
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 297–316
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Tree-of-Evolution: Tree-Structured Instruction Evolution for Code
Generation in Large Language Models

♠Ziyang Luo , ♢Kaixin Li , ♠Hongzhan Lin , ♠Yuchen Tian
♢Mohan Kankanhalli , ♠Jing Ma∗

♠Hong Kong Baptist University, ♢National University of Singapore
{cszyluo,majing}@comp.hkbu.edu.hk

Abstract

Data synthesis has become a crucial research
area in large language models (LLMs), espe-
cially for generating high-quality instruction
fine-tuning data to enhance downstream perfor-
mance. In code generation, a key application
of LLMs, manual annotation of code instruc-
tion data is costly. Recent methods, such as
Code Evol-Instruct and OSS-Instruct, leverage
LLMs to synthesize large-scale code instruc-
tion data, significantly improving LLM coding
capabilities. However, these approaches face
limitations due to unidirectional synthesis and
randomness-driven generation, which restrict
data quality and diversity. To overcome these
challenges, we introduce Tree-of-Evolution
(ToE), a novel framework that models code
instruction synthesis process with a tree struc-
ture, exploring multiple evolutionary paths to
alleviate the constraints of unidirectional gen-
eration. Additionally, we propose optimization-
driven evolution, which refines each genera-
tion step based on the quality of the previ-
ous iteration. Experimental results across five
widely-used coding benchmarks—HumanEval,
MBPP, EvalPlus, LiveCodeBench, and Big-
CodeBench—demonstrate that base models
fine-tuned on just 75k data synthesized by our
method achieve comparable or superior perfor-
mance to the state-of-the-art open-weight Code
LLM, Qwen2.5-Coder-Instruct, which was fine-
tuned on millions of samples.

1 Introduction

Recently, data synthesis has become a focal point
in large language model (LLM) research (Liu et al.,
2024). In the post-training phase (Ouyang et al.,
2022), LLMs rely heavily on high-quality instruc-
tion fine-tuning data to align with user needs and
improve their performance across various down-
stream tasks (Zhou et al., 2023; Xu et al., 2023).

∗ Corresponding Author. Our code, data, and model
checkpoints are available at: https://github.com/
CodeLLM-Research/Tree-of-Evolution

Code
Seed

Code
Ins.

Code
Ins.

Code
Ins.

Code
Ins.

Code
Ins.

Code
Ins.

Code
Ins.

Code
Ins.

Code
Ins.

Code
Ins.

Code
Ins.

Code
Ins.

Code
Ins.

Code
Seed

Code
Ins.

Code
Seed

Code
Ins.

Code
Ins.

Code
Ins.

OSS
Instruct

Code Evol
Instruct

Tree-of-Evolution
(Ours)

Figure 1: Comparison between our Tree-of-Evolution
method and previous unidirectional code instruction syn-
thesis approaches. Yellow indicates randomness-driven
generation in prior methods, while Green and Red high-
light our optimization-driven evolution, denoting "go"
and "stop" decisions, respectively.

Among these, code generation is a particularly im-
portant application (Li et al., 2023a; Rozière et al.,
2023; Guo et al., 2024). However, obtaining high-
quality code instruction data by human program-
ming expert annotation is often prohibitively ex-
pensive (Conover et al., 2023). To address this,
recent studies have leveraged data synthesis meth-
ods, using LLMs such as GPT-4 (OpenAI, 2023) to
generate large-scale code instruction datasets (Wei
et al., 2023; Luo et al., 2024c). These methods
have proven highly effective in enhancing the cod-
ing capabilities of LLMs.

As depicted in Figure 1, the two most widely
used methods for code instruction synthesis are
Code Evol-Instruct (Luo et al., 2024c) and OSS-
Instruct (Wei et al., 2023). Code Evol-Instruct
employs heuristic prompts to iteratively gener-
ate more complex code instructions from exist-
ing ones, while OSS-Instruct utilizes pre-designed
prompts to create new instructions inspired by ran-
dom code snippets from GitHub. Both methods
can be viewed within an unified framework: start-
ing with a seed input, either a code instruction or
a code snippet, the data synthesis model applies

297

https://github.com/CodeLLM-Research/Tree-of-Evolution
https://github.com/CodeLLM-Research/Tree-of-Evolution

predefined strategies to generate new instructions.
However, these methods for code instruction syn-
thesis face two key limitations: (1) Unidirectional
synthesis: These methods predominantly adopt
an unidirectional synthesis approach, expanding
seed data along a single trajectory. However, effec-
tive data synthesis requires a more thorough explo-
ration (Zeng et al., 2024). By not fully exploring
multiple evolutionary paths, these methods limit
the diversity of the generated data, which is a key
factor in improving LLM performance (Bukharin
et al., 2024). (2) Randomness-driven genera-
tion: Existing approaches rely on code seeds or
pre-defined methods in the prompts to randomly
generate new code instructions. This randomness-
driven approach fails to consistently ensure high-
quality outputs. As highlighted in LIMA (Zhou
et al., 2023), the quality of data is crucial during
the instruction fine-tuning phase, as low-quality
data can degrade model performance.

In this work, we propose Tree-of-Evolution
(ToE) for code instruction synthesis. To address
the limitations of unidirectional synthesis, we intro-
duce a tree-based synthesis that explores multiple
evolutionary directions at each node, all originating
from the same code snippet as a seed. Each gener-
ated instruction is evaluated using a quality scoring
function that considers both challenge and diver-
sity. Challenge is assessed based on instruction
complexity, driving the generation of instructions
that require deeper reasoning and more sophisti-
cated decision-making, thus improving the model’s
ability to handle harder code generation tasks (Luo
et al., 2024c). Diversity is encouraged by measur-
ing distance between the candidate and existing in-
structions, preventing repetitive outputs that hinder
generalization, as emphasized in prior work (Wei
et al., 2023; Bukharin et al., 2024).

Inspired by Optimization by Prompting (Yang
et al., 2024), we introduce an optimization-driven
evolution process to enhance the quality of syn-
thesized instructions. This process employs the
Beam Search algorithm (Freitag and Al-Onaizan,
2017), which retains only the top-n nodes based
on their quality scores and ensures that only nodes
surpassing the scores of their parent nodes continue
to evolve. The optimization target of the iterative
evolution process is to continuously improve the
scores of previous generated instructions, guiding
the synthesis toward higher-quality outputs while
mitigating the randomness-driven limitations inher-

ent in previous methods.
To evaluate the effectiveness of our proposed

method, we applied it to synthesize code in-
struction data for fine-tuning base LLMs. Ex-
perimental results across 5 widely-used coding
benchmarks—HumanEval (Chen et al., 2021),
MBPP (Austin et al., 2021), EvalPlus (Liu et al.,
2023), LiveCodeBench (Jain et al., 2024), and Big-
CodeBench (Zhuo et al., 2024)—demonstrate that
with only 75k instruction samples, fine-tuned on the
same open-source LLMs, our approach achieves
performance comparable to or better than the
state-of-the-art (SOTA) open weight Code LLM,
Qwen2.5-Coder-Instruct (Hui et al., 2024), across
various model sizes, which was fine-tuned on mil-
lions of closed-source instruction samples.

Our contributions can be summarized as follows:

• We introduce the Tree-of-Evolution frame-
work for code instruction synthesis, which
addresses the limitations of unidirectional
synthesis and randomness-driven generation
present in previous methods.

• We present an optimization-driven evolution
process in our ToE that enhances the synthesis
procedure, ensuring the consistent generation
of high-quality data.

• We demonstrate the effectiveness of our ap-
proach through extensive experiments across
multiple coding tasks, achieving performance
on par with, or surpassing, SOTA open-weight
Code LLMs while using significantly fewer
training samples.

2 Related Work

Recent research has extensively explored the
application of LLMs to code-related tasks, fo-
cusing on code understanding and generation.
Notable contributions include Codex (Chen
et al., 2021), Santacoder (Allal et al., 2023),
CodeGemma (Google, 2024), CodeGen-Series (Ni-
jkamp et al., 2023b,a), CodeT5&Plus (Wang et al.,
2021, 2023), CodeGeeX (Zheng et al., 2023b), Star-
Coder1&2 (Li et al., 2023a; Lozhkov et al., 2024),
CodeLlama (Rozière et al., 2023), DeepSeek-
Coder (Guo et al., 2024), Codestral (Mistral, 2024),
Granite (Mishra et al., 2024), YiCoder (01.AI,
2024), OpenCoder (Huang et al., 2024), and
QwenCoder-Series (Hui et al., 2024). These ad-
vancements highlight the increasing trend of lever-

298

Source Data

Random Code Snippet

Candidate Instruction: Write a
function that replaces whitespace with a
dash, removes all digits, converts all
characters to lowercase, and adds an
asterisk. The function should return the
modified ...

Tree-Based
Synthesis Diversity: 2.2

Challenge: 3.0
Overall: 5.2

Diversity: 4.1
Challenge: 4.0
Overall: 8.1

Diversity: 2.6
Challenge 3.2
Overall: 5.8

Quality
Evaluation

Candidate Instruction: You are
developing a log processing tool that
analyzes file paths and generates human-
readable file names from them. The tool
must: 1. Extract File Information: The tool
should parse file paths and ...

