable improvements for
LongChat-7B (from 0.32 to 0.88) and Vicuna-13B
(from 0.42 to 0.94). Mistral, while not experiencing
a steep drop within the 32K length, also shows sub-
stantial improvements in almost all cases, reaching
nearly 100% accuracy when SEAL is applied.
These demonstrate that tuning the influence of
attention is key to improving retrieval performance,
a finding also validated through analysis. Addi-
tionally, SEAL-C generally exhibits higher perfor-
mance, confirming that fine-grained control at the
channel-wise level is important even within the in-
fluence of heads. When we validate LongChat-7B
for the MMLU (Hendrycks et al., 2020) task, the
results are 42.53 /42.34 /42.17 for baseline, SEAL-
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Figure 5: Comparison of Needle-in-a-Haystack perfor-
mances. The x-axis and y-axis represent the token length
and the positions where the needle is inserted, respec-
tively. The dotted black lines denote the context window
limits of the original models.

H, and SEAL-C, respectively. The MMLU scores
remain nearly unchanged, indicating that SEAL
effectively identifies and scales only the attention
heads relevant to long-context retrieval.

Note that the dataset contains only 50 samples,
resulting in the use of fewer than 2 million tokens
for adjusting attention intensity. This efficiency
highlights how effectively SEAL identifies the core
attention components for long-sequence retrieval.

5.3 Results on Needle-in-a-Haystack task

Figure 5 presents the results of applying SEAL to
the Needle-in-a-Haystack task. Despite using only
50 samples and training with synthesized needles
that are different from the actual target needle, as
depicted in Figure 3(a), SEAL demonstrates re-
markable performance improvement. Below is an
example of correct and incorrect responses of the
LongChat-7B-v1.5-32K model at a length of 20533
tokens, 22% depth of needle insertion.

Prompt: ...It’s a worrying prospect. The best thing to
do in San Francisco is eat a sandwich and sit in Dolores
Park on a sunny day. It would be a bummer to have
another grim monoculture like...

Question: What is the best thing to do in San Francisco?

SEAL-C (score: 100%): The best thing to do in San
Francisco is eat a sandwich and sit in Dolores Park on a
sunny day.

Baseline (score: 8.3%): Go to the top of the hill at Lands
End and look out at the city.
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Table 2: Comparison of the RULER Benchmark scores.
LongChat doesn’t function properly for >32K inputs.

Model | Task Method 4K 8K 16K 32K 64K
Baseline 99.3 98.8 99.3 97.7 94.3

VT SEAL-H 99.8 99.7 99.8 99.8 98.1

SEAL-C 100 100 100 99.4 99.1

Llama-3.1 Baseline 99.5 943 539 2.6 0.1

-8B-Instruct | CWE SEAL-H 100 99.8 98.7 95.8 21.8

SEAL-C 100 99.6 99.5 99.7 95.7

Baseline 94.0 84.5 90.7 93.0 85.2
FWE SEAL-H 94.5 91.5 94.0 96.3 92.0
SEAL-C 975 958 97.5 98.3 97.2

Baseline 99.6 959 88.1 86.5 70.8
VT SEAL-H 99.5 99.0 97.1 949 80.8
SEAL-C 99.5 99.4 98.8 984 85.8

Mistral-7B Baseline 98.7 90.4 69.8 28.5 0.3
-Instruct-v0.2 | CWE SEAL-H 97.8 94.3 864 66.4 59.8
SEAL-C 98.8 99.0 98.0 96.9 83.6

Baseline 853 77.3 943 91.8 77.5
FWE SEAL-H 90.3 86.3 98.0 93.7 80.3
SEAL-C 99.0 943 96.8 983 91.8

Baseline 97.5 914 69.7 564 -
VT SEAL-H 97.8 974 93.6 69.8 -
SEAL-C 100 99.6 979 81.1 -

Baseline 73.7 39.6 239 37.7 -
CWE SEAL-H 86.7 53.6 78.9 76.5 -
SEAL-C 882 71.0 97.0 93.7 -

Baseline 59.2 72.7 502 69.2 -
FWE SEAL-H 789 872 913 813 -
SEAL-C 922 927 96.0 945 -

LongChat-7B
-v1.5-32K

Although SEAL-H shows slightly lower perfor-
mance than SEAL-C, it once again confirms that
retrieval performance can be greatly recovered by
simply adjusting the head-wise influence through
scalar values, amounting to only 1024 parameters
for the entire 7B model. Interestingly, in the case of
Mistral, even though sample data were generated
for a length of 31K for the SEAL, performance
improved with inputs much longer than 31K.

