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Abstract

Large language models (LLMs) have achieved
remarkable proficiency in understanding and
generating human natural languages, mainly
owing to the "scaling law" that optimizes re-
lationships among language modeling loss,
model parameters, and pre-trained tokens.
However, with the exhaustion of high-quality
internet corpora and increasing computational
demands, the sustainability of pre-training scal-
ing needs to be addressed. This paper presents
a comprehensive survey of post-training scal-
ing, an emergent paradigm aiming to relieve the
limitations of traditional pre-training by focus-
ing on the alignment phase, which traditionally
accounts for a minor fraction of the total train-
ing computation. Our survey categorizes post-
training scaling into three key methodologies:
Supervised Fine-tuning (SFT), Reinforcement
Learning from Feedback (RLxF), and Test-time
Compute (TTC). We provide an in-depth analy-
sis of the motivation behind post-training scal-
ing, the scalable variants of these methodolo-
gies, and a comparative discussion against tradi-
tional approaches. By examining the latest ad-
vancements, identifying promising application
scenarios, and highlighting unresolved issues,
we seek a coherent understanding and map fu-
ture research trajectories in the landscape of
post-training scaling for LLMs.

1 Introduction

Large Language Models (LLMs) (Brown, 2020;
Chowdhery et al., 2023; Hoffmann et al., 2022;
Zhang et al., 2022; Zeng et al., 2022; Touvron
et al., 2023; Le Scao et al., 2023) have demon-
strated unprecedented capabilities to understand
and generate human natural languages. They are
self-supervisedly (Liu et al., 2021) pre-trained over
trillion-scale internet corpus, covering a broad spec-
trum of potential contents of language (Gao et al.,
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Figure 1: The number of publications on Scaling Laws
and Post-training from arXiv and Google Scholar.

2020; Yuan et al., 2021; Penedo et al., 2024), cod-
ing (Kocetkov et al., 2022; Xia et al., 2024), math-
ematics (Wang et al., 2023d), and other profes-
sional or scientific knowledge (Lo et al., 2019), to
gain a firm grasp of commonsense, world knowl-
edge (Xue et al., 2024), and even emergent abili-
ties (Wei et al., 2022b) to reason like humans.

The success of LLMs heavily depends on “Scal-
ing Law” (Brown, 2020; Hoffmann et al., 2022) in
pre-training, which unveils the numerical relation-
ships of the language modeling loss, model parame-
ters, and pre-trained tokens. By fully exploiting the
potential of data and parameters according to the
scaling law, LLMs such as GPT-4 (OpenAI, 2024a)
have significantly outperformed average humans
in writing and language understanding, and have
even matched the performance of undergraduate
students on disciplinary examinations. As a result,
the scaling law has become a critical foundation of
contemporary LLMs.

However, as high-quality internet corpus be-
comes potentially exhausted (Villalobos et al.), the
pre-training scaling is facing a substantial chal-
lenge. While massively synthesizing corpus might
tackle the problem, its effectiveness after scaling
remains unverified and questionable (Shumailov
et al., 2024). Additionally, the extreme compu-
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tation required by pre-training has cast doubt on
the marginal benefits and return on investment of
pre-training scaling. Consequently, it becomes in-
creasingly a consensus (Figure 1) that we need scal-
ing laws beyond pre-training to achieve artificial
general intelligence (AGI).

The advent of OpenAI o1 model (OpenAI,
2024b), together with some recent works (Snell
et al., 2024; Yue et al., 2023; Zhang et al., 2024a),
has been advocating another vital stream of scaling:
Post-training Scaling. Instead of investing in the
self-supervised pre-training phase, post-training
scaling emphasizes the post-training phase (i.e.,
alignment), which conventionally only accounts
for less than 1% of the whole LLM training compu-
tation. The probable improving aspects include Su-
pervised Fine-tuning (SFT), Reinforcement Learn-
ing from “X” Feedback (RLxF), and Test-time
Compute (TTC) (i.e., inference scaling).

In this work, we aim to present a comprehensive
survey on methods for the new scaling laws: post-
training scaling. We first provide an overview of
the motivation for developing post-training scaling
and then dive into the three summarized categories
of methods above. While these categories are es-
tablished, our surveying emphasis lies in their scal-
able variants that could illuminate the post-training
scaling challenge. For comparison, we briefly intro-
duce common post-training strategies that do not
scale well enough in each category. To sum up, in
this survey, we make the following contributions:
• We meticulously examine the latest advance-

ments in post-training methodologies, thoroughly
overview the fundamental concepts, training tech-
niques, and critical frameworks, and aim to facil-
itate an in-depth understanding of these cutting-
edge developments.

• We categorize post-training scaling laws into
three distinct stages: Supervised Fine-tuning
(SFT), Reinforcement Learning (RL), and Test-
time Compute (TTC). We compare traditional
and scalable approaches for each stage, high-
lighting their respective advantages and disad-
vantages.

• We identify several promising applications within
the field and discuss unresolved issues, analyzing
their limitations and boundaries. Our discussion
extends to future directions for post-training scal-
ing laws, mapping out potential trajectories for
continued research and development.
This survey is structured as follows. Section 2

outlines the motivation behind post-training scaling
for enhancing LLMs. Sections 3, 4, and 5 explore
scalable methodologies within Supervised Fine-
tuning, Reinforcement Learning, and Test-time
Compute, comparing traditional and scalable meth-
ods. Section 6 examines the applications of these
post-training techniques in areas such as mathe-
matics, coding, and autonomous agents. Section
7 concludes with key insights from our compre-
hensive survey. The limitations section discusses
unresolved issues and future research directions.