Optimization
Driven Evol

Continue
synthesis

Candidate Ins
Database

Quality
Filtering

Candidate Instruction: You are asked
with writing a
function format_parameter_key(key:
str) -> str that formats a command-line
parameter key by following these rules: ...

Candidate Instruction: Create a function
that processes a configuration key by
removing all underscores and
prepending 'config-' to the result by
performing the following steps: ...

Candidate Instruction: Develop a
command-line tool that processes a
mixture of flags and key-value pairs for
various operations. The arguments need
to be parsed, validated, and the
corresponding operations ...

Candidate Instruction: You are tasked
with developing a sophisticated command-
line argument processor for a new
bioinformatics tool. The tool expects a list
of arguments that will define the specific
parameters ...

Figure 2: The pipeline of our Tree-of-Evolution framework for code instruction synthesis, encompassing tree-based
synthesis, quality evaluation, and optimization-driven evolution, aims to generate high-quality instruction data
starting from random code snippets.

aging powerful base LLMs to enhance code gener-
ation capabilities.

To enhance the capabilities of open-source
LLMs for code generation in the post-training
phase, recent works have leveraged data synthesis
methods to generate large-scale code instruction
data for supervised fine-tuning (Chen et al., 2023b;
Zheng et al., 2024a; Li et al., 2024; Yuan et al.,
2024; Luo et al., 2024a; Zeng et al., 2024). For in-
stance, Chaudhary (2023) employs the self-instruct
method (Wang et al., 2022) to generate training
data, while Magicoder (Wei et al., 2023) leverages
code snippets from GitHub. SelfCodeAlign (Wei
et al., 2024) demonstrates the potential of directly
utilizing the base model for data synthesis. Wiz-
ardCoder (Luo et al., 2024c) introduces the Code
Evol-Instruct approach to progressively increase
the complexity of coding tasks. As discussed in
the introduction, these prior methods often rely
on randomness-driven and unidirectional synthesis,
limiting the quality and diversity of synthesized
instructions. In contrast, our Tree-of-Evolution
models code instruction synthesis with a tree struc-
ture, employing an optimization-driven approach
to mitigate these limitations.

3 Tree-of-Evolution

3.1 Overview

An overview of our Tree-of-Evolution framework
is provided in Figure 4. ToE is an novel approach to
code instruction synthesis, modeling the process as
a tree structure. Starting with an initial code seed,
s0, sourced from a random code snippet on GitHub,
the framework employs tree-based synthesis to ex-
plore multiple evolutionary paths in parallel. The

quality of each leaf node (synthesized instruction)
is evaluated systematically using a scoring function
V (s), enabling an optimization-driven evolution
process in subsequent iterations.

3.2 Tree-Based Synthesis
In our framework, the synthesis process is struc-
tured as a hierarchical tree T = (S,E), where S
denotes the set of nodes (code instructions) and
E represents the directed edges corresponding to
evolutionary transformations. Each node s ∈ S
represents a specific code instruction, and each
edge (si, sj) ∈ E represents a transformation
f : si → sj that derives a new instruction.

The synthesis begins with the root node s0, ini-
tialized as a random code snippet. At each evolu-
tionary round r, a data synthesis model G(pθ, sr, k)
generates k candidate instructions for each node
sr ∈ Sr, where Sr is the set of active nodes at
round r. Formally, the candidate instructions are
sampled as:

{s(1), s(2), . . . , s(k)} ∼ G(pθ, sr, k),

where pθ denotes the parameters of the data syn-
thesis model. These candidate instructions are then
added to the tree as child nodes, forming edges
(sr, s

(i)) for i = 1, . . . , k. This process contin-
ues iteratively until a termination criterion is met,
such as reaching a maximum tree depth dmax or
when the generated instructions fail to meet quality
standards.

3.3 Quality Evaluation
The quality of synthesized instructions in previous
randomness-driven methods lacks systematic eval-
uation and control. To address this, our ToE frame-

299

work employs a quality scoring function V (s) to
assess the quality of each node s. The overarching
goal is to synthesize high-quality instruction data
for Code LLM post-training, thereby enhancing its
code generation capabilities. Ideally, the scoring
function V (s) should correlate with the model’s
final code generation performance. However, di-
rectly predicting the impact of a single instruction
on overall performance is challenging. Drawing
inspiration from prior work on Code LLM post-
training, we identify challenge and diversity as two
critical factors for instruction fine-tuning data (Wei
et al., 2023; Yu et al., 2023; Luo et al., 2024c).

Challenge is important, as overly simplistic data
fails to prepare the model for handling complex
code generation tasks. Diversity is equally crucial
to prevent overfitting and to preserve the model’s
generalization capabilities, as similar or redundant
data can hinder its adaptability to new tasks. Based
on these insights, our scoring function V (s) is de-
signed to evaluate each node s by quantifying its
challenge and diversity level, ensuring the synthe-
sis process consistently produces high-quality and
impactful instructions. For challenge, the complex-
ity of a given code instruction is assessed using the
LLM-as-a-Judge paradigm (Zheng et al., 2023a;
Luo et al., 2024b). A complexity evaluation agent
is employed to assign a challenge score to each
instruction, with a scale ranging from 1 (minimal
challenge) to 10 (exceptionally challenging). For-
mally, the challenge score is defined as:

Vcomp(s) = C(pθ, s),

where C(pθ, s) represents the evaluation function
implemented by the agent.

For diversity, it is assessed by comparing the
candidate instruction s against a database of in-
structions selected from the current round. This
database contains the most challenging instruction
from each tree, excluding the tree to which s be-
longs. By avoiding comparisons within the same
tree, we address the inherent similarity of instruc-
tions derived from the same seed, which could oth-
erwise distort the evaluation of s’s contribution
to overall diversity. The diversity score Vdiv(s) is
defined as the distance between s and its closest
match in this external database:

Vdiv(s) = min
se∈DB

D(s, se),

where DB denotes the database of top-challenging
instructions from other trees in the current round,

and D(·, ·) is a similarity metric. The similar-
ity metric first transforms the code instructions
into vectors using embedding models and then
calculates the cosine distance. This approach en-
sures that diversity is evaluated globally, fostering
a dataset that spans a wide range of topics and
avoids redundancy within the synthesized instruc-
tions. The overall quality score combines them:

V (s) = Vcomp(s) + Vdiv(s),

where challenge and diversity are considered
equally important.

3.4 Optimization-Driven Evolution
Unlike the randomness-driven generation ap-
proaches of previous methods (Wei et al., 2023;
Luo et al., 2024c), our ToE framework introduces
optimization-driven evolution. In each synthesis
round, the quality scoring function V (s) evaluates
each active node s based on its challenge and di-
versity levels. To determine which nodes advance
to the next round of tree-based evolution, we em-
ploy the Beam Search algorithm (Freitag and Al-
Onaizan, 2017), retaining only the top-n nodes
based on their quality scores:

Snext = {s ∈ Sactive | V (s) ≥ V(n)},

where V(n) denotes the n-th highest score in Sactive.
To further guide the data synthesis model in

generating higher-quality instructions, the scores
of parent nodes V (sparent), including their chal-
lenge Vcomp(sparent) and diversity Vdiv(sparent) com-
ponents, are communicated as explicit optimiza-
tion objectives. The synthesis model is tasked with
generating new instructions schild that satisfy the
condition:

V (schild) ≥ V (sparent).

If a newly synthesized instruction schild fails to
meet this criterion, its corresponding branch is
stopped. By iteratively incorporating feedback and
optimizing for both challenge and diversity levels,
the framework can systematically evolve a dataset
of code instructions.

3.5 Data Collection and Training
Using our ToE framework, we iteratively synthe-
size a large volume of high-quality code instruc-
tions. However, the synthesis process must termi-
nate to balance efficiency and quality. The process

300

halts when the tree reaches a predefined maximum
depth, effectively managing computational costs
and avoiding excessive complexity. Additionally,
as described in the optimization-driven evolution,
branches are pruned if newly generated nodes are
not among the top-n nodes or fail to surpass their
parent nodes in quality. These termination crite-
ria ensure both efficiency and the production of
high-quality synthesized instructions.

After completing the tree-based synthesis pro-
cess, we collect data from each tree using a straight-
forward, round-by-round method, similar to Code
Evol-Instruct (Luo et al., 2024c). We begin by rank-
ing the nodes in each round based on their quality
scores, selecting them from highest to lowest. For
each node, we calculate the similarity distance be-
tween it and the previously selected nodes from the
same round within the same tree. To address intra-
tree similarity issues, only nodes with a distance
greater than a predefined threshold are retained.

Upon generating the code instruction data, we
follow previous methods (Wei et al., 2023; Luo
et al., 2024c) by using the same data synthesis mod-
els to generate code responses for each instruction.
While more sophisticated methods (Chen et al.,
2023a; Luo et al., 2024a), such as execution-based
verification (Wei et al., 2024), could improve re-
sponse quality, they fall outside the scope of this
work, which focuses primarily on the synthesis of
code instructions. Furthermore, the data synthesis
models employed are SOTA LLMs that are capable
of producing high-quality responses to a reasonable
extent. After obtaining the instruction-response
pairs, we fine-tune the base LLMs using causal
language modeling loss, masking the prediction of
instructions, in line with prior works (Chiang et al.,
2023; Xu et al., 2023).