5.4 Results on RULER benchmark

In the previous sections, we demonstrated that
SEAL effectively boosts long-context retrieval
scores across various model families and model
sizes. To further investigate SEAL’s applicability,
we evaluated whether SEAL (1) performs well
in more complex long-context retrieval scenarios
and (2) functions effectively for recent LLMs with
extended context window sizes. To this end, we
adopted the RULER (Hsieh et al., 2024) bench-
mark. Excluding overlapping categories from prior
experiments, we selected three tasks: variable track-
ing (VT), common word extraction (CWE), and
frequent word extraction (FWE). Although the
RULER paper classified these tasks under cate-
gories other than retrieval, we consider them to be
advanced forms of retrieval. For model selection,

we included models with a context window size of
32K or more, including the recent Llama-3.1-8B-
Instruct, which supports a 128K context window.

Table 2 presents SEAL’s results across three sub-
tasks, with each task evaluated on 200 samples. No-
tably, SEAL significantly enhances performance
even for challenging long-context retrieval tasks
that modern, sophisticated models struggle with. In
particular, while the Llama-3.1-8B-Instruct model
performs relatively well on the VT and FWE tasks,
it exhibits a sharp performance drop in CWE as in-
put length increases. Interestingly, SEAL substan-
tially boosts retrieval performance, with SEAL-C
achieving near-perfect scores. These results high-
light that even advanced models with extended con-
text window sizes still suffer from significant per-
formance drops on difficult benchmarks for long-
context retrieval. However, SEAL effectively mit-
igates this issue, demonstrating its robustness in
improving long-context retrieval capabilities.

While our primary goal is to enhance the rule-
based retrieval capabilities of LLMs using synthetic
data, we additionally evaluated our approach on
Document Question-Answering (QA) tasks from
LongBench (Bai et al., 2024), a real-world long-
context benchmark. The results and details are pro-
vided in Appendix D.

6 SEAL with context length extension

There are two major challenges in handling long-
context scenarios: (1) the gradual decline in per-
formance within the context window, and (2) the
length limitation of LLM’s context window.

In this work, we address challenge (1) using the
proposed SEAL. However, our approach can be
used in conjunction with existing methods that ex-
tend the context window length itself to address
challenge (2). In fact, the validated LongChat from
the previous sections is an example where the
Llama (Touvron et al., 2023) has already been ex-
tended with larger context windows via RoPE scal-
ing and fine-tuning. However, such tuning-based
extensions come with significant costs in terms of
time, data, and training infrastructure.

Therefore, to address challenge (2), training-
free context length extension methods (e.g. , NTK
(bloc97, 2023), Self-Extend (Jin et al., 2024)) have
gained attention but generally underperform com-
pared to fine-tuning-based approaches (e.g. , PI
(Chen et al., 2023), YaRN (Peng et al., 2023)). Ap-
plying SEAL in conjunction with these training-
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Figure 7: The results of Needle-in-a-Haystack in Llama-
2-7b-Chat. The dotted black line denotes the context
window limits of the original Llama model: 4K tokens.

free extension methods could combine the low
training cost of SEAL with the benefits of tuning-
free approaches, while also mitigating performance
degradation.

The results in Figure 6 show that when extend-
ing the context length of Llama-2-7b-Chat (4K)
to over 16K using only NTK or Self-Extend, the
retrieval performance at lengths greater than 8K
drops significantly. However, by utilizing SEAL
in combination to adjust the attention influence,
we can dramatically improve retrieval performance
beyond the original base model’s context window
limitation (4K of Llama). Notably, NTK is com-
pletely unable to retrieve information at lengths
above 12K, yet with the application of SEAL, it
achieves performance comparable to that at shorter
input lengths.