2 Motivation of Post-Training Scaling

The concept of post-training has a long-standing
history (Moreau and Audiffren, 2017). Unlike self-
supervised pre-training, which primarily learns lan-
guage’s statistical properties and fundamental se-
mantics, post-training further enlightens the model
through alignment and guidance techniques. The
increasing research volume underscores the impor-
tance of post-training (Touvron et al., 2023; Ope-
nAI, 2024a), noting its evolution from incremental
training for alignment to fostering a learning pro-
cess where models exhibit autonomous reasoning.
The OpenAI o1 model (OpenAI, 2024b) suggests
that a scaling law persists during the post-training
phase, offering alternative strategies when existing
data are insufficient for further training. Conse-
quently, the automation and scaling of post-training
processes are pivotal for advancing LLMs to the
next level. Traditionally, post-training can be cate-
gorized into three main types:
• Supervised Fine-tuning: The LLM is trained to

map input instructions to output labels.
• Reinforcement Learning: The LLM generates

outputs based on input instructions, receives re-
ward signals from the environment, and updates
itself according to these rewards.

• Test-time Compute: The LLM utilizes computa-
tion and inference strategies to enhance perfor-
mance across various scenarios.
Given the rapid iteration of post-training algo-

rithms, we aim to classify them and review their
scaling potential to facilitate further advancements.
Below is an overview of our classification:
• Supervised Fine-tuning: SFT encompasses meth-

ods for generating instructions and responses.
We classify these methods and analyze their po-
tential for scaling with larger datasets or extended
training.

• Reinforcement Learning: The reward signal is
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Scalable
Methods

(§5.2)

Self-Verification (§5.2.5): Self-Refine (Press et al., 2022), Reflexion (Shinn et al., 2024), Li et al. (Li et al.,
2024a), Self-Verification (Weng et al., 2023), Self-Contrast (Zhang et al., 2024d)

Long In-Context Learning (§5.2.4): Lu et al. (Lu et al., 2022), Many-Shot ICL (Agarwal et al., 2024), Hsieh et
al. (Hsieh et al., 2023)

Searching (§5.2.3): ToT (Yao et al., 2023), Pathfinder (Golovneva et al., 2023), Cumulative Reasoning (Zhang
et al., 2023b), GoT (Besta et al., 2024), DoT (Zhang et al., 2024e), AoT (Sel et al., 2024), ReST-MCTS* (Zhang
et al., 2024b)

Verified Chain-of-Thought (§5.2.2): Lightman et al. (Lightman et al., 2023), SelfCheck (Miao et al., 2023),
DiVeRSe (Li et al., 2023a), LogiCoT (Zhao et al., 2024b)

Sampling (§5.2.1): Self-Consistency (Wang et al., 2023a) , Zhou et al. (Zhou et al., 2023a) , WebGPT (Nakano
et al., 2022) , WebGLM (Liu et al., 2023c), Cobbe et al. (Cobbe et al., 2021)

Common
Methods

(§5.1) Chain-of-Thought (§5.1.2): CoT (Wei et al., 2023a), Step-by-step prompting (Kojima et al., 2023), Least-to-most
Prompting (Zhou et al., 2023b), Decomposed Prompting (Lewkowycz et al., 2022), ReAct (Yao et al., 2022b),
Inner Monologue (Huang et al., 2022b)

In-Context Learning (§5.1.1): GPT-3 (Brown, 2020), Instruction-Induction (Honovich et al., 2022b), APE (Zhou
et al., 2022), OPRO (Yang et al., 2024b)

Reinforcement
Learning

Scalable
Methods

(§4.2)
Self Feedback (§4.2.3): RLCD (Yang et al., 2024c), Agent Q (Putta et al., 2024), Self-Rewarding (Yuan et al.,
2024), Meta-Rewarding (Wu et al., 2024a), Self-Taught Evaluator (Wang et al., 2024d)

Environment Feedback (§4.2.2): DigiRL (Bai et al., 2024), ENVISIONS (Xu et al., 2024a), SANDBOX (Liu
et al., 2023b), RLTF (Liu et al., 2023a), SPAG (Cheng et al., 2024b), Prover-Verifier (Kirchner et al., 2024)

Synthetic Reward Modeling (§4.2.1): RLAIF (Bai et al., 2022; Lee et al., 2024), RLSF (Kim et al., 2023), Q*
(Wang et al., 2024a), IterAlign (Chen et al., 2024b), Easy-to-Hard (Sun et al., 2024)

Common
Methods

(§4.1)
Reward Modeling (§4.1.2): InstructGPT (Ouyang et al., 2022), ReMax (Li et al., 2024d), Fine-Grained
RLHF (Wu et al., 2023b), Ultrafeedback (Cui et al., 2023), ORM/PRM (Cobbe et al., 2021; Lightman et al.,
2023), WARM (Ramé et al., 2024), UNA (Wang et al., 2025)

Human Labeling (§4.1.1): DPO (Rafailov et al., 2024), KTO (Ethayarajh et al., 2024), RRHF (Yuan et al.,
2023c), SimPO (Meng et al., 2024)

Supervised
Fine-tuning

Scalable
Methods

(§3.2)
Response
(§3.2.2)

Weak Supervision : Hase et al. (Hase et al., 2024), Burns et al. (Burns et al., 2023), Bansal et
al. (Bansal et al., 2024)

Self-Refinement: SCORE (Zhang et al., 2024f), SELF (Lu et al.), SELF-ALIGN (Sun et al.,
2023), ISR-LLM (Zhou et al., 2023d)

Self-Play: SPIN (Chen et al., 2024c), AMIE (Tu et al., 2024), Self-Talk (Ulmer et al., 2024),
Sotopia-π (Wang et al., 2024c)

Sampling: RFT (Yuan et al., 2023a), RAFT (Dong et al., 2023), LMSI (Huang et al., 2022a),
STaR (Zelikman et al., 2022), Quiet-STaR (Zelikman et al., 2024)

Instruction
(§3.2.1) Evolution: Evol-Instruct (Xu et al., 2023), Promptbreeder (Fernando et al., 2023), Di-

verseEvol (Wu et al., 2023a), Self-Instruct (Wang et al., 2023c)