4 Experiment

4.1 Setup

We randomly select 5k code snippets as the initial
seed data, sourced from the Stack v1 dataset (Ko-
cetkov et al., 2023), which is derived from GitHub
repositories. For the main experiments, we use the
SOTA proprietary LLM gpt-4o-2024-08-06
as the data synthesis model. To manage compu-
tational costs, each node is allowed to explore up
to 3 different evolutionary paths through random
sampling and undergo 3 rounds of evolution. All
prompts are provided in Appendix A. Using our
ToE framework, we generate approximately 75k

code instructions, with responses synthesized us-
ing the same model. Data examples are shown in
Appendix B. We then follow the approach outlined
in Qwen2.5-Coder (Hui et al., 2024), employing
a 10-gram overlap method to avoid contamination.
For instruction fine-tuning, we employ the SOTA
Code LLM base models, Qwen2.5-Coder-Base, in
our main experiments, using model sizes of 1.5B,
7B, and 14B parameters. Further implementation
details can be found in Appendix C.

4.2 Main Results

HumanEval, MBPP and EvalPlus. To evalu-
ate the effectiveness of our method, we assess
its performance on several popular coding bench-
marks: HumanEval (HE) (Chen et al., 2021),
MBPP (Austin et al., 2021), and their augmented
versions, EvalPlus (Liu et al., 2023). HE consists
of 164 problems, each with an average of 9.6 test
cases. HE-Plus significantly increases the num-
ber of test cases, with an average of 774.8 test
cases per problem. In contrast, MBPP contains
378 programming problems, each with three auto-
mated test cases, while MBPP-Plus expands this
by over 35 times the number of test cases. For com-
parison, we include 10 open-weight Code LLMs
with different sizes, such as WizardCoder (Luo
et al., 2024c), StarCoder2-Instruct (Lozhkov et al.,
2024), CodeLlama-Instruct (Rozière et al., 2023),
MagiCoder-S (Wei et al., 2023), OpenCodeInter-
preter (Zheng et al., 2024b), Yi-Coder-Chat (01.AI,
2024), Qwen2.5-Coder-Instruct (Hui et al., 2024),
CodeQwen1.5-Chat (Bai et al., 2023), OpenCoder-
Instruct (Huang et al., 2024), and DeepseekCoder-
Instruct (Guo et al., 2024). Additionally, we
include 5 SOTA proprietary models for refer-
ence, including o1-mini/preview (OpenAI, 2024),
GPT-4o/mini (OpenAI, 2023), and Claude-3.5-
Sonnet (Anthropic, 2023). Following previous
works, all models generate responses using greedy
decoding, and we report the pass@1 scores.

In Table 1, we compare various proprietary
and open-weight Code LLMs. Since our method
is based on the SOTA base model Qwen2.5-
Coder-Base, the most fair comparison is with the
SOTA open-weight instruction-based Code LLM,
Qwen2.5-Coder-Instruct, which is highlighted in
orange. Across three different model sizes—1.5B,
7B, and 14B—our method achieves performance
comparable to or better than the SOTA open-weight
models. Specifically, for the 1.5B model, we

301

Model Size SFT Data HE HE-Plus MBPP MBPP-Plus

Proprietary Models
o1-mini - Closed 97.6 90.2 93.9 78.3
o1-preview - Closed 95.1 88.4 93.4 77.8
GPT-4o - Closed 92.1 86.0 86.8 72.5
GPT-4o-mini - Closed 87.8 84.8 86.0 72.2
Claude-3.5-Sonnet - Closed 89.0 81.1 87.6 72.0

Open-Weight 1B+ Code LLMs
DS-Coder-Instruct 1.3B Closed 65.9 60.4 65.3 54.8
Yi-Coder-Chat 1.5B Closed 69.5 64.0 65.9 57.7
Qwen2.5-Coder-Instruct 1.5B Closed 70.7 66.5 69.2 59.4
Tree-of-Evolution (Ours) 1.5B Open 75.0 66.5 69.6 59.3

Open-Weight 6B+ Code LLMs
DS-Coder-Instruct 6.7B Closed 74.4 71.3 74.9 65.6
CodeLlama-Instruct 7B Closed 40.9 33.5 54.0 44.4
Qwen2.5-Coder-Instruct 7B Closed 88.4 84.1 83.5 71.7
CodeQwen1.5-Chat 7B Closed 83.5 78.7 77.7 67.2
Yi-Coder-Chat 9B Closed 82.3 74.4 82.0 69.0
OpenCodeInterpreter 6.7B Open 76.2 72.0 73.9 63.7
MagiCoder-S 6.7B Open 76.8 70.7 75.7 64.4
OpenCoder-Instruct 8B Open 83.5 78.7 79.1 69.0
Tree-of-Evolution (Ours) 7B Open 87.2 80.5 83.3 69.8

Open-Weight 13B+ Code LLMs
CodeLlama-13B-Instruct 13B Closed 40.2 32.3 60.3 51.1
Qwen2.5-Coder-Instruct 14B Closed 89.6 87.2 86.2 72.8
WizardCoder-v1.0 15B Closed 57.3 51.2 63.5 52.1
Starcoder2-15B-Instruct-v0.1 15B Open 67.7 60.4 78.0 65.1
Tree-of-Evolution (Ours) 14B Open 88.4 82.3 88.1 74.9

Table 1: Comparison of various proprietary and open-weight Code LLMs on HE, MBPP, and EvalPlus (HE/MBPP-
Plus). Our Tree-of-Evolution framework achieves results comparable to or surpassing the SOTA open-weight Code
LLM, Qwen2.5-Coder-Instruct, across different model sizes. Notably, our approach uses only 75k synthesized
training samples, in contrast to the millions of samples used by Qwen2.5-Coder-Instruct.

achieve a 4.3-point higher score on HE, and for the
14B model, we achieve 2 points higher on MBPP-
Plus. Notably, we only use 75k instruction fine-
tuning data, much smaller than the millions of data
used by Qwen2.5-Coder-Instruct. When compared
to the proprietary GPT-4o, our 14B model even
outperforms it on both MBPP and MBPP-Plus.

LiveCodeBench. To further assess the perfor-
mance of our method, we evaluate it using Live-
CodeBench (Jain et al., 2024), a comprehensive
and contamination-free benchmark designed to
evaluate the coding capabilities of LLMs. Live-
CodeBench continuously collects new problems
from leading competitive programming platforms,

including LeetCode,1 AtCoder,2 and CodeForces,3

ensuring a diverse and up-to-date set of challenges.
As of now, it contains over 711 high-quality coding
problems, published between May 2023 and Octo-
ber 2024. Following the standard settings, we use
n=10 and temperature=0.2 for response generation,
and we report the pass@1 scores.

As shown in Table 2, our method achieves com-
parable or even superior performance to the SOTA
open-weight Code LLM, Qwen2.5-Coder-Instruct,
which is trained on millions of data points, across
different model sizes. Notably, for the 1.5B model,
we achieve a 4.3 higher pass@1 score with only

1https://leetcode.com/
2https://atcoder.jp/
3https://codeforces.com/

302

https://leetcode.com/
https://atcoder.jp/
https://codeforces.com/

Model Size SFT Data LiveCodeBench BigCodeBench

Pass@1 Full Hard

Proprietary Models
o1-mini - Closed 72.0 46.3 23.0
o1-preview - Closed 56.5 49.3 27.7
GPT-4o - Closed 45.7 50.1 25.0
GPT-4o-mini - Closed 39.0 46.9 23.6
Claude-3.5-Sonnet - Closed 50.8 45.3 25.7

Comparing with SOTA Open Weights Code Models
Qwen2.5-Coder-Instruct 1.5B Closed 13.0 32.5 6.8
Tree-of-Evolution (ours) 1.5B Open 17.3 34.2 8.1
Qwen2.5-Coder-Instruct 7B Closed 34.1 41.0 18.2
Tree-of-Evolution (ours) 7B Open 34.4 41.4 20.3
Qwen2.5-Coder-Instruct 14B Closed 43.4 48.4 22.2
Tree-of-Evolution (ours) 14B Open 43.1 45.5 22.3

Table 2: Comparison of various proprietary and SOTA open-weight Code LLMs on LiveCodeBench and Big-
CodeBench Instruct. Our Tree-of-Evolution framework achieves performance comparable to or exceeding the
SOTA open-weight Code LLM, Qwen2.5-Coder-Instruct, across different model sizes. Notably, our approach lever-
ages only 75k synthesized training samples, in contrast to the millions of samples used by Qwen2.5-Coder-Instruct.

75k training samples. When compared to propri-
etary models, our 14B model delivers performance
similar to OpenAI’s GPT-4o. These results further
demonstrate the effectiveness of our method.

BigCodeBench. Unlike previous benchmarks
that focus on algorithmic code generation, Big-
CodeBench (Zhuo et al., 2024) is a challenging
benchmark designed to evaluate models on their
ability to handle complex instructions and make
accurate function calls across diverse external li-
braries. Comprising 1,140 full tasks and 148 hard
tasks, BigCodeBench provides models with instruc-
tions to generate appropriate code, accompanied by
the unit tests to verify its correctness. The bench-
mark covers a wide range of practical programming
tasks, assessing models’ ability to tackle real-world
scenarios involving complex, task-specific libraries.
Following previous works, all models generate re-
sponses using greedy decoding, and we report the
pass@1 scores.