Needle-in-a-Haystack task results in Figure 7 fur-
ther demonstrate that SEAL significantly enhances
the insufficient performance of the training-free
context length extension methods. These results
enable a practical approach to effectively increase
the context length of the model at less than 1% of
the cost associated with fine-tuning-based context
length extension methods by combining training-
free context length extension with SEAL.

7 Analysis on transferability of SEAL

In this section, we aim to analyze whether the
learned scale can transfer across tasks. We first

Tasks for validation
VT CWE FWE VT CWE FWE

<
—

Tasks for tuning
m O
= &

0.24 -0.24 [ 0.17

0.21

SEAL-H SEAL-C

L L o - N
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Figure 8: The transferability metric of adapted attention
scale of SEAL across RULER tasks.

define a transferability metric from tuning task A
to validation task B as follows:

7o — 20 (58(,04) — Sp(£,0))
A=B = ax, Sp (0, 0) — ming Sp(4, )’

(@)

where 6 and 6 4 denote the baseline model parame-
ters and the model with scale tuned on task A, re-
spectively. Sp (¢, 0) denotes the validation score of
task B at length ¢, using 6. Figure 8 presents trans-
ferability across tasks from RULER. The y-axis
represents the RULER tasks where SEAL is ap-
plied, while the x-axis indicates the tasks on which
the learned scale was validated. This result pro-
vides some insights into the transferability of the
learned scale across different retrieval tasks.

First, the red regions indicate performance im-
provement when the learned scale is applied to a
validation task. Notably, scale transfer is effective
between CWE and FWE, which belong to the same
category. Such transferability arises because SEAL
leverages formatted data, allowing tasks with sim-
ilar formats to benefit from cross-task adaptation.
In contrast, scales tuned on CWE or FWE do not
transfer well to VT. These findings suggest that
constructing a general long-context retrieval model
may require gathering and tuning on a minimal set
of representative samples from each task category,
rather than every individual task. We leave this as a
direction for future work. Finally, SEAL-C demon-
strates higher transferability compared to SEAL-H.

8 Comparison with In-Context Learning

In-context learning (ICL) is a capability of LLMs to
learn new tasks by leveraging pretrained contextual
knowledge. ICL provides the task’s format informa-
tion to the model through examples prepended to
the prompt, similar to how SEAL fine-tunes using
datasets focused on format information. Therefore,
we compared the performance of ICL with SEAL.
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Table 3: Comparison of the line retrieval task scores.

Model | Method 9K 14K 19K 23K 28K 30K
| Baseline 0.98 0.96 0.84 0.54 0.38 0.32
| One-shot 1.00 1.00 0.90 0.84 0.50 0.50

LongChat—7B‘ LoRA 1.00 1.00 1.00 1.00 0.94 0.80

-v1.5-32K DoRA 1.00 1.00 1.00 1.00 0.94 0.86
SEAL-H 1.00 1.00 0.98 1.00 0.94 0.80

SEAL-C 0.98 096 0.94 092 0.94 0.88

Model | Method 5K 7K 9K 12K 14K 15K

| Baseline 0.98 0.98 0.94 0.88 0.68 0.48

| One-shot 0.96 0.96 0.90 0.84 0.66 0.50
Vicuna-13B | LoRA 098 098 0.88 1.00 1.00 0.98
-v1.5-16K DoRA 1.00 098 090 1.00 1.00 0.98

SEAL-H 1.00 1.00 0.96 1.00 0.96 1.00
SEAL-C 1.00 1.00 0.96 0.98 0.98 0.96

We used 1-shot Prompting (Brown et al., 2020)
with a 1K-length example and its answer, on the
two models that showed the most significant per-
formance drop even in the relatively simple Line
retrieval task. Table 3 shows that one-shot prompt-
ing improves baseline performance for long in-
puts on the LongChat-7B model. However, it still
demonstrates significantly lower performance com-
pared to our SEAL, highlighting the effectiveness
of SEAL in enhancing retrieval ability. Addition-
ally, the performance of ICL can sometimes be
comparable to or even worse than the baseline due
to the increased input length.