Context-based: Web-Instruct (Yue et al., 2024), Backtranslation (Li et al., 2024b), Ditto (Lu
et al., 2024b), SOLID (Askari et al., 2024)

Common
Methods

(§3.1) LLM Distillation (§3.1.2): Alpaca (Taori et al., 2023), Unnatural Instructions (Honovich et al., 2022a), Code
Llama (Rozière et al., 2024), OpenAssistant (Köpf et al., 2023), Ada-Instruct (Cui and Wang, 2023), Kun (Zheng
et al., 2024)

Human Labeling (§3.1.1): SQuAD (Rajpurkar et al., 2018), HellaSwag (Zellers et al., 2019), DROP (Dua et al.,
2019), FLAN (Longpre et al., 2023)

Figure 2: Taxonomy of Post-Training Scaling Laws.

an essential component of RL. We classify RL
methods based on the source of the reward signal
and evaluate the automation and scalability of
these signals.

• Test-time Compute: We classify methods based
on the target and approach of scaling computa-
tions. Additionally, we examine whether these
methods can improve performance through in-
creased computations.

We classify the existing post-training methods
and present a tree diagram, as shown in Figure 2.
The tree diagram summarizes the three core ap-
proaches to post-training: Supervised Fine-tuning,
Reinforcement Learning, and Test-time Compute.
Each approach is further subdivided into common

and scalable methods.
By providing a structured classification and their

methods (Figure 2), we aim to contribute to the dis-
cussion on the post-training algorithms and inspire
further research and development in this area.

3 Scaling for Supervised Fine-tuning

Supervised Fine-tuning (SFT) is a training tech-
nique aimed at improving the performance of
pre-trained language models on a specific task
by training on a supervised high-quality labeled
dataset (Sanh et al., 2022; Wei et al., 2022a).
InstructGPT (Ouyang et al., 2022) and Chat-
GPT (OpenAI, 2022) leverage SFT after pre-
training to improve performance on specific tasks
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Figure 3: Classification of SFT Methods.

like answering questions and following users’ in-
structions. Scaling for SFT involves constructing
instructions and responses through various scalable
training and data-constructing methods, like Web-
Instruct (Yue et al., 2024), Evol-Instruct (Xu et al.,
2023) and STaR (Zelikman et al., 2022). These
methods can be categorized based on their data ac-
quisition techniques (Figure 3). This section sum-
marizes the common and scalable methods for SFT
from the data acquisition perspective.

3.1 The Common Methods

Previous research on SFT mainly uses human la-
beling (Bach et al., 2022; Longpre et al., 2023) or
LLMs like ChatGPT and GPT-4 (OpenAI, 2022,
2024a) with prompt engineering. Human labeling
produces high-quality data but is costly and insuffi-
cient for scaling, while LLM distillation produces
plentiful data but often lacks robust quality and
diversity (Bender et al., 2021; Brown et al., 2020).

3.1.1 Human Labeling
Early approaches to SFT in NLP rely heavily on
human labeling, exemplified by widely-used public
datasets such as SQuAD (Rajpurkar et al., 2018),
HellaSwag (Zellers et al., 2019), DROP (Dua et al.,
2019) and FLAN (Longpre et al., 2023). They
leverage human-labeled instruction data to enhance
their ability to generate text aligned with human-
provided instructions, improving response quality.

3.1.2 LLM Distillation
Researchers increasingly use LLMs, such as Chat-
GPT (OpenAI, 2022), to generate task-specific data
efficiently and inexpensively, though ensuring data
accuracy remains challenging due to the limitations
of the LLMs. Alpaca (Taori et al., 2023) employs

prompt engineering with text-davinci-003 for
creating instruction-response pairs from initial
tasks. Unnatural Instructions (Honovich et al.,
2022a) combines manual and automated processes
for quality control in data generation. Code
Llama (Rozière et al., 2024) and Openassis-
tant (Köpf et al., 2023) use advanced prompting
techniques with Llama-2 70B (Touvron et al., 2023)
to generate program solutions. Fine-tuning existing
models with high-quality data is another strategy.
Ada-Instruct (Cui and Wang, 2023) fine-tunes with
few shots for efficient instruction generators, while
Kun (Zheng et al., 2024) uses a dual-model ap-
proach to label and refine data.

3.2 The Scalable Methods

In this section, we categorize the scaling techniques
based on the data sources, distinguishing between
instruction and response generation, and further
detail their respective construction methodologies.

3.2.1 Instruction Generation
Context-based methods augment LLMs by inte-
grating external knowledge into inputs, enhanc-
ing the instructions’ diversity and authenticity.
However, they often incur costs and complexi-
ties in knowledge collection. For instance, Web-
Instruct (Yue et al., 2024) retrieves and contextu-
alizes documents from web databases to create an
instruction dataset. At the same time, Backtransla-
tion (Li et al., 2024b) utilizes 502K unlabeled text
segments from the ClueWeb corpus to iteratively
fine-tune a seed model and create high-quality train-
ing examples. Ditto (Lu et al., 2024b) employs a
self-alignment method to simulate dialogues based
on 4,000 high-quality role knowledge entries, and
SOLID (Askari et al., 2024) automates prompt gen-
eration for dialogue through multi-intent instruc-
tions, amassing extensive data.

Evolution-based techniques mimic natural pro-
cesses to refine instructions iteratively, thereby
boosting diversity and quality through mutation
prompts or self-instruction mechanisms. Evol-
Instruct (Xu et al., 2023) uses deep and breadth evo-
lution strategies to generate instructions of varied
difficulty levels automatically. Promptbreeder (Fer-
nando et al., 2023) employs an evolutionary al-
gorithm with mutation prompts to improve task
prompts via a binary tournament genetic process.
DiverseEvol (Wu et al., 2023a) enhances data di-
versity by using a K-Center sampling algorithm
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to select the most dissimilar data points iteratively.
Moreover, Self-instruct (Wang et al., 2023c) allows
a model to autonomously generate and validate
new task instructions from a seed dataset, gradu-
ally building a comprehensive pool of tasks.