As shown in Table 2, a similar trend emerges
when comparing our method with SOTA open-
weight Code Models. With only 75k instruction
fine-tuning samples, our method achieves perfor-
mance comparable to, or even surpassing, that
of Qwen2.5-Coder-Instruct across different model
sizes. Notably, for the 1.5B model, our method
achieves approximately 2 points higher perfor-

Model HE-Plus MBPP-Plus

Baseline
QW2.5-Coder-7B-Ins. 84.1 71.7

Data synthesis model
GPT-4o 80.5 69.8
QW2.5-72B-Ins. 82.3 72.2

Table 3: Conducting the data synthesis process with
the open-weight LLM, Qwen2.5-72B-Instruct, can even
yield better performance (QW = Qwen).

mance. When compared to proprietary models,
our 14B model demonstrates performance on par
with OpenAI’s o1-mini. These results, particularly
on practical programming tasks, further validate
the effectiveness of our approach.

4.3 Analysis
Synthesis using Open LLMs. In the main exper-
iments, all data were synthesized using the propri-
etary LLM gpt-4o-2024-08-06. One limita-
tion of utilizing an API-based LLM for our tree-
structured instruction evolution is that for each
code seed, we must conduct the tree-based syn-
thesis, which requires multiple API calls. This can
lead to significant money costs, making it less feasi-
ble for those with limited budgets. To address this,
we explore the possibility of replacing the API-
based synthesis model with an open-weight LLM,
enabling users to directly download the model and

303

60 80 100 120
Number of SFT Samples (k)

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

Pa
ss

@
1

77.4

80.5
81.7

76.8

69.0
69.8

67.5

69.8

Comparing Different SFT Data Size

HE-Plus
MBPP-Plus

Figure 3: Comparison of performance across different
numbers of instruction fine-tuning samples synthesized
by our ToE framework.

OSS-Instruct Code Evol-Instruct Tree-of-Evolution
50

55

60

65

70

75

80

85

Pa
ss

@
1

72.0

77.4

80.5

61.9

64.8

69.8

Comparison with Different Code Instruction Synthesis Methods

HE-Plus
MBPP-Plus

Figure 4: Comparison of performance with the unidirec-
tional code instruction synthesis methods.

perform the ToE process on their own machines,
thereby eliminating API costs. In this experiment,
we use the SOTA open-weight LLM, Qwen2.5-
72B-Instruct, as the data synthesis model and repli-
cate the same ToE process.

As shown in Table 3, employing the open-weight
LLM, Qwen2.5-72B-Instruct, in our ToE process
achieves superior performance on HE-Plus (+1.8)
and MBPP-Plus (+2.4) compared to the proprietary
LLM, GPT-4o. These results demonstrate that our
ToE framework does not require a proprietary LLM
for data synthesis; in fact, using an open-weight
LLM can yield even better outcomes. Moreover,
this approach eliminates API costs entirely, making
it a cost-effective solution.

Comparing Different SFT Data Size. In our
ToE framework, the intra-similarity threshold can
be adjusted to control the number of code instruc-
tions during the round-by-round data collection. A
lower threshold allows for more samples but re-
duces diversity, as more similar nodes are collected
within the same tree. Conversely, a higher thresh-
old results in fewer samples but increases diversity.
As shown in Figure 3, increasing the number of
samples up to a certain point improves performance
on HE-Plus. However, as the sample size contin-

Only Score < 10 Only Score 10 Combination of Both
60

65

70

75

80

Pa
ss

@
1

76.8

78.7

80.5

66.9

68.8
69.8

Comparison with Different Quality Scores

HE-Plus
MBPP-Plus

Figure 5: Comparison of performance across different
quality scores.

ues to grow, performance on HE-Plus begins to
decline, possibly due to the inclusion of more simi-
lar samples. For MBPP-Plus, performance remains
relatively stable. Consequently, we select 75k sam-
ples to achieve the best overall performance.

Comparing with Unidirectional Synthesis. In
Figure 4, we compare the performance of our ToE
framework with unidirectional code instruction
synthesis methods, OSS-Instruct and Code Evol-
Instruct. All methods use the same seed data, the
same data synthesis model, and fine-tune on the
same Qwen2.5-Coder-7B-Base models. As shown,
our method outperforms the others on the HE-Plus
and MBPP-Plus benchmarks, demonstrating the
effectiveness of our approach.

Comparison of Performance Across Different
Quality Scores. In Figure 5, we present exper-
iments analyzing the correlation between quality
scores and model performance. From our 75k data,
we include only instructions with scores lower than
10 or no less than 10. Training the model with in-
structions scoring no less than 10 yields better per-
formance compared to using instructions scoring
below 10. This result highlights the relationship be-
tween quality scores and final performance, demon-
strating the effectiveness of our scoring strategy.
The mixed 75k data, results in better performance.
This finding is supported by Figure 3, which shows
that increasing the amount of data improves perfor-
mance to a certain extent.

5 Conclusion

In this work, we introduce the Tree-of-Evolution
framework for synthesizing high-quality code
instruction data using a tree structure and
optimization-driven evolution. Experimental re-
sults on five popular code generation benchmarks,
across different model sizes, show that models

304

fine-tuned on just 75k synthesized instructions
outperform or match SOTA open-weight models,
Qwen2.5-Coder-Instruct, which are fine-tuned on
millions of samples.

Limitations

Although our framework achieves performance
comparable to, or even better than, SOTA open-
weight models, it still has some limitations:

• One limitation of our ToE framework is that it
requires more time compared to unidirectional
synthesis methods. This is due to the need for
a tree-based synthesis process that explores
multiple evolutionary paths and evaluates the
quality of each node. While this approach
improves performance, it comes with a time
cost as a trade-off.

• Whether our ToE framework can generalize to
non-code generation domains remains uncer-
tain. The framework is primarily designed
to extend existing code instruction synthe-
sis methods, such as OSS-Instruct and Code
Evol-Instruct, which initiate the data synthe-
sis process with code snippets. This starting
point may not easily translate to other do-
mains. Additionally, the quality standards,
challenges, and diversity levels necessary for
optimal performance in code generation are
domain-specific, as demonstrated in previous
works on Code LLMs (Wei et al., 2023; Luo
et al., 2024c).

• Our ToE framework focuses on code instruc-
tion synthesis, utilizing a data synthesis model
to generate code responses for the given in-
structions. Improving the quality of these re-
sponses is beyond the scope of this work. As
discussed in prior research (Luo et al., 2024a;
Wei et al., 2024), refining the quality of code
responses could potentially further enhance
performance. However, given that our ap-
proach already achieves comparable or even
superior performance to SOTA open-weight
Code LLMs, we leave this orthogonal avenue
for future exploration.

Acknowledgments

This work is partially supported by Tencent Rhino-
Bird Focused Research Program (Value-aligned
Credible Large Language Model) and RMGS

project (Artificial Intelligence and Big Data An-
alytics for Social Good).

References
01.AI. 2024. Meet yi-coder: A small but mighty llm for

code.

Loubna Ben Allal, Raymond Li, Denis Kocetkov,
Chenghao Mou, Christopher Akiki, Carlos Muñoz
Ferrandis, Niklas Muennighoff, Mayank Mishra,
Alex Gu, Manan Dey, Logesh Kumar Umapathi,
Carolyn Jane Anderson, Yangtian Zi, Joel Lamy-
Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry
Abulkhanov, Manuel Romero, Michael Lappert,
Francesco De Toni, Bernardo García del Río, Qian
Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue
Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab
Mangrulkar, David Lansky, Huu Nguyen, Danish
Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau,
Yacine Jernite, Sean Hughes, Daniel Fried, Arjun
Guha, Harm de Vries, and Leandro von Werra. 2023.
Santacoder: don’t reach for the stars! CoRR,
abs/2301.03988.

Anthropic. 2023. Claude: A family of large lan-
guage models. https://www.anthropic.
com/claude.

Jacob Austin, Augustus Odena, Maxwell I. Nye,
Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program synthesis with
large language models. CoRR, abs/2108.07732.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang
Zhu. 2023. Qwen technical report. arXiv preprint
arXiv:2309.16609.

Alexander Bukharin, Shiyang Li, Zhengyang Wang,
Jingfeng Yang, Bing Yin, Xian Li, Chao Zhang, Tuo
Zhao, and Haoming Jiang. 2024. Data diversity mat-
ters for robust instruction tuning. In Findings of the
Association for Computational Linguistics: EMNLP
2024, pages 3411–3425, Miami, Florida, USA. Asso-
ciation for Computational Linguistics.

Sahil Chaudhary. 2023. Code alpaca: An
instruction-following llama model for code genera-
tion. https://github.com/sahil280114/
codealpaca.