9 Comparison with Low-Rank
Adaptation

In SEAL, we focus solely on head-specific adapta-
tion. However, the widely used Low-Rank Adap-
tation (LoRA) (Hu et al.) technique encompasses
a broader learning space that includes SEAL as
a subset. For a more comprehensive analysis, we
compare SEAL against LoRA and its recent variant,
DoRA (Liu et al., 2024b). Both LoRA and DoRA
with a low rank of r = 4 were applied to all linear
layers in the attention module (Q, K, V, and O) with
a learning rate of 2e-4.

As shown in Table 3, SEAL achieves accuracy
comparable to LoRA and DoRA on the line re-
trieval task. Notably, SEAL-H requires only L x H
learnable parameters (the number of blocks mul-
tiplied by the number of heads), amounting to
just 1,024 parameters for the entire LongChat-7B
model—making it highly parameter-efficient. Com-
pared to LoRA, which updates all QKVO layers,
SEAL-H attains similar performance while utiliz-

ing approximately 4,000 times fewer parameters.
This demonstrates that SEAL is sufficient to en-
hance performance on these tasks effectively, while
also validating our identification of key factors that
contribute to improved retrieval performance.

10 Conclusion

The ability to retrieve and extract information from
long-length input is an important component of the
LLMs. Through our analysis, we found that there
are attention components that have a good or bad
impact on the retrieval scores. Based on this, we
introduce SEAL, a novel attention strength scaling
method to deliberately control the impact of each
attention component. Despite using very few for-
matted sample data, SEAL significantly improves
long-context retrieval performance. We believe that
our insights will contribute to the advancement of
long-context LLMs.

Limitations

In this study, the training dataset used for SEAL
included samples with a maximum length of 31K.
If the length of each sample in the training dataset
increases further, the GPU memory requirements
for training will also grow, potentially necessitat-
ing the use of multi-GPU training. We expect that
this issue can be mitigated by integrating SEAL
with more efficient long-context training methods
in future work.

The only hyperparameter in SEAL is the learn-
ing rate. We observed that the optimal learning rate
varies slightly depending on the difficulty or the
characteristics of the downstream task, introducing
a minor hyperparameter tuning requirement. How-
ever, since our target scenarios leverage synthetic
data, they are free from the challenges of valida-
tion set construction. Additionally, tuning can be
completed rapidly with as few as 50 samples, typi-
cally taking less than an hour. This ensures that the
hyperparameter search incurs minimal overhead,
making SEAL efficient in practical applications.
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A Training Configurations

A.1 Learning rate

The learning rate is the only hyperparameter in
SEAL. In most cases, a learning rate of le-2 per-
formed well; however, different values were used
in some cases. The learning rates used to produce
the results in this paper are listed in Table 4 and
Table 5.

Table 4: Learning rates for the Line retrieval and Needle-
in-a-Haystack tasks.

Line retrieval ‘ Needle-in-a-Haystack
SEAL-H | SEAL-C ‘ SEAL-H | SEAL-C

LongChat-7B-v1.5-32K Se-2

Mistral-7B-Instruct-v0.2 le-2 4e-2
Vicuna-7B-v1.5-16K 2e-2 4e-2
LongChat-13B-16K 262 Se-2

Vicuna-13B-v1.5-16K

Table 5: Learning rates for the tasks of the RULER
benchmark.

\ VT | CWE | FWE |

‘ SEAL-H ‘ -C ‘ -H ‘ -C ‘ -H ‘ -C
Llama-3.1-8B-Instruct le-2 Se-3
Mistral-7B-Instruct-v0.2 le-2 le-2 | le-2 | le-2 | le-2 | 2e-2
LongChat-7B-v1.5-32K 2e-2 le-2

A.2 SEAL with Training-free context length
extension

For NTK, we set the scaling factor to 4 to extend
the context length from 4096 to 16384. For Self-
Extend, we set the group size to 6 and the neighbor
window size to 1024, resulting in an extended con-
text length of (4096 — 1024) x 6 = 18432.