3.2.2 Response Generation
Sampling strategies generate multiple candidate
responses to a given instruction, selecting the
highest-quality output using distinct algorithms.
RFT (Yuan et al., 2023a) leverages a rejection
sampling algorithm to filter reasoning paths, ensur-
ing high-quality dataset generation. RAFT (Dong
et al., 2023) enhances model performance through
reward-ranked fine-tuning - iteratively generating
and selecting optimal responses. LMSI (Huang
et al., 2022a) refines predictions using Chain-of-
Thought prompts and a majority voting mechanism,
optimizing model fine-tuning. STaR (Zelikman
et al., 2022) and Quiet-STaR (Zelikman et al., 2024)
further advance LLM reasoning by sampling ratio-
nales, with Quiet-STaR integrating parallel sam-
pling for more diverse rationale generation.

Self-Play is a significant avenue in model im-
provement, involving the model iterating against
itself to refine strategies. This approach, rooted
in game theory and illustrated by early checkers
research (Samuel, 1959), finds practical applica-
tions in various fields. SPIN (Chen et al., 2024c)
implements self-play within LLMs to boost perfor-
mance without labeled data. AMIE (Tu et al., 2024)
uniquely applies self-play in the medical field, it-
erating internal and external self-play processes
for accurate medical diagnostics. Self-Talk (Ulmer
et al., 2024) generates role-playing dialogue data
via role simulations, further processed through au-
tomated quality filtering. Sotopia-π (Wang et al.,
2024c) uses GPT-4 (OpenAI, 2024a) to create var-
ied social scenarios and objectives, further extend-
ing social task generation.

Self-Refinement employs an iterative process
where models refine their outputs through self-
feedback, progressively enhancing response qual-
ity. SCORE (Zhang et al., 2024f) facilitates self-
correction in small models using correct solutions
as feedback prompts during generation. SELF (Lu
et al.) introduces a meta-skill learning frame-
work, enabling models to improve through self-
evaluation of unlabelled instructions iteratively.
SELF-ALIGN (Sun et al., 2023) ensures reliable
response through continuous refinement based on

principles and demonstrations. ISR-LLM (Zhou
et al., 2023d) employs LLMs as self-verifiers, pro-
viding feedback for iterative plan refinement.

Weak Supervision explores the potential of
LLMs learning from outputs generated by weaker
models. This approach addresses the growing
disparity between model capabilities and human
supervision limits. (Hase et al., 2024) illustrate
LLMs’ capacity to generalize from simple to com-
plex tasks, validating weak supervision’s feasibil-
ity. (Burns et al., 2023) focus on fine-tuning strong
models using weak model outputs, introducing a
performance gap recovered (PGR) metric for evalu-
ating weak-to-strong generalization. (Bansal et al.,
2024) challenge the superiority of strong but ex-
pensive models, demonstrating that weak but cheap
models may offer higher computational efficiency.

Takeaways 1 We categorize scalable SFT
methods into instruction and response ap-
proaches. For instructions, context-based
methods enrich instructions with external
knowledge but require reliable sources, while
evolution-based methods automate instruction
refinement but demand careful design. For
responses, sampling achieves optimal distri-
bution but may produce redundant outputs;
self-play and self-refinement iteratively boost
model performance through self-feedback but
are limited by the model’s initial capability.
Weak supervision trains stronger models us-
ing outputs from weaker ones, enabling strong
generalization but with the risk of propagating
errors.

4 Scaling for Reinforcement Learning

Figure 4: Classification of RL Methods.

Reinforcement Learning (RL) refers to learning

2775



from environments through interaction and rewards.
Integrating RL with LLMs has become a promising
area of research. Notably, InstructGPT (Ouyang
et al., 2022) introduces Reinforcement Learning
from Human Feedback (RLHF), enabling LLMs to
understand human preferences via feedback, a tech-
nique foundational to ChatGPT (OpenAI, 2022).
Several studies (Yuan et al., 2023d; Dong et al.,
2023; Lee et al., 2024) aim to enhance RLHF. Scal-
ing RL is another critical focus, as learning from en-
vironment feedback is more complex but scalable
than SFT. Facilitating LLMs’ training through feed-
back is vital for advancing scaling laws. We clas-
sify existing practices combining RL and LLMs by
feedback signals (Figure 4) and analyze the scala-
bility prospects of various RL for LLM algorithms.

4.1 The Common Methods

Reinforcement Learning within LLMs tradition-
ally serve as supplementary alignment techniques,
such as in RLHF (Ouyang et al., 2022; Li et al.,
2023b; Hu et al., 2024). Consequently, consider-
ations of scalability are often overlooked. These
approaches are usually implemented as incremen-
tal post-pretraining stages, using human labeling
or reward modeling to fine-tune models’ outputs.

4.1.1 Human Labeling
Employing experts to provide direct alignment sig-
nals is intuitive but poses scalability challenges
due to the time and cost required. Studies lever-
age human feedback or existing datasets for align-
ing LLMs, such as DPO (Rafailov et al., 2024),
which optimizes reward maximization within a sin-
gle policy phase, and KTO (Ethayarajh et al., 2024),
which uses human-aware loss functions to elimi-
nate the need for preference data. RRHF (Yuan
et al., 2023c) aligns model responses with human
preferences through a ranking-based approach, and
SimPO (Meng et al., 2024) enhances this by using
length-normalized rewards and target reward dif-
ferences, outperforming similar methods without
additional reference models.