305

https://01-ai.github.io/blog.html?post=en/2024-09-05-A-Small-but-Mighty-LLM-for-Code.md
https://01-ai.github.io/blog.html?post=en/2024-09-05-A-Small-but-Mighty-LLM-for-Code.md
https://doi.org/10.48550/ARXIV.2301.03988
https://www.anthropic.com/claude
https://www.anthropic.com/claude
http://arxiv.org/abs/2108.07732
http://arxiv.org/abs/2108.07732
https://doi.org/10.18653/v1/2024.findings-emnlp.195
https://doi.org/10.18653/v1/2024.findings-emnlp.195
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2023a.
Codet: Code generation with generated tests. In
The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net.

Hailin Chen, Amrita Saha, Steven C. H. Hoi, and Shafiq
Joty. 2023b. Personalised distillation: Empowering
open-sourced llms with adaptive learning for code
generation. CoRR, abs/2310.18628.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie,
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,
Matei Zaharia, and Reynold Xin. 2023. Free dolly:
Introducing the world’s first truly open instruction-
tuned llm.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff
Johnson, Gergely Szilvasy, Pierre-Emmanuel Mazaré,
Maria Lomeli, Lucas Hosseini, and Hervé Jégou.
2024. The faiss library. CoRR, abs/2401.08281.

Markus Freitag and Yaser Al-Onaizan. 2017. Beam
search strategies for neural machine translation. In
Proceedings of the First Workshop on Neural Ma-
chine Translation, NMT@ACL 2017, Vancouver,
Canada, August 4, 2017, pages 56–60. Association
for Computational Linguistics.

Google. 2024. Codegemma: Open code mod-
els based on gemma. https://storage.
googleapis.com/deepmind-media/
gemma/codegemma_report.pdf.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,

Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming - the rise of code
intelligence. CoRR, abs/2401.14196.

Siming Huang, Tianhao Cheng, J. K. Liu, Jiaran Hao, Li-
uyihan Song, Yang Xu, J. Yang, J. H. Liu, Chenchen
Zhang, Linzheng Chai, Ruifeng Yuan, Zhaoxiang
Zhang, Jie Fu, Qian Liu, Ge Zhang, Zili Wang, Yuan
Qi, Yinghui Xu, and Wei Chu. 2024. Opencoder:
The open cookbook for top-tier code large language
models.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, An Yang, Rui Men, Fei Huang,
Xingzhang Ren, Xuancheng Ren, Jingren Zhou, and
Junyang Lin. 2024. Qwen2.5-coder technical report.
CoRR, abs/2409.12186.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
codebench: Holistic and contamination free eval-
uation of large language models for code. CoRR,
abs/2403.07974.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li,
Chenghao Mou, Yacine Jernite, Margaret Mitchell,
Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf,
Dzmitry Bahdanau, Leandro von Werra, and Harm
de Vries. 2023. The stack: 3 TB of permissively li-
censed source code. Trans. Mach. Learn. Res., 2023.

Kaixin Li, Qisheng Hu, Xu Zhao, Hui Chen, Yuxi Xie,
Tiedong Liu, Qizhe Xie, and Junxian He. 2024. In-
structcoder: Instruction tuning large language models
for code editing.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023a. Starcoder: may the source be with you!
arXiv preprint arXiv:2305.06161.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long,
Pengjun Xie, and Meishan Zhang. 2023b. Towards
general text embeddings with multi-stage contrastive
learning. CoRR, abs/2308.03281.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is your code generated by chatgpt
really correct? rigorous evaluation of large language
models for code generation. CoRR, abs/2305.01210.

Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe
Zhang, Jinmeng Rao, Steven Zheng, Daiyi Peng, Diyi
Yang, Denny Zhou, and Andrew M. Dai. 2024. Best
practices and lessons learned on synthetic data for
language models. CoRR, abs/2404.07503.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur
Zucker, Younes Belkada, Zijian Wang, Qian Liu,

306

https://openreview.net/pdf?id=ktrw68Cmu9c
https://doi.org/10.48550/ARXIV.2310.18628
https://doi.org/10.48550/ARXIV.2310.18628
https://doi.org/10.48550/ARXIV.2310.18628
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://vicuna.lmsys.org
https://vicuna.lmsys.org
https://vicuna.lmsys.org
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://doi.org/10.48550/ARXIV.2401.08281
https://doi.org/10.18653/V1/W17-3207
https://doi.org/10.18653/V1/W17-3207
https://storage.googleapis.com/deepmind-media/gemma/codegemma_report.pdf
https://storage.googleapis.com/deepmind-media/gemma/codegemma_report.pdf
https://storage.googleapis.com/deepmind-media/gemma/codegemma_report.pdf
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
https://doi.org/10.48550/ARXIV.2401.14196
http://arxiv.org/abs/2411.04905
http://arxiv.org/abs/2411.04905
http://arxiv.org/abs/2411.04905
https://doi.org/10.48550/ARXIV.2409.12186
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.48550/ARXIV.2403.07974
https://doi.org/10.48550/ARXIV.2403.07974
https://openreview.net/forum?id=pxpbTdUEpD
https://openreview.net/forum?id=pxpbTdUEpD
http://arxiv.org/abs/2310.20329
http://arxiv.org/abs/2310.20329
http://arxiv.org/abs/2310.20329
https://doi.org/10.48550/arXiv.2308.03281
https://doi.org/10.48550/arXiv.2308.03281
https://doi.org/10.48550/arXiv.2308.03281
https://doi.org/10.48550/arXiv.2305.01210
https://doi.org/10.48550/arXiv.2305.01210
https://doi.org/10.48550/arXiv.2305.01210
https://doi.org/10.48550/ARXIV.2404.07503
https://doi.org/10.48550/ARXIV.2404.07503
https://doi.org/10.48550/ARXIV.2404.07503

Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-
Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue
Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade,
Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su,
Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai,
Niklas Muennighoff, Xiangru Tang, Muhtasham
Oblokulov, Christopher Akiki, Marc Marone, Cheng-
hao Mou, Mayank Mishra, Alex Gu, Binyuan Hui,
Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Pa-
try, Canwen Xu, Julian J. McAuley, Han Hu, Torsten
Scholak, Sébastien Paquet, Jennifer Robinson, Car-
olyn Jane Anderson, Nicolas Chapados, and et al.
2024. Starcoder 2 and the stack v2: The next genera-
tion. CoRR, abs/2402.19173.

Ziyang Luo, Xin Li, Hongzhan Lin, Jing Ma, and Li-
dong Bing. 2024a. Amr-evol: Adaptive modular
response evolution elicits better knowledge distilla-
tion for large language models in code generation. In
Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2024, Miami, FL, USA, November 12-16, 2024, pages
1143–1166. Association for Computational Linguis-
tics.

Ziyang Luo, Haoning Wu, Dongxu Li, Jing Ma, Mohan
Kankanhalli, and Junnan Li. 2024b. Videoautoarena:
An automated arena for evaluating large multimodal
models in video analysis through user simulation.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2024c. Wizardcoder:
Empowering code large language models with evol-
instruct. In The Twelfth International Conference on
Learning Representations.

Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang
Shen, Aditya Prasad, Adriana Meza Soria, Michele
Merler, Parameswaran Selvam, Saptha Surendran,
Shivdeep Singh, Manish Sethi, Xuan-Hong Dang,
Pengyuan Li, Kun-Lung Wu, Syed Zawad, Andrew
Coleman, Matthew White, Mark Lewis, Raju Pavu-
luri, Yan Koyfman, Boris Lublinsky, Maximilien
de Bayser, Ibrahim Abdelaziz, Kinjal Basu, Mayank
Agarwal, Yi Zhou, Chris Johnson, Aanchal Goyal,
Hima Patel, S. Yousaf Shah, Petros Zerfos, Heiko
Ludwig, Asim Munawar, Maxwell Crouse, Pavan
Kapanipathi, Shweta Salaria, Bob Calio, Sophia Wen,
Seetharami Seelam, Brian Belgodere, Carlos A. Fon-
seca, Amith Singhee, Nirmit Desai, David D. Cox,
Ruchir Puri, and Rameswar Panda. 2024. Granite
code models: A family of open foundation models
for code intelligence. CoRR, abs/2405.04324.

Mistral. 2024. Codestral: Hello, world! empowering
developers and democratising coding with mistral ai.

Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Sil-
vio Savarese, and Yingbo Zhou. 2023a. Codegen2:
Lessons for training llms on programming and natu-
ral languages. CoRR, abs/2305.02309.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming

Xiong. 2023b. Codegen: An open large language
model for code with multi-turn program synthesis. In
The Eleventh International Conference on Learning
Representations.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

OpenAI. 2024. Openai o1 system card.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,
Wenhan Xiong, Alexandre Défossez, Jade Copet,
Faisal Azhar, Hugo Touvron, Louis Martin, Nico-
las Usunier, Thomas Scialom, and Gabriel Synnaeve.
2023. Code llama: Open foundation models for code.
CoRR, abs/2308.12950.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-
guage model with self generated instructions. arXiv
preprint arXiv:2212.10560.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi
D. Q. Bui, Junnan Li, and Steven C. H. Hoi.
2023. Codet5+: Open code large language mod-
els for code understanding and generation. CoRR,
abs/2305.07922.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven
C. H. Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code under-
standing and generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2021, Virtual Event /
Punta Cana, Dominican Republic, 7-11 November,
2021, pages 8696–8708. Association for Computa-
tional Linguistics.