B Generating sample data for
downstream task

B.1 Line retrieval

LongEval provides generate_testcases.py to create
random data of the desired length. We created a
prompt (input) for the sample utilizing that code.
The answer label for scale tuning is made as fol-
lows:

data[’answer_str’] =
f"The <REGISTER_CONTENT> in line
data[’random_idx’][0] is data[’expected_number’]."

We further used appropriate system prompts and
conversation templates for each model when train-
ing with axolotl.
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B.2 Needle-in-a-Haystack

The pipeline for generating sample data for Needle-
in-a-Haystack is detailed in the Figure 3(a). We
used the following input prompt to generate ran-
dom needles using chatGPT?:

I am trying to test the retrieval performance of the model.
I need needle sentences to find in a long context, with the
corresponding retrieval question. Here is one example
case: "needle": "The first thing you notice upon entering
the room is the bright green chair sitting in the center
facing the window.", "question": "What is the first thing
you notice upon entering the room?". I want to make 10
sets of needles and corresponding retrieval questions in
jsonl format, like "needle": "...", "question": "...". Here
are some restrictions about needles and questions. 1.
Since the purpose is to test only retrieval performance,
the less it is related to general knowledge, the better.
2. It is better to place the content corresponding to the
question at the beginning of the needle sentence, like the
given example. 3. Keep the length of the needle similar to
or longer than the length of the example needle provided.
4. Please give variations to the format, "first thing".
Can you make 10 sets of examples for me?

The 10 random needle and question pairs created
from the above prompt are as follows:

"needle": "Immediately noticeable upon entering the
room is the large oak table positioned beneath the chan-
delier.", "question": "What is immediately noticeable
upon entering the room?"

"needle": "A striking feature of the room is the tall book-
shelf that spans the entire length of the far wall.", "ques-
tion": "What is a striking feature of the room?"
"needle": "Dominating the center of the room is a grand
piano, its polished surface reflecting the light from the
windows.", "question": "What dominates the center of
the room?"

"needle": "Catching your eye as you step inside is the
intricate tapestry hanging on the left wall, its colors vivid
and bright.", "question": "What catches your eye as you
step inside?"

"needle": "The first thing that draws your attention is the
large framed photograph resting on the mantel.", "ques-
tion": "What is the first thing that draws your attention?"
"needle": "Clearly visible as you enter is the large circu-
lar rug that covers most of the hardwood floor.", "ques-
tion": "What is clearly visible as you enter?"

"needle": "What stands out immediately is the tall stand-
ing lamp positioned next to the armchair in the corner.",
"question": "What stands out immediately in the room?"
"needle": "The most noticeable item upon stepping in-
side is the antique grandfather clock, ticking rhythmi-
cally in the corner.", "question": "What is the most no-
ticeable item upon stepping inside?"

"needle": "Your attention is immediately drawn to the
stained glass window, casting colorful patterns of light
across the floor.", "question": "What is your attention
immediately drawn to?"

"needle": "Visible as soon as you enter the room is a
large painting of a landscape, mounted prominently on
the main wall.", "question": "What is visible as soon as

you enter the room?"

Zhttps://chatgpt.com

B.3 RULER

For the Mistral-7B-Instruct-v0.2 and LongChat-
7B-v1.5-32K models, we generated 50 synthetic
samples with random lengths between 8K and 31K.

For Llama-3.1-8B-Instruct, to accommodate the
memory constraints of a single A100 GPU during
training, we generated 50 samples with random
lengths between 8K and 16K.

RULER benchmark provides code for each task
to create random data of the desired length. We
created a prompt (input) for the sample utilizing
that code.