4.1.2 Reward Modeling
The integration of model-based reward signals
can significantly enhance the scalability of RLHF,
yet still needs lots of human labeling. In-
structGPT (Ouyang et al., 2022) integrates su-
pervised policy training with human feedback,
optimizing through Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017). ReMax (Li

et al., 2024d), leveraging the REINFORCE algo-
rithm (Williams, 1987), is more computationally
efficient, and Fine-Grained Human Feedback (Wu
et al., 2023b) provides detailed feedback using sev-
eral reward models. Both ORM and PRM (Cobbe
et al., 2021; Lightman et al., 2023) boost perfor-
mance in mathematical tasks with human labeling.
WARM (Ramé et al., 2024) mitigates reward hack-
ing by fine-tuning and averaging multiple reward
models. UNA (Wang et al., 2025) unifies RLHF
into a supervised learning problem through a gen-
eralized implicit reward function, reducing training
instability and memory requirements.

4.2 The Scalable Methods

As scaling pre-trained models hits its limits, LLM
development increasingly focuses on boosting per-
formance via Reinforcement Learning (Bai et al.,
2024; Putta et al., 2024; Yuan et al., 2024). This
involves automating feedback acquisition and im-
proving alignment with human expectations. Scal-
able RL methods are categorized by the type of
feedback signal: synthetic reward, environment,
and self.

4.2.1 Synthetic Reward Modeling
It emphasizes scalability and leverages synthetic
data and iterative processes, thus reducing re-
liance on manual annotations for reward model-
ing. RLAIF (Bai et al., 2022; Lee et al., 2024)
trains preference models with AI-generated feed-
back from constitutions, while RLSF (Kim et al.,
2023) uses quality discrepancies among LLM re-
sponses to train a reward model. Q* (Wang et al.,
2024a) optimizes state prioritization using histori-
cal and future rewards, and IterAlign (Chen et al.,
2024b) employs a red team approach for self-
alignment and constitution discovery. Additionally,
(Sun et al., 2024) implements easy-to-hard genera-
tor generalization through evaluators trained under
easy task supervision.

4.2.2 Environment Feedback
It is a key reward signal for training LLMs as
agents in various settings from real-world simu-
lations (Shridhar et al., 2021) to digital environ-
ments (Zhou et al., 2024a; Rawles et al., 2024a)
and rule-based systems (Côté et al., 2019). This
feedback reduces the need for manually labeled
data and provides consistent, reliable signals if
simulations closely mimic real-world scenarios.
Notable contributions include DigiRL (Bai et al.,

2776



2024), creating a parallel GUI learning environ-
ment, and ENVISIONS (Xu et al., 2024a), featur-
ing LLM-generated trajectories interacting with
simulations. Additionally, SANDBOX (Liu et al.,
2023b) and RLTF (Liu et al., 2023a) explore in-
teractive feedback and unit tests, while language-
rule environments employ innovative methods like
SPAG (Cheng et al., 2024b) and Prover-Verifier
Games (Kirchner et al., 2024) for training models
through adversarial and verification tasks.

4.2.3 Self-Feedback
It evaluates policy trajectories to enhance the gen-
eration capabilities of LLMs using the generation-
discrimination gap. Techniques like RLCD (Yang
et al., 2024c), Agent Q (Putta et al., 2024), and
Self-Rewarding (Yuan et al., 2024) use comparative
outputs, guided MCTS, and self-evaluation. The
Meta-Rewarding framework (Wu et al., 2024a) has
models that assess their evaluations to improve both
generative and evaluative abilities. The Self-Taught
Evaluator (Wang et al., 2024d) refines models by
iteratively modifying input prompts, achieving su-
perior performance on benchmarks like Reward-
Bench (Lambert et al., 2024b).

Takeaways 2 We categorize scalable RL
methods based on the source of reward sig-
nals: Synthetic Reward Modeling constructs
signals through rules, but it may have biases;
Environment Feedback involves extensive in-
teractions and feedback within virtual environ-
ments, but the construction cost is high, and
it may not align with real-world scenarios;
Self-Feedback uses self-evaluation as a signal,
making it the easiest to scale, but the model’s
capabilities limit it.

5 Scaling for Test-time Compute

Figure 5: Classification of TTC Methods.

Test-time Compute refers to a model’s infer-
ence phase, predicting outputs like the next word
in a sentence. Scaling Test-time Compute, intro-
duced by OpenAI’s o1 (OpenAI, 2024b), can fur-
ther enhance model performance in various scenar-
ios. This section explores common and scalable
methods for improving model performance by in-
creasing inference computation (Figure 5).

5.1 The Common Methods

Prior research aims to enhance model performance
by incorporating additional computational pro-
cesses during inference. However, many of them
do not consider scalability. The common methods
can be divided into two categories: In-Context
Learning (ICL) and Chain-of-Thought (CoT).

5.1.1 In-Context Learning
Exemplified by GPT-3 (Brown, 2020), ICL enables
LLMs to adapt to specific tasks without parame-
ter updates by providing predefined context. Early
manual prompt engineering approaches (Petroni
et al., 2019; Schick and Schütze, 2020) are not scal-
able or automated. Recent advancements, such as
automated prompt learning methods like instruc-
tion induction (Honovich et al., 2022b), APE (Zhou
et al., 2022), and OPRO (Yang et al., 2024b), ad-
dress some of these issues but still face challenges
in performance scaling with increased input tokens
during inference.

5.1.2 Chain-of-Thought
CoT (Wei et al., 2023a) enables LLMs to reason,
enhances performance in logic and calculations,
and offers greater flexibility and scalability. Re-
search in CoT includes using prompting (Kojima
et al., 2023; Zhou et al., 2023b; Khot et al., 2022)
and training (Lewkowycz et al., 2022) to stim-
ulate reasoning capabilities of LLMs. CoT can
also integrate with tools to enhance performance
in domains like mathematics and coding (Gao
et al., 2023; Chen et al., 2023a) through approaches
like ReAct (Yao et al., 2022b) and Inner Mono-
logue (Huang et al., 2022b).