Yuxiang Wei, Federico Cassano, Jiawei Liu, Yifeng
Ding, Naman Jain, Zachary Mueller, Harm de Vries,
Leandro von Werra, Arjun Guha, and Lingming
Zhang. 2024. Selfcodealign: Self-alignment for code
generation. CoRR, abs/2410.24198.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2023. Magicoder: Source code is
all you need. CoRR, abs/2312.02120.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large lan-
guage models to follow complex instructions. arXiv
preprint arXiv:2304.12244.

307

https://doi.org/10.48550/ARXIV.2402.19173
https://doi.org/10.48550/ARXIV.2402.19173
https://aclanthology.org/2024.emnlp-main.66
https://aclanthology.org/2024.emnlp-main.66
https://aclanthology.org/2024.emnlp-main.66
https://api.semanticscholar.org/CorpusID:274150456
https://api.semanticscholar.org/CorpusID:274150456
https://api.semanticscholar.org/CorpusID:274150456
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://doi.org/10.48550/ARXIV.2405.04324
https://doi.org/10.48550/ARXIV.2405.04324
https://doi.org/10.48550/ARXIV.2405.04324
https://mistral.ai/news/codestral/
https://mistral.ai/news/codestral/
https://doi.org/10.48550/arXiv.2305.02309
https://doi.org/10.48550/arXiv.2305.02309
https://doi.org/10.48550/arXiv.2305.02309
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://doi.org/10.48550/arXiv.2303.08774
https://cdn.openai.com/o1-system-card-20241205.pdf
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.48550/arXiv.2305.07922
https://doi.org/10.48550/arXiv.2305.07922
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.48550/ARXIV.2410.24198
https://doi.org/10.48550/ARXIV.2410.24198
https://doi.org/10.48550/ARXIV.2312.02120
https://doi.org/10.48550/ARXIV.2312.02120

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao
Liu, Quoc V. Le, Denny Zhou, and Xinyun Chen.
2024. Large language models as optimizers. In
The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang,
Can Xu, Yishujie Zhao, Wenxiang Hu, and Qiufeng
Yin. 2023. Wavecoder: Widespread and versatile
enhanced instruction tuning with refined data genera-
tion. CoRR, abs/2312.14187.

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding,
Xingyao Wang, Jia Deng, Boji Shan, Huimin Chen,
Ruobing Xie, Yankai Lin, Zhenghao Liu, Bowen
Zhou, Hao Peng, Zhiyuan Liu, and Maosong Sun.
2024. Advancing llm reasoning generalists with pref-
erence trees.

Weihao Zeng, Can Xu, Yingxiu Zhao, Jian-Guang Lou,
and Weizhu Chen. 2024. Automatic instruction
evolving for large language models. In Proceed-
ings of the 2024 Conference on Empirical Methods
in Natural Language Processing, pages 6998–7018,
Miami, Florida, USA. Association for Computational
Linguistics.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023a. Judging
llm-as-a-judge with mt-bench and chatbot arena. In
Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023b.
Codegeex: A pre-trained model for code generation
with multilingual evaluations on humaneval-x. CoRR,
abs/2303.17568.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu,
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang
Yue. 2024a. Opencodeinterpreter: Integrating code
generation with execution and refinement. CoRR,
abs/2402.14658.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu,
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang Yue.
2024b. OpenCodeInterpreter: Integrating code gen-
eration with execution and refinement. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 12834–12859, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer,
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping
Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. 2023. LIMA:
less is more for alignment. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,

NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu,
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon
Brunner, Chen Gong, Thong Hoang, Armel Randy
Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kad-
dour, Ming Xu, Zhihan Zhang, Prateek Yadav, Na-
man Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu,
Qian Liu, Zijian Wang, David Lo, Binyuan Hui,
Niklas Muennighoff, Daniel Fried, Xiaoning Du,
Harm de Vries, and Leandro von Werra. 2024. Big-
codebench: Benchmarking code generation with di-
verse function calls and complex instructions. CoRR,
abs/2406.15877.

308

https://openreview.net/forum?id=Bb4VGOWELI
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
https://doi.org/10.48550/ARXIV.2312.14187
http://arxiv.org/abs/2404.02078
http://arxiv.org/abs/2404.02078
https://doi.org/10.18653/v1/2024.emnlp-main.397
https://doi.org/10.18653/v1/2024.emnlp-main.397
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
https://doi.org/10.48550/arXiv.2303.17568
https://doi.org/10.48550/arXiv.2303.17568
https://doi.org/10.48550/ARXIV.2402.14658
https://doi.org/10.48550/ARXIV.2402.14658
https://doi.org/10.18653/v1/2024.findings-acl.762
https://doi.org/10.18653/v1/2024.findings-acl.762
http://papers.nips.cc/paper_files/paper/2023/hash/ac662d74829e4407ce1d126477f4a03a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/ac662d74829e4407ce1d126477f4a03a-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877
https://doi.org/10.48550/ARXIV.2406.15877

A Prompts

Figure 6, 7, andr̃effig:prompt3 display the prompts
for code instruction generation using a random
code snippet, challenge level evaluation, and
optimization-driven evolution, respectively.

B Examples

Figure 9 provides an example of a synthesized code
instruction based on the given random code snippet.
Figures 10, 11, and 12 show three examples of dif-
ferent synthesized code instructions based on the
same instruction as in Figure 9. Notably, the data
synthesis model generates diverse code instructions
from the same initial input, supporting our claim
in the introduction that multiple evolutionary paths
are necessary to explore different synthesis direc-
tions, as the unidirectional synthesis used in prior
work is suboptimal. Additionally, the challenge
and diversity level scores are included, demonstrat-
ing that these three synthesized instructions achieve
higher overall quality scores than their parent node,
highlighting the effectiveness of our optimization-
driven evolution process. In Figures 13, 14, and 15,
we also present examples of challenge-level judg-
ing, showcasing the careful evaluation process.

C Implementation Details

For the entire data synthesis process, we use
OpenAI’s gpt-4o-2024-08-06 as the data
synthesis model. The temperature is set to 1.0
for code instruction generation, and to 0.0 for
both challenge level judging and response gen-
eration. For diversity evaluation, we utilize
gte-large-en-v1.5 (Li et al., 2023b), a
SOTA embedding model, to embed each instruction
into vectors. We use FAISS (Douze et al., 2024) for
distance calculation, employing the IndexIVFFlat
to build the index and perform approximate nearest
neighbor searching. The diversity score is calcu-
lated as 10 times the distance of the recall top-1
data point.

The ToE process conducts three rounds of evolu-
tion, with each node exploring up to three different
evolutionary paths. Starting with 5k random code
snippets, the first round can synthesize up to 15k
code instructions, the second round up to 45k, and
the third up to 135k. For the beam search and
higher-than-parent node strategies, the top 75% of
nodes are retained for the second and third rounds.
For the final 75k data collection, we use a round-
by-round method. Nodes are ranked within each

round based on their quality scores and selected
from highest to lowest. For each node, we calculate
the similarity distance between it and previously se-
lected nodes from the same round within the same
tree. To address intra-tree similarity issues, only
nodes with a distance greater than 6.0 and a higher
quality score than their parent nodes are retained.
All base models are fine-tuned using 8 A800 GPUs
with a maximum sequence length of 4096, a batch
size of 256, 2 epochs, a learning rate of 5.0e-6, a
cosine learning rate scheduler, and a warmup ratio
of 0.01.

The license of HumanEval is MIT.4 The license
of MBPP is cc-by-4.0.5 The license of EvalPlus
is Apache-2.0.6 The license of LiveCodeBench is
MIT.7 The license of BigCodeBench is Apache-
2.0.8 Our data will be open-sourced under the
Apache 2.0 license.

D Broader Impact

Our research introduces a novel framework for
code instruction synthesis. While our approach
demonstrates comparable or even superior perfor-
mance to open-weight Code LLMs, it does not
guarantee that these models will solve all coding
tasks. Additionally, the synthesized data may con-
tain errors, as it is limited by the capabilities of
the data synthesis models. Therefore, it is crucial
to filter out any erroneous data before deploying
Code LLMs in real-world applications to mitigate
the risk of misuse.

E Use Of AI Assistants

The AI assistant, GPT-4o, is used solely for refining
the writing of our paper.

4https://huggingface.co/datasets/
openai/openai_humaneval

5https://huggingface.co/datasets/
google-research-datasets/mbpp

6https://github.com/evalplus/evalplus
7https://github.com/LiveCodeBench/

LiveCodeBench
8https://github.com/bigcode-project/

bigcodebench

309

https://huggingface.co/datasets/openai/openai_humaneval
https://huggingface.co/datasets/openai/openai_humaneval
https://huggingface.co/datasets/google-research-datasets/mbpp
https://huggingface.co/datasets/google-research-datasets/mbpp
https://github.com/evalplus/evalplus
https://github.com/LiveCodeBench/LiveCodeBench
https://github.com/LiveCodeBench/LiveCodeBench
https://github.com/bigcode-project/bigcodebench
https://github.com/bigcode-project/bigcodebench

You are highly skilled at crafting high-quality [Programming Questions] for Code Generation. Your task is to create a high-quality [Programming Question] inspired
by a given [Code Snippet]. Follow the steps below:

Step 1: You will be provided with a [Code Snippet]:
```python
{example}
```
Analyze the code snippet to identify the key concepts, and create a comprehensive [Concept List].