C Additional Comparisons of SEAL-H
and SEAL-C

As explained in Section 3.3, which highlights the
importance of channel-wise attention manipulation,
SEAL-C (channel-wise) generally performs bet-
ter in most use cases. Therefore, for practical ap-
plicability, we recommend using SEAL-C. How-
ever, even SEAL-H (head-wise), despite using only
minimal learnable parameters (1/128 of SEAL-C
and about 1/4000 of LoRA for LongChat-7B), al-
ready achieves significant performance improve-
ments over the baseline. This again demonstrates
that the attention head is a key component in en-
hancing retrieval performance, and channel-wise
manipulation allows for more precise control over
it.

Based on our experience, for in-depth analy-
sis and understanding of LLM retrieval, it was
highly beneficial to first identify the target attention
head using SEAL-H and then perform a more fine-
grained analysis using SEAL-C. Thus, a combined
usage of both methods is effective for analysis.

As demonstrated in Section 7, SEAL-C also
shows better transferability than SEAL-H.

D Results on LongBench benchmark

Our primary focus is to improve the fundamental
long-context retrieval capabilities of LLMs—tasks
that often rely less on parametric knowledge and
more on explicit rules or external formulas. This di-
rection is essential, as rule-based reasoning serves
as the foundation for a wide range of retrieval
tasks, including those grounded in real-world data.
Guided by this intuition, we intentionally enhance
LLM performance using synthetic data, thereby de-
coupling SEAL’s contribution from improvements
in the model’s parametric knowledge. Despite the
apparent simplicity of these tasks, as shown in

28953



Table 6: Comparison of scores on the LongBench Docu-
ment QA tasks.

Single-Doc QA

MultiField MultiField Narrative Qasper | Average
QA-EN QA-ZH QA sp g
Baseline 42.52 35.15 20.66  29.16 | 31.87
SEAL-H 41.99 35.39 20.05 35.56 | 33.25
SEAL-C 44.02 43.35 19.59 34.86 | 35.46

Multi-Doc QA
HotpotQA 2WikiMQA MuSiQue DuReader‘Average

Baseline 33.12 23.89 14.49 21.66 23.29
SEAL-H 38.77 23.92 18.58 22.92 26.05
SEAL-C  45.13 32.50 22.93 24.52 31.27

Section 5.4, even the latest Llama-3.1-8B-Instruct
model struggles with basic rule-based operations,
such as common word extraction (CWE). This ob-
servation highlights the pressing need to address
challenges in synthetic retrieval tasks as a founda-
tional priority.

On the other hand, we also provide additional re-
sults by extending our approach to real-world long-
context tasks, especially LongBench (Bai et al.,
2024), to demonstrate the practical applicability of
SEAL beyond synthetic tasks.

Among the LongBench categories, Single-
Document Question-Answering (QA) and Multi-
Document QA require retrieving key passages
across documents to properly answer the question.
Accordingly, we measured the performance of our
method on tasks categorized under Document QA.
Since LongBench relies on real passages, we used
50 samples from the triviaqa_e dataset, which be-
longs to the Few-Shot category and is not included
in the document QA tasks used for evaluation, to
prevent data contamination. Specifically, we sorted
triviaqa_e samples by context length in descending
order and selected the top 50 samples as SEAL fine-
tuning samples. Table 6 shows the improvements
of LongBench’s Document QA task scores with
the proposed SEAL, on LongChat-7B-v1.5-32K
model.

Despite the fact that Question-Answering heav-
ily depends on other capabilities of LLMs, such
as reasoning, applying SEAL led to performance
improvements in most document QA tasks, signif-
icantly increasing the average score. This demon-
strates that the retrieval performance gains achieved
by SEAL also contribute to real-world long-context
tasks like document QAs of LongBench. Interest-
ingly, both SEAL-H and SEAL-C improved perfor-

mance across all multi-doc QA tasks, particularly
highlighting SEAL’s effectiveness in complex real-
world tasks.

E Analysis on number of samples and
learning rate

1
0.9
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Figure 9: Line retrieval results when using fewer sam-
ples than the default 50 samples.