5.2 The Scalable Methods

In the post-GPT era, as model sizes grow, increas-
ing parameters becomes challenging. Thus, at-
tention shifts to scaling TTC. (Snell et al., 2024)
explores inference-time computation scalability
in LLMs, proposing a "compute-optimal" scaling
strategy. (Li et al., 2024c) shows that TTC can

2777



significantly enhance models’ expressive capabil-
ities, demonstrating the feasibility of addressing
larger-scale problems with adequate computational
resources. This section categorizes various meth-
ods for augmenting computation.

5.2.1 Sampling
Sampling is a fundamental technique to boost
performance by increasing test-time computation.
Given the inherently stochastic nature of contempo-
rary LLM generation strategies (Chen et al., 2021a;
Holtzman et al., 2020; Zhu et al., 2023), select-
ing the correct answer from multiple samples for a
single query enhances performance, with improve-
ments scaling with the number of samples (Chen
et al., 2021b; Wang et al., 2023a). Early approaches
like Self-Consistency (Wang et al., 2023a) improve
performance in mathematical domains by gener-
ating multiple reasoning paths and selecting the
majority answer. Verification-guided weighted ma-
jority voting further enhances models like GPT-
4 in solving mathematical problems (Zhou et al.,
2023a). Additionally, (Liu et al., 2023c; Nakano
et al., 2022; Cobbe et al., 2021) employs reward
models to select human-aligned responses and
solve mathematical problems.

5.2.2 Verified Chain-of-Thought
Verifying reasoning paths is critical as the correct-
ness of each inferential step significantly impacts
LLM performance (Weng et al., 2023). Various
methods propose enhancing the reliability and scal-
ability of CoT reasoning. PRM (Lightman et al.,
2023) verify each reasoning step, outperforming
majority voting. SelfCheck (Miao et al., 2023) al-
lows for step verification to identify and regenerate
erroneous steps, improving long-chain reliability.
DiVeRSe (Li et al., 2023a) uses diverse prompts
and weighted voting to enhance performance. Logi-
CoT (Zhao et al., 2024b) integrates symbolic logic
to verify and adjust reasoning processes, mitigating
hallucinations due to logical errors.

5.2.3 Searching
Searching utilizes different reasoning structures to
explore in space. Tree-of-Thought (ToT) (Yao et al.,
2023) self-evaluates and backtracks multiple rea-
soning paths, enhancing problem-solving. Diverse
search algorithms (Golovneva et al., 2023; Zhang
et al., 2023b, 2024e; Sel et al., 2024) like Pathfinder
(Golovneva et al., 2023), Cumulative Reasoning
(Zhang et al., 2023b), Graph of Thoughts (Besta

et al., 2024), and Diagram of Thought (Zhang et al.,
2024e) optimize tree searches, iterative methods,
graph models, and directed acyclic graphs, respec-
tively. Algorithm of Thoughts (Sel et al., 2024) fur-
ther optimizes ToT algorithms for computational
efficiency, and MCTS explores boosting test-time
performance (Liu et al., 2024a; Feng et al., 2024;
Tian et al., 2024; Zhang et al., 2024b).

5.2.4 Long In-Context Learning
With the ongoing research in automated ICL, per-
formance improvements become unstable as the
number of examples increases, thereby underuti-
lizing the potential of multi-instance contextual
learning (Lu et al., 2022). Consequently, Many-
Shot ICL (Agarwal et al., 2024) devises an auto-
mated example construction technique, extending
examples to up to 2048 shots, leading to noticeable
advancements across various domains. Another
approach (Hsieh et al., 2023) combines a greedy al-
gorithm with beam search to optimize the method
for long prompts, thereby enhancing the scaling
performance of long in-context learning.

5.2.5 Self-Verification
Enabling LLMs to self-verify at test time improves
performance by bridging the gap between gener-
ation and discrimination (Ng and Jordan, 2001;
Zheng et al., 2023). Self-Refine (Press et al., 2022)
uses iterative self-feedback to enhance outputs,
while Reflexion (Shinn et al., 2024) mitigates hallu-
cinations and inefficiencies through environmental
feedback. (Li et al., 2024a) propose a self-checking
paradigm for comparing candidate answers, and
Self-Verification (Weng et al., 2023) provides an
explainable validation score via reverse verification.
Self-Contrast (Zhang et al., 2024d) generates and
compares different solutions to avoid biases and
inconsistencies during re-evaluation.

Takeaways 3 We categorize scalable TTC
methods as follows: Sampling is the simplest
scaling method but may produce redundant
similar output. Verified CoT aims to address
the scalability issue limited by error propa-
gation in CoT. Searching aims to explore op-
timal paths in the reasoning space, utilizing
various reasoning structures. Long ICL en-
hances model output through many unsuper-
vised examples. Self-verification improves per-
formance through self-correction. These meth-
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ods exchange model performance with infer-
ence computation.

6 Potential Applications

As LLMs continue improving, research has shifted
from chat-based applications to productivity-based
ones. Post-training efforts now focus on enhanc-
ing these productivity applications. This section
discusses these emerging, promising applications.

6.1 Mathematics

LLMs have long struggled with Mathematics, but
recent advancements are changing this landscape.
Efforts to scale training data include using exten-
sive datasets from the web (Lewkowycz et al.,
2022; Taylor et al., 2022; Yue et al., 2024; Tosh-
niwal et al., 2024a). Some works focus on gen-
erating CoT training data (Zelikman et al., 2022;
Wang et al., 2024b; Toshniwal et al., 2024b; Qiao
et al., 2024) and using RMs to select high-quality
data (Luo et al., 2023; Xu et al., 2024b; Yang
et al., 2024a; Cobbe et al., 2021). Other works en-
hance mathematical reasoning using self-generated
data. For instance, LMSI (Huang et al., 2022a)
uses high-confidence responses, while RFT (Yuan
et al., 2023b) applies correct answers for filtering.
RL also strengthens LLMs in math. PRM (Light-
man et al., 2023) introduces step supervision, and
DeepSeek-Math improves PPO efficiency (Shao
et al., 2024). Math-Shepherd (Wang et al., 2024b)
implements step-PPO via PRM, whereas Step-
DPO (Lai et al., 2024b) focuses on individual rea-
soning steps for DPO. Lastly, OmegaPRM (Luo
et al., 2024b) uses a divide-and-conquer style
MCTS to gather high-quality supervision data.