Step 2: Using the [Concept List] from Step 1, develop a detailed [Plan] for creating the high-quality [Programming Question]. The [Plan] should incorporate several
concepts from the [Concept List].

Step 3: Follow the [Plan] to create the [Programming Question]. The question can involve tasks such as code generation, code editing, code debugging, data science,
etc. The code snippet in Step 1 **CANNOT** appear in the [Programming Question].

Please respond strictly in the following format:

Step 1 [Concept List]:
Step 2 [Plan]:
Step 3 [Programming Question]:

Figure 6: The prompt for synthesizing code instructions using the given random code snippet.

You are highly skilled at evaluating the challenge level of [Programming Questions]. Your task is to assess how effectively each question pushes a student's coding
skills and problem-solving abilities. Based on this evaluation, you will assign a [Final Score] on a scale of 1 to 10 (1 = minimal challenge, 10 = exceptionally
challenging).

Evaluation Criteria: Challenge
1. Problem Complexity
- Does the question involve intricate logic or require multiple steps to solve?
- Does it necessitate understanding and integrating advanced programming concepts (e.g., recursion, dynamic programming, or concurrency)?

2. Conceptual Depth
- Does the question require deep comprehension of fundamental programming concepts?
- Are students challenged to apply abstract concepts in novel or non-obvious ways?

3. Required Skill Level
- Is the difficulty level appropriate for the intended audience (e.g., beginner, intermediate, advanced)?
- Does the question push students slightly beyond their comfort zone without being excessively discouraging?

4. Edge Cases and Optimization
- Does the question encourage consideration of edge cases or require optimization for efficiency (e.g., time and space complexity)?
- Are brute-force solutions insufficient, prompting students to explore more sophisticated approaches?

Scoring Guidelines
- 1-3 (Minimal Challenge): Questions are straightforward, with little to no problem-solving required. Suitable for warm-ups or basic concept reinforcement.
- 4-6 (Moderate Challenge): Questions require thoughtful application of concepts but remain solvable using standard techniques. They test foundational skills without
overwhelming the learner.
- 7-8 (High Challenge): Questions demand significant problem-solving effort, incorporating advanced concepts or requiring efficient solutions. They stretch the
learner's abilities and encourage deep engagement.
- 9-10 (Exceptional Challenge): Questions are highly complex and thought-provoking, pushing even advanced learners to their limits. They require innovative
thinking, advanced techniques, and mastery of programming concepts.

The given [Programming Questions] is:
{example}

Please respond strictly in the following format:
Step 1 [Judge Reason]: Explain your judge.
Step 2 [Final Score]: Only Number Here!

Figure 7: The prompt for judging the challenge level of the given code instruction.

310

You are highly skilled at crafting high-quality [Programming Questions] for Code Generation. Your task is to create a new [Programming Question] inspired by the
provided [Old Question]. Follow the steps below:

Step 1: Review the Provided [Old Question]:
```
{example}
```

An expert has evaluated the **challenge level** of the [Old Question] based on the following criteria:
1. Complexity: Does the question require advanced concepts or multiple steps?
2. Conceptual Depth: Does it challenge fundamental concept application in new ways?
3. Skill Level: Is the difficulty suitable for the audience, pushing their abilities?
4. Edge Cases & Optimization: Does it require handling edge cases or optimizing beyond brute force?
The challenge level of the [Old Question] is rated as {comp_s} (on a scale of 1 to 10).

Another expert has evaluated the **diversity** of the [Old Question] based on the following criterion:
1. Diversity: Does the question present less common coding tasks or offer unique problem-solving scenarios?
(1 = minimal diverse, 10 = exceptionally diverse).
The diversity level of the [Old Question] is rated as {div_s} (on a scale of 1 to 10).

Analyze the [Old Question] and develop a detailed [Plan] for creating a new [Programming Question] that surpasses the [Old Question] in both **challenge level**
and **diversity level**.

Step 2: Follow the [Plan] to create the [Programming Question]. The new question should offer:
- A higher level of challenge based on the evaluation criteria.
- Greater diversity by incorporating unique or less common coding tasks.
Your final goal is to craft a [Programming Question] that is more challenging and diverse than the provided [Old Question].
Only provide the [Programming Question] in this step. **DO NOT** compare with the [Old Question] and **DO NOT** discuss how complex and diverse of the
question.

Please respond strictly in the following format:

Step 1 [Plan]: Include your plan here!
Step 2 [Programming Question]: Only include your new question here!

Figure 8: The prompt for optimization-driven evolution

311

Round1 Generation:
Title: Implementing Linear Interpolation for Gradient Generation

Description:
Linear interpolation is a common technique to generate smooth transitions between values. In this exercise, you will implement a function to create a gradient of colors
using linear interpolation.

Task:
1. Write a Python function `interpolate_color(start_color, end_color, t)` that linearly interpolates between two RGB colors. The function should take the following
parameters:
 - `start_color`: a tuple of three integers representing the starting RGB color (e.g., (255, 0, 0) for red).
 - `end_color`: a tuple of three integers representing the ending RGB color (e.g., (0, 0, 255) for blue).
 - `t`: a floating-point number between 0 and 1 that represents the interpolation factor.

2. The function should return a tuple of three integers representing the interpolated RGB color.

3. You should validate the input to ensure that `t` is between 0 and 1, and the colors are valid RGB tuples with values between 0 and 255.

Example:
```python
def interpolate_color(start_color, end_color, t):
    # Your code here

# Example usage
start = (255, 0, 0)  # Red
end = (0, 0, 255)    # Blue
t = 0.5
interpolated_color = interpolate_color(start, end, t)
print(interpolated_color)  # Expected output is (127, 0, 127)
```

Notes:
- The function should perform interpolation separately for each of the R, G, and B components using the formula: `interpolated_value = (1 - t) * start_value + t *
end_value`.
- Ensure to round the interpolated values to the nearest integer before returning them.

Additional Task:
After writing your function, create a gradient array of 10 colors transitioning from red to blue and print the resulting colors. Use the `interpolate_color` function to
achieve this.

```python
start = (255, 0, 0)  # Red
end = (0, 0, 255)    # Blue
gradient = [interpolate_color(start, end, i / 9) for i in range(10)]
print(gradient)
# Expected output: List of 10 tuples representing the gradient colors
```

Challenge Level: 5.0
Diversity Level: 4.42
Overall: 9.42

SEED:
def lerp(a,b,t):
 """ Linear interpolation between from @a to @b as @t goes between 0 an 1. """
 return (1-t)*a + t*b

Figure 9: An example of a synthesized code instruction based on the given random code snippet, including its
challenge and diversity scores.

312

Title: Procedural Terrain Generation using Perlin Noise

Description:
Procedural terrain generation is a fundamental technique in game development and procedural content generation. One of the algorithms used for generating realistic
terrain features is Perlin noise. In this exercise, you will implement a function to generate a 2D terrain map using Perlin noise.

Tasks:
1. Write a Python function `generate_perlin_noise(width, height, scale)` to create a 2D array representing a Perlin noise map. The function should take the following
parameters:
 - `width`: an integer representing the width of the map.
 - `height`: an integer representing the height of the map.
 - `scale`: a float representing the scale of the noise.

2. The function should generate Perlin noise values for each point in the 2D array. Use a Perlin noise algorithm to compute these values. Each value should be between
0 and 1.

3. Implement a function `create_terrain_map(noise_map, thresholds)` that converts the noise map into a terrain map. Parameters:
 - `noise_map`: a 2D array containing the Perlin noise values.
 - `thresholds`: a dictionary mapping terrain types to noise value ranges (e.g., {'water': 0.3, 'sand': 0.4, 'grass': 0.7, 'rock': 0.9}).

4. The function should return a 2D array of terrain types based on the provided thresholds.

5. Ensure the functions validate input parameters, such as positive dimensions and valid scale values.

Example:
```python
def generate_perlin_noise(width, height, scale):
    # Your code here

def create_terrain_map(noise_map, thresholds):
    # Your code here

# Example usage:
width = 50
height = 50
scale = 0.1
thresholds = {'water': 0.3, 'sand': 0.4, 'grass': 0.7, 'rock': 0.9}

noise_map = generate_perlin_noise(width, height, scale)
terrain_map = create_terrain_map(noise_map, thresholds)

for row in terrain_map:
    print(' '.join(row))
```

Notes:
- For generating Perlin noise, you can use libraries like `noise` in Python which provides a Perlin noise implementation.
- After generating the noise map, classify each point based on the provided thresholds to create the terrain map.
- Handle edge cases where `width` and `height` are zero or negative, or `scale` is non-positive.

Additional Task:
Visualize the terrain map using a gradient of characters or colors:
- 'W' for water
- 'S' for sand
- 'G' for grass
- 'R' for rock

Modify the given example to print the terrain map such that each terrain type matches the corresponding character.
```python
terrain_map = create_terrain_map(noise_map, thresholds)
char_map = {'water': 'W', 'sand': 'S', 'grass': 'G', 'rock': 'R'}
for row in terrain_map:
    print(' '.join(char_map[cell] for cell in row))
```

Challenge Level: 8.0
Diversity Level: 5.60
Overall: 13.60

Figure 10: The first example of a synthesized code instruction based on the code instruction in Figure 9, including
its challenge and diversity scores.