One of the advantages of SEAL is that it
can achieve significant performance improvements
with a very small number of formatted data sam-
ples. To analyze the effects of both the number of
samples and the learning rate on scale tuning, we
tuned the scale of SEAL-H by sweeping over these
two factors. For this experiment, we generated a
new set of 100 random samples for line retrieval us-
ing the same method proposed in Appendix B. The
results of applying SEAL-H to LongChat-7B-v1.5-
32K with different hyperparameter configurations
are shown in Table 7. In general, we observed that
performance improves as the number of samples
increases, but found that around 50 samples are
sufficient.

Additionally, we tested whether comparable per-
formance improvements could be achieved using
significantly fewer samples, with only 25 or 10
samples. In Figure 9, we compared tuning with
25 samples over 2 epochs and 10 samples over 5
epochs against the original SEAL-H (which used
50 samples over 1 epoch). The results show that
even with as few as 25 samples, it is possible to

Table 7: Line retrieval results on LongChat-7B with a
31K input length, varying across learning rates (y-axis)
and number of samples (x-axis).

| 10 30 50 70 99
5e-3 | 056 064 068 0.70 0.72

le-2 | 0.68 0.74 0.78 0.82 0.82
2e-2 | 070 082 0.82 0.84 0.70
3e-:2 | 076 084 090 0.86 0.82
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Table 8: Comparison of the number of tunable parame-
ters and their ratio relative to those in the LoORA method.
Here, K denotes 10°.

Model Method #Params. Ratio
Baseline - -
SEAL-H 1.0K 0.0002x
LongChat-7B-v1.5-32K SEAL-C 131.1K 0.0313x
LoRA 4194.3K 1.0000x
DoRA 4718.6K 1.1250x
Baseline - -
SEAL-H 1.0K 0.0003x
Mistral-7B-Instruct-v0.2 SEAL-C 131.1K 0.0385x
LoRA 3407.9K 1.0000x
DoRA 3735.6K 1.0962x
Baseline - -
SEAL-H 1.0K 0.0002x
Vicuna-7B-v1.5-16K  SEAL-C 131.1K 0.0313x
LoRA 4194.3K 1.0000x
DoRA 4718.6K 1.1250x
Baseline - -
SEAL-H 1.6K 0.0002x
LongChat-13B-16K  SEAL-C 204.8K 0.0313x
LoRA 6553.6K 1.0000x
DoRA 7372.8K 1.1250x
Baseline - -
SEAL-H 1.6K 0.0002x
Vicuna-13B-v1.5-16K  SEAL-C 204.8K 0.0313x
LoRA 6553.6K 1.0000x
DoRA 7372.8K 1.1250x
Baseline - -
SEAL-H 1.0K 0.0003x
Llama-3.1-8B-Instruct SEAL-C 131.1K 0.0385x
LoRA 3407.9K 1.0000x
DoRA 3735.6K 1.0962x

achieve comparable performance. Although there is
a relative performance decrease when tuning with
only 10 samples for 5 epochs, it is remarkable that
even with just 10 samples, there is a substantial
improvement over the baseline. Preparing around
10 samples can be easily done by hand without
the need for a complex data processing pipeline,
which highlights the cost-effectiveness of the SEAL
method.

F Analysis on parameters

Table 8 presents a comparison of the number of
tunable parameters and their proportion relative
to those used in the LoRA method. The results
demonstrate that SEAL-H and SEAL-C utilize sig-
nificantly fewer tunable parameters compared to
low-rank adaptation methods, such as LoRA and
DoRA.

G Comparison with Low-Rank
Adaptation: Needle-in-a-Haystack task

Additionally, we provide a comparison with low-
rank adaptation methods for the Needle-in-a-
Haystack task. Figure 10 presents the results of
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Figure 10: Comparison of Needle-in-a-Haystack perfor-
mance with Low-Rank Adaptation methods.

applying SEAL, LoRA, and DoRA to the Needle-
in-a-Haystack task. SEAL achieves performance
comparable to low-rank adaptation methods in the
Needle-in-a-Haystack task while utilizing signifi-
cantly smaller learnable space.
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