6.2 Code Generation

Despite the advancements in LLMs’ code genera-
tion abilities, they still struggle with complex en-
gineering problems (Chen et al., 2021c; Li et al.,
2022; Fried et al., 2022; Lai et al., 2023; Nijkamp
et al., 2022). Scalable post-training techniques are
needed, with a key aspect being feedback from
the runtime environment for optimization. One
approach involves using external tools like code in-
terpreters, as seen in LDB (Zhong et al., 2024) and
SelfEvolve (Jiang et al., 2023), which help LLMs
execute code and obtain error feedback. SelfDe-
bugging (Chen et al., 2023b) focuses on optimizing
code through feedback from execution outcomes.
For repository-level code, RepoCoder (Zhang et al.,

2023a) uses a retrieval framework to extract valu-
able information from repositories during gener-
ation. ARKS (Su et al., 2024) creates a "knowl-
edge soup" to improve code generation iteratively.
RLEF (Gehring et al., 2024) proposes an RL ap-
proach to enhance LLMs in code synthesis by utiliz-
ing execution feedback to improve code iteratively.

6.3 Agent Execution
The growing capabilities of LLMs extend beyond
text generation and program synthesis to include
device control in simulated environments like web
and android platforms (Bai et al., 2024; Lai et al.,
2024a; Zhou et al., 2023c; Zhang et al., 2024c; Xu
et al., 2024c; Rawles et al., 2024b; Deng et al.,
2024; Yao et al., 2022a). Research involves search-
ing and RL strategies, which generate trajectories
through online interaction and are evaluated by re-
ward models (Pan et al., 2024; Qi et al., 2024; Liu
et al., 2024b). DigiRL (Bai et al., 2024) employs
online learning and AWR for policy updates, ex-
celling on the AITW benchmark (Rawles et al.,
2024b). Archer (Zhou et al., 2024b) uses hierar-
chical RL for multi-round decision-making, while
AgentQ (Putta et al., 2024) leverages MCTS and
DPO for searching and policy updates (Rafailov
et al., 2024).

7 Conclusion

The landscape of LLM training is evolving as tradi-
tional pre-training scaling shows limitations. This
survey examines the new paradigm of post-training
scaling, specifically SFT, RLxF, and TTC. By com-
paring these methods and highlighting their poten-
tial to overcome computational and data limitations,
we provide insights for future research, setting the
stage for integrating them into more efficient and
sustainable advancements in LLMs.
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Limitations

This section discusses several challenges and future
directions of the post-training scaling in LLMs.

Theoretical Foundation. Existing methods for
scaling post-training rely heavily on empirical ex-
perience and need a theoretical foundation. Some
research efforts focus on theoretical analysis. (Li
et al., 2024c) provided theoretical evidence for
TTC by demonstrating how it enhances the se-
quential computation capability of Transformer ar-
chitectures, addressing their inherent limitations
in handling serial reasoning tasks. (Snell et al.,
2024) examined the theoretical support of self-
improvement mechanisms, explaining how the
revision-and-refine approach modifies implicit in-
put distributions to enhance model reasoning. (Ngo
et al., 2024) developed a theoretical framework
for analyzing alignment problems, clarifying how
RLHF mitigates distribution shifts to improve per-
formance. Additionally, (Dai et al., 2023) provided
theoretical insights into instruction tuning from
a gradient descent perspective, explaining how it
implicitly optimizes models to acquire in-context
learning abilities.

Synthetic Data. To support the scaling of post-
training, constructing high-quality synthetic data is
essential. Although synthetic data have shown con-
siderable success in advancing model abilities, sev-
eral studies have highlighted the dark side of syn-
thetic data, including model collapse (Shumailov
et al., 2024). Furthermore, ensuring data diversity
presents a significant challenge. Without human
intervention, augmented data often do not exceed
the distribution of the initial seed set. Thus, synthe-
sizing high-quality data while mitigating potential
risks remains an open problem.

Continual Learning. The ideal approach for
post-training involves continuously collecting data
from dynamic environments, such as the real world,
to incrementally enhance LLM’s performance. The
primary objective is to enable the model to acquire
new skills and knowledge over time while preserv-
ing its existing capabilities. In the context of scal-
ing post-training for LLMs, addressing the align-
ment tax (Ouyang et al., 2022) and mitigating the
forgetting of acquired knowledge is crucial.

Active Exploration. Current post-training meth-
ods rely on manually curated or model-augmented
data derived from a human-collected seed set. This

can introduce biases due to intrinsic human knowl-
edge limitations, and it remains unclear whether
these human-inspected datasets are practical for
scaling. Another approach involves empowering
the model to identify underperforming areas and
actively generate targeted data for enhancement.
Recent studies have explored the utilization of ad-
vanced LLMs as teachers, dynamically assessing
the performance of a student model and generat-
ing specific training samples accordingly (Cheng
et al., 2024a; Lu et al., 2024a). However, chal-
lenges arise in self-evolution scenarios. For exam-
ple, self-evaluation bias can present significant dif-
ficulties, as an accurate assessment of the model’s
performance is crucial before generating supple-
mentary training data. Future research should fo-
cus on enabling models to actively self-discover
effective training samples, thereby facilitating their
autonomous learning processes.

Superalignment. The base model could become
incredibly powerful as we scale the model size and
data. However, the methodologies to effectively
conduct post-training to fully harness these capa-
bilities still need to be explored, also known as
the weak-to-strong generalization problem (Burns
et al., 2023). Moreover, significant efforts must
be dedicated to safety post-training to ensure these
models do not pose any risks. It is crucial to dis-
cern whether a model is genuinely safe or merely
simulating safe behavior (Wang et al., 2023b).