313

Title: Generating a Mandelbrot Set with Custom Color Map Scaling

Description:
The Mandelbrot set is a complex fractal defined in the complex plane, and it is a classic example of a set that can be used to create intricate and beautiful visual
patterns. In this exercise, you will implement a function to generate the Mandelbrot set and apply a custom color map to visualize it.

Task:
1. Write a Python function `mandelbrot_set(width, height, max_iter, color_map)` that generates an image of the Mandelbrot set. The function should take the following
parameters:
 - `width`: an integer representing the width of the image in pixels.
 - `height`: an integer representing the height of the image in pixels.
 - `max_iter`: an integer representing the maximum number of iterations to determine if a point is in the Mandelbrot set.
 - `color_map`: a function that takes an integer (the iteration count) and returns a tuple of three integers representing the RGB color.

2. The function should return a 2D list of RGB tuples representing the image of the Mandelbrot set.

3. You should validate the input to ensure that `width` and `height` are positive integers, `max_iter` is a positive integer, and `color_map` is a callable function.

4. Implement the `color_map` function to map iteration counts to RGB colors using non-linear scaling (e.g., logarithmic) to enhance the visual appeal of the fractal.

Example:
```python
def mandelbrot_set(width, height, max_iter, color_map):
    # Your code here

def sample_color_map(iter_count):
    # Custom color map logic (e.g., logarithmic scaling)
    # Your code here

# Example usage
width = 800
height = 600
max_iter = 1000
image = mandelbrot_set(width, height, max_iter, sample_color_map)
# Expected output is a 2D list of (R, G, B) tuples representing the Mandelbrot set
```

Notes:
- The Mandelbrot set is defined by the iterative formula: \(z_{n+1} = z_n^2 + c \), where \(z_0 = 0 \) and \(c \) is the complex coordinate corresponding to each pixel
in the image.
- A point \(c \) is in the Mandelbrot set if the sequence \(\{z_n\} \) remains bounded. Typically, we consider a point to be outside the set if \(|z_n| > 2 \) for any \(n \)
less than `max_iter`.
- Use a complex plane range (e.g., real part between -2.0 and 1.0, imaginary part between -1.5 and 1.5).
- Ensure to optimize the implementation for large images.
- Test your function with different `max_iter` values and color maps to observe the changes in the fractal patterns.

Advanced Task:
After writing your function, create an interactive visualization where the user can zoom into different parts of the Mandelbrot set and dynamically adjust the `max_iter`
and `color_map` parameters. Use a GUI framework like Tkinter or a web-based interface to achieve this.

```python
# Provide a basic structure for the interactive visualization
# You don't need to implement the full GUI code here, just the essential parts to show the interaction

import tkinter as tk

def interactive_mandelbrot():
    # GUI code to interactively adjust parameters
    # Your code here

# Start the interactive application
interactive_mandelbrot()
```

Challenge Level: 9.0
Diversity Level: 6.35
Overall: 15.35

Figure 11: The second example of a synthesized code instruction based on the code instruction in Figure 9, including
its challenge and diversity scores.

314

Title: Implementing Cubic Interpolation for 3D Points Transition

Description:
Cubic interpolation provides a smooth way to estimate intermediate values between a set of known data points. In this exercise, you will implement a function to
perform cubic interpolation for a set of 3D points.

Task:
1. Write a Python function `cubic_interpolate_points(points, t)` that performs cubic interpolation on a list of 3D points. The function should take the following
parameters:
 - `points`: a list of tuples, where each tuple consists of three floats representing 3D coordinates (e.g., [(0.0, 0.0, 0.0), (1.0, 1.0, 1.0), (2.0, 4.0, 2.0), (3.0, 9.0, 3.0)]).
 - `t`: a floating-point number between 0 and 1 that represents the interpolation factor.

2. The function should return a tuple of three floats representing the interpolated 3D point.

3. Validate the input to ensure that `t` is between 0 and 1, and the list `points` contains at least four 3D tuples.

Example:
```python
def cubic_interpolate_points(points, t):
    # Your code here

# Example usage
points = [(0.0, 0.0, 0.0), (1.0, 1.0, 1.0), (2.0, 4.0, 2.0), (3.0, 9.0, 3.0)]
t = 0.5
interpolated_point = cubic_interpolate_points(points, t)
print(interpolated_point)  # Expected output is a 3D point computed via cubic interpolation
```

Notes:
- Cubic interpolation should be performed separately for each of the x, y, and z coordinates using the Catmull-Rom spline formula.
- Ensure to implement proper data validation for the inputs.
- Use numerical methods to approximate the cubic interpolation.

Additional Task:
After writing your function, generate a smooth path consisting of 20 interpolated points transitioning between the given set of 3D coordinates. Use the
`cubic_interpolate_points` function to achieve this and visualize the resulting path by printing the list of interpolated 3D points.

```python
points = [(0.0, 0.0, 0.0), (1.0, 1.0, 1.0), (2.0, 4.0, 2.0), (3.0, 9.0, 3.0)]
path = [cubic_interpolate_points(points, i / 19) for i in range(20)]
print(path)
# Expected output: List of 20 tuples representing the interpolated 3D points
```

Challenge Level: 8.0
Diversity Level: 3.09
Overall: 11.09

Figure 12: The third example of a synthesized code instruction based on the code instruction in Figure 9, including
its challenge and diversity scores.

Step 1 [Judge Reason]:

1. **Problem Complexity**: The problem involves multiple steps, including generating Perlin noise and converting it into a terrain map based on thresholds. It
requires understanding and implementing a noise algorithm, which is non-trivial and involves intricate logic. The additional task of visualizing the terrain map adds
another layer of complexity.

2. **Conceptual Depth**: The question requires a deep understanding of procedural content generation and Perlin noise, which are advanced topics in game
development. Students must apply these concepts in a novel way to generate and classify terrain.

3. **Required Skill Level**: This problem is suitable for intermediate to advanced students. It pushes students beyond basic programming tasks by requiring them to
integrate and apply advanced concepts. The problem is challenging but not excessively discouraging for the intended audience.

4. **Edge Cases and Optimization**: The problem encourages consideration of edge cases, such as invalid dimensions and scale values. While brute-force solutions
might work for small maps, efficient handling of larger maps and proper use of the Perlin noise algorithm are necessary for optimal performance.

Step 2 [Final Score]: 8

Figure 13: The challenge level evaluation of the synthesized code instruction in Figure 10.

315

Step 1 [Judge Reason]:

1. **Problem Complexity**: The problem involves generating a Mandelbrot set, which requires understanding complex numbers and iterative algorithms. The task
also includes creating a custom color map with non-linear scaling, adding another layer of complexity. The advanced task of creating an interactive visualization
further increases the complexity.

2. **Conceptual Depth**: The problem requires a deep understanding of fractals, complex numbers, and iterative methods. The custom color map necessitates
knowledge of color theory and non-linear transformations. The advanced task involves GUI programming, which requires understanding event-driven programming
and user interaction.

3. **Required Skill Level**: This problem is suitable for advanced students. It pushes students beyond basic programming concepts into more complex areas like
fractals, complex number arithmetic, and GUI development. It is challenging but not excessively discouraging for advanced learners.

4. **Edge Cases and Optimization**: The problem encourages consideration of edge cases, such as validating input parameters and handling large images efficiently.
Optimization is crucial for generating large images of the Mandelbrot set, as brute-force solutions would be too slow. The problem requires students to think about
time and space complexity.

Step 2 [Final Score]: 9

Figure 14: The challenge level evaluation of the synthesized code instruction in Figure 11.

Step 1 [Judge Reason]:

1. **Problem Complexity**: The problem involves implementing cubic interpolation, which requires understanding and applying the Catmull-Rom spline formula.
This involves multiple steps, including handling each coordinate (x, y, z) separately and ensuring the interpolation is smooth. The task also includes generating a
smooth path of 20 interpolated points, adding to the complexity.

2. **Conceptual Depth**: The question requires a deep understanding of interpolation techniques and numerical methods. Students must grasp the Catmull-Rom
spline formula and apply it correctly to 3D points. This requires abstract thinking and the ability to translate mathematical concepts into code.

3. **Required Skill Level**: The problem is suitable for intermediate to advanced students. It pushes students beyond basic programming tasks by requiring them to
implement a specific numerical method and handle 3D data. The additional task of generating and visualizing a smooth path further challenges their problem-solving
abilities.

4. **Edge Cases and Optimization**: The problem encourages consideration of edge cases, such as validating the input list and ensuring `t` is within the specified
range. While optimization is not the primary focus, students must ensure their implementation is efficient enough to handle the interpolation smoothly.

Overall, the problem is challenging due to its complexity, the depth of understanding required, and the need to handle multiple steps and edge cases. It effectively
pushes students' coding skills and problem-solving abilities.

Step 2 [Final Score]: 8

Figure 15: The challenge level evaluation of the synthesized code instruction in Figure 12.

316