Evaluation Metrics and Benchmarks. The eval-
uation of post-training effectiveness has tradition-
ally depended on static benchmarks. However, with
the increasing capabilities of LLMs, it is impera-
tive to design more challenging and comprehen-
sive benchmarks. Additionally, issues such as data
leakage (Yang et al., 2023; Wei et al., 2023b) and
leaderboard saturation (Guo et al., 2023) have be-
come prevalent. To address these challenges, it is
essential to innovate new evaluation methods, such
as dynamic and automated leaderboards, and to
develop novel metrics that effectively assess the
impact of scaling.
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learning-to-reason-with-llms/

• OpenAI’s Strawberry, LM self-talk, inference
scaling laws, and spending more on infer-
ence: https://www.interconnects.ai/p/
openai-strawberry-and-inference-scaling-laws

• Improving LLM Reasoning using Self-generated
Data: https://drive.google.com/file/d/
1komQ7s9kPPvDx_8AxTh9A6tlfJA0j6dR/edit

• QwQ: Reflect Deeply on the Boundaries of
the Unknown: https://qwenlm.github.io/
blog/qwq-32b-preview

• DeepSeek-R1-Lite-Preview: https:
//api-docs.deepseek.com/news/news1120

• Ilya Sutskever’s talk at NeurIPS 2024:
https://x.com/vincentweisser/status/
1867719020444889118

B Additional Post-Training Works

See Table 1 for additional SFT works, Table 2 for
RL works, and Table 3 for TTC works. Each work
is briefly described.
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Paper/Work Brief Description

Guan et al. (2024) The paper proposes verifier engineering, a novel post-training approach for enhancing LLMs. It uses
automated verifiers to perform verification and provide feedback. The process is divided into three stages:
search, verify, and feedback.

Tang et al. (2024) MATRIX is a multi-agent simulator designed to create realistic and scalable text-based scenarios by
simulating interactions in human society. This method enables effective post-training of LLMs, producing
both general and domain-specific data.

Qu et al. (2024) Recursive IntroSpEction (RISE) is a method for fine-tuning LLMs to enable them to iteratively improve
their responses by introspecting and correcting mistakes over multiple turns. RISE fine-tunes models using
an iterative procedure, treating fine-tuning for a single-turn prompt as solving a multi-turn Markov decision
process.

Zhao et al. (2024a) This paper explores using synthetic data to fine-tune LLMs’ handling of retrieval and reasoning in long-
context tasks. The research varies the realism of key "needle" concepts and the diversity of surrounding
"haystack" contexts, comparing models trained on synthetic data versus real data.

Luo et al. (2024a) This paper introduces Arena Learning, an offline strategy for evaluating and enhancing LLMs by simulating
human-annotated battles typically conducted in online Chatbot Arenas. Arena Learning employs AI-driven
annotations to simulate battle outcomes, enabling continuous model improvement through SFT.

Table 1: Additional post-training works for SFT.

Paper/Work Brief Description

Kumar et al. (2024) SCoRe is a multi-turn online reinforcement learning approach designed to enhance the self-correction ability
of LLMs using entirely self-generated data. SCoRe addresses the challenges of distribution mismatch and
behavior collapse inherent in supervised fine-tuning.

Bukharin et al.
(2024)

HERON is a hierarchical reward modeling framework that simplifies the reward design process in reinforce-
ment learning. It uses a hierarchical decision tree based on the importance ranking of feedback signals to
compare trajectories and train a reward model for policy learning.

Wu et al. (2024b) Self-Play Preference Optimization (SPPO) is a novel method for language model alignment that frames the
problem as a constant-sum two-player game aimed at identifying the Nash equilibrium policy.

Lambert et al.
(2024a)

This paper introduces a new training method called Reinforcement Learning with Verifiable Rewards
(RLVR). It trains LLMs on tasks with verifiable outcomes by replacing the reward model in RLHF with a
verification function.

Chen et al. (2024a) IterAlign is for aligning LLMs with human values without requiring extensive human annotations or pre-
defined rules. IterAlign utilizes a process of red teaming to identify weaknesses in the LLM and leverages a
stronger LLM to discover new constitutions for guiding the self-correction of the base model.

Table 2: Additional post-training works for RL.

Paper/Work Brief Description

Ding et al. (2024) Everything of Thoughts (XoT) is a novel thought-prompting approach that enhances LLMs by integrating
RL and MCTS to incorporate external domain knowledge. XoT enhances LLMs’ performance and efficiency
by autonomously creating quality cognitive mappings with minimal input, enabling flexible problem-solving
with multiple solutions.

Feng et al. (2024) The paper proposes an AlphaZero-like tree-search learning framework called TS-LLM, which integrates a
learned value function with tree-search algorithms for guiding LLM decoding.

Liu et al. (2024a) PPO-MCTS is a novel value-guided decoding algorithm that integrates MCTS with the PPO value network
for enhanced natural language text generation. This approach utilizes the value network, a byproduct of PPO
training, to evaluate partial output sequences during inference, thereby aligning the scoring mechanisms
between the training and testing phases.

Tian et al. (2023) The paper proposes Graph Neural Prompting (GNP) as a new method to integrate grounded knowledge
from knowledge graphs into LLMs. GNP is designed to be a plug-and-play solution, includes a standard
graph neural network encoder, a cross-modality pooling module, and a domain projector, and employs a
self-supervised link prediction objective.

Liang et al. (2024) This paper proposes scaling up inference-time computation by generating multiple reasoning paths and
using verifiers to assess and rank outputs based on correctness. It integrates Chain-of-Thought (CoT) and
Program-of-Thought (PoT) for collaborative verification.

Table 3: Additional post-training works for TTC.
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